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5 Algebraische Gleichungen

5 . 1 Definition und Sonderfälle

Der Umgang mit höheren Potenzen führte dazu , daß man sich auch an
Gleichungen wagte , in denen die Unbekannte in höheren Potenzen vorkam .
Man beschäftigte sich also nicht nur mit linearen und quadratischen
Gleichungen , sondern auch mit kubischen Gleichungen , in denen die
Unbekannte in dritter Potenz auftritt , und sogar mit Gleichungen noch
höheren Grades .
Allgemein legt man fest :

Definition 96 . 1 : Die Gleichung anx n + an _ 1 x n ~ 1 + . . . + a x x + a0 = 0
mit ne [Kl , a ; e [R und an 0 heißt algebraische Gleichung n-ten
Grades .
Ist an = 1 , dann liegt die Gleichung in Normalform vor .
Die Gleichung x " + a0 = 0 heißt reine Gleichung n-ten Grades .

In Algebra 3 haben wir Sonderfälle algebraischer Gleichungen höheren als
zweiten Grades bereits kennen - und lösen gelernt . Gewisse kubische , biqua -
dratische und reziproke Gleichungen sogar bis zum Grad 8 wurden dort
behandelt . Allerdings konnten wir für Gleichungen mit höherem als zweitem
Grad keine allgemeine Lösungsformel angeben . In 3 . 1 haben wir die
Gleichungen x ” = a , a > 0 , d . h . die reine algebraische Gleichung n- ten Grades
xn + a0 = 0 für aQ = — a gelöst . Die Lösungsmenge der reinen Gleichung

gerader Exponent

a > 0
gerader Exponent

Abb . 96 . 1 Graphische Lösung der Gleichung x" = a für gerades n
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x " = a , ae IR , hängt von n und dem Vorzeichen von a ab . Graphisch erhält
man die Lösungen der Gleichung x" = a , indem man den Graphen der
Potenzfunktion x i—►xn mit der zur x-Achse parallelen Geraden y = a zum
Schnitt bringt . Aus Abbildung 96 . 1 lesen wir ab :

Satz 97 . 1 : Ist n gerade , dann hat die Gleichung xn = a die Lösungs¬
menge
L = { — Va,Va ] , falls a > 0
L = { 0 } ,
L = { } ,

falls a = 0
falls a < 0 .

Beispiele :
x4 = 16 hat die Lösungen — 2 und 2 .
x S = 768 hat die Lösungen — 2j/3 und 2 ]/3 .
x 18 = 0 hat die Lösung 0 .
x 56 = — 9 hat keine Lösung in [R .
x 6 = a 6 hat die Lösungen — a und a .
x 6 = a 18 hat die Lösungen — a 3 und a 3 .

Für ungerades n lesen wir aus Abbildung 97 . 1 ab :

Ist a > 0 , dann hat die Gleichung x " = a die Lösung x = 1Za .

Ist a < 0 , dann hat die Gleichung x " = a die Lösung x = — 17 — a .

-y =a

I ungerader Exponent | ungerader Exponent |

a > 0 a < 0

Abb . 97 . 1 Graphische Lösung der Gleichung x " = a für ungerades n
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Die Fallunter scheidurig für a kann man vermeiden , wenn man für das
Vorzeichen von a die Abkürzung sgn a , gesprochen »signum von a « einführt .

*

Definition 98 .1:
C + 1 , falls a > 0

sgn a — < 0 , falls a = 0
(. — 1 , falls a < 0

Wenn Mißverständnisse zu befürchten sind , setzt man das Argument der
Signum -Funktion besser in Klammern . Es könnte nämlich sgn x • x einerseits
sgn (x) ■x = x - sgn (x) , andererseits aber auch sgn (x ■x) = sgn (x 2) = sgn x2
bedeuten .
Unter Verwendung von Definition 98 . 1 formulieren wir

Satz 98.1: Ist n ungerade, dann hat die Gleichung x n = a die Lösung
x = sgn (ä) V\a \ .

Beispiele:
x 5 = 32 hat die Lösung 2 .
x 5 = — 1024 hat die Lösung — 4 .
x 9 = 27 hat die Lösung ]/27 = ]/ ?>.
x 9 = — 27 hat die Lösung — 1/27 = — 1/3 .
x 7 = a 1 hat die Lösung sgn (a 7) l/ | ö7

| = (sgn ä) 1 l/ | <ar|
7 = | a | sgna = a .

x 7 = — a 14 hat die Lösung sgn ( — a 1A) V\ - a 14
| = — a 2 .

Gleichungen der Form x ~ n = b , hg IN , können für b 4= 0 auf reine Gleichun -
1

gen n- ten Grades zurückgeführt werden : x " = b <=> x " = - .b

Aufgaben
Bestimme die Lösungsmengen der folgenden Gleichungen .

1 . a) x 3 = 512 b) x 4 = 625 c) x 7 = 128

2 . a) 729x 6 = 1 b) 64x 3 = 343 c) 243x 5 - 1024 = 0

3 . a) 81x 2 = 27 b) 32x 10 = 1024 c) x 9 - 119 = 139 - x 9
* Die Idee einer Vorzeichenfunktion , d . h ., jeder reellen Zahl ihr Vorzeichen zuzuordnen , stammt von LeopoldKronecker (1823- 1891) , der sie 1878 erstmals veröffentlichte und 1884 die Bezeichnung sgn .a einführte .

Verbreitung fand das Symbol sgn dadurch , daß Giuseppe Peano (1858- 1932) es 1898 in sein Formulaire
de mathematiques , II -§2 aufnahm .
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4 . a) x 3 = — 1 b) 9x 6 + 1 = 0 c) 5x7 + 640 = 0

5 . a) 365x 4 + 12 = 85 b) 19x 6 - 295 = 25 - x6

c) 800x6 + 7 = 71 (1 + x6) d) 5 (x 5 + 28) = 2 (x 5 - 26)

6 . a) x 4 = 16 b) x ~ 3 = § c) x “ 5 = - 0,03125

7 - a)
1 —2 0 >2
7 * = —
5 x

b) 4x - 3 — 14 = (2x 3 ) - 1 + 14 c) 4x 6 — 20 = -
x ~ 6

8 . a) | x |
3 = l b) 5l/x ® = 0,04 c) fx 1“ + 62 = (2 Vx^)

5

• 9 . Löse graphisch und durch Rechnung die folgenden Gleichungssysteme :

a) I x 2 = a b) I x 2 = a c) I x 3 = a d) I x = a
II x 3 = a II x 4 = a II x 7 = a II x 3 = a

• 10 . Für welche Werte von a haben folgende Gleichungen eine gemeinsame
Lösung ? Untersuche jeweils , wie viele gemeinsame Lösungen vorhanden
sind , (m , ra e IN )
a) x ” = a und x" + 1 = a b) x" = a und x" + 2 = a
c) x n = a und x n + m = a .

11 . Ist die Aussage »Die Gleichung x" = a hat 1/ a als Lösung« richtig ?

• 12 . Bestimme die Lösungsmengen ggf . mit Fallunterscheidungen .
a) x 2 = a2 b) x 3 = a3 c) x4 = a 2

d) x 6 = a3 e) x 9 = a 3 f) x - 4 = a6

g) x ~ 5 = j^ ' h) a ■x° — V a3 = 0 • i) a 3 - x ~ 2 G

a) x 8 — 25x 4 + 144 = 0 b) x 6 - 7x 3- 8 = 0
c) 31x 5 + 32x10 = 1 d) X 7 + 21x 4 = 0
e) (x 3 + 7) • (x ~ 6 — 8) = 0 f) x4 + 2 = 3x “ 4

14. Welche Lösungsmengen haben die folgenden Ungleichungen?

a) x 3 > 1000 b) x4 2: 16 c) x 6 < 27

ä) xs < $ $f e) x° A0 * f) x “ 3 A - 2

g) x ~ 8
rg 25 h) — 7 < x 5 < 11 i) 1 A x 2 < 20

15. Welche Lösungsmengen haben folgende Ungleichungen?

a) xi ^ f b) x 0,2 < 3 c) x? A ]/2 ]/2

d) lAxf < 4 e) x ? > — 1 f) - 3 ^ x 047 < — 2
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16. Zur sgn-Funktion
a) Zeichne den Graphen der Funktion xi—> sgnx , xelR .
b) Beweise durch Fallunterscheidung:

1) xsgnx = | x |

3) sgnx • sgn y = sgn (x • y)

2) | x | sgnx = x

5) sgn (x") = (sgnx )"
, « elKl 6) - = sgn x für x 4= 0

sgnx
17 . a) Gib mit Flilfe der Betrags - und der Signum-Funktion den Term/ 1 (x)

der Umkehrfunktion von/ : xi—>- x3
, Df = IR an .

b) Löse a) für/ : xi—> x2z + 1
, zeZ und Df maximal. Gib Df ~ i an .

5.2 Näherungslösungen

Gleichungen höheren als zweiten Grades können wir nur in Sonderfällen
exakt lösen . In allen anderen Fällen müssen wir uns mit Näherungswerten für
die exakten Lösungen begnügen . Dazu fassen wir das Lösen der Gleichung
fix ) = 0 als Aufgabe auf , die Nullstellen der Funktion / : xh/ (i ) zu
bestimmen . Mit Hilfe einer Wertetabelle läßt sich der zugehörige Graph
j = / (x) zeichnen , aus dem man Näherungslösungen ablesen kann .
Beispiel : x 3 — 3x2 + 1 = 0

- 2 - 101234

y - 19 - 3 1 - 1 - 3 1 17

y = x3 - 3x2+ 1

Abb . 100 . 1 Graph der Funktion x i—> x3 — 3x2 + 1
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Aus Abbildung 100 . 1 lesen wir für die Nullstellen ab : S>1 « — 0,5 , Q2 ss 0,6
und £ 3 « 2,9.
Zur Verbesserung der Genauigkeit brauchen wir rechnerische Methoden . Eine
einfache gebräuchliche Methode ist das Iterationsverfahren . Dabei bringt man
die zu lösende Gleichung / (x) = 0 auf die Form x = g (x) , was man auf
unterschiedlichste Art und Weise bewerkstelligen kann . Dann beginnt man
mit einem Näherungswert x0 und berechnet der Reihe nach

M = g (x0)
X2 = g (x i)
* 3 = g ( x 2 )

x„ + i = g (x„)
usw .

Falls g (x) geeignet gewählt wurde , nähern sich die Werte xn beliebig ge¬
nau einer Lösung der Gleichung x = g (x) und damit auch der Gleichung
/ (x) = 0 .
Wir lösen jetzt unser Beispiel durch Iteration .

1 . Versuch:
x3 - 3x

1

2 + 1 = 0 | | + x
x = x 3 — 3x2 + x + l => x, 3x2 + xn + 1

x6 = — 0,1402 . . .x 3 = 0,8628 . . .
x4 = 0,2716 . .-.
x 5 = 1,0702 . . .

x0 = 0,6
x t = 0,736
x2 = 0,5096 . . .

Da diese Werte sich immer weiter von der vermuteten Nullstelle entfernen ,
versuchen wir es mit einem anderen Startwert :

x , = 1

Die Werte wiederholen sich unentwegt . Wir sind in eine Schleife geraten ; die
Nullstelle wird wieder nicht erreicht . Das gewählte g (x) ist offenbar ungeeig¬
net .

2 . Versuch:
x 3 - 3x2 + 1 = 0
3x2 = x 3 + 1

und

(1 ) könnte sich zur Berechnung von £ 15
(2) zu der von £ 2 oder £ 3 eignen :
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X 0 = — 0,5

x x = - 0,5400 . . .
x2 = - 0,5299 . . .
x 3 = — 0,5326 . . .
x4 = - 0,5319 . . .
x 5 = - 0,5321 . . .
x6 = - 0,53207 . . .
x 7 = - 0,53209 . . .

x0 = 0,6
x x = 0,6366 . . .
x 2 = 0,6475 . . .
x 3 = 0,6510 . . .
x4 = 0,6521 . . .
x 5 = 0,6525 . . .
x6 = 0,6526 . . .
x 7 = 0,65268 . .

Da / ( — 0,53215) < 0 und / ( — 0,53205) > 0 ist , erhält man für die Nullstelle
den Näherungswert — 0,5321 , und da / (0,65265) > 0 und / (0,65275) < 0

ist , erhält man für die Nullstelle den Näherungswert 0,6527 . Die Güte
dieser Näherungen erkennt man aus / ( — 0,5321 ) äs — 4,4 • 10 ~ 5 bzw.
/ (0,6527) äs 9,6 • 10 - 6 .
Der Startwert 2,9 führt weder bei (1 ) noch bei (2) zu einem Ergebnis .
Die noch fehlende Nullstelle c 3 liefert aber der

3 . Versuch:
x 3 - 3x 2 + 1 = 0
x2 (x — 3 ) = — 1

x — 3 = - 7xz
1 1

X J 2 —' + 1X Xn
x0 = — 0,5 x0 = 0,6 x0 = 2,9
Xj = — 1 x 3 = 0,222 . . . x 3 = 2,8810 . .
x2 = 2 x2 = - 17,2499 . . . x2 = 2,8795 . .
x 3 = 2,75 x 3 = 2,9986 . . . x 3 = 2,8793 . .
x4 = 2,8677 . . . x4 = 2,8886 . . . x4 = 2,87938
x 5 = 2,8784 . . . x 5 = 2,8801 . . .
x6 = 2,8793 . . . Xg = 2,8794 . . .
x 7 = 2,87937 . . . x 7 = 2,87939 . . .

Dieses Verfahren führt überraschenderweise unabhängig vom Startwert
immer zur Nullstelle £ 3 . Da / (2,87935) < 0 und / (2,87945) > 0 ist , gilt
gerundet £ 3 äs 2,8794 , wofür man/ (2,8794) « 1,1 • 10 - 4 erhält .
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Aufgaben
1 . x 3 - 9x - 10 = 0

a) Bestimme die ganzzahlige Lösung dieser Gleichung durch Raten . *

b) Berechneeine »Näherungslösung« auf 0,001 genau für die ganzzahlige

Lösung mittels der Iteration xn + 1 = —
x n = — 2,5 .

/10
+ 9 und dem Startwert

c) Bestimme durch Iteration die beiden nicht ganzzahligen Lösungen
näherungsweise auf die dritte Dezimalstelle genau . Suche dazu jeweils
ein geeignetes g (x ) und einen passenden Startwert x 0 .

2 . x4 + 6x 2 — 60x + 36 = 0 war die Gleichung 4 . Grades , an Hand derer
Cardano 1545 das Lösungsverfahren für Gleichungen 4 . Grades de¬
monstrierte (siehe Seite 114) . Berechne mit Hilfe der angegebenen
Iterationsverfahren Näherungen für die beiden reellen Lösungen auf die
vierte Dezimalstelle genau .

a) *„ + i =
36

60 — 6x „
— x 3 ’ x 0 = 0,5

b) *„ + i =

C) *« + 1 =

i / 60s,, - 36
/ x 2 + 6

l/6 (10x „ — x 2 — 6) ,

■* o = 3

* o = 3

3 . Wie tief taucht eine schwimmende Kugel mit dem Radius r = 1 dm und
der Dichte q = 0,75 kg • dm “ 3 in Wasser ein ? Stelle eine Gleichung für die
Eintauchtiefe xdm auf und löse sie näherungsweise auf 10 ~ 4 gerundet
durch ein geeignetes Iterationsverfahren . * *

* * 5 .3 Allgemeine Sätze

Nach der Behandlung des Sonderfalls x " + a0 = 0 wenden wir uns nun den
algebraischen Gleichungen in ihrer allgemeinen Form a n x " + a n _ i x n ~ 1 +
+ . . . + a 1 x + a 0 = 0 zu . Bei den Gleichungen 3 . Grades haben wir gelernt ,
daß man sie auf eine Gleichung 2 . Grades zurückführen kann , wenn man eine

Lösung kennt . In einem solchen Fall kann man auch eine Gleichung n- ten
Grades auf eine vom Grad n — 1 zurückführen . Zum Beweis dieser Be¬

hauptung verallgemeinern wir einen Gedankengang , den Geronimo Carda¬
no (1501 - 1576 ) in Regel 6 von Kapitel XXV seiner Ars magna 1545

angesprochen hat und den Francois Viete (1540 - 1603 ) in seinem 1615 postum

* Zur historischen Bedeutung dieser Gleichung siehe Seite 113.

** Auf eine solche Gleichung (mit „f . „ an Stelle von o ) stieß al -Mahani (um 860) , als er das von Archimedes

(um 287 - 212 v . Chr .) in Über Kugel und Zylinder (11,4) gestellte Problem algebraisch lösen wollte : Eine

Kugel durch eine Ebene so zerschneiden , daß die Volumina der entstehenden Segmente das Verhältnis m : n
haben .
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erschienenen Tractatus de emendatione aequationum erweiterte . Als Hilfs¬
mittel benützen wir wie Viete die auf Seite 44 bewiesene Verallgemeinerung
der 3 . binomischen Formel , nämlich

an - bn = (a - b) (a n ~ 1 + an ~ 2 b + a n ~ 3 b2 + . . . + abn ~ 2 + b" - 1) ( ■ )

Damit können wir uns dem eigentlichen Problem zuwenden . Die linke Seite
der algebraischen Gleichung an x n + + . . . + üqx -l- a0 = 0 ist ein
Polynom vom Grad n , für das wir kurz Pn (x) schreiben . Für eine beliebige
reelle Zahl r gilt
Pn (*) ~ Pn (r) = an (* n - r n) + an _ 1 (x n ~ 1 - r n ~ 1) + . . . + ai (x - r) .

Wendet man auf jede der Klammern ( ■ ) an , so kann man (x — r) ausklam¬
mern und erhält

P« (x) ~ pn (r) =
= a„ (x — r) (x n ~ 1 + x" ~ 2 r + . . . + xr n ~ 2 + r " - 1) +

+ a„ _ 1 (x — r) (x n ~ 2 + x " _ 3 r + . . . + xr n ~ 3 + r” ~ 2) +
+ an _ 2 {x - r) {xn ~ 3 + x" ~ 4 r + . . . + xr n ~ A + rn ~ 3) +
+ . . . +
+ a 1 (x — r) =

= (x — r) [an (x " _ 1 + . . . + r " _ 1) + an ^ 1 (x n ~ 2 + . . . + r " - 2) + . . . + a{\ .

Der in der eckigen Klammer stehende Ausdruck ist ein Polynom (n — l ) -ten
Grades in x , so daß gilt
pn (x) ~ pn (r) = {x - r) Pn - 1 (x ) .

Ist r eine Nullstelle des Polynoms P„ (x) , dann ist Pn {r) = 0 , und es ergibt sich
Pn (x) = (x ~ r) Pn , (x) .

Damit ist bewiesen

Satz 104 . 1 : Reduktionssatz
Ist x , eine Lösung der algebraischen Gleichung P„ (x) = 0 , dann
läßt sich Pn {x) faktorisieren zu (x — x l ) Pn _ l (x) , wobei Pn _ 1 (x) ein
Polynom (n — l )-ten Grades ist . Die Lösung der algebraischen
Gleichung P„ (x) = 0 ist damit zurückgeführt auf die Lösung der
äquivalenten Gleichung (x — x 1) P„ _ 1 (x) = 0 , d . h . auf die Lösung
von x = x 1 v Pn _ 1 (x) = 0 .

Rene Descartes (1596 - 1650) hat den Inhalt dieses Satzes 1637 in seinem Werk La
Geometrie mitgeteilt . Zu seiner Veranschaulichung wählen wir eine Gleichung aus
einer 1654/55 entstandenen Arbeit des Jan Hudde (1628- 1704 ) , in der dieser die
Methoden Descartes ’ ausbaute . Hudde sandte diese Arbeit als Brief, datiert vom
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15 . Juli 1657 , an seinen Lehrer Frans van Schooten (um 1615- 1660 ) . Dieser
übersetzte sie aus dem Niederländischen ins Lateinische und fügte sie unter dem Titel
De reductione aequationum - »Über die Reduktion von Gleichungen « - 1659 seiner
zweiten lateinischen Ausgabe des DESCARTESschen Werks bei , wo sie 100 Druckseiten
in Anspruch nimmt .

Beispiel : x4 — 6x 2 + 8x — 3 = 0
Die Lösung x 1 = 1 läßt sich erraten . Das gesuchte Polynom P 3 (x) erhält
man entweder durch Polynomdivision oder durch die von Descartes
1637 in seiner La Geometrie erfundene Methode des Koeffizientenver¬

gleichs , von der er mit Stolz schreibt , »daß sie nicht eine der geringsten
unter den Methoden ist , deren ich mich bediene« .

Polynomdivision:
(x4 — 6x 2 + 8x — 3) : (x — 1 ) = x 3 + x 2 — 5x + 3 — P 3 (x)

x 3 )_
x 3 — 6x 2 + 8x — 3

- ( X3 - X
2

)
_

— 5x 2 + 8x — 3
— ( — 5x 2 + 5x)

3x — 3
— (3x — 3)

(P
Koeffizientenvergleich :
Man setzt das gesuchte Polynom P 3 (x) als Ax 3 + Bx 2 + Cx + D an und
hat damit

x4 — 6x 2 + 8x — 3 = (x — 1 ) P 3 (x) =
= Ax 4 + (B — A) x 3 + (C — B ) x 2 + (D — C) x — D .

Linke und rechte Seite stellen dasselbe Polynom 4 . Grades dar . Überein¬

stimmung liegt sicher vor , wenn die Koeffizienten gleich sind . Wir

erhalten also für die vier unbekannten Koeffizienten A , B, C und D das

folgende aus fünf Gleichungen bestehende Gleichungssystem :

I A = 1
II B - A = 0
III C - B = ~ 6 f
IV D - C = 8
V — D = — 3 ,
Somit ist P 3 (x) = x 3 + x 2 — 5x + 3 .

Die linke Seite der gegebenen Gleichung 4 . Grades kann damit faktori -

siert werden ; man erhält

' A = 1
B = 1
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x 4 — 6x 2 + 8x — 3 = 0 o (x — 1 ) (x 3 + x 2 — 5x + 3 ) = 0 .
Falls die gegebene Gleichung noch weitere Lösungen besitzt , erhält man
sie als Lösungen von x 3 + x 2 — 5x + 3 = 0 . Durch Probieren findet man ,daß x 2 = 1 diese Gleichung löst . Damit kann man ihre linke Seite nach
einem der obigen Verfahren faktorisieren zu {x — 1 ) (x 2 + 2x — 3 ) . Die
quadratische Gleichung x 2 + 2x — 3 = 0 hat die Lösungen x 3 = 1 und
x4 = — 3 , so daß wir schreiben können
x4 — 6x 2 + 8x — 3 = 0 o (x — l ) 3 (x + 3 ) = 0 .
Die gegebene Gleichung 4 . Grades besitzt also die Lösungen — 3 und 1 .Da bei der Faktorisierung der Linearfaktor (x — 1 ) in der 3 . Potenz
auftritt , sagt man , 1 sei eine dreifache Lösung der Gleichung .

Der Reduktionssatz gestattet eine Abschätzung der Anzahl der Lösungen , dieeine Gleichung n-ten Grades haben kann . Jede Lösung x0 läßt nämlich die
Abspaltung des Linearfaktors (x — x 0) zu , und bei einem Polynom «-tenGrades kann ein solcher Faktor höchstens «-mal ausgeklammert werden .Also gilt

Satz 106 . 1 : Eine Gleichung «-ten Grades hat höchstens n Lösungen.Dabei wird jede Lösung in ihrer Vielfachheit gezählt .

Bei quadratischen Gleichungen in Normalform gibt der Satz von Vieta einen
Zusammenhang zwischen den Lösungen x 1 ; x 2 und den Koeffizienten p , q der
Gleichung x 2 + px + q = 0 an :
p = — (x 3 + x2) und q = x 1

■x2 .
Ein analoger Satz gilt auch für Gleichungen höheren Grades in Normalform ,d . h . mit an = 1 .
Wir betrachten zunächst eine Gleichung 3 . Grades in Normalform :
x 3 + a2 x 2 + öjX + a0 = 0 habe die 3 Lösungen x 3 , x2 und x 3 .
Nach dem Reduktionssatz gilt dann
x 3 + a2 x 2 + a 2 x + a0 = (x — x 3) (x — x2) (x — x 3 ) =
= x 3 — (x 1 + x2 + x3)x 2 + (x 3

• x2 + x 2
• x 3 + x 3

• x 1) x — x 3
• x2

■x 3 .
Offenbar ist der Zusammenhang bei dem mittleren Koeffizienten kompli¬zierter . Aber wenigstens bei den Koeffizienten a0 und an 3 sind die Ausdrücke
so einfach , daß es sich lohnt , sie sich zu merken :

Satz 106 .2 : Sind x 3 , x2 , . . . ,x „ die Lösungen der Gleichung
x " + an _ 1 x " - 1 + . . . + a x x + a0 = 0 , dann gilt :

— (Xj + x2 + . . . + x„) und a0 = ( — ! )" • x x
- x2

■ . . . - x„ .
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Der Beweis verläuft wie oben bei der Gleichung 3 . Grades .

Die Beziehung a0 = ( — 1 )" • x x
■x2 ■ . . . ■xn läßt vermuten , daß ganzzahlige

Lösungen einer Gleichung mit ganzzahligen Koeffizienten Teiler von a0 sein
müssen . Tatsächlich gilt

Satz 107 . 1 : Sind alle Koeffizienten der Gleichung anxn + an _ 1 xn ~ 1 +
+ . . . + a x x + a0 = 0 ganzzahlig , dann ist jede ganzzahlige Lösung
Teiler von a0 .

Zum Beweis denken wir uns die ganzzahlige Lösung x 1 eingesetzt :
a„ x" + a„ __1 x ” ~ 1 + . . . + a 1 x 1 + a0 = 0

Daraus folgt a0 = — x x {an x\ ~ ^ + an _ x x\ ~ 2 + . . . + a x) ,
d . h . , x x ist Teiler von a0 , q .e .d.

Sind die Koeffizienten a i zwar rational , aber nicht alle ganzzahlig , dann
multiplizieren wir mit dem Hauptnenner der Koeffizienten und erhalten eine
Gleichung mit lauter ganzzahligen Koeffizienten , auf die man Satz 107 . 1
anwenden kann .

Beispiel :
x 3 - ^x 2 - 9x + i = 0 | | - 2
2x 3 ~ x 2 — 18x + 9 = 0

Ganzzahlige Lösungen können nur Teiler von 9 sein, also + 1 , + 3 , ±9 .
Wir setzen ein:

+ 1
- 1
+ 3
- 3
+ 9
- 9

2 - 1 - 18 + 9 = - 8
- 2 - 1 + 18 + 9 = 24
54 — 9 — 54 + 9 = 0
- 54 - 9 + 54 + 9 = 0
1458 - 81 - 162 + 9 = 1224
- 1458 - 81 + 162 + 9 = - 1368

keine Lösung
keine Lösung
Lösung
Lösung
keine Lösung
keine Lösung

Satz 106 .2 liefert uns zu den beiden so gefundenen Lösungen - 3 und 3
die dritte :
( — l )3 • 3 • ( — 3) • x 3 = f > also x 3 = 2 -

Sucht man nicht nur die ganzzahligen , sondern auch die übrigen rationalen

Lösungen , dann kann man sich des folgenden Satzes bedienen :
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Satz 108. 1 : Sind alle Koeffizienten der Gleichung
an x n + an _ 1 x" ~ 1 + . . . + at x -\- aQ = 0

ganzzahlig, so gilt für jede vollständig gekürzte rationale Lösung - :
p ist Teiler von a0 , und q ist Teiler von an .

^

Beweis : Wir setzen die Lösung ^ ein und multiplizieren die Gleichung mit q" .
Das ergibt an p n + an _ 1p n ~ l q + an ^ 2 p n ~ 2 q 2 + . . . + a 1pq n ~ 1 + a0 qn = 0 .
Somit gilt a0 qn = - p - (an p n ~ x + an _ 1p n ~ 2 q + an ^ 2 p n ^ z

q 2 + . . . + a 1 qn ~ 1)
und auch an p n = - q - (an _ lp n ~ 1 + a„ _ 2 p n ~ 2 q + . . . + a 1pq n ~ 2 + a0 qn ~ 1) .
Weil p und q nach Voraussetzung teilerfremd sind , muß p ein Teiler von a0 und
q ein Teiler von an sein.
Bei der Gleichung 2x 3 — x 2 — 18a + 9 = 0 kommen demnach als rationale
Lösungen nur die Zahlen + 1 , + 3 , + 9 , ± \ , + § , + f in Frage . Tatsächlich
heißen die Lösungen — 3 , + 3 und j , wie oben gezeigt wurde .
Rene Descartes (1596 - 1650 ) hat 1637 in seiner La Geometrie eine Regelfür die möglichen Anzahlen positiver bzw . negativer Lösungen angegeben .

Satz 108.2 : Vorzeichenregel von Descartes
Die Anzahl der positiven Lösungen einer algebraischen Gleichung
an xn + a„ ~ i V - 1 + . . . + a y x + a0 = 0 mit a0 4= 0 ist gleich der An¬
zahl der VorzeichenWechsel in der Koeffizientenfolge an , a„ - u . . . ,a 1 , a0 oder um eine gerade Anzahl kleiner .
Die Anzahl ihrer negativen Lösungen ist gleich der Anzahl der
positiven Lösungen derjenigen Gleichung , die entsteht , wenn man
in der gegebenen Gleichung x durch — x ersetzt .
Beachte : Jede Lösung wird gemäß ihrer Vielfachheit gezählt .

Erste Beweisversuche unternahmen 1675 Jean Prestet (1652 - 1690 ) und 1728
Johann Andreas von Segner (9 . 10 . 1704 Preßburg - 5 . 10 . 1777 Halle/Saale ) .
Vollständig bewiesen hat diesen Satz aber erst 1828 Carl Friedrich Gauss
(1777- 1855 ) , von dem auch die obige »zweckmäßige Einkleidung « stammt . *Wer die Verschärfung »oder um eine gerade Anzahl kleiner « lieferte , konnten
wir nicht ermitteln .

* Descartes selbst schreibt , daß die Anzahl der negativen Lösungen gleich der Anzahl der Vorzeichenwie¬
derholungen in der Koeffizientenfolge ist . Dann müssen Koeffizienten 0 allerdings mit einem Vorzeichenversehen werden ! Aber nur eine geschickte Belegung mit + und — liefert eine gute Abschätzung .
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Beispiele:
1) Descartes zeigt seine Regel an x4 — 4x 3 — 19x2 + 106x — 120 = 0 .

Die Vorzeichenfolge 4- 1— hat 3 Wechsel ( 4— , — h , 4— ) :
3 oder 1 positive Lösung , x durch — x ersetzen :
x4 + 4x 3 — 19x2 — 106x — 120 = 0 hat die Vorzeichenfolge
+ 4- mit einem Wechsel ( 4— ) : 1 negative Lösung .
Tatsächlich hat die Gleichung die Lösungen — 5 , 2 , 3 und 4 .

2) x 7 + x 5 — x2 — 1 = 0 hat die Vorzeichenfolge + 4- mit 1 Wechsel:
1 positive Lösung , x durch — x ersetzen : — x 7 — x 5 — x 2 — 1 = 0 hat
die Vorzeichenfolge - ohne Wechsel: keine negative Lösung .
Tatsächlich hat die Gleichung die Lösung 1 .

Aufgaben
1 . Bei den folgenden Gleichungen sind die angegebenen Zahlen Lösungen .

Bestimme die Lösungsmenge und stelle das Gleichungspolynom als
Produkt von Linearfaktoren dar .
a) x 3 — x 2 — 4x 4- 4 = 0 , x 1 = 2
b) x 3 — 3x — 2 = 0 , x t = — 1
c) x4 4- 3x 3 — 3x 2 — llx — 6 = 0 , x t = — 1 , x2 = 2

2 . Gib eine Gleichung möglichst niedrigen Grades in Normalform an , die die

angegebenen Lösungen besitzt .
a) — 1 , 1 , 3 b) — 5 zweifach und 5 c) 1 , 2

d) — 1/2 , 1/2 , 2 , 3 e) 0 , 1 , 2 , 3 , 4

3 . Welche Vielfachheit hat die Lösung x 1 = 2 in der Gleichung
a) x 3 — 2x 2 — x 4- 2 = 0 ,
b) 2x4 — 8x 3 4- 7x 2 4- 4x — 4 = 0 ,
c) x 5 — 6x4 4- 13x3 — 14x2 4- 12x — 8 = 0 ?

4 . x 3 — 3 x — a = 0 hat die Lösung V2 . Bestimme a und die weiteren

Lösungen .
5 . Bei der Gleichung x 3 4- ax 2 — 16x 4- 160 = 0 haben zwei Lösungen

entgegengesetztes Vorzeichen . Bestimme a und alle Lösungen .

6 . x4 — 5x 3 4- 6x 2 4- ax + b = 0 hat eine dreifache Lösung . Bestimme a und
b und die Lösungen . (Hinweis: Setze das Gleichungspolynom als Produkt
von Linearfaktoren an und führe einen Koeffizientenvergleich durch .)

7 . Welche Bedingungen müssen a , b und c erfüllen , damit die Gleichung
x 3 4- ax 2 + bx + c = 0
a) die Lösungen — 1,1 und 2 hat ,
b) die Doppellösung 1 und die einfache Lösung 2 hat ,

• c) zwei ganzzahlige Lösungen hat , die sich nur durch das Vorzeichen
unterscheiden ? Gib den Gleichungstyp und die Lösungen an .
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• 8 . Gib eine Gleichung an , deren Lösungen
a) jeweils doppelt so groß sind wie
b) jeweils halb so groß sind wie

• c) jeweils um 1 größer sind als
die Lösungen von
1 ) 2x 3 — x 2 — 18x + 9 = 0 2) 8x4 — 8x 3 + 16x 2 — 6x + 1 = 0 .
Da 1) das Beispiel von Seite 107 ist , kannst du die Richtigkeit leicht
überprüfen .

9 . Rene Descartes (1596 - 1650) bestimmt 1637 in seiner La Geometrie zur
Gleichung x 4 + 4x 3 — 19x 2 — 106x — 120 = 0 eine Gleichung , deren
Lösungen a) jeweils um 3 kleiner b) jeweils um 3 größer
sind als die Lösungen der gegebenen Gleichung . Wie heißen die Glei¬
chungen ?

• 10 . Rene Descartes (1596 - 1650) löst 1637 in seiner La Geometrie die
26 8

Gleichung x 3 — ]/3x 2 + — x - = = 0 , indem er zunächst eine Glei-27 271/3
chung sucht , deren Lösungen das ^ fache der Lösungen der gegebenen
Gleichung sind . Mit Hilfe von Satz 108 . 1 lassen sich die Lösungen dieser
Gleichung und damit auch die der Ausgangsgleichung bestimmen . Mach
es nach !

11 . x 3 + 7x 2 — 21x — 27 = 0
a) Begründe: Jede rationale Lösung ist ganzzahlig.
b) Welche ganzen Zahlen kommen als Lösungen in Frage?
c) Bestimme die Lösungsmenge.

12. Beweise den Satz : Rationale Lösungen einer algebraischen Gleichung in
Normalform , deren Koeffizienten ganze Zahlen sind , können nur ganzeZahlen sein.

13 . Ermittle die ganzzahligen Lösungen der folgenden Gleichungen mit Hilfe
von Satz 108 . 1 , bestimme anschließend die Lösungsmenge und stelle
schließlich das Gleichungspolynom als Produkt von Linearfaktoren dar .
a) x 3 — 2x — 1 = 0 b) x 3 + 2x 2 — 6x — 9 = 0
c) x 3 — 9x 2 + 26x — 24 = 0 d) x4 + x 3 — 7x 2 — x + 6 = 0

14 . Ermittle die rationalen Lösungen der folgenden Gleichungen mit Hilfe
von Satz 108 . 1 , bestimme anschließend die Lösungsmenge und faktorisie -
re schließlich das Gleichungspolynom .

• a) 4x 5 — 9x 3 — 4x 2 + 2x + 1 = 0 b) 2x 3 — x + l = 0
c) 2x 3 — 3x 2 + 2x — 3 = 0 d) 27x4 - 27x 3 - 9x 2 + llx - 2 = 0
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15 . Bestimme nach der Vorzeichenregel von Descartes die möglichen
Anzahlen positiver und negativer Lösungen . Gib die möglichen ganzzahli¬
gen Lösungen an . Ermittle die Lösungsmenge .

Sa) x 5 — 3x4 — 5x 3 + 15x 2 + 4x — 12 = 0 b) x4 + 2x 3 — 3x 2 — 4x + 4 = 0
c) x 4 — 6x 3 + 8x 2 + 6x — 9 = 0 d) x 3 + 1 = 0

e) x 6 - 14x 4 + 49x 2 - 36 = 0 f) x 5 - 5x + 22 = 0

16. Bestimme nach der Vorzeichenregel von Descartes die möglichen
Anzahlen positiver und negativer Lösungen und die möglichen rationalen
Lösungen . Gib schließlich die Lösungsmenge an .
a) 3x 3 + 5x 2 + Ix — 3 = 0 b) 2x 3 + x 2 — 8x — 4 = 0

c) 9x 3 — 9x 2 — 4x + 4 = 0 d) 64x 4 — 128x 3 + 84x 2 — 20x + 1 = 0

17. a) Zeige mit Hilfe der Vorzeichenregel von Descartes , daß die Gleichung
x 5 + x + l = 0 keine positive , aber genau eine negative Lösung hat ,
und weise nach , daß sie nicht rational ist .

b) 1) Bestimme eine Näherungslösung von x 5 + x + 1 = 0 durch Schnei¬
den der Graphen y = x 5 und y = — x — 1 .

2) Verbessere die Näherungslösung durch die Iteration

x n + 1 = — V x n + 1 , n e N 0 auf 6 geltende Ziffern .
3) Was ergibt sich bei dem naheliegenden Iterationsverfahren

Xn + 1 = ~ Xn - 1 , « eN 0?
* * c) Schreibe x 5 + x + 1 als Produkt aus einem Polynom 3 . und 2 . Grades

und bestimme mit der Formel von Cardano (Seite 116) die Lösung
exakt .

18. Zeige mit Hilfe der Vorzeichenregel von Descartes , daß die Gleichung
2x 6 + 10x 4 + 7x 2 + 1 = 0 keine reelle Lösung hat . Wie kann man das
auch einfacher einsehen ?

19. Zeige mit Hilfe der Vorzeichenregel von Descartes : Die Lösungsmenge
einer algebraischen Gleichung ungeraden Grades ist nicht leer .

* *5 .4 Zur Geschichte der Auflösung von Gleichungen

Wie du im letzten Jahr gelernt hast , konnten die Babylonier bereits um 2000 v . Chr .
quadratische Gleichungen lösen ; aber der Weg zur Lösungsformel war noch lang . Erst
Simon Stevin (1548 - 1620) schaffte es in seiner 1585 in Leiden erschienenen
L ’Arithmetique dadurch , daß er auch negative Zahlen als Koeffizienten zuließ.
Ungleich schwieriger war es , die kubische Gleichung zu lösen . Die Babylonier
benützten hierzu eine Tabelle, in der zu jeder natürlichen Zahl n der Wert von n 3 + n2

aufgeführt wurde (siehe Aufgabe 120/1 ) . Bei den Griechen traten kubische Gleichun¬

gen bei ganz bestimmten Problemen auf , nämlich dem Delischen Problem der

Würfelverdopplung - dem Analogon zur Quadratverdopplung des Menon - (Aufgabe
46/7 und 85/12) oder der Dreiteilung eines Winkels . Gelöst wurden sie geometrisch
unter Zuhilfenahme bestimmter Kurven .
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Weder die Inder noch die Araber fanden eine algebraische Lösungsmethode für die
kubischen Gleichungen . Immerhin gelang es aber dem persischen Dichter , Philoso¬
phen , Astronomen und Mathematiker Omar al -Hayyam (10487- 1131 ) in seiner
Abhandlung über die Beweise und Probleme von Algebra und Muqabala , alle Typen
kubischer Gleichungen graphisch unter Verwendung von Kreisen und Parabeln bzw.
Hyperbeln zu lösen (Algebra 3 , Seite 170) . Dabei entgeht ihm aber , daß gewisse
Aufgaben drei Lösungen besitzen . Sein Werk wurde dem Abendland leider erst im
19 . Jh . bekannt .
Mit der allmählichen Verbreitung algebraischer Kenntnisse versuchte man sich im
Italien des 14 . Jh . s an der allgemeinen Lösung der kubischen Gleichung . 1494 setzte
Luca Pacioli (14457- 1517 ) in seiner Summa de Arithmetica Geometria Proportioni et
Proportionalita , dem damals weitverbreiteten Standardwerk über das mathematische
Wissen seiner Zeit , in einer kleinen Liste von Gleichungen höheren Grades - wir
benützen unsere Symbole - neben Ax A + Cx 2 = Dx und Ax a + Dx = Cx 2 das Wort
imposibile (sic !) , zu deutsch unmöglich. Klammert man Ax aus , so hat man kubische
Gleichungen der Form x 3 + bx = c bzw . x 3 + c = bx vor sich. Für die Koeffizienten
b und c wurden dabei nur positive Zahlen zugelassen . Meinte nun Pacioli mit seinem
»unmöglich « , daß man grundsätzlich keine kubische Gleichung lösen könne ? Nein ;
denn auf der übernächsten Seite (folium 150r) liest man sein Bedauern , daß »man bis
heute noch keine allgemeinen Regeln aufstellen konnte « . 51 Jahre später wurden sie
veröffentlicht , unter dramatischen Umständen , die die Zeitgenossen und auch die
Nachwelt bewegten.
1515 oder gar schon 1505 gelingt es Scipione del Ferro (1465 - 1526 ) , seit 1496
Professor für Mathematik an der Universität von Bologna , die Gleichung x3 + bx = c
zu lösen , was er vermutlich nur einigen wenigen seiner Schüler kundtut . * Fachwissen
behielt man damals für sich; konnte man doch damit in öffentlichen Wettkämpfen das
Publikum in Erstaunen versetzen und erhebliche Geldpreise gewinnen . Und so fordert
einer seiner Schüler , nämlich Antonio Maria Fior , latinisiert zu Floridus , Rechen¬
meister aus Brescia, den in Venedig wirkenden Rechenmeister Niccolö Fontana
(1499 - 1557 ) , der sich lateinisch Tartalea , italienisch Tartaglia * * nennt , zu einem
solchen Wettkampf . Bis zum 22 . Februar 1535 sollte jeder 30 Fragen aus verschieden¬
sten Gebieten der Mathematik versiegelt beim Notar Zambelli in Venedig hinterlegen ,
die dann innerhalb von 50 Tagen zu lösen waren . Um Tartaglia einzuschüchtern ,
brüstet sich Fior damit , schon vor 30 Jahren von einem großen Mathematiker gelernt
zu haben , wie man die Gleichung x 3 + bx = c löst , überzeugt , daß auf Grund von
Paciolis »unmöglich « es niemand anderer könne . Tartaglia weiß also , woher der
Wind weht , und so nimmt er seine Studien über kubische Gleichungen wieder auf ; denn
bereits 1530 hat ihm in Verona ein anderer Rechenmeister aus Brescia , Zuanne de
Tonini da Coi , auch Giovanni Colla genannt , Gleichungen vom Typ x 3 + mx 2 = n
bzw . x 3 + n = mx 2 mit m,n > 0 vorgelegt . Tartaglia hat , wie er selbst schreibt ,
Glück : Am 12 . Februar 1535 findet er die Lösung von (1 ) x 3 + bx — c und anderntags
die von (2) x 3 = bx + c . Auch seine Vermutung hat ihn nicht getrogen : allen Aufgaben
Fiors lag die kubische Gleichung (1 ) zugrunde . Und so kann Tartaglia innerhalb von
zwei Stunden alle Aufgaben lösen ! * * *
Irgendwann kommt da Coi nach Mailand und berichtet Geronimo Cardano

* Wahrscheinlich konnte er auch x 3 = bx + c und x 3 + c = bx lösen .
** Beides bedeutet der Stotterer . 1512 wurde Niccolö als Kind bei der Eroberung Brescias durch einen

Schwerthieb eines französischen Soldaten so schwer verwundet , daß er nur mehr stottern konnte . Sein
voller Bart verdeckte die entstellende Narbe .

*** Tartaglia überliefert uns 1546 in den Quesiti (siehe Seite 95) alle Aufgaben Fiors , von den seinigen aber
nur die neun , die er Cardano 1539 mitteilte .
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( 1501- 1576 ) von diesem Wettkampf . Und
da dieser gerade seine Practica Arithme -
ticae herausgeben will , bietet er Tarta -
glia am 2 . Januar 1539 durch einen Mit¬
telsmann an , die Lösungsformeln unter
Tartaglias Namen in seiner Practica zu
veröffentlichen . Tartaglia lehnt ab , da
er sich die Veröffentlichung selbst Vorbe¬
halten wolle . Am 13 . März wiederholt
Cardano sein Angebot , am 19 . März hat
Tartaglia den Brief in Händen . So
schnell ging damals die Post ! Außerdem
lädt er ihn nach Mailand ein , auch im
Namen des Marchese Alfonso d ’Avalos *
der sich für Tartaglias neue , 1537 in der
Nova Scientia veröffentlichte Entdeckun¬
gen über die Schießkunst interessiert . Das
gibt den Ausschlag , und bereits am
25 . März ist Tartaglia Gast in Carda -
nos Haus , der Marchese aber ist verreist .
Nachdem Cardano auf das heilige Evan¬
gelium geschworen hat , niemals Tarta¬
glias Entdeckung zu veröffentlichen und

sie außerdem so verschlüsselt aufzu¬
schreiben , daß niemand nach seinem
Tode sie verstehen könne , teilt ihm Tar¬
taglia seine Formeln für ( 1 ) , (2 ) und

auch für (3) x 3 + c = bx in Form eines
25zeiligen leicht einprägbaren Gedichts
mit , das er selbst immer als Gedächtnis¬
stütze benütze , um die komplizierten
Regeln nicht zu vergessen . Einen Beweis
gibt er aber nicht preis , und abrupt reist er ab . (Der vierte für uns mögliche Fall ,
x 3 + bx + c = 0 , wird überhaupt nicht betrachtet , da er nur durch negative Zahlen
gelöst werden könnte , die nach damaliger Auffassung keine Lösungen sind .)
Cardano gesteht am 9 . April Tartaglia , mit den Versen nicht zu Rande zu kommen ;

er möge sie ihm doch an Hand der Gleichung x 3 + 3x = 10 erklären . Tartaglia

entspricht der Bitte am 23 . April , fügt als weiteres Beispiel die Gleichung x 3 + x = 11
an und erinnert Cardano an sein Versprechen , worauf ihm dieser am 12 . Mai ein noch

ungebundenes Exemplar seiner Practica zusendet als Beweis , daß er sich an den Eid

gehalten habe . Aber Tartaglias Mißtrauen wird wieder geweckt , als ihm sein

ehemaliger Schüler Meister Maphio Poveiani aus Bergamo am 10 . Juli kundtut , in
Mailand werde erzählt , Cardano schreibe an einem neuen Werk über Algebra mit
neuen Entdeckungen . Tartaglia bereut , das Geheimnis preisgegeben zu haben * *

, und
beantwortet zwei Briefe Cardanos nicht . Als er jedoch am 4 . August einen Brief
Cardanos erhält , in dem ihm dieser an Hand der Gleichung x 3 = 9x + 10 mitteilt , daß

die Formeln in gewissen Fällen versagen , obwohl es eine Lösung gibt - es handelt sich
* Der Spanier war der kaiserliche Gouverneur der Lombardei . 11546 .

** Quello che tu non voi che si sappia nol dir ad alcuno - Was du nicht willst , daß man weiß , das sag keinem .
Mit diesem Sprichwort fordert Tartaglia Meister Poveiani am 19 . Juli auf , ein wachsames Auge auf

Cardano zu haben und ihn auf dem laufenden zu halten .
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Abb . 113 . 1 Geronimo , auch Girolamo
Cardano (24 . 9 . 1501 Pavia - 20 . 9 . 1576
Rom ) Bildnis aus der Ars magna , 1545

Die Umschrift lautet :
xö psTAov öxi YEvfiasTCU si ? xö (pepxspov

xiOsi
Halte das Zukünftige , das sich entwickeln

wird , für das Bessere !
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um Cardanos Entdeckung des Casus irreducibilis (Aufgabe 121/5 und 6) weicht
Tartaglia in seiner Antwort vom 7 . August diesem Problem aus und meint , Cardano
habe eben die Formeln nicht richtig verstanden ; darüber hinaus bedauere er , ihn
eingeweiht zu haben , da er sich in Mailand brüste , neue Regeln in der Algebra entdeckt
zu haben . Am 18 . Oktober verteidigt sich Cardano , indem er durch Lösen der
Gleichung x 3 = 12x + 20 zeigt , daß er die Terzinen * Tartaglias wohl verstanden hat ;
Tartaglia aber hat keine Lust mehr zu antworten . Da erreicht ihn ein Brandbrief vom
5 . Januar 1540 , in dem Cardano voll des Schreckens schreibt , der »Teufel« da Coi sei
wieder in Mailand und behaupte , ebenfalls die Regeln für die kubische Gleichung zu
kennen , ja noch mehr , auch die Gleichung 4 . Grades lösen zu können , was er ihn lehren
wolle, falls er ihm freiwillig seine öffentlichen Vorlesungen über Arithmetik überließe .
Tartaglia zerpflückt diesen Brief in den Quesiti , beantwortet ihn aber nicht . Und
so endet die Korrespondenz dieser beiden Mathematiker .
In der Folgezeit gelingt es Cardano , einen Beweis für Tartaglias Regeln zu finden
und darüber hinaus die allgemeine kubische Gleichung x 3 + ax 2 + bx + c = 0 zu lösen
- Cardano muß natürlich wieder viele Fälle unterscheiden - , indem er sie durch die

Transformation x ~ y — - auf eine der Formen ( 1 ) bis (3) bringt , die kein quadrati¬
sches Glied enthalten (Aufgabe 121/7) . Im Jahre 1542 reist er mit seinem überaus
begabten Schüler Ludovico Ferrari (1522 - 1565 ) * * nach Florenz ; in Bologna sehen
sie dabei den Nachlaß Scipione del Ferros bei dessen Nachfolger und Schwiegersohn
Annibale della Nave (um 1500 - 1558 ) ein . Sie finden darin gut und elegant erklärt die
Lösung , die auch Tartaglia angegeben hat . (Tartaglia wird später , am 21 . April
1547 , entgegnen , seine Entdeckung könne zu jeder Zeit auch von anderen gemacht
werden , er habe alles selbst gefunden .) Schließlich gelingt es Ludovico Ferrari , das
von da Coi in einem Wettstreit gestellte Problem einer Gleichung 4 . Grades durch Zu¬
rückführung auf eine kubische Gleichung zu lösen . * * * Durch diese Entdeckungen
und vor allem durch den selbständig gefundenen Beweis fühlt sich Cardano nicht
mehr an seinen Eid gebunden , den es laut Ferrari überhaupt nicht gegeben habe ,
und veröffentlicht 1545 (Widmung vom 9 . Januar ) in seiner Ars magna die Regeln
für die Lösung der kubischen Gleichungen - insgesamt sind es 13 Fälle - und , unter
voller Anerkennung der Leistung Ferraris , die für die Gleichung 4 . Grades .
Die drei Regeln Tartaglias und Cardanos für die Gleichungen (1 ) bis (3) lassen sich
zu einer zusammenfassen , die dann auch für den vierten Fall gilt , wenn man
grundsätzlich zuläßt , daß die in Gleichungen auftretenden Buchstaben auch negative
Zahlen bedeuten können . Wir eilen nun der Zeit voraus ; denn erst Jan Hudde

* Terzine , vom italienischen terzo = dritter , ist eine Strophenform aus ursprünglich je drei elfsilbigen Versen
mit dem Reimschema aba/bcb/cdc/ . . . /z . Dantes (1265- 1321 ) Divina Commedia z . B . ist in Terzinen
verfaßt .

* * Er wurde 1536 als 14jähriger in Cardanos Haushalt als Hausbursche aufgenommen . Von 1540 bis 1556
lehrte er Mathematik in Mailand und anschließend in Bologna . Vermutlich wurde er von seiner Schwester
vergiftet .

* ** Da Coi hat dieses Problem Tartaglia bereits am 12 . September 1535 zur Lösung vorgelegt , nur mit etwas
anderen Zahlen . Unverständlicherweise schickt Cardano dasselbe Problem als seine eigene Aufgabe am
2 . Januar 1539 an Tartaglia , der es sofort als das da Cois erkennt und dies auch Cardano auf den Kopf
zusagt , worüber dieser entrüstet ist . Aber am 5 . Januar 1540 ist es in Cardanos Brief doch wieder das
Problem da Cois , und in Kapitel XXXIX seiner Ars magna schreibt Cardano ehrlich , daß es von da Coi
stammt . Es handelt sich in der dortigen Fassung um die Aufgabe , 10 so in drei Summanden zu zerlegen ,
daß sie in fortlaufender Proportion zueinander stehen und daß das Produkt aus dem ersten und zweiten
Summanden 6 ergibt . Für den zweiten Summanden y erhält man die Gleichung y * + 6y 2 + 36 = 60j>. Die
von Cardano angegebene Lösung ist übrigens falsch . - Im Lösungsheft wird gezeigt , wie Ferrari diese
Gleichung gelöst hat .
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(1628- 1704) hat diese so fruchtbare Idee
in seiner 1654/55 entstandenen und 1659
erschienenen Arbeit De reductione aequa-
tionum (siehe Seite 105) . In ihr leitet er
auch die dann auf alle Fälle anwendbare ,
üblicherweise nach Cardano benannte
Formel zur Lösung der kubischen Glei¬
chung her , wobei er den Weg Tartaglias
nur geringfügig modifiziert . Er ersetzt
nämlich in der Gleichung *

x3 + px + q = 0

die Unbekannte x durch u + v und erhält
damit die Gleichung
u 3 + v 3 + (3 uv + p) (u + v) + q = 0 .

Diese ist sicher erfüllt , wenn
I 3 uv = — p
II u 3 + v 3 = — q ist .

Ohne Schwierigkeit erhält man daraus

I ' 3 uv = — p

II ' u6 + qu 3 — = 0 .

Gleichung II ' ist eine quadratische Glei¬
chung für u3

. Man kann also aus dem
Gleichungssystem leicht u und v berech¬
nen (Aufgabe 121/2) und erhält damit für
die Unbekannte x die als Formel von
Cardano bezeichnete Darstellung

Abb . 115 . 1 Jan Hudde (getauft 23 . 5 .
1628 Amsterdam - 15 . 4 . 1704 Amster¬
dam ) - Gemälde von Michiel van
Musscher ( 1645 - 1705 )

In dieser Darstellung von x wird die Kubikwurzel noch in der in jener Zeit üblichen Art

benützt , bei der der Radikand auch negativ sein durfte ; ]/ ^ 8 ergab - 2 , so , wie es auch
manche Taschenrechner heute tun . Bei dieser Deutung der dritten Wurzel dürfen aber
die Potenzgesetze nicht auf gebrochene Exponenten übertragen werden , wie du weißt .

Die Taschenrechner zeigen bei ( — 8) 3 auch error an ! Wir lassen zur Vermeidung von
Schwierigkeiten aus diesem Grunde nur nichtnegative Radikanden zu und müssen
deshalb bei der Auflösung der Gleichung u 3 = . . . usw . nach Satz 98 . 1 Vorgehen. Dann
ergibt sich als

Hudde selbst geht vom Ausdruck x 3 = qx + r aus . Wir benutzen die heute übliche Nullform einer Gleichung .
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Formel von Cardano

Die Gleichung x3 + px + q = 0 hat die Lösung

x = sgn R1 V \R^\ + sgn R2 V\ R 2 \

qmit R , ■■= — - +
2

und R ftq2 3

Offensichtlich versagt dieser Lösungsweg , wenn die Diskriminante der quadratischen

Gleichung für u 3 negativ ist , d . h . , wenn
3

< 0 ist . Das ist aber genau der

von Cardano entdeckte casus irreducibilis . 1745 zeigte Abraham Gotthelf Kästner
(1719 - 1800 ) , daß in diesem Fall die kubische Gleichung x 3 + px + q = 0 stets drei
reelle Lösungen besitzt . 1891 bewies Ludwig Otto Holder (1859 - 1937 ) , daß diese
Bedingung auch notwendig ist und daß sich diese drei Lösungen grundsätzlich nicht
durch Wurzeln darstellen lassen.
Kehren wir aber nach diesem Ausflug bis in das 19 . Jh . zurück ins Jahr 1545 zu
Cardano und seiner Ars magna . Darin berichtet er gleich im 1 . Kapitel , daß Scipione
del Ferro als erster die Lösung der kubischen Gleichung ( 1 ) gefunden habe und daß
dies später auch Tartaglia gelungen sei , der sie ihm auf seine Bitten mitgeteilt habe . Er
verschweigt aber , daß Tartaglia ihm auch die Formel für Typ (2) und (3) verraten hat !
Schließlich kommt er auf Luca Paciolis »unmöglich « zu sprechen und wiederholt , was
er bereits am 25 . März 1539 Tartaglia gegenüber geäußert hat :
»Getäuscht wurde ich nämlich durch die Worte Luca Paciolis , der behauptet , daß es
über seine Regeln hinaus keine andere allgemeingültige geben könne ; obwohl diese, da
ich vordem schon so vieles gefunden hatte , auf der Hand lag , hatte ich dennoch keine
Hoffnung zu finden , was ich nicht zu suchen wagte .«
Aus diesen Worten spricht Überheblichkeit , aber auch Ärger darüber , so schnell
aufgegeben zu haben , weil man den Worten eines anderen zu sehr vertraut hatte !
Tartaglia fühlt sich getäuscht und bringt Juli 1546 seine Heinrich VIII . von Eng¬
land (reg . 1509 - 1547) gewidmeten Quesiti , et inventioni diverse - »Aufgaben und
verschiedene Erfindungen « - auf den Markt . Im 9 . Buch erzählt er den von uns
wiedergegebenen Ablauf der Ereignisse und bezichtigt Cardano des Eidbruchs . Aber
nur Ferrari reagiert darauf . Am 10 . Februar 1547 erklärt er sich in einem Brief, den er
in Abschrift an 53 hochgestellte Persönlichkeiten und Mathematiker Italiens ver¬
schickt , zu einem Streitgespräch mit Tartaglia bereit . Dieser läßt seine Antwort in
1000 Exemplaren drucken , woraus sich ein Briefwechsel entwickelt , die sog . 12 cartelli
di matematica disfida - »Briefe der mathematischen Herausforderung « . Darin legen
sich die Kontrahenten auch jeweils 31 Probleme vor . Um die immer schärfer
werdenden gegenseitigen Vorwürfe zu beenden , erklärt sich Tartaglia am 16 . Juni
1548 bereit , nach Mailand zu kommen , was Ferrari am 14 . Juli 1548 akzeptiert . Mit
dessen Vorschlag , Ferrante Gonzaga , der Gouverneur von Mailand , solle die Jury
bestimmen , ist Tartaglia am 24 . Juli 1548 einverstanden . Cardano verläßt die Stadt .
Am 10 . August 1548 beginnt zur 18 . Stunde * in der Kirche der Hl . Maria im Garten der
Minoriten der Wettstreit . Tartaglia erscheint in Begleitung seines Bruders , Ferrari
mit vielen Freunden . Über den genaueren Verlauf wissen wir wenig: Nach dem ersten
Auftritt Tartaglias entwickelt sich ein längerer Disput über die Bestellung der Jury , in
* = 14.30 Uhr . Siehe dazu z. B . Goethe , Italienische Reise , 17 . 9 . 1786
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dessen Verlauf einer nach dem anderen zum Abendessen geht . Tartaglia verläßt , sich
angeblich bedroht fühlend , anderntags Mailand auf einem anderen Weg . Eine dunkle
und sicher nicht sehr ehrenvolle Geschichte hat ein rühmloses Ende gefunden .
Tartaglia kommt 1551 im Terzo Ragionamento sopra la Travagliata Inventione -

»Dritte Erörterung über die mühevolle Erfindung « - ,1556 und postum 1560 in seinem
General trattato di numeri , et misure - »Allgemeine Abhandlung über Zahlen und
Maße « - mehrmals auf diese Vorgänge zu sprechen . Cardano wiederholt 1554 in
seinem erst 1557 gedruckten De libris propriis - »Über die eigenen Bücher« - die
bereits in der Ars magna gegebene Darstellung , zeiht Tartaglia aber wegen dessen
»Verleumdungen der Unverschämtheit und Dummheit « ; diese Passage fehlt in der
erweiterten Fassung von 1562 . Immer aber besteht Cardano darauf , daß »Niccolö
Tartaglia , der übel von mir sprach , später in Mailand widerrufen mußte « , wie es in
seiner 1575 , also ein Jahr vor seinem Tode , zusammengestellten Autobiographie De
vita propria - »Über das eigene Leben« - heißt . Aber er gesteht dort auch : »In der
Mathematik habe ich einiges, jedoch recht weniges, dem Bruder Niccolö zu danken .«
Und er bedauert , daß »dieser mich jedoch lieber zum Rivalen wollte , und zwar zum
überlegeneren , als zu einem Freund , der ihm ob seiner Tat Dank schuldet .« Mit der
Ars magna Cardanos hat die Geheimniskrämerei der Rechenmeister ein Ende ge¬
funden , die Wissenschaft kann sich fortentwickeln .
In den nächsten 250 Jahren machen sich die besten Mathematiker an die Auflösung der
Gleichungen 5 . und höheren Grades , darunter Viete , Descartes , Leibniz und Euler .
Zunächst aber stellt 1608 der Nürnberger Rechenmeister Peter Roth (f 1617 ) in seiner
Arithmetica philosophica fest, daß eine Gleichung n-ten Grades höchstens n Lösungen
haben kann +

, und 1629 der Flame Albert Girard (1595- 1632 ) in seiner Invention
nouvelle en l ’algebre , daß es genau n Lösungen gibt , wenn man Wurzeln aus negativen
Zahlen zuläßt . Bewiesen hat dies allerdings erst 1799 Carl Friedrich Gauss
( 1777- 1855 ) als 22jähriger in seiner Doktorarbeit Demonstratio nova theorematis
omnem functionem algebraicam rationalem integram unius variabilis in factores reales
primi vel secundi gradus resolviposse . Drei weitere Beweise lieferte er im Laufe seines
Lebens für diesen Satz , den er 1849 »Grundlehrsatz der Theorie der algebraischen
Gleichungen « nannte und der heute Fundamentalsatz der Algebra heißt . Natürlich hat
man mit einem solchen Existenzbeweis noch keine Lösungsformel !
Wenn auch z . B . Abraham de Moivre (1667- 1754) die Lösung der reziproken
Gleichungen höherer Grade (Algebra 9 , Seite 129) gelungen war , so waren alle
Versuchefehlgeschlagen , eine Formel für die allgemeine Gleichung höheren Grades als
4 zu finden . Was keiner glauben wollte , spricht 1799 Gauss in seiner Doktorarbeit aus:
»Es werde vielleicht nicht so schwer sein, die Unmöglichkeit bereits für den 5 . Grad in
aller Strenge zu beweisen , worüber ich an anderer Stelle meine Untersuchungen breiter
darlegen möchte .« * Im selben Jahr veröffentlicht Paolo Ruffini (1765 - 1822 ) ein
umfangreiches 324seitiges Werk * *

, in dem er mehr nachzuweisen versucht , nämlich
die Unmöglichkeit , eine Gleichung von höherem Grad als 4 zu lösen . Aber sein Beweis
war nicht zwingend . Auch weitere Arbeiten (1802 , 1804 und 1813 ) konnten die
Beweislücken nicht schließen.
Der Ruhm , den ersten vollständigen Beweis geliefert zu haben , gebührt dem Norweger
Niels Flenrik Abel (1802 - 1829) . Auf der Domschule zu Oslo erkannte 1817 sein neuer
Mathematiklehrer * * * Bernt Michael FIolmboe (1795- 1850) die Begabung des Jungen ;

+ Jost Bürgi (1552- 1632) sprach dies bereits nach 1598 in seiner (erst 1973 gedruckten ) Coss aus (s . S . 39) .
* Forsan non ita difficile foret , impossibilitatem jam pro quinto gradu omni rigore demonstrare , de qua re

alio loco disquisitiones meas fusius proponam .
** Teoria generale delle equazioni , in cui si dimostra impossibile la soluzione algebraica dette equazioni generale

di grado superiore al quarto
*** Der Vorgänger mußte die Schule verlassen , weil ein Schüler , den er über die Maßen gezüchtigt hatte , starb .
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Abb . 118 . 1 Carl Friedrich Gauss
[Gauß ] (30 . 4. 1777 Braunschweig bis
23 . 2 . 1855 Göttingen ) - Lithographie von
Siegfried Bendixen (1786 - nach 1864 )
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Abb . 118 .2 Niels Henrik Abel
(5 . 8 . 1802 Finde bei Stavanger - 6 . 4 . 1829
Froland bei Arendal ) - Gemälde von
Johan Görbitz (1782 - 1853 )

er förderte ihn , indem er ihm die Originalarbeiten der mathematischen Koryphäenseiner Zeit zu lesen gab . Von Ruffinis Arbeiten jedoch erfuhr Abel nichts , und so
glaubte er 1821 , trotz der Bemerkung GAussens, eine Lösungsformel für die Gleichung
5 . Grades gefunden zu haben , und sandte sie an Professor Degen nach Kopenhagen ,der ihn bat , ein Beispiel durchzurechnen . Da erst ging ihm die Fehlerhaftigkeit seiner
Schlußweise auf ! 1824 veröffentlichte er auf eigene Kosten eine nur einen halben
Druckbogen umfassende Schrift *

, in der er die Unmöglichkeit , die Gleichung
5 . Grades algebraisch zu lösen , bewies. Er sandte sie Gauss zu , der sie unaufge -
schnitten beiseite legte. 1825 bis 1827 reiste Abel mit einem kleinen Stipendium der
norwegischen Regierung nach Berlin und Paris . August Leopold Crelle (1780 - 1855 )erkannte die Bedeutung des jungen Mathematikers und veröffentlichte 1826 Abels
abschließende Arbeit als Übersetzung , nämlich den Beweis der Unmöglichkeit alge¬braische Gleichungen von höheren Graden als dem vierten algebraisch aufzulösen zu¬
sammen mit fünf weiteren Arbeiten Abels in der ersten Nummer seiner neugegrün¬deten Fachzeitschrift Journal für reine und angewandte Mathematik , die heute noch
existiert .
Nun wußte man es , auf rund 20 Seiten klar bewiesen ! Aber Abel stellt sich sofort die
neue spannende Aufgabe , »alle Gleichungen zu finden , die algebraisch lösbar sind« ,wie er am 16 . 1 . 1826 an Holmboe schreibt . Seine Arbeiten gedeihen , kommen aber zu
* Memoire sur les equations algebriques , ou Von demontre Vimpossibilite de la resolution de l ’

equation generale du
cinquieme degre
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keinem Abschluß ; denn 1829 stirbt er an Schwindsucht . Gelöst hat das Problem
Evariste Galois (1811—1832) im Januar 1831 durch sein Memoire sur les conditions de
resolubilite des equations par radicaux - »Abhandlung über die Bedingungen der
Lösbarkeit von Gleichungen durch Radi¬
kale« aufbauend auf Arbeiten von
Joseph -Louis Lagrange (1736 - 1813 ) ,
Gauss und Augustin Louis Cauchy

( 1789 - 1857 ) .
Als Galois am College Louis -le-Grand
in Paris als 15jähriger wegen Schulunlust
- in den beiden Jahren davor gehörte er
zu den Besten in Latein und Griechisch
- die vorletzte Klasse wiederholen muß ,
besucht er zusätzlich zum ersten Mal
einen Mathematikkurs . Bald studiert er
die Werke der großen Mathematiker sei¬
ner Tage, die Geometrie Legendres
(1752- 1833) und Lagranges algebra¬
ische Abhandlungen . Im darauffolgen¬
den Jahr vernachlässigt er alle anderen
Kurse außer dem der Mathematik und
stört , wo er kann . Der Studieneintrag des
2 . Trimesters 1827/28 lautet : »Sehr
schlechtes Benehmen . [ . . .] Er ist darauf
aus , sonderbar zu sein. [ . . .] Er macht
überhaupt nichts für den Unterricht . Die
Raserei der Mathematik hat von ihm
Besitz ergriffen ; deshalb glaube ich, es
wäre besser für ihn , wenn seine Eltern
zustimmten , daß er sich nur diesem Stu¬
dium widme ; hier verliert er seine Zeit
und quält nur seine Lehrer und wird mit Strafen eingedeckt .« * Entgegen allen Rat¬
schlägen lernt er nicht systematisch genug und besteht deswegen zweimal nicht die
Aufnahmeprüfung in die berühmte Ecole Polytechnique . Am 25 . Mai und am 1 . Juni
1829 reicht er zwei Aufsätze über die Auflösung algebraischer Gleichungen bei der
Pariser Akademie der Wissenschaften ein, die Cauchy beurteilen soll . Sie sind nie
mehr aufgetaucht .* * Im Februar 1830 liefert Galois dort eine Arbeit für den Großen
Preis der Akademie in Mathematik ein , der Ständige Sekretär Jean Baptiste Joseph
Fourier ( 1768 - 1830 ) stirbt im Mai . Und auch diese Arbeit wurde nie mehr

aufgefunden . Inzwischen war am 20 . Februar der republikanisch gesonnene Galois in
die Ecole preparatoire , die Lehrerbildungsanstalt , aufgenommen worden , in der er,
eingeschlossen mit seinen Mitschülern , die drei Glorreichen Tage der Julirevolution
untätig verbringen muß . Er greift deswegen den Direktor in einem Brief an , der am

* Conduite fort mauvaise [ . . .] 11vise ä l’originalite . [ . . .] 11ne fait absolument rien pour la classe . C’est la
fureur des mathematiques qui le domine ; aussi je pense , qu ’il vaudrait mieux pour lui que ses parents
consentent ä ce qu ’il ne s’occupe que de cette etude ; il perd son temps ici et n ’y fait que tourmenter ses
maitres et se faire accabler de punitions .

** Abel war Ähnliches widerfahren . Ein am 30. Oktober 1826 eingereichtes Manuskript sollte Cauchy
durchsehen ; es wurde verschlampt , kam aber 1830 zum Vorschein , als Cauchy nach der Julirevolution ins
Exil ging , und wurde erst 1841 zur Veröffentlichung herausgegeben , nachdem sich die norwegische
Regierung eingeschaltet hatte .

1816/17
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Abb . 119 . 1 Evariste Galois
(25 . 10 . 1811 Bourg-la-Reine bei Paris bis
31 . 5 . 1832 Paris)
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5 . Dezember 1830 in der Gazette des Ecoles veröffentlicht wird . Auf Beschluß des
Königlichen Rates wird er am 3 . Januar 1831 aus der Anstalt ausgestoßen . Am
17 . Januar 1831 reicht Galois auf Anregung von Simeon -Denis Poisson (1781- 1840)
sein oben angeführtes Memoire bei der Akademie ein . Poisson und auch Sylvestre-
Fran §ois Lacroix (1765 - 1843 ) bemühen sich erheblich , die äußerst knapp gehaltene
und auch nicht fehlerfreie Arbeit zu verstehen ; schließlich lehnen sie am 4 . Juli 1831
ihre Veröffentlichung ab . Am 14 . Juli bringt Galois sein politisches Engagement zum
zweiten Mal ins Gefängnis . Am 29 . Mai 1832 wird er zu einem Duell gefordert , dessen
Hintergründe von Legenden umrankt sind , die aber letztlich ungeklärt bleiben werden .
Galois ist sich sicher , daß er sterben wird . In der Nacht vom 29 . auf den 30 . Mai
redigiert er seine früheren Manuskripte und schreibt mehrere Briefe, darunter einen
sehr langen an seinen Freund Auguste Chevalier , in dem er nochmals seine ma¬
thematischen Entdeckungen zusammenfassend darlegt , die in drei Memoires enthalten
sind . Eins hatte er schon früher veröffentlicht , das zweite ist das abgelehnte , vom
dritten fand sich keine Spur . * Er bittet Chevalier , diesen Brief nach seinem Tode zu
veröffentlichen , denn er hoffe, daß »es Leute geben wird , die aus der Entzifferung dieses
Durcheinanders ihren Nutzen ziehen werden .« * * Am Morgen des 30 . Mai wird er
beim Duell in den Bauch geschossen und angeblich liegen gelassen . Vermutlich suchte
man nach einem Arzt . Währenddessen findet ihn zufällig ein Bauer und bringt ihn ins
Hospital ; am 31 . Mai 1832 stirbt Galois . Im September 1832 veröffentlicht Chevalier
in einem Nachruf den mathematischen Abschiedsbrief und erst 1846 Joseph Liouville
( 1809 - 1882 ) das entscheidende Memoire von 1831 , zusammen mit anderen Arbeiten
Galois ’

. Eine neue Generation von Mathematikern versteht die grundlegenden Ideen
Galois ’

, liefert die vollständigen Beweise und erkennt , daß Galois aus der einst so
wichtigen Frage , welche Gleichungen auflösbar sind , einen völlig neuen Zweig der
Mathematik , nämlich eine Mathematik der Strukturen oder die »moderne Algebra «
geschaffen hat .

Aufgaben
1 . Auf einer Keilschrifttafel aus der späten 1 . babylonischen Dynastie (2057- 1758) * * * ,

deren einer Teil in London (BM 85200 ) und deren anderer in Berlin (VAT 6599 )
liegt, sind uns sieben kubische Gleichungen überliefert (siehe auch Aufgabe 46/7) .
Davon wurden die folgenden mit einer (n 3 + n 2) -Tabelle, wie sie uns auf Tafel
VAT 8492 überliefert ist,* * * * gelöst . Es handelt sich jeweils um einen quaderför¬
migen Erdaushub . Dabei beziehen sich die Maßzahlen x und y von Länge und
Breite auf die Einheit GAR ( = 6 m) , die Maßzahl z der Tiefe aber auf die Einheit
Elle; es gilt 1 GAR = 12 Ellen.
a) Stelle eine « i—> (« 3 + n 2) -Tabelle für die einziffrigen natürlichen Zahlen auf .
b) Aufgabe 5 : Länge , Breite . Was die Länge ist, ist auch die Tiefe. Querschnittund

Volumen sollst du addieren ; es ergibt sich lg . Die Breite ist § der Länge .
1) Stelle eine Gleichung für die Maßzahl z der Tiefe auf und löse sie mit Hilfe der

Tabelle.
2) Gibt es weitere reelle Lösungen ?
3) Gib Länge und Breite an .

* Die oft gehörte Behauptung , Galois habe erst in dieser Nacht seine mathematischen Theorien in fieber¬
hafter Eile niedergeschrieben , ist ein romantisches Schauermärchen .

** [ . . .] il se trouvera , j ’espere , des gens qui trouveront leur profit ä dechiffrer ce gächis .
*** Nach anderer Chronologie : 1894—1554 v . Chr .

**** Diese stammt aus neubabylonischer Zeit , d . h . 625- 539 v . Chr .
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c) Aufgabe 23 : Länge , Breite . Der Querschnitt ist ein Quadrat . Die Länge und
1 Elle dazu ist die Tiefe. lf als Volumen ist ausgegraben .
Stelle eine Gleichung für die Maßzahl x der Länge auf und löse sie mit Hilfe der
Tabelle. Gib auch die Tiefe an .

2. Leite die Formel von Cardano von Seite 116 auf dem HuDDEschen Weg her .

3 . Die Formel von Cardano liefert die Lösungen der kubischen Gleichung oft in sehr

unzweckmäßiger Darstellung .
a) Zeige mit Hilfe der Vorzeichenregel von Descartes , daß die Gleichung

x 3 + 6x = 20 genau eine positive Lösung hat . Ermittle sie durch Probieren .
b) Löse die Gleichung mit der Formel von Cardano und bestimme mit Hilfe des

Taschenrechners einen Näherungswert für den erhaltenen Ausdruck .*

4. a) Zeige , daß die Gleichungen
1) x 3 + 3x = 10 2) x 3 + x = 11 3) x 3 = 12x + 20
keine ganzzahligen Lösungen haben .

b) Gib eine Lösung mit Hilfe der Formel von Cardano an .

c) Bestimme mit dem Taschenrechner einen Näherungswert bis auf die 5 . Dezimal¬
stelle genau für den in b) gewonnenen Ausdruck . Wie gut erfüllt dieser
Näherungswert die gegebene Gleichung ?

5 . Zeige, daß bei x 3 = 9x + 10 die Formel von Cardano nicht angewendet werden
kann . Bestimme die drei reellen Lösungen .

6. Im Falle des casus irreducibilis konnte Cardano Gleichungen nur in besonderen
Fällen lösen . Aus Kapitel XXV seiner Ars magna , das er daher mit De Capitulis
imperfectis et specialibus - »Über die unvollkommenen und nur in Sonderfällen
brauchbaren Regeln« - überschreibt , stammen die folgenden Gleichungen .

a) x 3 = 32x + 24 b) x 3 = 16x + 21 c) x 3 + 12 = 34x

d) x 3 + 18 = 19x e) x 3 + 8 = 18x
d T r.

7 . a) Zeige , daß durch die Transformation x = -y — - aus x + ax + bx + c = 0

eine kubische Gleichung entsteht , die kein quadratisches Glied mehr enthält .
b) Löse nach diesem Verfahren und der Formel von Cardano die Gleichung

x 3 + 6x 2 + 20x = 100 aus Kapitel XVII der Ars magna Cardanos von 1545 .

8. Löse die Gleichungen von Aufgabe 1 mit Hilfe der Formel von Cardano .

{ 9 . Magister Johannes legte am Hofe Kaiser Friedrichs II . (* 1194 , reg . 1215- 1250)
dem Fibonacci genannten Leonardo von Pisa (um 1170 - nach 1240 ) die

Gleichung x3 + 2x2 + lOx = 20 vor , die auf Omar al -Hayyam (10487—1131)
zurückgeht .
a) Leonardo zeigte 1225 in seiner Flos - »Die Blume « - mach es ihm nach ! - :

1) Die Gleichung hat keine natürliche Zahl als Lösung .
m

2) Die Gleichung hat keine positive rationale Zahl — als Lösung (m,ne IM und
teilerfremd ) .

n

* Cardano berichtet am 5 . Januar 1540 ganz verzweifelt Tartaglia , daß der Teufel da Coi angeblich ein

allgemeines Verfahren kenne , mit dem man V l/lÖ8 + 10 in VI ± 1 umwandeln könne , was ihm nicht gelinge .

Tartaglia gibt in den Quesiti das Verfahren an .
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3) Die Gleichung hat keine Quadratwurzel aus einer rationalen Zahl als
20 - 2x2

Lösung . Forme sie zum Nachweis um in x = — -e 10 + x2
b) Zeige , daß im Intervall ] 1 ; 2[ eine Lösung dieser Gleichung liegt . Bestimme für

sie einen Näherungswert x0 durch lineare Interpolation * und starte damit das
20 - 2xlIterationsverfahren xn + 1 = —- - j- , n e N 0 zur Ermittlung einer Näherungs -

10 “l- X n
lösung auf die 3 . Dezimale genau .

c) Leonardo gab ohne jede Herleitung als Lösung der Gleichung in sexagesimalerForm die Zahl £ = 1 ;22,7,42,33,4,40 an . Schreibe C dezimal .
d) Zeige mit der Vorzeichenregel von Descartes , daß die Gleichung genau eine

positive Lösung hat .
e) Zeige , daß es keine weitere reelle Lösung gibt , d . h . , daß die Formel von

Cardano anwendbar ist . Bestimme die Lösung exakt .

* Man ersetzt das über [ 1; 2] gelegene Stück des Graphen y = x3 + 2x 2 + lOx — 20 durch eine Gerade , die die
x-Achse in (x0 10) schneidet .
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