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11 . Druck p und Volumen V einer abgeschlossenen Gasmenge von konstanter
Temperatur genügen dem Boyle-Mariotteschen Gesetz * pV = c . Stelle
p als Funktion von V dar und zeichne den Graphen für c = 3bar m 3 .

12 . Das Delische Problem der Würfelverdopplung (Vgl . Aufgabe 46/7 .)* *
Menaichmos (Mitte 4 . Jh . v . Chr .) löste das Problem nicht nur durch den
Schnitt zweier Parabeln , sondern auch durch den Schnitt der Parabel
ay = x z mit der gleichseitigen Hyperbel xy = ab . Bei dieser Gelegenheit
entdeckte er übrigens erst Parabel und Hyperbel .
a) Leite aus der Bedingung des Hippokrates a : x = x : y = y : b (siehe

Aufgabe 46/7 .b)) die beiden Gleichungen her und berechne die beiden
mittleren Proportionalen als Koordinaten des Schnittpunkts .

b) Zeichne für a = 1 und b — 2 die beiden Graphen und bestimme damit
einen Näherungswert für ]/2 . (Einheit 5 cm)

2
13. Zeichne den Graphen mit der Gleichung y = x 3 im Bereich 0 A x A 9 .

Erzeuge aus ihm die Graphen mit der Gleichung

a) y = xi + 3 b) y = 2xi c) y = 2xä + 3

d) y = (* - 4)f e) y = 2 (x - 4)f + 3 f ) y = - 3 (x + 2)t + 1

14. Zeichne die Graphen der Funktionen und x .xA + \ (Einheit
4 cm) . Was kannst du daraus über die Anzahl der Lösungen der Glei¬

chung x ~ ä = x2 + ^ schließen ? Bestimme graphisch einen möglichst
guten Näherungswert . Verbessere ihn mit dem Taschenrechner zu der
auf Tausendstel genauen Lösung .

15 . Löse wie in Aufgabe 14 die Gleichungen
11 13 .

a) x3 = x “ 2 — 2 (Einheit8 cm) b) x “ 2 — 1 = ^ + ii (Einheit 8cm )
2 2

c) x “
3 = xä — 1 (Einheit 2cm ) . Gib auch die exakte Lösung an .

4 .2 Die Monotoniegesetze

Ein Blick auf die Graphen der Potenzfunktionen läßt vermuten , daß für
xe [R + gilt:
Die Graphen steigen echt monoton , wenn der Exponent positiv ist , die
Graphen fallen echt monoton , wenn der Exponent negativ ist .

* Das Gesetz geht auf Messungen zurück , deren Werte Sir Robert Boyle (1627- 1691 ) , ein englischer Physiker
und Chemiker , 1661 veröffentlichte . Unabhängig von Boyle führte Edme Mariotte (1620- 1684) , ein

französischer Geistlicher und Physiker , seine Experimente aus und veröffentlichte seine Erkenntnisse als
Gesetz im Jahre 1676 in seinem Discours de la Nature de l ’Air .

** Das Problem hat immer wieder zur Lösung herausgefordert , so auch Giacomo Casanova (1725- 1798) , der
seine Solution du Probleme deliaque 1790 auf eigene Kosten in Dresden drucken ließ .
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Die anschaulichen Begriffe »steigt echt monoton « und »fällt echt monoton «
werden präzisiert durch

Definition 86 . 1 : Die Funktion/ : xt—>f (x) heißt echt monoton zunehmend
in M , wenn für alle a,beMcD f gilt: a < b => f (a) < f (b) .
Der Graph Gf steigt dann echt monoton .
Die Funktion/ : ih/ (x) heißt echt monoton abnehmend in M , wenn
für alle a , b e M c Df gilt : a < b => f (a) > f {b) .
Der Graph Gf fällt dann echt monoton .

Den Beweis der obigen Vermutung beginnen wir mit Satz 44 . 1 . Er besagt :
Of̂ a < boO ^,a n < bn fürnetKl .

Ersetzen wir a durch a * und b durch bn , dann erhalten wir

0 ^ a » < bn 0 ^ (fl « ) < (z>« ) , d . h . ,

0 ^ a < b o 0 < ö « < bn .

Ersetzen wir in dieser Zeile a durch a 'n und b durch b m mit m e IN , dann ergibt
sich

0 ^ a m < bm o Og (am) n < (bm ) » .

Das bedeutet

0 ^ a < b o 0 ^ a m < bm <=> 0 < a » < b

Damit ist gezeigt , daß die Graphen der Potenzfunktionen für x e IR + und
positive rationale Exponenten echt monoton steigen .
Da sich jede positive reelle Zahl q beliebig genau durch eine positive rationale
Zahl f annähern läßt , ist es plausibel , daß die Behauptung über die Monotonie
der Potenzfunktionen sogar für positive reelle Exponenten gilt . Auf den
Beweis müssen wir hier aber verzichten .
Ist schließlich g negativ , dann ist ( — g) positiv , und wir können nach dem eben
Gezeigten schreiben :

1 10 < a < bo0 < a e < b e <=> 0 < — < —
aQ b e

o 0 < b ä < a e .

a e b e

Bemerkung: Wir haben den Fall a = 0 weggelassen , weil für o < 0 der Term 0 e
nicht definiert ist .

Wir fassen zusammen zu
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Satz 87 . 1 : Das erste Monotoniegesetz für Potenzen
Für q > 0 gilt: 0 ^ a < b <=> 0 ^ ae < ba
Für q < 0 gilt: 0 < a < b <*■ 0 < be < ae

Dieser Satz kann auch als Satz über das Monotonieverhalten der Potenz¬
funktionen formuliert werden :

Satz 87 .2 : Für xe (R + ist die Potenzfunktion x i—►x-
echt monoton zunehmend , wenn der Exponent q positiv ist,
echt monoton abnehmend , wenn der Exponent q negativ ist .

Abb . 87 . 1 Monotonieverhalten der Potenzfunktionen in Abhängigkeit vom
Vorzeichen des Exponenten

Das erste Monotoniegesetz gibt Auskunft über das Monotonieverhalten einer
Potenzfunktion x i—>•x e . Beim Vergleich der Graphen zweierPotenzfunktionen
x i—> xe und x i—►x° haben wir weiter oben festgestellt , daß für 0 < x < 1 der
Graph der Funktion mit dem größeren Exponenten näher bei der x-Achse
läuft ; für x > 1 ist es umgekehrt .
Jetzt können wir diese Beobachtung durch einen Beweis untermauern :

Ist q < er, dann ist <j — q > 0 , und es gilt nach Satz 87 . 1

einerseits
0 < a < l <=> 0 < <f ~ a < l a ~ e | | • a8 (positiv !)

o 0 < a a < a e,
andererseits

1 < a o 0 < \ a - e < a ° - e
o 0 < a & < aa.

| | • ae (positiv !)



4 Potenzfunktionen

Damit haben wir

Satz 88 . 1 : Das zweite Monoto-
niegesetz für Potenzen
Für 0 < a < 1 gilt:

q < a o a ” < aQ

Für 1 < a gilt:
q < a o ae < aa

Abb . 88 . 1 Vergleich von
Potenzfunktionen mit
verschiedenen Exponenten

p < a

u < 1 V > 1
up > u° v p < v”

Aufgaben
1 . Vergleiche mit Hilfe der Monotoniegesetze , d . h . , ohne die Potenzen

auszurechnen , folgende Zahlenpaare der Größe nach .
a) 3 10 und 410 b) (4 ) 10 und (i ) 10 c) 1,77 13 und 1,78 13
d) 0,995 und 0,985 e) 79 und 7 12 f) (t )9 und (i ) 12
g) I 8 - 3 und I 8 - 4 h) 0,18 - 3 und 0,18 - 4 0 ( - 1 ) - 4 und ( - 1 )

“ 6
• k) 165 und 176 . 1) (i )6 und (f )5 • m) 2 4 und 3 6

2 . Ordne die folgenden Potenzen der Größe nach .
a) 5t ; 5t ; 5 0’3

c) (t ) 1 '3 ; # ; (fr ?; (t )t

b) 1,1 - 2 ;

d) 0 , 1 ? ;
3 . Bestimme die Größenbeziehung zwischen

und 25l/3 b) ( \ j )n und (jrfpa) 2

ä) (P2 )
- ^ und (P 2) - ’"6

e) 0,9m und 0,9

1 ; 1
~

V 1,1
4 4

0,1
-

5 ; 103 ;

13
6

100 “ ^

c) 5 101 und 5 21

4n

4 . Welche Ungleichung besteht zwischen

a) 1,5 ^ und 1,6 ^ b) 0,87 ^ und Qp c) und (ü ) 1 - ^
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5 . Es sei 0 < a < b . Welche Ungleichungen bestehen dann zwischen folgen¬
den Potenzen ?
a) a 2 und b2 b) a 1,z und b 1,2 c) a0,1 und h0,1

d) a 4 und b
3. _ 3

e) a ~ 8 und b ~ s f) a - 0,01 und b - 0,01

• 6 . Warum kann man unter der Voraussetzung 0 < a < b noch keinen
Größenvergleich der Potenzen a) a2 und b 3 b) a 0,5 und b0 ’2 durch¬
führen ? Nimm eine Fallunterscheidung vor und gib jeweils passende
Zahlenbeispiele an .

• 7 . Es sei 0 < x < 1 < y . Welche Größenbeziehung besteht dann zwischen
2 2 1

a) x3 und y 0,1 b) x 0,1 und y 3 c) x ~
5 und y ~ 3 .

8 . Es sei 0 < a < b . Ordne folgende Ausdrücke der Größe nach .

a) 1fa und ]fb b) a und ]fäb c) a ]/b und bVa d) Va2 und Vb2

e) ]/ a 2 b ~ x und Jfa, f) }/a p bq + 1 und VaF + 1 bq (p , q > 0)

• 9 . Beweise und gib jeweils auch passende Beispiele an .

a)

c)

a > 1 <s> 14 > 1

a > 1
m > n

e) 1 a < b
m > n

b) 0 ^ a < 1

d) 0 ^ ö < l
m > n

m/— n /—
Va > Va

f) 0 ^ a < 6 ^ 1
m > n

Va < Vb

• 10 . a) Begründe aus den Monotoniegesetzen für Potenzen, warum bei
positiven Exponenten q kein Funktionsgraph aus der Schar xi—> x e ,
q > 0 , im Feld {(x | j>) | 0 ^ x < 1aj ^ 1 } u {(x | y) | x > 1 a 0 ^ y ^ 1 }
verläuft .
{Hinweis : Zeichne das Sperrgebiet in ein Koordinatensystem ein .)

b) Begründe aus den Monotoniegesetzen für Potenzen , warum bei
negativen Exponenten q kein Funktionsgraph aus der Schar x xß ,
q < 0 , im Feld { (x | y) 10 ^ x < 1a0 ^ jM } u { (x | y) | x > 1 a y ^ 1 }
verläuft .
{Hinweis : Zeichne das Sperrgebiet in ein Koordinatensystem ein .)

11 . Welche der folgenden Funktionen sind in D monoton ? Welche Art von
Monotonie liegt gegebenenfalls vor ?
a) x
c) x i—> x
e) x i—►x
g) x \—> x

x 2
, D — [R

2 D = (x | -
\ D = R +

- i

3 ^ x < 5}

D = (R \ {0}

b) xi
d) x ^
f) xi
h) xi

>x , D = [R
>x °

, D = IR +

►x _ 1
, D = [R ~

■x “ 2
, D = fR \ {0}
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