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5 Algebraische Gleichungen

Q VESITI,ET INVENTIONI D1,

VERSE DE NICOLO TARTALEA
BRISCIANO,

*

Con grdtie, ¢ privilcgio dal Jluftriffmo Sendto Vencto,che niuno ardifca
ne prefuma,ds flampere la prefente cpera,ne flampate altrowe wendere ne
fr stenderc in Venetia,ne in aleunc eltro inoco,o0 terra del Denninto Vencs |
to,per anni dicce fotto pena de dkcati trecente, & perdere le opere,cl ters
zo delia aual pena immicdiate cbc fia denontiara, fi epplicacl Arfenale,
& untergo fia del magifirato, cver reticre del luccodour f¢ Qra la :
«ffcuntione, e laltro terzo fara del denuntiante,omcr accufator :

re, e fara renuto feereto, come nel prinilcgio apparc.

QUESITI, ET INVENTIONI DIVERSE DE NICOLO TARTALEA BRISCIANO
»Aufgaben und verschiedene Erfindungen von Nicoldo TARTALEA aus Brescia«

Titelseite des 1546 in Venedig erschienenen Buchs
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5 Algebraische Gleichungen

5.1 Definition und Sonderfille

Der Umgang mit hoheren Potenzen fithrte dazu, daB man sich auch an
Gleichungen wagte, in denen die Unbekannte in héheren Potenzen vorkam.
Man beschiftigte sich also nicht nur mit linearen und quadratischen
Gleichungen, sondern auch mit kubischen Gleichungen, in denen die
Unbekannte in dritter Potenz auftritt, und sogar mit Gleichungen noch
hoheren Grades.

Allgemein legt man fest:

Definition 96.1: Die Gleichung a,x"+a, x" '+...+a,x+a, =0
mit neMN, a;eR und a, # 0 heilt algebraische Gleichung n-ten
Grades.

[st @, = 1, dann liegt die Gleichung in Normalform vor.
Die Gleichung x" + a, = 0 heillt reine Gleichung n-ten Grades.

In Algebra 3 haben wir Sonderfille algebraischer Gleichungen hoheren als
zweiten Grades bereits kennen- und 18sen gelernt. Gewisse kubische, biqua-
dratische und reziproke Gleichungen sogar bis zum Grad 8 wurden dort
behandelt. Allerdings konnten wir fiir Gleichungen mit hoherem als zweitem
Grad keine allgemeine Losungsformel angeben. In 3.1 haben wir die
Gleichungen x" = a, a > 0, d.h. die reine algebraische Gleichung n-ten Grades

x" +a, =0 fir a, = —a gelost. Die Losungsmenge der reinen Gleichung

M
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| gerader Exponent |

gerader Exponent |

a> 0] . la<0]

Abb.96.1 Graphische Losung der Gleichung x" = a fiir gerades »
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x" = a, aeR, hingt von n und dem Vorzeichen von a ab. Graphisch erhélt
man die Losungen der Gleichung x" = ¢, indem man den Graphen der
Potenzfunktion x+ x" mit der zur x-Achse parallelen Geraden y = a zum
Schnitt bringt. Aus Abbildung 96.1 lesen wir ab:

Satz 97.1: Ist n gerade, dann hat die Gleichung x" = a die Losungs-
menge
n M -
L={—Va, Va!, fallsa>0
L J
L = {0}, falls a = 0
L=1{1}, falls a < 0.
Beispiele:
x* =16 hat die Losungen —2 und 2.
” ! y :,.:;_.. 8 —
x° = 768 hat die Losungen —2}/3 und 2V/3.
x'® = 0 hat die Losung 0.
x3% = — 9 hat keine Losung in [R.
x® = @° hat die Losungen —a und a.
x% = a'® hat die Losungen —a* und .

Fiir ungerades n lesen wir aus Abbildung 97.1 ab:
n—

Ist @ > 0, dann hat die Gleichung x" = a die Losung x =V a.

nor~

Ist ¢ < 0. dann hat die Gleichung x" = a die Losung x = —V —a.
¥4 y=x" yA y=x"
2 / 2
y=a
i

: X = X
) i i =
4
| \oa
f/ | | ungerader Exponent ‘f i | ungerader Exponent
e e
/ | a>0 / | a<0

Abb.97.1 Graphische Lésung der Gleichung x" = a fur ungerades #

S|

eI

i D




98 5 Algebraische Gleichungen

Die Fallunterscheidung fiir ¢ kann man vermeiden, wenn man fiir das
Vorzeichen von a die Abkiirzung sgn a, gesprochen »signum von a« einfithrt.*

Definition 98.1:
+1, falls ¢=> 0
sgn a:= 0, falls a =0
—1,falls <0

Wenn MiBverstindnisse zu befiirchten sind, setzt man das Argument der
Signum-Funktion besser in Klammern. Es konnte nimlich sgn x - x einerseits

sgn(x) - x = x - sgn(x), andererseits aber auch sgn(x - x) = sgn(x?) = sgn x?
bedeuten.

Unter Verwendung von Definition 98.1 formulieren wir

Satz 98.1: I[st n ungerade, dann hat die Gleichung x" = ¢ die Losung
x = sgn(a) l lal.

Beispiele:
x° = 32 hat die Losung 2.
x> = — 1024 hat die Losung —4
:? = 27 hat die Ldsung [ 27 = 1
? = —27 hat die Lésung —I 27 = — I3 3.
x7 = &’ hat die Losung sgn(a”) I la7] = (sgna)’ y |a|” = |a|sgna = a.
x” = —a'* hat die Losung sgn( —a‘*‘}i'j |:;;-‘_‘L| = —a?.

Gleichungen der Form x " = b, ne N, kénnen fiir b = 0 auf reine Gleichun-

: ., |
gen n-ten Grades zuriickgefithrt werden: x ™" = b <> x" = 7
7
Aufgaben
Bestimme die Losungsmengen der folgenden Gleichungen.
l.a) x? =512 by x* =625 ¢) x' =128
2.d) 129x° =1 b) 64x® = 343 ¢) 243x°>—1024=0
3.a) B1x=27 b) 32x*% —1024 ) x —119 =139 "

* Die Idee einer Vorzeichenfunktion, d. h., jeder reellen Zahl ihr Vorzeichen zuzuordnen. stammit von Leopold
KRrONECKER (1823-1891), der sie 1878 erstmals veroffentlichte und 1884 die Bezeichm ung sgn.a einfiihrte.

Verbreitung fand das Symbol sgn dadurch, daB Giuseppe Peano (1858-1932) es 1898 in sein Formudaire
de H.'.:.m.'.'.wwr,r.rr s, [1-§2 aufnahm,
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{. a) x3=—1 b) 9x°+1=0 ¢) 5x7+640=0

. a) 365x*+12 =85 b) 19x° — 295 = 25 — x°

¢) 800x°+7=71(1+x%) d) 5(x°+28) = 2(x° — 26)

Giay & =16 Pl = ¢) x7% = —0,03125
Bt L 2 i b) 4x > —14 = (2x*) '+ 14 4x° — 2 ;
. a) =i b)) 4x 7 —14=(2x°)  + ¢) 4x° =20=——=
5 X
: 3 = ! 6B—\3
8.a) |x°=1 b) 5//x° = 0,04 ¢) Vx4 62 = (21/x°)
29. Lose graphisch und durch Rechnung die folgenden Gleichungssysteme:
Ay [t —g s = G =l L =a
[I x3=a [ x*=aga I x"=a I x3=a
$10. Fiir welche Werte von a haben folgende Gleichungen eine gemeinsame
Losung? Untersuche jeweils, wie viele gemeinsame Losungen vorhanden
.osung j g g
sind. (m, neN)
4y =g and oltt=d h)xt=a und xiFi=yg
¢) xP=g und =g
X : s n 4 . Lot
11. Ist die Aussage »Die Gleichung x" = a hat [/ als Losung« richtig?
12. Bestimme die Losungsmengen ggf. mit Fallunterscheidungen.
a) x*=a’ b) x*=a’ ¢) xt=a >
d) x%=a° eyt —a ) x " =a°
. 3= = : _2 37
o'y = =g? oh) a-x°—Va>=0 oi) adx 4 =Va?
13.a) x®—25x*+144 =0 b) x*—7x*—8=0
¢) 31x°+32x° =1 d) x"+27x*=0
e) (X*+7)-(x°—8=0 i e
14. Welche Losungsmengen haben die folgenden Ungleichungen?
a) x* > 1000 b) x* =16 e) x>= 27
d) x° < 1oh% e) x* <0 of) =2
1 < - s = B
g xT =25 h) —7=x =11 i) 1<x?*<20
15. Welche Losungsmengen haben folgende Ungleichungen?

L]

=% byxtte3 c) x3=)2V2

Lol | =

=R | f) —3=x2""<-2

d) 1< x3<4 e) x:

LT

R LT
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16. Zur sgn-Funktion
a) Zeichne den Graphen der Funktion x+ssgnx, xeR.

b) Beweise durch Fallunterscheidung:

1) xsgnx = |x]| 2) |lxlsenx =x
SgN x X
3) sgnx-sgny = sgn(x-y) 4) —— =sgn| —
sgn y \ Y
1
5) sgn(x") = (sgn x)", neN 0) — =sznx fur x+0
Sgn X

17. a) Gib mit Hilfe der Betrags- und der Signum-Funktion den Term /! (x)
der Umkehrfunktion von f: x—x3, D, = R an.

b) Lose a) fiir /2 x+>x**"!, ze Z und D, maximal. Gib D, an.

5.2 Niherungslosungen

Gleichungen héheren als zweiten Grades konnen wir nur in Sonderfillen
exaktlosen. In allen anderen Fillen miissen wir uns mit Niherungswerten fiir
die exakten Losungen begniigen. Dazu fassen wir das Lésen der Gleichung

f(x) =0 als Aufgabe auf, die Nullstellen der Funktion fix— f(x) zu

bestimmen. Mit Hilfe einer Wertetabelle 1dBt sich der zugehérige Graph

¥ = f(x) zeichnen, aus dem man Niherungslosungen ablesen kann.

Beispiel: x* —3x>+1=0

|

|

Abb.100.1 Graph der Funktion x — x3 —3x2 + 1
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Aus Abbildung 100.1 lesen wir fiirr die Nullstellen ab: &, = — 0.5, &, = 0.6
und &, = 2.,9.

Zur Verbesserung der Genauigkeit brauchen wir rechnerische Methoden. Eine
einfache gebriuchliche Methode ist das Iterationsverfahren. Dabei bringt man
die zu 16sende Gleichung f(x) = 0 auf die Form x = g(x), was man auf
unterschiedlichste Art und Weise bewerkstelligen kann. Dann beginnt man
mit einem Néherungswert x, und berechnet der Reithe nach

X; = g(xp)
o= g(X1)

X5 = g(x;)

X 1= £0x)

USW.

Falls g(x) geeignet gewihlt wurde, ndhern sich die Werte x, beliebig ge-
nau einer Losung der Gleichung x = g(x) und damit auch der Gleichung
f(x)=0.

Wir I6sen jetzt unser Beispiel durch Iteration.

1. Versuch:
x*—3x*+1=0 ||+x

x=x3=3x*4+x+1 = x,0.=% —3xF +x+1

X = 0,6 %, = 0,8628... = 1)
x, = 0,736 x4 = 0,2716...

x, = 0,5096... x-= 1,702

Da diese Werte sich immer weiter von der vermuteten Nullstelle entfernen,
versuchen wir es mit einem anderen Startwert:

X =0 x, =0 x,=0

.\1 - ]. .‘L-_% = ]

xs =1

Die Werte wiederholen sich unentwegt. Wir sind in eine Schleife geraten; die
Nullstelle wird wieder nicht erreicht. Das gewéhlte g(x) ist offenbar ungeeig-
net.

2. Yersuch:
»¥—3x24+1=0

3x2 = x> +1
[x3 + 1 T,:' + 1 ¥;:’ + 1
x==|/ - ===l und (2) x4 = |/ :

(1) konnte sich zur Berechnung von ¢,

(2) zu der von &, oder &, eignen:
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102 5 Algebraische Gleichungen

Xo=—0,5 Xq=10,6

x; = —0,5400... x, = 0,6366...
x,=—10,5299... x, =0,6475...
x; = —0,5326... x5 = 0,6510...
X, =—10.5319. .. x, = 0,6521...
xs =—0,3321... xq=(1,6525...
X = —0,53207... X, = 0,6526...
x, = —0,53209... X = U.05268...

Da f(—0,53215) < 0 und f(—0,53205) > 0 ist, erhilt man fiir die Nullstelle

¢, den Néaherungswert — 0,5321, und da f(0,65265) > 0 und f(0,65275) <0

ist, erhélt man fiir die Nullstelle £, den Niherungswert 0,6527. Die Giite
dieser Naherungen erkennt man aus f(—0,5321)~—44-10"°> bzw.

£(0,6527) ~ 9,6-10~°.

Der Startwert 2,9 fithrt weder bei (1) noch bei (2) zu einem Ergebnis.
Die noch fehlende Nullstelle &, liefert aber der
3. Versuch:

x*—=3x24+1=0
x—3)=—1

1
X—=0=—1=

X
X —":—-é—_- = Xoug= 3— iz

X X

Xg=—0,5 X =106 X, = 2,9
x, =—1 x, =0,222... Xy =2 88100
S x, =—17,2499... x, = 2,8795...
Xs = 2.75 Xy — 29986, Xy = 2,8793...
X, = 2,8677 x, = 2,8886... x, = 2,87938...
x, = 2,8784 xs = 2,8801...
X = RTO xXe = 2,8794...
Xy — 209 . =287039 .
Dieses Verfahren fiithrt {iberraschenderweise unabhingig vom Startwert

immer zur Nullstelle ¢;. Da f(2,87935) <0 und f(2,87945)> 0 ist, gilt
gerundet &, ~ 2,8794, wofiir man f(2,8794) ~ 1,110~ * erhilt.
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Aufgaben

1.x*—9x—10=0
a) Bestimme die ganzzahlige Losung dieser Gleichung durch Raten.*
b) Berechne eine »Niherungslosung« auf 0,001 genau fiir die ganzzahlige
: : ; /10 ‘
Losung mittels der Iteration x,.,=—|/— +9 und dem Startwert
Xg = — 2,5 i o
U S A
¢) Bestimme durch Iteration die beiden nicht ganzzahligen Losungen
naherungsweise auf die dritte Dezimalstelle genau. Suche dazu jeweils
ein geeignetes g(x) und einen passenden Startwert x,.

2, x* + 6x2 — 60x + 36 = 0 war die Gleichung 4. Grades, an Hand derer
CARDANO 1545 das Losungsverfahren fiir Gleichungen 4. Grades de-
monstrierte (siehe Seite 114). Berechne mit Hilfe der angegebenen
[terationsverfahren Niherungen fiir die beiden reellen Losungen auf die
vierte Dezimalstelle genau.

36

G) F e — = x. = 0.5
) Xuss 60 — 6x, — x; 4
[60x, — 36
h} .Y" 52 — l _"”+( ! - -\:1:1 == 3
| X5 +6
4 — = ;
€) x.,,=V6(10x,—x2—6), x5=73

3. Wie tief taucht eine xclw-,-'immcnde Kugel mit dem Radius r = 1 dm und
der Dichte ¢ = 0,75 kg-dm ™2 in Wasser ein? Stelle eine Gl Lichung fiir die
Eintauchtiefe xdm auf und 16se sie niherungsweise auf 10™% gerundet
durch ein geeignetes Iterationsverfahren.**

Allgemeine Sitze

Nach der Behandlung des Sonderfalls x" + @, = 0 wenden wir uns nun den
algebraischen Gl Lthl_m"Ll‘l in ihrer allgemeinen Form a,x"+a,_,x" '+
+...4+a,x+a, =0 zu. Bei den Gleichungen 3. Grades imhul wir gelernt,
ddH man sie auf eine Gleichung 2. Grades zuriickfiihren kann, wenn man eine
L.osung kennt, In einem solchen Fall kann man auch eine Gleichung n-ten
Grades auf eine vom Grad n—1 zurickfithren. Zum Beweis dieser Be-
hauptung verallgemeinern wir einen Gedankengang, den Geronimo CARDA-
NO (1501-1576) in Regel 6 von Kapitel XXV seiner Ars magna 1545
angesprochen hat und den Frangois VIETE (1540-1603) in seinem 1615 postum

* Zur historischen Bedeutung dieser Gleichung siche Seite 113.

** Auf eine solche Gleichung (mit 5 an Stelle von g) stiel AL-MarHANI (um 860), als er das von ARCHIMEDES
{um 287212 v. Chr.) in Uber Kugel und Zylinder (11,4) gestellte Problem algebraisch l6sen wollte: Eine
Kugel durch eine Ebene so zerschneiden, daB die Volumina der entstehenden Segmente das Verhdltnism : n

haben.
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104 5 Algebraische Gleichungen

erschienenen Tractatus de emendatione aequationum erweiterte. Als Hilfs-
mittel beniitzen wir wie VIETE die auf Seite 44 bewiesene Verallgemeinerung
der 3. binomischen Formel, nimlich

n

a'—b"=(a—b)(@" *+a" b+q" b2 +...Lab" 24+ Y (m)

Damit konnen wir uns dem eigentlichen Problem zuwenden. Die linke Seite
der algebraischen Gleichung a,x"+a,_,x" " '+...+a,x+a, =0 ist ein
Polynom vom Grad n, fiir das wir kurz P,(x) schreiben. Fiir eine beliebige
reelle Zahl r gilt

B(x)—P,(r) =a,(x"—r"Y+a,_;(x""'—r""H+... +a,(x—r).

Wendet man auf jede der Klammern (m) an, so kann man (x — r) ausklam-
mern und erhilt
P{x)—P(r)y=
=@ (x—r)( "X 2 T A )

+a, =" 2 X" b a3 Y

+a, ;x—rE"? 2" T )

+ ...+

+alx—r) =

-

=(@x=rla,"  +... 4" DYta,_ " .+ Fag].

Der in der eckigen Klammer stehende Ausdruck ist ein Polynom (n — 1)-ten
Grades in x, so daB gilt

P(x)—E.(r) = (x—1)P._,(x).

[st r eine Nullstelle des Polynoms F,(x), dann ist P,(r) = 0, und es ergibt sich

B(x)=(x—nrP,_;(x).

Damit i1st bewiesen

Satz 104.1: Reduktionssatz ‘

Ist x; eine Losung der algebraischen Gleichung P,(x) = 0, dann
laB3t sich B, (x) faktorisieren zu (x — x,) P, _, (x), wobei P,_, (x) ein
Polynom (n—1)-ten Grades ist. Die Lésung der algebraischen
Gleichung P,(x) = 0 ist damit zurtckgefiihrt auf die Losung der
aquivalenten Gleichung (x —x,) P, ;(x) =0, d.h. auf die Losung
vonx=x; v P_,(x)=0.

René DESCARTES (1596-1650) hat den Inhalt dieses Satzes 1637 in seinem Werk La
Geométrie mitgeteilt. Zu seiner Veranschaulichung wihlen wir eine Gleichung aus
einer 1654/55 entstandenen Arbeit des Jan HUDDE (1628-1704), in der dieser die
Methoden DESCARTES™ ausbaute. HUDDE sandte diese Arbeit als Brief. datiert vom
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{5 Juli 1657, an seinen Lehrer Frans VAN SCHOOTEN (um 1615-1660). Dieser
iibersetzte sie aus dem Niederlindischen ins Lateinische und fiigte sic unter dem Titel
De reductione aequationum — »Uber die Reduktion von Gleichungen« 1659 seiner
sweiten lateinischen Ausgabe des DescarTEsschen Werks bei, wo sie 100 Druckseiten
in Anspruch nimmt.

Beispiel: x*—6x>+8x—3=0

Die Losung x, = 1 148t sich erraten. Das gesuchte Polynom P;(x) erhilt
man entweder durch Polynomdivision oder durch die von DESCARTES
1637 in seiner La Géométrie erfundene Methode des Koeffizientenver-
gleichs, von der er mit Stolz schreibt, »dalB sie nicht eine der geringsten
unter den Methoden ist, deren ich mich bediene«.

Polynomdivision:
(x*—6x*+8x—3):(x—1) = x3+x2—5x4 3= Py(x)
e %Y

x}—6x24+8x—3

_(x3—x?)
—5x*+4+8x—3
—(—5x%*+ 5x)
gomy
—(3x—3)
0

Koeffizientenvergleich:
Man setzt das gesuchte Polynom P,(x)als A x4+ Bx*+ Cx+ Danund
hat damit

i sx—3=(—1DP:xl=
_ Ax* 4+ (B—A)x*+(C—B)x*+(D—-C)x—D.

Linke und rechte Seite stellen dasselbe Polynom 4. Grades dar. Uberein-
stimmung liegt sicher vor, wenn die Koeffizienten gleich sind. Wir
erhalten also fiir die vier unbekannten Koeffizienten 4, B, C und D das
folgende aus fiinf Gleichungen bestehende Gleichungssystem:

I =
e p ey 4=1
ot it R
e et R g S
K D=2
V —_D=-3
Somit ist P,(x) = x° + K2 §x 3.

Die linke Seite der gegebenen Gleichung 4. Grades kann damit faktori-
siert werden; man erhélt
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xt—6x?2+8x—3=0 = (x— e+ %% = 5x4-3)=0.

Falls die gegebene Gleichung noch weitere [.osungen besitzt, erhilt man
sie als Losungen von x> 4 x? — 5x + 3 = 0. Durch Probieren findet man.
dall x, =1 diese Gleichung 16st. Damit kann man ihre linke Seite nach
einem der obigen Verfahren faktorisieren zu (x—1)(x*+2x—3). Die
quadratische Gleichung x? +2x — 3 = 0 hat die Losungen x; =1 und
X4 = — 3, so dall wir schreiben kénnen

x*—6x2+8x—3=0 = (x—13(x+ 3) = 0.

Die gegebene Gleichung 4. Grades besitzt also die Losungen —3 und 1.
Da bei der Faktorisierung der Linearfaktor (x —1) in der 3.Potenz
auftritt, sagt man, 1 sei eine dreifache Losung der Gleichung,

Der Reduktionssatz gestattet eine Abschitzung der Anzahl der Losungen, die
eine Gleichung n-ten Grades haben kann. Jede Losung x, 1ift nimlich die
Abspaltung des Linearfaktors (x — x,) zu. und bei einem Polynom n-ten
Grades kann ein solcher Faktor héchstens n-mal ausgeklammert werden.
Also gilt

‘ Satz 106.1: Eine Gleichung n-ten Grades hat héchstens n Losungen.
L Dabei wird jede Lésung in ihrer Vielfachheit gezahlt.

Bei quadratischen Gleichungen in Normalform gibt der Satz von VIETA einen
Zusammenhang zwischen den Lésungen Xy, X, und den Koeffizienten p, g der
Gleichung x* + px + ¢ = 0 an:
pP=—(x t+x)undg=x,"x,.
Ein analoger Satz gilt auch fiir Gleichungen hoheren Grades in Normalform,
d.nomita, =1,
Wir betrachten zunichst eine Gleichung 3. Grades in Normalform:
X% +a,x% +a,x + a, = 0 habe die 3 Losungen Xi> %5 und x5.
Nach dem Reduktionssatz gilt dann
LA

x> +ayx?tax+ag=(x—x,)(x- X,)(x —x;) =

] s P e .2 h S ey . ’ - : - ; i
= X7 — (25 +x3) x5+ (g x5 + x50 x5 X DX )X — 003 VxS i,
Offenbar ist der Zusammenhang bei dem mittleren Koeffizienten kompli-

zierter. Aber wenigstens bei den Koeflizienten agund @, sind die Ausdriicke
so einfach, daB es sich lohnt, sie sich zu merken:

Satz 106.2: Sind x,, x,,...,x, die Losungen der Gleichung

x"+a, x""'+...+a;x+a, =0, dann gilt:
Uy—y ==X +Xs-kiFx) und gy = (—1) 25,7 i S N
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Der Beweis verliuft wie oben bei der Gleichung 3. Grades.

Die Beziehung a, = (—1)"-x, - x,-...-x, ldBt vermuten, daB ganzzahlige
Losungen einer Gleichung mit ganzzahligen Koeffizienten Teiler von a, sein
miissen. Tatsdchlich gilt

Satz 107.1: Sind alle Koeffizienten der Gleichung a,x"+4a,_;x" " +
+ ...+ a,x + a, = 0 ganzzahlig, dann ist jede ganzzahlige L.Oosung
Teiler von a,.

Zum Beweis denken wir uns die ganzzahlige Losung x, eingesetzt:
axi+a,_ xt'+...4ax,+a,=0
)

Daraus folgt @, = — x,(@,x1" "+ @, X1 “+... +4a4),
d.h., x, ist Teiler von a,, q.e.d.

Sind die Koeffizienten g, zwar rational, aber nicht alle ganzzahlig, dann
multiplizieren wir mit dem Hauptnenner der Koeffizienten und erhalten eine
Gleichung mit lauter ganzzahligen Koeffizienten, auf die man Satz 107.1
anwenden kann.

Beispiel:
P —1x2—9x+32=0 |-2
2x° —x2—18x+9=0
Ganzzahlige Losungen kénnen nur Teiler von 9 sein, also +1, + 3 =95
Wir setzen ein:

+1: 2—1—-18+9=-328 keine Losung
—1: —2—1+4+18+9=24 keine Losung
+3: 54—9—-544+9=0 Losung
—3: —54-94+54+9=0 Losung
+9: 1458 — 81 —162+9 =1224 keine Losung
—9: 1458 —81+162+4+9 = —1368 keine LOsung

Satz 106.2 liefert uns zu den beiden so gefundenen Losungen —3 und 3
die dritte:
(—1)3-3:(=3)-x;=%, alsox;=3.

Sucht man nicht nur die ganzzahligen, sondern auch die ibrigen rationalen
Losungen, dann kann man sich des folgenden Satzes bedienen:
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’7 Satz 108.1: Sind alle Koeffizienten der Gleichung

L tax+a,=0
ganzzahlig, so gilt fiir jede vollstindig gekiirzte rationale Losung g

p ist Teiler von a,, und g ist Teiler von s 58 J

M M
dyXa, %

Beweis: Wir setzen die Losung g cmu nd multiplizieren die Gleichung mit q".

Das ergibt g, p* +a. -, p" Ygta _,p" 2P+ .. F a,pq" '+ a,q" = 0.
Somit gilt aog" =—p-(a,p" ' +a, ,p" 2q+a, ,p" 3¢ +.. + ayg’=t)
und auch a,p"=—q-(a, p" ' +a,_,p" 2q+...+ a,pg" 2 +a,q"Y).

Weil p und ¢ nach Voraussetzung teilerfremd sind, muf p ein Teiler von a, und
g ein Teiler von a, sein.

Bei der Gleichung 2x? — x? — 18x + 9 = 0 kommen demnach als rationale
L osungen nur die Zahlen +1, +3, 49, +3, +3, +2in Frage. Tatsichlich
heiflen die Losungen —3, +3 und 4, wie oben gezeigt wurde.

Rene DESCARTES (1596—1650) hat 1637 in seiner La Géométrie eine Regel
fur die moglichen Anzahlen positiver bzw. negativer Losungen angegeben.

Satz 108.2: Vorzeichenregel von DESCARTES
Die Anzahl der positiven Losungen einer algebraischen Gleichung
a4, X"+ @, X" + ...+ a; x + a; = 0 mit a, + 0 ist gleich der An-
zahl der Vorzeichenwechsel in der Koeffizientenfolge 7 587 Pl 1%
a,, a, oder um eine gerade Anzahl kleiner.
Die Anzahl ihrer negativen Losungen ist gleich der Anzahl der
positiven Losungen derjenigen Gleichung, die entsteht, wenn man
in der gegebenen Gleichung x durch — x ersetzt.
Beachte: Jede Losung wird gemaB ihrer Vielfachheit gezahlt.

Erste Beweisversuche unternahmen 1675 Jean PRESTET (1652-1690) und 1728
Johann Andreas voN SEGNER (9.10.1704 PreBburg — 5.10.1777 Halle/Saale).
Vollstindig bewiesen hat diesen Satz aber erst 1828 Carl Friedrich GAuUSS
(1777-1855),von dem auch die obige »zweckmabige Einkleidung« stammt.*
Wer die Verschirfung »oder um eine gerade Anzahl kleiner« lieferte, konnten
wir nicht ermitteln.

* DescarTES selbst schreibt, daB die Anzahl der negativen Losungen gleich der Anzahl der Vorzeichenwie-
derholungen in der Koeffizientenfolge ist. Dann miissen Koeffizienten 0 allerdings mit einem Vorzeichen
versehen werden! Aber nur eine geschickte Belegung mit + und — liefert eine gute Abschitzung.
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Beispiele:

1) DESCARTES zeigt seine Regel an x* — 4x> — 19x? +106x — 120 = 0.
Die Vorzeichenfolge + — — + — hat 3 Wechsel (+ —, —+,+ —):
3 oder 1 positive Losung. x durch —Xx ersetzen:

x* 4+ 4x3 —19x%2 — 106x — 120 = 0 hat die Vorzeichenfolge
+ + — — — mit einem Wechsel (+ —): 1 negative Losung.
Tatsichlich hat die Gleichung die Losungen —5, 2, 3 und 4.

2) x7 + x° — x? — 1 = O hat die Vorzeichenfolge + + — — mit 1 Wechsel:
{ positive Lésung. x durch —Xx ersetzen: — x'—x>—x*—1=0hat
die Vorzeichenfolge — — — — ohne Wechsel: keine negative Losung.
Tatsichlich hat die Gleichung die Losung 1.

Aufgaben

I.

Ln

6.

Bei den folgenden Gleichungen sind die angegebenen Zahlen Losungen.
Bestimme die Losungsmenge und stelle das Gleichungspolynom als
Produkt von Linearfaktoren dar.

Gib eine Gleichung méoglichst niedrigen Grades in Normal form an, die die
angegebenen Losungen besitzt.
a) —1., 1,3 b) —5 zweifach und 5 c) 3,1,

4 =12, V2,23 talige

2

. Welche Vielfachheit hat die Losung x, = 2 in der Gleichung

a) x*—2x?—x+2=0,
b) 2x* —8x*+7x*+4x—4=0,
¢) x5 —6x*+13x>—14x*+12x—8 =07

3

x3_3x—_a=0 hat die Losung /2. Bestimme a und die weiteren

Losungen.

. Bei der Gleichung x*+ ax?—16x+160 =0 haben zwei Losungen

entgegengesetztes Vorzeichen. Bestimme und alle Losungen.

% — 553 4 6x2 - ax+ b = 0 hat eine dreifache Losung. Bestimme a und
b und die Losungen. (Hinweis. Setze das Gleichungspolynom als Produkt
von Linearfaktoren an und fiihre einen Koeffizientenvergleich durch.)

. Welche Bedingungen miissen @, b und c erfillen, damit die Gleichung

3 4+ax?+bx+c=0

a) die Losungen —1, 1 und 2 hat,
b) die Doppellosung 1 und die einfache Losung 2 hat,

ec) zwei ganzzahlige Losungen hat, die sich nur durch das Vorzeichen

unterscheiden? Gib den Gleichungstyp und die Losungen an.
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e 8. Gib eine Gleichung an, deren Ldsungen
a) jeweils doppelt so grof3 sind wie
b) jeweils halb so groB3 sind wie
ec) jeweils um 1 groBer sind als
die Losungen von
1) 2x* —x2—18x4+9=0 2) 8x*—8x>+16x2—6x+1=0.

1) das Beispiel von Seite 107 ist, kannst du die Richtigkeit leicht
uberpriifen.

9. René DESCARTES (1596-1650) bestimmt 1637 in seiner La Géoméirie zur
Gleichung x*+4x> —19x* —106x — 120 = 0 eine Gleichung, deren

Losungen a) jeweils um 3 kleiner b) jeweils um 3 gréBer
sind als die Losungen der gegebenen Gleichung. Wie heillen die Glei-
chungen?

$10. René DESCARTES (1596-1650) 16st 1637 in seiner La Géoméirie die
26 8 ; .
Gleichung x° —J Bl e == 0, indem er zunichst eine Glei-
')'_Ilu" j?l'%
chung sucht, deren Losungen das |/ 3fache der Losungen der gegebenen
Gleichung sind. Mit Hilfe von Satz 108.1 lassen sich die I Losungen dieser
Gh,u_hun" und damit auch die der Ausgangsgleichung bestimmen. Mach
es nach!

1l x 9522407
a) Begriinde: Jede rationale Losung ist ganzzahlig
b) Welche ganzen Zahlen kommen als Losungen in Frage?
¢) Bestimme die Losungsmenge.

12. Beweise den Satz: Rationale I .Osungen einer algebraischen Gleichung in

Normalform, deren Koeffizienten ganze Zahlen sind, konnen nur ganze
Zahlen sein.

13. Ermittle die ganzzahligen I .osungen der folgenden G leichungen mit Hilfe
von Satz 108.1, bestimme anschlieBend die L osungsmenge und stelle
schl n,Hih;,h das Gleichungspolynom als Produkt von Linearfaktoren dar.
a) x’—2x—1=0 b) x>+ 2x2—6x—9=0
¢) x*—9x2426x—24 = d) x*+x*—Tx>2—x4+6=0

14. Ermittle die rationalen Losungen der folgenden Gleichungen mit Hilfe
von Satz 108.1. bestimme mw_hlur_[%:,nd die Losungsmenge und faktorisie-
¢ schlieBlich das Gluc,hurwxpufwmm

.:1) 4x° —9x* —4x2 4 2x+1=0 b) 2x>—x+1=0
e) 2x> — Bt 2x—3 =10 D2t — 2T -0 1 dlx—2=0
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15. Bestimme nach der Vorzeichenregel von DESCARTES die moglichen
Anzahlen positiver und negativer Losungen. Gib die méglichen ganzzahli-
gen Losungen an. Ermittle die Losungsmenge.

$a) x> —3x*—5x*+15x% —|—-’n 12=0 b) x*+2x>—3x*—4x+4=0
eJli=—673 }a X2+ 6x—9 = d x*+1=0
e) x®—14x*+49x*—-36=0 f) x* —5x+22=90

16. Bestimme nach der Vorzeichenregel von DESCARTES die moglichen
Anzahlen positiver und negativer Lésungen und die moglichen rationalen
Losungen. Gib schlieBlich die Losungsmenge an.

a) 3x3+5x2+7x—3=0 b) 2x3 4+ x% — 8.\’ —4 =0
¢) 9x* —9x*—4x+4=0 d) 64x*—128x>+84x*—20x+1=0

17. a) Zeige mit I lilfe der Vorzeichenregel von DESCARTES, dal3 die Gleichung
x> 4+ x+ 1 = 0 keine positive, :113(31 genau eine negative Losung hat,
und weisc nach, dal} sie nicht rational ist.

b) 1) Bestimme eine Ndherungslosung von x5 + x + 1 = 0 durch Schnei-

den der Graphen y = x°> und y = —x — 1.
2) Verbessere du. T\Jdlnmlmslmum_ durch die Iteration
Xppj = — I x,+1, ne N, auf 6 geltende Ziffern.

3) Was Lfgih[ :)Ja. 1 bei dem naheliegenden Iterationsverfahren
X ==y —d e Nt
**¢) Schreibe x* + x + 1 als Produkt aus einem Polynom 3. und 2. Grades
und bestimme mit der Formel von CARDANO (Seite 116) die Losung
exakt.

18. Zeige mit Hilfe du Vorzeichenregel von DESCARTES, dal3 die Gleichung
2x® + 10x* + 7x% + 1 = 0 keine reelle Losung hat. Wie kann man das

auch einfacher einsehen?

19. Zeige mit Hilfe der Vorzeichenregel von DESCARTES: Die Losungsmenge
einer algebraischen Gleichung ungeraden Grades ist nicht leer.

**5 4 Zur Geschichte der Auflosung von Gleichungen

Wie du im letzten Jahr gelernt hast, konnten die B Babylonier bereits um 2000 v.Chr
quadratische Gleichungen 16sen; aber der Weg zur Losungsformel war noch lang. Erst
Simon STEVIN (1548-1620) schaffte es in seiner 1585 in Leiden erschienenen
1’ Arithmétique dadurch, daB er auch negative Zahlen als Koeflizienten zuliel3.
Ungleich schwieriger war es, die kubische Gleichung zu lésen. Die Hdh\]onm
beniitzten hierzu eine Tabelle, in der zu jeder natiirlichen Zahl n der Wert von ns+n?
aufgefithrt wurde (siche Aufgabe 120/1). Bei den Griechen traten kubische (JILILE‘!LII]P
gen bei ganz bestimmten Problemen auf, nimlich dem Delischen Problem der
Wiirfelverdopplung — dem Analogon zur Quadratverdopplung des MENON — (Aufgabe
46/7 und 85/12) oder der Dreiteilung eines Winkels. Gelost wurden sie g_um'llt,i[l\i,f
unter Zuhilfenahme bestimmter Kurven.

i

]

lil
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Weder die Inder noch die Araber fanden eine algebraische Losungsmethode fiir die
kubischen Gleichungen. Immerhin gelang es aber dem persischen Dichter, Philoso-
phen, Astronomen und Mathematiker Omar AL-Hayyam (1048?-1131) in seiner
Abhandlung iiber die Beweise und Probleme von Algebra und Mugabala, alle Typen
kubischer Gleichungen graphisch unter Verwendung von Kreisen und Parabeln bzw.
Hyperbeln zu losen (Algebra 3, Seite 170). Dabei entgeht thm aber, daBl gewisse
Aufgaben drei Lésungen besitzen. Sein Werk wurde dem Abendland leider erst im
19.Jh. bekannt.

Mit der allmdhlichen Verbreitung algebraischer Kenntnisse versuchte man sich im
[talien des 14. Jh.s an der allgemeinen Losung der kubischen Gleichung. 1494 setzte
Luca PacioLl (14457-1517) in seiner Summa de Arithmetica Geometria Proportioni et
Proportionalita, dem damals weitverbreiteten Standardwerk liber das mathematische
Wissen seiner Zeit, in einer kleinen Liste von Gleichungen héheren Grades — wir
beniitzen unsere Symbole — neben Ax* + Cx? = Dx und Ax* + Dx = Cx?* das Wort
imposibile (sic!), zu deutsch unmdglich. Klammert man A4 x aus, so hat man kubische
Gleichungen der Form x3 + bx = ¢ bzw. x* + ¢ = bx vor sich. Fiir die Koeffizienten
b und e wurden dabei nur positive Zahlen zugelassen. Meinte nun PACIOLI mit seinem
»unmoglich«, dall man grundsitzlich keine kubische Gleichung 16sen konne? Nein;
denn auf der tibernédchsten Seite (folium 150r) liest man sein Bedauern, dafl »man bis
heute noch keine allgemeinen Regeln aufstellen konnte«. 51 Jahre spiter wurden sie
veroffentlicht, unter dramatischen Umstidnden, die die Zeitgenossen und auch die
Nachwelt bewegten.

1515 oder gar schon 1505 gelingt es Scipione DEL FERRO (1465-1526), seit 1496
Professor flir Mathematik an der Universitit von Bologna, die Gleichung x> + bx = ¢
zu losen, was er vermutlich nur einigen wenigen seiner Schiiler kundtut.* Fachwissen
behielt man damals fiir sich; konnte man doch damit in 6ffentlichen Wettkimpfen das
Publikum in Erstaunen versetzen und erhebliche Geldpreise gewinnen. Und so fordert
einer seiner Schiiler, nimlich Antonio Maria FIoRr, latinisiert zu FLorIDUS, Rechen-
meister aus Brescia, den in Venedig wirkenden Rechenmeister Niccolo FoONTANA
(1499—-1557), der sich lateinisch TARTALEA, italienisch TARTAGLIA** nennt. zu einem
solchen Wettkampf. Bis zum 22. Februar 1535 sollte jeder 30 Fragen aus verschieden-
sten Gebieten der Mathematik versiegelt beim Notar ZAMBELLI in Venedig hinterlegen,
die dann innerhalb von 50 Tagen zu l6sen waren. Um TARTAGLIA einzuschiichtern,
briistet sich FIOR damit, schon vor 30 Jahren von einem groBen Mathematiker gelernt
zu haben, wie man die Gleichung x* + bx = ¢ 16st, iiberzeugt, daB auf Grund von
PacioLis »unmoglich« es niemand anderer konne. TARTAGLIA weill also, woher der
Wind weht, und so nimmt er seine Studien iiber kubische Gleichungen wieder auf: denn
bereits 1530 hat ihm in Verona ein anderer Rechenmeister aus Brescia, Zuanne de
Tonini A Col, auch Giovanni CoLLA genannt, Gleichungen vom Typ x* 4+ mx? = n
bzw. x° +n = mx* mit m, n>0 vorgelegt. TARTAGLIA hat, wie er selbst schreibt,
Gliick: Am 12. Februar 1535 findet er die Losung von (1) x*® + bx = ¢ und anderntags
die von (2) x* = bx + ¢. Auch seine Vermutung hat ihn nicht getrogen: allen Aufgaben
F1ors lag die kubische Gleichung (1) zugrunde. Und so kann TARTAGLIA innerhalb von
zwei Stunden alle Aufgaben 16sen! ***

Irgendwann kommt pa Cor nach Mailand und berichtet Geronimo CARDANO

* Wahrscheinlich konnte er auch x® = bx+ ¢ und x* + ¢ = bx lésen.

** Beides bedeutet DER STOTTERER. 1512 wurde Niccold als Kind bei der Eroberung Brescias durch einen
Schwerthieb eines franzosischen Soldaten so schwer verwundet, daB er nur mehr stottern konnte. Sein
voller Bart verdeckte die entstellende Narbe.,

**¥ TARTAGLIA tiberliefert uns 1546 in den Quesiri (siehe Seite 95) alle Aufgaben Fiors, von den seinigen aber
nur die neun, die er CARDANO 1539 mitteilte.
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(1501—1576) von diesem Wettkampf. Und
da dieser gerade seine Practica Arithme-
ticae herausgeben will, bietet er TARTA-
GLIA am 2. Januar 1539 durch einen Mit-
telsmann an, die Losungsformeln unter
TARTAGLIAS Namen in seiner Practica zu
veroffentlichen. TARTAGLIA lehnt ab, da
er sich die Verdffentlichung selbst vorbe-
halten wolle. Am 13. Mdrz wiederholt
CARDANO sein Angebot, am 19. Marz hat
TARTAGLIA den Brief in Héinden. So
schnell ging damals die Post! AuBerdem
lidt er ihn nach Mailand ein, auch im
Namen des Marchese Alfonso D’ AVALOS®
der sich fiir TARTAGLIAS neue, 1537 in der
Nova Scientia veroffentlichte Entdeckun-
gen iiber die SchieJkunst interessiert. Das
gibt den Ausschlag, und bereits am
25. Mirz ist TARTAGLIA Gast in CARDA-
Nos Haus, der Marchese aber ist verreist.
Nachdem CAarDANO auf das heilige Evan- ;
gelium geschworen hat, niemals TARTA- Mtd fr% nmr a"ﬂ?ﬂ:f}:m
GLIAS Entdeckung zu verdffentlichen und

sie auBerdem so verschliisselt aufzu-  Abb.113.1 Geronimo, auch Girglamo
schreiben, daBl niemand nach seinem (CarpANO (34_9‘1‘501 Pavia — 20.9.1576
Tode sie verstehen konne, teilt ihm TAR-  Rom) Bildnis aus der Ars magna, 1545

TAGLIA seine Formeln fur (1), (2) und
auch fiir (3) x* + ¢ = bx in Form eines
25zeiligen leicht einprigbaren Gedichts

Die Umschrift lautet:
10 pEALov OTL YEVIGETUL EIG TO PEPTEPOV
Tidel

mit, das er selbst immer als Gedéchtnis-  Halte das Zukiinftige, das sich entwickeln
stiitze beniitze, um die komplizierten wird. fiir das Bessere!

Regeln nicht zu vergessen. Einen Beweis

gibt er aber nicht preis, und abrupt reist er ab. (Der vierte fiir uns mogliche Fall,
x3 4+ bx + ¢ = 0, wird iiberhaupt nicht betrachtet, da er nur durch negative Zahlen
geldst werden konnte, die nach damaliger Auffassung keine Losungen sind.)
CARDANO gesteht am 9. April TARTAGLIA, mit den Versen nicht zu Rande zu kommen;
er mdge sie ihm doch an Hand der Gleichung x* 4 3x =10 erkldren. TARTAGLIA
entspricht der Bitte am 23. April, fiigt als weiteres Beispiel die Gleichung x” + x = 11
an und erinnert CARDANO an sein Versprechen, worauf ihm dieser am 12. Mai ein noch
ungebundenes Exemplar seiner Practica zusendet als Beweis, dalB er sich an den Eid
gehalten habe. Aber TARTAGLIAs MiBtrauen wird wieder geweckt, als ihm sein
ehemaliger Schiiler Meister Maphio Poveiant aus Bergamo am 10. Juli kundtut, in
Mailand werde erzihlt., CARDANO schreibe an einem neuen Werk tber Algebra mit
neuen Entdeckungen. TARTAGLIA bereut, das Geheimnis preisgegeben zu haben**, und

beantwortet zwei Briefe CARDANOs nicht. Als er jedoch am 4. August einen Brief

CARDANOS erhilt. in dem ihm dieser an Hand der Gleichung x* = 9x + 10 mitteilt, daB
die Formeln in gewissen Fillen versagen, obwohl es eine Losung gibt —es handelt sich

* Der Spanier war der kaiserliche Gouverneur der Lombardei. T 1546. ;
** Quello che tu non voi che si sappia nol dir ad alcuno — Was du nicht willst, dall man weil, das sag keinem.

Mit diesem Sprichwort fordert TARTAGLIA Meister Povelant am 19. Juli auf, ein wachsames Auge auf

CARDANO zu haben und ihn auf dem laufenden zu halten.
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um CarpanNos Entdeckung des casus irreducibilis (Aufgabe 121/5 und 6) —, weicht
TARTAGLIA in seiner Antwort vom 7. August diesem Problem aus und meint, CARDANO
habe eben die Formeln nicht richtig verstanden; dariiber hinaus bedauere er, ihn
eingeweiht zu haben, da er sich in Mailand briiste, neue Regeln in der Algebra entdeckt
zu haben. Am 18. Oktober verteidigt sich CARDANO, indem er durch Ldsen der
Gleichung x* = 12x + 20 zeigt, daB er die Terzinen* TARTAGLIAs wohl verstanden hat;
TARTAGLIA aber hat keine Lust mehr zu antworten. Da erreicht ihn ein Brandbrief vom
5. Januar 1540, in dem CARDANO voll des Schreckens schreibt, der »Teufel« pa Cor sel
wieder in Mailand und behaupte, ebenfalls die Regeln fiir die kubische Gleichung zu
kennen. ja noch mehr, auch die Gleichung 4. Grades 16sen zu kénnen, was er ihn lehren
wolle, falls er ihm freiwillig seine 6ffentlichen Vorlesungen tiber Arithmetik tiberlieBe.
TARTAGLIA zerpfliickt diesen Brief in den Quesiti, beantwortet ihn aber nicht. Und
so endet die Korrespondenz dieser beiden Mathematiker.
In der Folgezeit gelingt es CARDANO, einen Beweis fiir TARTAGLIAS Regeln zu finden
und dariiber hinaus die allgemeine kubische Gleichung x* + ax? + bx + ¢ = 0 zu l6sen
CarRDANO mubB natiirlich wieder viele Fille unterscheiden —, indem er sie durch die
¢

Transformation x =: y — 3 auf eine der Formen (1) bis (3) bringt, die kein quadrati-

sches Glied enthalten (Aufgabe 121/7). Im Jahre 1542 reist er mit seinem uberaus
begabten Schiiler Ludovico FERRARI (1522-1565)** nach Florenz; in Bologna sehen
sie dabei den NachlaB Scipione DEL FERROs bei dessen Nachfolger und Schwiegersohn
Annibale DELLA NAVE (um 1500-1558) ein. Sie finden darin gut und elegant erklirt die
Losung, die auch TARTAGLIA angegeben hat. (TARTAGLIA wird spdter, am 21. April
1547, entgegnen, seine Entdeckung kénne zu jeder Zeit auch von anderen gemacht
werden, er habe alles selbst gefunden.) SchlieBlich gelingt es Ludovico FERRARI, das
von DA Cor in einem Wettstreit gestellte Problem einer Gleichung 4. Grades durch Zu-
riickfihrung auf eine kubische Gleichung zu losen.*** Durch diese Entdeckungen
und vor allem durch den selbstindig gefundenen Beweis fiihlt sich CARDANO nicht
mehr an seinen Eid gebunden, den es laut FERRARI iiberhaupt nicht gegeben habe,
und veroffentlicht 1545 (Widmung vom 9.Januar) in seiner Ars magna die Regeln
fiir die Losung der kubischen Gleichungen — insgesamt sind es 13 Fille — und, unter
voller Anerkennung der Leistung FERRARIS, die fiir die Gleichung 4. Grades.

Die drei Regeln TARTAGLIAs und CARDANOs fiir die Gleichungen (1) bis (3) lassen sich
zu einer zusammenfassen, die dann auch fiir den vierten Fall gilt, wenn man
grundsatzlich zulaf3t, daB die in Gleichungen auftretenden Buchstaben auch negative
Zahlen bedeuten konnen. Wir eilen nun der Zeit voraus; denn erst Jan HuppE

* Terzine, vom italienischen terzo = dritrer, ist eine Strophenform aus urspriinglich je drei elfsilbigen Versen
mit dem Reimschema aba/bcbfede)... [z. DANTES (1265-1321) Divina Commedia z.B. ist in Terzinen
verfaBt.

L3

*®

Er wurde 1536 als 14jahriger in CaArDANOs Haushalt als Hausbursche aufgenommen. Von 1540 bis 1556
lehrte er Mathematik in Mailand und anschlieBend in Bologna. Vermutlich wurde er von seiner Schwester
vergiftet.

*#%#% Da Con hat dieses Problem TarTAGLIA bereits am 12. September 1535 zur Lésung vorgelegt, nur mit etwas
anderen Zahlen, Unverstandlicherweise schickt CArDaNO dasselbe Problem: als seine eigene Aufgabe am
2. Januar 1539 an TARTAGLIA, der es sofort als das pa Cors erkennt und dies auch CARbANG auf den Kopf
zusagt, woriiber dieser entriistet ist. Aber am 5. Januar 1540 ist es in CARDANOs Brief doch wieder das
Problem pa Cors, und in Kapitel XXXIX seiner Ars magna schreibt CARDANO ehrlich, dalBl es von pa Cor
stammt. Es handelt sich in der dortigen Fassung um die Aufgabe, 10 50 in drei Summanden zu zerlegen,
dal sie in fortlaufender Proportion zueinander stehen und daB das Produkt aus dem ersten und zweiten
Summanden 6 ergibt. Fiir den zweiten Summanden y erhiilt man die Gleichung y* + 632 + 36 = 60y. Die
von CARDANO angegebene Lasung ist iibrigens falsch. — Im Losungsheft wird gezeigt, wie FERRARI diese
Gleichung gelost hat. i i
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(1628—1704) hat diese so fruchtbare Idee
in seiner 1654/55 entstandenen und 1659
erschienenen Arbeit De reductione aequa-
tionum (siehe Seite 105). In ihr leitet er
auch die dann auf alle Fille anwendbare,
iiblicherweise nach CARDANO benannte
Formel zur Losung der kubischen Glei-
chung her, wobel er den Weg TARTAGLIAS
nur geringfligig modifiziert. Er ersetzt
nimlich in der Gleichung*

X3+px+qg=0

die Unbekannte x durch « + v und erhalt
damit die Gleichung

w3+ GCuv+p)u+v)+qg=0.
Diese ist sicher erfiillt, wenn

[ 3uv=-—p
I w?*+v°=—gq Iist.

Ohne Schwierigkeit erhilt man daraus

I' 3up=—p
3

Ll

[ u®- .;_(_
U+ qu 2

\ =

Gleichung II' ist eine quadratische Glei- Abb.115.1 Jan HuDDE (getauft 23.5.
chung fiir #°. Man kann also aus dem 1628 Amsterdam — 15.4.1704 Amster-
Gleichungssystem leicht # und v berech- dam) Gemilde von Michiel VAN
nen (Aufgabe 121/2) und erhélt damit fiir ~ MusscHER (1645-1705)

die Unbekannte x die als Formel von

CARDANO bezeichnete Darstellung

_\} I|" e —_— 3 f .,'-

| [ a2 N2 2 {{a\? )
x:l,..-_‘f;_l,--(ff el R
2 el 3 2 fin 2 3

In dieser Darstellung von x wird die Kubikwurzel noch in der in jener Zeit iiblichen Art
] 3

2 |

beniitzt, bei der der Radikand auch negativ sein durfte; )/ — 8 ergab — 2, so, wie es auch
manche Taschenrechner heute tun. Bei dieser Deutung der dritten Wurzel diirfen aber
die Potenzgesetze nicht auf gebrochene Exponenten iibertragen werden, wie du weilt.
Die Taschenrechner zeigen bei (— 3}'_; auch ERROR an! Wir lassen zur Vermeidung von
Schwierigkeiten aus diesem Grunde nur nichtnegative Radikanden zu und miissen
deshalb bei der Aufldsung der Gleichung #* = ... usw. nach Satz 98.1 vorgehen. Dann
ergibt sich als

* Huppeselbst eeht vom Ausdruck x* = gx -+ raus. Wir benutzen die heute iibliche Nullform einer Gleichung.
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Formel von CARDANO

Die Gleichung x* 4+ px+ g =0 hat die Losung

o 5
x=sgnR, V/|R,|+sgnR,V|R,|

e e —_—
f

| 2 f 5 £ 3
: G (fg\ g I{q\* P\
mit Rj=— f; + 1; ;!) + ( und R, =— ;! = l (;) + (;’)

Offensichtlich versagt dieser Losungsweg, wenn die Diskriminante der quadratischen

2 =
e nes q P : .
Gleichung fiir #> negativ ist, d.h., wenn 5] t| 5] <0ist. Das ist aber genau der

von CARDANO entdeckte casus irreducibilis. 1745 zeigte Abraham Gotthelf KASTNER
(1719-1800), daB in diesem Fall die kubische Gleichung x* + px + ¢ = 0 stets drei
reelle Losungen besitzt. 1891 bewies Ludwig Otto HOLDER (1859-1937), dall diese
Bedingung auch notwendig ist und daB sich diese drei Losungen grundsitzlich nicht
durch Wurzeln darstellen lassen.

Kehren wir aber nach diesem Ausflug bis in das 19.Jh. zuriick ins Jahr 1545 zu
CARDANO und seiner Ars magna. Darin berichtet er gleich im 1. Kapitel, dall Scipione
DEL FERRO als erster die Losung der kubischen Gleichung (1) gefunden habe und dal3
dies spdter auch TARTAGLIA gelungen sei, der sie ihm auf seine Bitten mitgeteilt habe. Er
verschweigt aber, dall TARTAGLIA 1thm auch die Formel fiir Typ (2) und (3) verraten hat!
SchlieBlich kommt er auf Luca PacroLis »unmoglich« zu sprechen und wiederholt, was
er bereits am 25. Miérz 1539 TARTAGLIA gegeniiber geduBert hat:

»Getduscht wurde ich ndmlich durch die Worte Luca PacioLis, der behauptet, dal} es
iber seine Regeln hinaus keine andere allgemeingiiltige geben konne; obwohl diese, da
ich vordem schon so vieles gefunden hatte, auf der Hand lag, hatte ich dennoch keine
Hoffnung zu finden, was ich nicht zu suchen wagte.«

Aus diesen Worten spricht Uberheblichkeit, aber auch Arger dariiber, so schnell
aufgegeben zu haben, weil man den Worten eines anderen zu sehr vertraut hatte!
TARTAGLIA fiihlt sich getduscht und bringt Juli 1546 seine HemnriCH VIII. von Eng-
land (reg. 1509—1547) gewidmeten Quesiti, et inventioni diverse — »Aufgaben und
verschiedene Erfindungen« — auf den Markt. Im 9. Buch erzihlt er den von uns
wiedergegebenen Ablauf der Ereignisse und bezichtigt CARDANO des Eidbruchs. Aber
nur FERRARI reagiert darauf. Am 10. Februar 1547 erklirt er sich in einem Brief, den er
in Abschrift an 53 hochgestellte Personlichkeiten und Mathematiker Italiens ver-
schickt, zu einem Streitgespriach mit TARTAGLIA bereit. Dieser lilit seine Antwort in
1000 Exemplaren drucken, woraus sich ein Briefwechsel entwickelt, die sog. 12 cartelli
di matematica disfida — »Briefe der mathematischen Herausforderung«. Darin legen
sich die Kontrahenten auch jeweils 31 Probleme vor. Um die immer schéirfer
werdenden gegenseitigen Vorwiirfe zu beenden, erklirt sich TARTAGLIA am 16. Juni
1548 bereit, nach Mailand zu kommen, was FERRARI am 14. Juli 1548 akzeptiert. Mit
dessen Vorschlag, Ferrante GoNzAGa, der Gouverneur von Mailand, solle die Jury
bestimmen, ist TARTAGLIA am 24. Juli 1548 einverstanden. CARDANO verldBt die Stadt.
Am 10. August 1548 beginnt zur 18. Stunde* in der Kirche der HI. Maria im Garten der
Minoriten der Wettstreit. TARTAGLIA erscheint in Begleitung seines Bruders, FERRARI
mit vielen Freunden. Uber den genaueren Verlauf wissen wir wenig: Nach dem ersten
Auftritt TARTAGLIAS entwickelt sich ein langerer Disput iiber die Bestellung der Jury, in

* = 14.30 Uhr. Siche dazu z. B. GOETHE, [talienische Reise, 17.9.1786
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dessen Verlauf einer nach dem anderen zum Abendessen geht. TARTAGLIA verldBt, sich
angeblich bedroht fithlend, anderntags Mailand auf einem anderen Weg. Eine dunkle
und sicher nicht sehr ehrenvolle Geschichte hat ein ruhmloses Ende gefunden.
TaRTAGLIA kommt 1551 im Terze Ragionamento sopra la Travagliata Inventione
»Dritte Erdrterung iiber die mithevolle Erfindung« —, 1556 und postum 1560 in seinem
General trattato di numeri, et misure — »Allgemeine Abhandlung iiber Zahlen und
MaBe« — mehrmals auf diese Vorgiinge zu sprechen. CARDANO wiederholt 1554 in
seinem erst 1557 gedruckten De libris propriis — »Uber die eigenen Biicher« — die
bereits in der Ars magna gegebene Darstellung, zeiht TARTAGLIA aber wegen dessen
»Verleumdungen der Unverschimtheit und Dummbeit«; diese Passage fehlt in der
erweiterten Fassung von 1562. Immer aber besteht CARDANO darauf, daB »Niccolo
Tartaglia, der {ibel von mir sprach, spiter in Mailand widerrufen mufte«, wie es in
seiner 1575. also ein Jahr vor seinem Tode, zusammengestellten Autobiographie De
vita propria — »Uber das eigene Leben« — heiBt. Aber er gesteht dort auch: »In der
Mathematik habe ich einiges, jedoch recht weniges, dem Bruder Niccolo zu danken .«
Und er bedauert, daB »dieser mich jedoch lieber zum Rivalen wollte, und zwar zum
iberlegeneren, als zu einem Freund, der ihm ob seiner Tat Dank schuldet.« Mit der
Ars magna CARDANOS hat die Geheimniskrimerei der Rechenmeister ein Ende ge-
funden, die Wissenschaft kann sich fortentwickeln.

In den néchsten 250 Jahren machen sich die besten Mathematiker an die Auflosung der
Gleichungen 5. und héheren Grades, darunter VIETE, DESCARTES, LEIBNIZ und EULER.
Zundchst aber stellt 1608 der Niirnberger Rechenmeister Peter RoTH (1 1617) in seiner
Arithmetica philosophica fest, dal eine Gleichung n-ten Grades hochstens # Losungen
haben kannt. und 1629 der Flame Albert GIRaRD (1595-1632) in seiner [nvention
nouvelle en l'algébre, daB es genau n Losungen gibt, wenn man Wurzeln aus negativen
Zahlen zuliBt. Bewiesen hat dies allerdings erst 1799 Carl Friedrich Gauss
(1777-1855) als 22jihriger in seiner Doktorarbeit Demonsiratio nova theorematis
omnem functionem algebraicam rationalem integram unius variabilis in factores reales
primi vel secundi gradus resolvi posse. Drei weitere Beweise lieferte er im Laufe seines
Lebens fiir diesen Satz, den er 1849 »Grundlehrsatz der Theorie der algebraischen
Gleichungen« nannte und der heute Fundamentalsatz der Algebra heiBt. Naturlich hat
man mit einem solchen Existenzbeweis noch keine Losungsformel!

Wenn auch z.B. Abraham pE MOoIvRe (1667-1754) die Losung der reziproken
Gleichungen hoherer Grade (Algebra 9, Seite 129) gelungen war, so waren alle
Versuche fehlgeschlagen, eine Formel fiir die allgemeine Gleichung hoheren Grades als
4 zu finden. Was keiner glauben wollte, spricht 1799 GAuUss in seiner Doktorarbeit aus:
»Es werde vielleicht nicht so schwer sein, die Unmoglichkeit bereits fiir den 5. Grad in
aller Strenge zu beweisen, woriiber ich an anderer Stelle meine Untersuchungen breiter
darlegen méchte.«* Im selben Jahr veroffentlicht Paolo RurFINI (1765-1822) ein
umfangreiches 324seitiges Werk**, in dem er mehr nachzuweisen versucht, namlich
die Unméglichkeit, eine Gleichung von héherem Grad als 4 zu 16sen. Aber sein Beweis
war nicht zwingend. Auch weitere Arbeiten (1802, 1804 und 1813) konnten die
Beweisliicken nicht schlieBen.

Der Ruhm. den ersten vollstindigen Beweis geliefert zu haben, gebiihrt dem Norweger
Niels Henrik ABEL (1802-1829). Auf der Domschule zu Oslo erkannte 1817 sein neuer

Mathematiklehrer*** Bernt Michael HOLMBOE (1795-1850) die Begabung des Jungen;
Jost BURrGI (1552 1632) sprach dies bereits nach 1598 in seiner (erst 1973 gedruckten) Coss aus (s. S. 39).
* Forsan non ita difficile foret, impossibilitatem jam pro quinto gradu omni rigore demonstrare, de qua re
alio loco disquisitiones meas fusius proponam.
** Teoria generale delle equazioni, in cui si dimostra impossibile la soluzione algebraica delle equazioni generale
di grado superiore al quario
**¥* Der Vorginger muBte die Schule verlassen, weil ein Schiiler, den er iiber die Mafen geziichtigt hatte, starb.
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Abb.118.1 Carl Friedrich Gauss Abb.118.2 Niels Henrik ABEL

[GauB3] (30.4.1777 Braunschweig bis (5.8.1802 Findo bei Stavanger —6.4.1829
23.2.1855 Gottingen) - Lithographievon  Froland bei Arendal) — Gemilde von
Siegfried BENDIXEN (1786 — nach 1864) Johan GOreITZ (1782-1853)

er forderte ihn, indem er ihm die Originalarbeiten der mathematischen Koryphien
seiner Zeit zu lesen gab. Von RUFFINIs Arbeiten jedoch erfuhr ABEL nichts. und so
glaubte er 1821, trotz der Bemerkung Gaussens, eine Losungsformel fiir die G leichung
5. Grades gefunden zu haben, und sandte sie an Professor DEGEN nach Kopenhagen,
der ihn bat, ein Beispiel durchzurechnen. Da erst ging ihm die Fehlerhaftigkeit seiner
SchluBweise auf! 1824 veroffentlichte er auf eigene Kosten eine nur einen halben
Druckbogen umfassende Schrift*, in der er die Unméglichkeit, die Gleichung
5.Grades algebraisch zu losen, bewies. Er sandte sie Gauss zu. der sie unaufge-
schnitten beiseite legte. 1825 bis 1827 reiste ABEL mit einem kleinen Stipendium der
norwegischen Regierung nach Berlin und Paris. August Leopold CRELLE (1780—1855)
erkannte die Bedeutung des jungen Mathematikers und veroffentlichte 1826 ABELs
abschlieBende Arbeit als Ubersetzung, namlich den Beweis der Unmoglichkeit alge-
braische Gleichungen von hoheren Graden als dem vierten algebraisch aufzuldsen zu-
sammen mit fiinf weiteren Arbeiten ABELs in der ersten Nummer seiner neugegriin-
deten Fachzeitschrift Journal fiir reine und angewandte Mathematik. die heute noch
existiert.

Nun wuBte man es, auf rund 20 Seiten klar bewiesen! Aber ABEL stellt sich sofort die
neue spannende Aufgabe, »alle Gleichungen zu finden, die algebraisch 18sbar sind«.
wie er am 16.1.1826 an HOLMBOE schreibt. Seine Arbeiten gedeihen, kommen aber zu
* Mémoire sur les équations algébriques, ou I'on démonire I'impossibilité de la résolution de l'équation générale du
cinquieme degré
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keinem Abschlul}; denn 1829 stirbt er an Schwindsucht. Gelost hat das Problem
Evariste GALOIS (1811-1832) im Januar 1831 durch sein Mémoire sur les conditions de
résolubilité des équations par radicaux — »Abhandlung iiber die Bedingungen der
Losbarkeit von Gleichungen durch Radi-
kale« —, aufbauend auf Arbeiten von
Joseph-Louis LAGRANGE (1736-1813),
Gauss und Augustin Louis CAuUcCHY
(1789-1857).
Als Garois am Collége Louis-le-Grand
in Paris als 15jdhriger wegen Schulunlust
in den beiden Jahren davor gehorte er
zu den Besten in Latein und Griechisch
die vorletzte Klasse wiederholen mul,
besucht er zusiitzlich zum ersten Mal
einen Mathematikkurs. Bald studiert er
die Werke der groBen Mathematiker sei-
ner Tage, die Géoméirie LEGENDRES
(1752-1833) und LAGRANGES algebra-
ische Abhandlungen. Im darauffolgen- :
den Jahr vernachldssigt er alle anderen &% . M.
Kurse auBer dem der Mathematik und - ! X
stért, wo er kann. Der Studieneintrag des
2. Trimesters 1827/28 lautet: »Sehr i A
schlechtes Benehmen. [...] Er ist darauf e
: SR - ; 1816/17
aus, sonderbar zu sein. [...] Er macht )
tiberhaupt nichts fiir den Unterricht. Die 8 f ¢
Raserei der Mathematik hat von ihm gﬁ"
B?silz l‘.‘.]"‘_.l]’iﬁ:[:'-i‘}.l _dcshulh glaube ich, es Abb.119.1 Evariste GALOIS
ALE besser fuir llnn_wcnn SeIme Eltern (25.10.1811 Bourg-la-Reine bei Paris bis
zustimmten, dafl er sich nur diesem Stu- 31.5.1832 Paris) g
dium widme; hier verliert er seine Zeit =~ :
und quilt nur seine Lehrer und wird mit Strafen eingedeckt.«* Entgegen allen Rat-
schligen lernt er nicht systematisch genug und besteht deswegen zweimal nicht die
Aufnahmepriifung in die berithmte Ecole Polytechnique. Am 25. Mai und am 1. Juni
1829 reicht er zwei Aufsitze tiber die Auflésung algebraischer Gleichungen bei der
Pariser Akademie der Wissenschaften ein, die CAUCHY beurteilen soll. Sie sind nie
mehr aufeetaucht.** Im Februar 1830 liefert Garos dort eine Arbeit fir den Grollen
Preis der Akademie in Mathematik ein, der Stidndige Sekretir Jean Baptiste Joseph
FOURIER (1768-1830) stirbt im Mai. Und auch diese Arbeit wurde nic mehr
aufgefunden. Inzwischen war am 20. Februar der republikanisch gesonnene GALOIS in
die Ecole préparatoire, die Lehrerbildungsanstalt, aufgenommen worden, in der er.
eingeschlossen mit seinen Mitschiilern, die drei Glorreichen Tage der Julirevolution
untitig verbringen muB. Er greift deswegen den Direktor in einem Brief an, der am

=

* Conduite fort mauvaise [...] Il vise 4 Poriginalité. [...] Tl ne fait absolument rien pour la classe. Cest la
fureur des mathématiques qui le domine; aussi je pense, qu'il vaudrait mieux pour lui que ses parents
consentent d ce qu'il ne s'occupe que de cette étude; il perd son temps ici et n'y fait que tourmenter ses
maitres et se faire accabler de punitions.

#% Aner war Ahnliches widerfahren. Ein am 30. Oktober 1826 eingereichtes Manuskript sollte CAucHY
durchsehen: es wurde verschlampt, kam aber 1830 zum Vorschein, als CaucHy nach der Julirevolution ins
Exil ging, und wurde erst 1841 zur Veroffentlichung herausgegeben, nachdem sich die norwegische
Regierung eingeschaltet hatte.
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5. Dezember 1830 in der Gazette des Ecoles veroffentlicht wird. Auf BeschluB des
Koniglichen Rates wird er am 3.Januar 1831 aus der Anstalt ausgestofen. Am
17. Januar 1831 reicht GaLois auf Anregung von Siméon-Denis Poisson (1781-1840)
sein oben angefiihrtes Mémoire bei der Akademie ein. PoissoN und auch Sylvestre-
Frangois LACROIX (1765-1843) bemiihen sich erheblich, die duBerst knapp gehaltene
und auch nicht fehlerfreie Arbeit zu verstehen; schliefllich lehnen sie am 4. Juli 1831
thre Veroffentlichung ab. Am 14. Juli bringt Gavrois sein politisches Engagement zum
zweiten Mal ins Gefdngnis. Am 29. Mai 1832 wird er zu einem Duell gefordert, dessen
Hintergriinde von Legenden umrankt sind, die aber letztlich ungeklirt bleiben werden.
GALoIS ist sich sicher, dal} er sterben wird. In der Nacht vom 29. auf den 30. Mai
redigiert er seine fritheren Manuskripte und schreibt mehrere Briefe, darunter einen
sehr langen an seinen Freund Auguste CHEVALIER, in dem er nochmals seine ma-
thematischen Entdeckungen zusammenfassend darlegt, die in drei Mémoires enthalten
sind. Eins hatte er schon frither verdffentlicht, das zweite ist das abgelehnte, vom
dritten fand sich keine Spur.* Er bittet CHEVALIER, diesen Brief nach seinem Tode zu
veroffentlichen, denn er hoffe, daB »es Leute geben wird, die aus der Entzifferung dieses
Durchemanders thren Nutzen ziehen werden.«** Am Morgen des 30. Mai wird er
beim Duell in den Bauch geschossen und angeblich liegen gelassen. Vermutlich suchte
man nach einem Arzt. Wihrenddessen findet ihn zufillig ein Bauer und bringt ihn ins
Hospital; am 31. Mai 1832 stirbt GALo1s. Im September 1832 veroffentlicht CHEVALIER
in einem Nachruf den mathematischen Abschiedsbrief und erst 1846 Joseph LIOUVILLE
(1809-1882) das entscheidende Mémeoire von 1831. zusammen mit anderen Arbeiten
GaLrors’. Eine neue Generation von Mathematikern versteht die grundlegenden Ideen
Gavrors’, liefert die vollstindigen Beweise und erkennt, dal Gavrois aus der einst so
wichtigen Frage, welche Gleichungen auflosbar sind, einen véllig neuen Zweig der
Mathematik, ndmlich eine Mathematik der Strukturen oder die »moderne Algebra«
geschaffen hat.

Aufgaben

1. Auf einer Keilschrifttafel aus der spéten 1. babylonischen Dynastie (2057-1758)%%*,
deren einer Teil in London (BM 85200) und deren anderer in Berlin (VAT 6599)
liegt, sind uns sieben kubische Gleichungen iiberliefert (siche auch Aufgabe 46/7).
Davon wurden die folgenden mit einer (#° + »n?)-Tabelle, wie sie uns auf Tafel
VAT 8492 Uberliefert ist,**** gelost. Es handelt sich jeweils um einen quaderfér-
migen Erdaushub. Dabei bezichen sich die MaBzahlen x und y von Linge und
Breite auf die Einheit GAR (= 6 m), die MaBzahl z der Tiefe aber auf die Einheit
Elle; es gilt 1 GAR = 12 Ellen.

a) Stelle eine n+— (n* + n?)-Tabelle fiir die einziffrigen natiirlichen Zahlen auf.
b) Aufgabe5: Linge, Breite. Was die Linge ist, ist auch die Tiefe. Querschnitt und
Volumen sollst du addieren; es ergibt sich 1}. Die Breite ist # der Linge.

1) Stelle eine Gleichung fiir die MaBzahl z der Tiefe auf und 16se sie mit Hilfe der
Tabelle.
2) Gibt es weitere reelle Losungen?
3) Gib Linge und Breite an.
* Die oft gehérte Behauptung, GALois habe erst in dieser Nacht seine mathematischen Theorien in fieber-
hafter Eile niedergeschrieben, ist ein romantisches Schauermirchen.
** [...] il se trouvera, j'espere, des gens qui trouveront leur profit 4 dechiffrer ce gichis.
*#% Nach anderer Chronologie: 1894-1554 v. Chr.
*xe® Diese stammt aus neubabylonischer Zeit, d.h, 625-539 v. Chr.
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¢) Aufgabe23: Linge, Breite. Der Querschnitt ist ein Quadrat. Die Lange und
i Elle dazu ist die Tiefe. 13 als Volumen ist ausgegraben.
Stelle eine Gleichung fiir die MaBzahl x der Lange auf und l16se sie mit Hilfe der
Tabelle. Gib auch die Tiefe an.

2. Leite die Formel von CARDANO von Seite 116 auf dem HuppEschen Weg her.

3. Die Formel von CARDANO liefert die Lésungen der kubischen Gleichung oft in sehr
unzweckmaBiger Darstellung.

a) Zeige mit Hilfe der Vorzeichenregel von DESCARTES, daB die Gleichung
x3 + 6x = 20 genau eine positive Losung hat. Ermittle sic durch Probieren.

b) Lose die Gleichung mit der Formel von CARDANO und bestimme mit Hilfe des
Taschenrechners einen Niherungswert fiir den erhaltenen Ausdruck.*

4. a) Zeige, daB die Gleichungen

1) x*+3x=10 2) x*+x=11 3) x*=12x+20
keine ganzzahligen Losungen haben.

b) Gib eine Losung mit Hilfe der Formel von CARDANO an.

¢) Bestimme mit dem Taschenrechner einen Niherungswert bis auf die 5. Dezimal-
stelle genau fiir den in b) gewonnenen Ausdruck. Wie gut erfiillt dieser
Niherungswert die gegebene Gleichung?

5. Zeige, daB bei x* = 9x + 10 die Formel von CARDANO nicht angewendet werden
kann. Bestimme die drei reellen Losungen.

6. Im Falle des casus irreducibilis konnte CARDANO Gleichungen nur in besonderen
Fillen 16sen. Aus Kapitel XXV seiner Ars magna, das er daher mit De Capitulis
imperfectis et specialibus — »Uber die unvollkommenen und nur in Sonderféllen
brauchbaren Regeln« — iiberschreibt, stammen die folgenden Gleichungen.

a) x° =32x+24 b) x* = 16x+ 21 o122 =34y
d) x*4+18 =19x e) x> +8=18x
i ; ; : a 3
7. a) Zeige, daB durch die Transformation x=:y— ; aus x3+ax*+bx+c=0
eine kubische Gleichung entsteht, die kein quadratisches Glied mehr enthalt.
b) Lose nach diesem Verfahren und der Formel von CarpaNo die Gleichung
¥3 1+ 6x2 +20x = 100 aus Kapitel XVII der Ars magna CARDANOs von 1545.
8. Lose die Gleichungen von Aufgabe I mit Hilfe der Formel von CARDANO.

59. Magister JoHANNES legte am Hofe Kaiser FRIEDRICHS [1. (*1194, reg. 1215-1250)
dem FiBonaccl genannten LEONARDO VON Pisa (um 1170 nach 1240) die
Gleichung x* + 2x? + 10x = 20 vor, die auf Omar AL-HayyaMm (10487-1131)
zurtickgeht.

a) LEONARDO zeigte 1225 in seiner Flos — »Die Blume« — mach es ihm nach!
1) Die Gleichung hat keine natiirliche Zahl als Losung.

— : o : - i x i
2) Die Gleichung hat keine positive rationale Zahl — als Losung (m, ne N und
i . M
teilerfremd).

* (CARDANO berichiet am 5. Januar 1540 ganz verzweifelt TARTAGLIA, daB der Teufel pa Cor angeblich ein

alleemeines Verfahren kenne, mit dem man | 108 £10in /3 + 1 umwandeln kénne, was ihm nicht gelinge.

TARTAGLIA gibt in den Quesiti das Verfahren an.
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3) Die Gleichung hat keine Quadratwurzel aus einer rationalen Zahl als
= : : . , { 20— 2x*

Losung. Forme sie z7um Nachweis um in x = 10 —,
g2,

b) Zeige, dall im Intervall ]1; 2[ eine Losung dieser Gleichung liegt. Bestimme fiir

sie einen Naherungswert x,, durch lineare Interpolation* und starte damit das

2
: 3 20 —2x; G :
[terationsverfahren x, , , = TR Ny zur Ermittlung einer Ndherungs-
il 'I\'.H

l6sung auf die 3. Dezimale genau.

¢) LEONARDO gab ohne jede Herleitung als Losung der Gleichung in sexagesimaler
Form die Zahl & = 1;22,7.42,33.4.40 an. Schreibe ¢ dezimal.

d) Zeige mit der Vorzeichenregel von DESCARTES, daB die Gleichung genau eine
positive Losung hat.

e) Zeige, daBl es keine weitere reelle Losung gibt, d.h., daB die Formel von
CARDANO anwendbar ist. Bestimme die Losung exakt.

* Man ersetzt das uber [1; 2] gelegene Stiick des Graphen y = x2 4+ 2x? 4 10x — 20 durch eine Gerade. die die
x-Achse in (x,|0) schneidet.
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