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Eolium 24v aus den Libros de Acedrex, de los Dados und de las Tablas, dem Schach-

zabelbuch. das ALrons X. DER WEISE, Konig von Kastilien und Ledn (*1221, reg.

1252-1284) in Auftrag gab und das 1283/84 vollendet wurde. Dargestellt sind zwel

junge Damen mit offenem Haar, die in Hauskleidung Schach spielen. Eine weitere

junge Dame, die Zopfe in einem roten Haarnetz, erteilt einer der Spielerinnen
Ratschlige.

»Schachzabel« ist ein altes Wort fiir Schachbrett. Das Schachzabelbuch ist die dlteste
Sammlung von Schachendspielen; dariiber hinaus gibt es Kunde von Wiirfel- und von
weiteren Brettspielen.
ALFONS X. wurde am 1,4.1257 zum romisch-deutschen Konig gewéhlt, da seine Mutter
BraTRIX die Tochter des Staufers PHILIPP VON SCHWABEN (1177-1208) war. In seinem
Auftrag wurden auch die Alfonsinischen Tafein berechnet (abgeschlossen 1272), die zur
Ortsbestimmung von Sonne, Mond und den fiinf bekannten Planeten dienten. Trotz
ihrer Schwiichen blieben sie bis zur Aufstellung der Prutenischen Tafeln (1551) durch
Erasmus REINHOLD (1511-1553) und schlieBlich der Rudolphinischen Tafeln (1627
[siche Seite201ff.]) durch Johannes KEPLER (1571-1630) in Gebrauch. ALFONS X.
griindete auBerdem in Toledo eine {bersetzerschule, der wir viele Ubersetzungen aus
dem Arabischen ins Lateinische verdanken.




AR

E LRI

IR R

i

6 Exponentialfunktionen

6.1 Definition und Eigenschaften

Bei einer Potenz mit positiver Basis @ kann bekanntlich als Exponent x jede
reelle Zahl gewihlt werden; ¢* ist dann stets eine eindeutig bestimmte positive
Zahl. Durch die Zuordnungsvorschrift x> a* wird also eine Funktion
erklért, die fiir a > 0 die Definitionsmenge R hat und deren Wertemenge nur
positive Zahlen enthilt. Eine solche Funktion, bei der die Variable im
Exponenten steht, heilit Exponentialfunktion.

Definition 124.1: Die Funktion f: x+—a* mit ¢>0 und xeR heiBt
Exponentialfunktion mit der Bd&sih a.

Wegen a° =1 hat jede Funktion x> ¢* an der Stelle x = (0 den Wert 1: die
Graphen dieser Funktionen enthallen alle den Punkt (0]1).

Eine Exponentialfunktion x+ a* ist durch Angabe ihrer Basis vollstindig
bestimmt. Da es bei einer Potenz einen wesentlichen Unterschied ausmacht.
ob die Basis groBer, gleich oder kleiner als 1 ist. untersuchen wir im folgenden
diese drei Fille getrennt.

(1) Die Exponentialfunktion x— 1%, xeR

Da stets 1* = 1 gilt, enthélt die Wertemenge dieser Funktion nur die Zahl 1, es
handelt sich also um eine konstante Funktlon Die Funktionsgleichung y = 1*

ist gleichwertig mit y = 1, der Graph ist somit die Parallele zur x-Achse durch
den Punkt (0|1).

(2) Die Exponentialfunktionen x+— a*, x€ R, mit a > 1

Nach dem Monotoniegesetz von Satz 88.1 wichst im Fall ¢ > 1 der Potenz-
wert mit dem Lxm_munlen. d.h., es gilt

Xj<=X, —ah<ag”

Die Funktion x> a* ist also fiir @ > 1 echt monoton zunehmend. Abbildung
125.1 zeigt den Graphen der Funktion x> 2%, der sich mit Hilfe einer
Wertetabelle leicht zeichnen l4Bt.* Der Funktionswert verdoppelt sich bei
x—2* jeweils, wenn man x um 1 vergroffert. Das bewirkt, daB die
Funktionswerte mit wachsendem x hLllcblL grold werden, also jede noch so
grofle Zahl ubertreffen. Man kann sich leicht kI larmachen, wie schnell sie
wachsen; z.B. gilt WLgen 2°% =1024 > 10 auch 22°>10°, 239> 10,

: : £ : : 1
249> 10" usw. Wegen 2% = gilt andererseits 2719 = =102

|
2% 1024

* Statt »Graph der Funktion x— f(x)« bzw. »Graph mit der Gleichung y = f(x)« verwenden wir im folgenden
auch die kiirzere Sprechweise »Graph p = f(x)«.



Abb.125.1 Graph der Funktion x+»2*

2720 21076,2730<10°%,2 %% <10~ % usw.; es gibt also auch beliebig nahe
bei null liegende Funktionswerte. Der Graph der Funktion néhert sich nach
links hin beliebig der x-Achse. Man erkennt so, daB die Wertemenge der
Funktion x 2%, x € R, alle positiven Zahlen umfaBt, also die Menge R™ ist.*

Die vorausgehenden Feststellungen gelten nicht nur fiir die Basis 2. Es 143t
sich vielmehr zeigen, dal} jede Fxpenentm]iunl\uon x> a* deren Basis
a groBer als 1 ist, die Wertemenge R ™ hat; die Funktionswer lL werden mit
unbeschrinkt wachsendem x beliebig groB, mit unbeschrankt abnehmendem
x nihern sie sich beliebig der Zahl 0.

Ein Beweis fiir diese Behauptung sei im folgenden kurz beschrieben. Wir wéihlen dazu
fiir die Basis die Darstellung a = 1 + A mit 42> 0. Die Beispiele

aA=1+h>=1+2h+h*>1+2h

A =1+h?=1+3h+3>+h>1+3h

a*=(+h*=1+4h+6h2+4h* +h*>1+4h

lassen vermuten, daB fiir jede natiirliche Zahl n = 2 die Abschitzung (1 +4)"> 1 + nh

gilt. DaB dies zutrifft, erkennt man, indem man sich die Berechnung von (1 + h)" als
Ausmultiplizieren von n Klammern vorstellt:

— e

aA+hm"=0 -i-h]” +h)(1 —f.r) {1 + h)
a1 -

Die Zahl 1 ergibt sich, wenn man in jeder Klammer den ersten Summanden nimmt
(schwarze Bogen). Wihlt man aus der ersten Klammer den Summanden A und aus
allen iibrigen die 1, so erhilt man 1 - & (rote Bogen). De 1sselbe Produkt ergibt sich aber

* Daf wirklich alle positiven reellen Zahlen als Funktionswerte au ftreten, daB also keine Liicken vorkommen,
werden wir uns im Abschnitt 7.1 noch genauer klarmachen.




126 6 Exponentialfunktionen

auch, wenn man in der 2. bzw. 3. bzw. 4. ... bzw. n-ten Klammer den Summanden 4 und
in allen anderen die 1 wihlt. Man erhilt also genau n Produkte mit dem Wert 4. Dazu
kommen noch weitere Produkte, in denen du Faktor h mindestens zweimal auftritt:
wegen A > 0 sind diese Produkte positiv. Daher gilt fiir n = 2:

(1+ h)"=1+ nh+ positive Glieder > 1 + n#h.

Mit wachsendem n wird bereits 1 + nh beliebig groB3, die Punkte (n|1 + n#) liegen ja auf
einer steigenden Geraden (Abbildung 126.1). Also nimmt erst recht (1 + A)" hcl[ehig
grol3e Werte an. Wegen der echten Monotonie gilt dann allgemein, daB (1 4+ A)* mit

; I
unbeschrinkt wachsendem x beliebig groll wird. Umgekehrt nihert sich T -
+ h)’
= (1 + /)~ * mit wachsendem x, also mit abnehmendem Exponenten — x, beliebig der
Zahl 0.

ya

}‘:{1+h]x

y=1+hx

R

e e e

Abb.126.1 Veranschaulichung von (1 + A)" > 1 + nh fiir neN\ {1} mit h = 0,2

Wir wollen nun zwei verschiedene Exponentialfunktionen, deren Basen
groBer als 1 sind, miteinander vergleichen:

Siixr—ai und fix+>ad mit 1<ag,<a,.

Nach dem Monotoniegesetz von Satz 87.1 gilt fiir x > 0 auch ai < as.
Bei positivem Exponenten x gehért zur uoﬁ:mn B(ms auch der L]OHCIL
Funktionswert; der Graph y = a3 verlduft im 1. Quadranten also iiber dem
Graphen y = a7.
Bei x = 0 haben die Graphen den Punkt (0]1) gemeinsam.
Was gilt fur negative Exponenten x? Aus der fiir jedes x <+ 0 giiltigen
Bezichung ¥l < u'z‘l folgt fir x < 0:

x =X ] 1
a, "< a,” & - <— & a1>a.

ay da;

Unter der Voraussetzung 1 < a, < a, gehort also bei negativem L!{;‘:uncntm
x zur kleineren Basis der eroBere Funktionswert; der Crmph y = a3 verlduft
im 2. Quadranten unter dem Graphen y = af.
In Abbildung 127.1 sind die £le1mmuﬂmngu an einigen Beispielen veran-
schaulicht. Beachte, daB die grau gerasterten Gebiete von den Graphen y = a*
mit @ > 1 nicht erfalit werden.
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Abb.127.1 Graphen der Funktion x—a* fira=1,1;a=15a=2;a=10

(3) Die Exponentialfunktionen x — ¢*, xelR, mit 0 <a <1

Nach dem Monotoniegesetz von Satz 88.1 sind diese Funktionen echt
monoton abnehmend. Abbildung 127.2 zeigt den Graphen von x — (3)*. Ein
Vergleich mit Abbildung 125.1 148t vermuten, dafl er durch Spiegelung des
Graphen y = 2* an der y-Achse entsteht. Tatsdchlich gilt fur zwei entgegen-

gesetzte x-Werte, nennen wir sie t und —¢, die Gleichung 3)'=27" Die
Punkte (¢](1)") und (—¢|27") liegen also, da sie entgegengesetzte Abszissen

und gleiche Ordinaten haben, symmetrisch zur y-Achse.

\y=(3 "

Abb.127.2 Graph der Funktion x—(3)"
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128 6 Exponentialfunktionen

Abb.128.1 Symmetrie der Graphen y = ¢* und y = (1)

X

Ganz allgemein kann man durch die Umformung ¢* = { % ) die Unter-
% )

suchung der Exponentialfunktionen mit 0 < a <1 auf den Fall (2) zuriick-

i o

fithren, da nun = 1 gilt. Der Graph y = [ = ) ,d.h. y = a*, geht aus der
. I . X Sy
Kurve y = (“J durch Spiegelung an der y-Achse hervor. Also liegen die

X

Grapheny = ¢*und y = (a}] symmetrisch zur y-Achse, wie Abbildung 128.1
zeigt. Aus den Ergebnissen von (2) erhilt man damit:
y=0) y=|[1%;]’“ B
\

y=(3)" \
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Abb.128.2 Graphen der Funktion x+—a* fiir a = 19, %, 3, %



6.1 Definition und Eigenschaften 129

Fiir 0 < @ < 1 sind die Funktionen x> a*, x€ R, echt monoton abnehmend
und haben die Wertemenge R*. IThre Graphen gehen durch den Punkt (0|1)
und nihern sich nach rechts hin beliebig der x-Achse, nach links hin werden
die Ordinaten beliebig groB. Fiir zwei Funktionen x> af und x+— a3 mit
0<a, <a, <1 gilt auch jetzt wieder: Der Graph y = a3 verlduft im 1. Qua-
dranten iiber, im 2.Quadranten unter dem Graphen y = aj. (Abbildung
128.2)

Wir fassen die wichtigsten Ergebnisse zusammen in

TSR s

R RO

ALV AR i

Satz 129.1: Die Exponentialfunktionen x+a* mit >0 haben die
Definitionsmenge [R und, falls @ + 1, die Wertemenge R™. Fira > 1
sind sie echt monoton zunehmend, fiir 0 < a<1 echt monoton
abnehmend. Alle Graphen gehen durch den Punkt (0[1).

U

TH

Abbildung 129.1 vermittelt eine Vorstellung vom »Biischel« der Graphen
y = a* mit beliebigen positiven Basen.

10

y=@)" y=(F y={1%]"l" y=10"  y=2" y=03)

:

6 -4 e T SR 2 & =

Abb.129.1 Graphen von Exponentialfunktionen x+— a*

Aufgaben

i 7Zeichne in einem Koordinatensystem mit Lingeneinheit 1cm die Gra-
phen folgender Funktionen:

a) x—»3% —25=x=<25 b) x—(3)%; —2

¢) xr—14% —8=x=8 d) x—0,75% —

2]

= sl
§<x<8
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30 6 Exponentialfunktionen

>

. Zeichne die folgenden Graphenpaare:
a) y=12und y=(2)5; —10=x =10
b) y=0CG)fund y=(G5)5 4=x=4

¢) y=0,625und y=1,65 —5=x

[1A

5

. Bestimme diejenige Exponentialfunktion, deren Graph durch den angege-
benen Punkt geht.

a) (2]9) b) (2]7) ¢) (3l3%) d) (1,5/8)

9 (=5132) B (-7 g (-}H b ¥89"?)

. Gibt es eine Exponentialfunktion, deren Graph den folgenden Punkt
enthalt?

a) (110) b) (0[1) c) (0]3) d) (—215) e) (5|—2)

. a) Zeichne den Graphen von x+ 2* und entwickle daraus die Graphen

von x+—2*—3 und x+—2*41,5.
b) Wie erhilt man allgemein aus dem Graphen y = ¢* die Kurve mit der
Gleichung y = a* + ¢?

. a) Zeichne den Graphen von x+ 0,7* und entwickle daraus die Graphen

von x— 0,72 und x+— 0,713,

b) Wie erhdlt man allgemein aus dem Graphen y = a* die Kurve mit der

Gleichung y = a**¢?

. a) Zeichne die Kurve mit der Gleichung y = 1,5%* und weise nach, daB es

sich dabei um den Graphen einer Exponentialfunktion x +— a* handelt.
Wie grof} ist in diesem Fall die Basis a?

b) Skizziere die Kurve y=1,2>**"% und zeige, daBl man sie aus dem
Graphen einer Funktion x+sa”* durch eine Verschiebung erzeugen
kann. Gib den entsprechenden Wert von @ und den Verschiebungs-
vektor an.

c) Lose die in b) gestellte Aufgabe fiir die Kurve y = 1,23* 4.

d) Begriinde, daB jede Kurve mit der Gleichung y = v™**™, u>0, v + 0,
aus dem Graphen einer Funktion x> a* durch eine Verschiebung
hervorgeht. Wie hingen a und der Verschiebungsvektor von u, v und
w ab?

. a) Vergleiche die beiden Funktionen x+ 0,25 2* und x> 2* 2 an Hand

einer Wertetabelle. Begriinde sodann den offenbar zwischen ihnen
bestehenden Zusammenhang,

b) Zeige, daB jede Funktion mit der Gleichung y = ****, mit u > 0 und
v = 0, auch durch eine Gleichung der Form y = ¢-a* beschrieben
werden kann. Wie hdngen dabei a und ¢ von u, v und w ab?

9. a) Zeichne in einem Koordinatensystem die Gerade y = 3x + 1 und die

Kurve y = 2% Im Schnittpunkt (0|1) verlduft die Kurve flacher als die



10.

11.

* 7u den Wortern Kapital, Zins und Zinseszins siehe die Fulinote auf Seite 148,

6.1 Definition und Eigenschaften 131

Gerade, sie wird aber mit wachsendem x immer steiler und tbersteigt
schlieBlich die Gerade. Bestimme die kleinste natiirliche Zahl n, fiir die
2">3n41 gilt.

«b) Die Funktion x+2* ubertrifft fiir hinreichend grofles x sogar jede

lineare Funktion x> mx + 1, auch bei noch so groBer Steigung m. Gib
als Beispiel dafiir zu

1) m=10 2) m = 1000 3) m = 100000

die kleinste natiirliche Zahl an, fiir die 2* > mx + 1 gilt.
(Taschenrechner verwenden!)

$¢) Jede Exponentialfunktion x+— a* mit @ > 1 wachst schlieBlich (d. h. bei

hinreichend groBen x-Werten) schneller als jede lineare Funktion!
Bestitige dies bei den folgenden Beispielen durch Angabe der kleinsten
natiirlichen Zahl, fiir die a* > mx + 1 gilt. (Taschenrechner!)

1) x—1,1* und x—100x+1

2) x+—1,01* und x+—100x+1

3) x—1,01* und x+—1000x 41

Das exponentielle Wachstum, d.h. das Wachstum einer Exponentialfunk-

tion x+»a* mit a> 1, ibertrifft nicht nur dasjenige jeder linearen

Funktion (vgl. Aufgabe 9). sondern sogar das Wachstum jeder Potenz-

funktion x s x" mit re R*. Uberzeuge dich davon an folgenden Beispie-

len:

a) Zeichne in einem Koordinatensystem mit Lingeneinheit 5mm die
Graphen der Funktionen x~— 2* und xt—x? fiir 0 £ x=<4,5 Von
welcher Stelle ab gilt stets 2¥ = x>?

b) Bestimme an Hand einer Wertetabelle mit xe N, diejenigen natiirli-
chen Zahlen, fiir welche 2* > x? gilt.

¢) Vergleiche an Hand einer Wertetabelle mit x € {0, 1, 10, 100, 1000} das
Wachstum der Funktionen xt—1,1¥ und x> x'®. Bestimme die

kleinste natiirliche Zahl #n, fiir die 1,11°°" > (100n)'° gilt.

Wenn man ein Kapital iiber lange Zeit anlegt, werden am Ende jedes
Jahres die Zinsen »zum Kapital geschlagen« und im nachsten Jahr
ebenfalls verzinst. Man spricht dann bekanntlich von Zinseszins.™
a) Die Vermehrung eines Kapitals K, um den Zins Z im Laufe eines
Jahres kann man als Multiplikation von K, mit einem Faktor ¢ > 1
beschreiben. Wie wird dieser Faktor aus dem Zinssatz p % berechnet?
b) Auf welchen Wert K, wichst K, beim Zinssatz p% in n Jahren an?
Was ergibt sich speziell fur
1) K, =1000DM, p=4%,n=>5
2) K, = 1000DM, p = 4%, n = 10
3) K, = 1000DM, p = 8%, n =157
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6 Exponentialfunktionen

¢) Um wieviel Prozent seines Anfangswertes wachst ein Kapital
1) bei 10% in 5 Jahren; 2) bei 5% in 10 Jahren;

3) bei 10% in 10 Jahren?

d) 2500 DM werden zu 5,5% angelegt. Der Anleger mochte erreichen,
daf3 sein Guthaben auf 10000 DM anwichst! Wieviel Jahre wiirde das
(ungefdhr) dauern? Nach welcher Zeit hat sich das Kapital (ungefihr)
verdoppelt?

e) Lose Aufgabe d) fiir p = 8%.

Das Wachstum einer Pilzkultur verliuft unter gleichbleibenden Bedingun-
gen nach einer Exponentialfunktion. In einem bestimmten Fall gelte fiir
die aus 1 g Pilzsubstanz in x Tagen entstandene Masse y g das Wachstums-
gesetz y = 2%2°* Nach wieviel Tagen hat sich die Masse verdoppelt bzw.
vervierfacht bzw. verachtfacht?

. Bei der Entladung eines Kondensators iiber einen Widerstand nimmt die

14.

16.

Stromstirke / nach einer Exponentialfunktion ab. In einem speziellen Fall
sei = 0,38 A-100" %29 wobei ¢ die seit Beginn der Entladung verstri-
chene Zeit bedeutet. Nach welcher Zeit ist die Stromstirke auf 1% bzw.
auf 1%o ihres Anfangswertes gesunken?

Das mit der Basis 3 geschriebene Zerfallsgesetz fiir das radioaktive

Element Radium 223 lautet: N(7) = N, - (3)©°8%/9" Dabei ist N, die Zahl

der zur Zeit t =0 und N(r) die Zahl der zur Zeit ¢t vorhandenen

Radiumatome.

a) Nach wieviel Tagen ist die Hélfte der anfangs vorhandenen Atome
zerfallen (sog. Halbwertszeit)?

b) Wieviel Promille der Radiumatome sind nach 100 Tagen noch vorhan-
den?

. Beim Element Radium 226 betrdgt die Halbwertszeit 1620 Jahre.

a) Bestimme den Wert von ¢ im Zerfallsgesetz N(f) = N, 2 fiir Radium
226.

b) Wieviel Prozent einer Menge von Radium 226 sind
1) nach 1000Jahren 2) nach 2000 Jahren 3) nach 10000 Jahren
noch vorhanden?

Im Jahre 1825 betrug die durchschnittliche wochentliche Arbeitszeit

der deutschen Arbeiter 82 Stunden! Die seitherige Entwicklung dieser

Arbeitszeit wird nidherungsweise durch die Funktion xi— T(x) =

= 82-0,9955* 1825 beschrieben;* dabei bedeutet x die Jahreszahl und

T'(x) die Anzahl der wochentlichen Arbeitsstunden.

a) Welche Arbeitszeit ergibt sich danach fir die Jahre 1875, 1960, 19807
(Die erhaltenen Werte stimmen gut mit den statistisch ermittelten
iiberein.)

* W. ScumiDT: Mathematikaufgaben, Klett-Verlag, 1984
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b) Welche Arbeitszeit ergibe sich daraus fiir das Jahr 20007
Erscheint sie dir realistisch?

17. In einem Zeitungskommentar zum Weltbevélkerungsbericht 1990 der
UNO heiBt es: »Heute leben 5,3 Milliarden Menschen auf der Erde, im
Jahre 2000 werden es weit liber 6 Milliarden sein.«*

a) Bei wieviel Promille jihrlicher Zunahme wiirde die Weltbevolkerung
bis zum Jahre 2000 auf 6,0 Milliarden anwachsen?

b) Es gibt Linder mit besonders hoher Wachstumsrate; z.B. betrug sie
nach dem UNO-Bericht im Irak 3,4% pro Jahr. Wieviel Menschen
wiirden im Jahre 2000 auf der Erde leben, wenn diese Rate weltweit
giiltig wire?

6.2 Geometrische Folgen und Reihen

Die berithmte Anekdote von der Erfindung des Schachspiels** findet man
sum erstenmal bei dem arabischen Historiker AL-JAQUBI (um 880 n.Chr.). Er
schreibt:
Gelehrte Indiens behaupten, daB sich ein Rebell gegen Konigin HAWSIN, die ein
kluges Weib war, erhob. Da sandte sie einen Sohn aus [...]. den der Rebell totete.
Das Volk ihres Reichs [...] scheute sich, es ihr zu sagen. Sie versammelten sich bei
einem Weisen namens QAFLAN. [...] Er sagte: »Wartet auf mich drei Tage.«

AL-JAQUBI berichtet nun, daB und wie QAFLAN in diesen drei Tagen das
Schachspiel erfand und mit einem Schiiler durchspielte, dem er dabei erklirte:

»Das ist ein Krieg, ohne daB die Seelen davongehen.«
Und spiiter hei3t es dann bei AL-JAQUBL:

Der K&nigin wurde die Geschichte tiber QAFLAN berichtet. Sie lie ihn kommen und
befahl ihm. ihr seine Weisheit zu zeigen. Er lieB seinen Schiiler und das Schach
kommen. [...] Einer von ihnen iiberwand seinen Gefihrten [und sagte] »Schdh
mit«. Die Konigin verstand den Wink [...] und sagte zu QAFLAN: »Mein Sohn ist
getotet.« Er antwortete: »So ist es.« Da sagle sie zu ihrem Kdmmerer: »Lalt die
Leute zum Kondolenzbesuch herein.« AnschlieBend lielh sie QAFLAN kommen und
sagte ihm: »Verlange, was du wiinschst.« Da antwortete QAFLAN: »Ich bitte mir

* Siiddeutsche Zeitung vom 25./26.8.1990

*# [as Wort Schach ist persisch-arabischen Ursprungs. Es hat sich aus dem Ruf»Schah mat« —»Der Konig ist
tot« — verselbstiindigt. Der Ursprung des Schachspiels liegt im Dunkeln der Geschichte. Angeblich soll 569
der chinesische Kaiser Wu-T1 (561-3578) eine Art Orakel-Urschach erdacht haben, das von vier Personen zu
spielen war. Verwandt damit ist das um 570 belegte indische Tschatur-anga — »Das Vierteilige« —, ein
K riegsspiel, bei dem die Figuren die vier Waffengattungen symbolisieren (Infanterie = Bauern, Kavalle-
rie = Springer. Kriegswagen = Liufer, Kriegselefanten = Tiirme). mit denen bereits Konig Poros 326
v.Chr. am FluB Hydaspes (heute Jhelum) ALEXANDER DEM GROSSEN enlgegentral. Ein mittelpersischer
Roman aus der Zeit um 600 berichtet von seinem Helden ArpascHig, dali er geschickter sei als seine
Gefahrten im Ballspiel, Reiten und dem Schach — Tschatrang. Aus diesem Wort wird um 650 das arabische
Sehatrandsch. Um 850 entstand das erste arabische Schachbuch. Das Interesse Fir dieses Spiel muB sehr
groff gewesen sein; denn verboten wurde es 1011 durch den Fatimidenkalifen aL-Hakmm (996-1021) in
Kairo 1212 auf dem Konzl zu Paris und 1254 von Konig LupwiG IX. DEM HEILIGEN (*1214, reg.
1226-1270) von Frankreich.

LTI
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134 6 Exponentialfunktionen

Getreide zu geben entsprechend der Zahl der Felder des Schachbretts, und zwar so.
dal} mir auf das erste Feld ein Korn gegeben wird, [dann dieses mir auf dem zweiten
Feld verdoppelt wird,] dann daB mir auf dem dritten Feld das Doppelte des zweiten
gegeben wird und daB entsprechend dieser Rechnung bis zum letzten Feld
fortgefahren wird.«*

Die Fortsetzung dieses Berichts wollen wir noch etwas zuriickstellen und uns
uberlegen, wieviel Korner auf die einzelnen Felder des Schachbretts treffen.
Man erhalt folgenden Tabellenanfang:

Nummer des Fcldes! (S S i S G 8 9 10

Zahl der Korner ‘ I e R A6 3206l 1R 056 5T

Die vollstindige Tabelle enthélt also in der ersten Zeile die natiirlichen Zahlen
von 1 bis 64; darunter stehen die Zweierpotenzen 2°, 2. 22 bis 2°3. Es
handelt sich um die ausfiihrliche Beschreibung einer Funktion mit der
Definitionsmenge D = {1,2,3,...,64}: jeder Zahl ne D wird der Funktions-
wert 2"~ zugeordnet. Diese Funktion kann man sich aus der Exponential-
funktion x+— 2% !, xeR, dadurch entstanden denken, daBl man die Defini-
tionsmenge auf {1,2, 3, ..., 64} einschrinkt. DaB man hier nur die natiirlichen
Zahlen bis 64 verwendet, hingt mit der Felderzahl des Schachbretts zusam-
men. Man kann sich aber die Tabelle ohne Ende fortgesetzt denken, so daB die
Definitionsmenge der entsprechenden Funktion die ganze Menge N der
naturlichen Zahlen ist. Solche Funktionen treten in der Mathematik haufig
auf; man verwendet fiir sie besondere Bezeichnungen:

Definition 134.1: Eine Funktion mit der Definitionsmenge N heiBt
Zahlenfolge. Den der Zahl n zugeordneten Funktionswert bezeich-
net man mit @, und nennt ihn das n-te Glied der Zahlenfolge **

In unserem Beispiel gilt also:
ay=1,a,=2,a,=4,a, =28, ..., allgemein q, = 2"~ 1,

Offensichtlich kann man aus jeder Funktion, deren Definitionsmenge alle
natirlichen Zahlen enthilt, eine Zahlenfolge gewinnen, indem man die
Definitionsmenge auf IN reduziert.
Beispiel 1:

Ausf: x > x?, xe R, erhilt man die Zahlenfolge a, =1,a, = 4, a, =9,

a, = 16, ..., also die Folge der Quadratzahlen.
Beispiel 2:
; I . :
Aus f: x — —, x€R”, erhdlt man die Zahlenfolge ay=H,a, =% a, =%,

a, = 7. ..., also die Folge der Stammbriiche.

* Noch heute heiBen die Schachfelder im Indischen und Persischen Kornkammern.
** Diese Definition stammt von Giuseppe PEawo (1858-1932) aus seinem Formulaire de mathématiques, 11-§1,
von 1897.
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Die zu unserem Schachproblem gehorende Zahlenfolge entspricht, wie wir
schon feststellten, einer Exponentialfunktion. Mit solchen Zahlenfolgen
wollen wir uns hier genauer befassen. Weitere Beispiele dazu sind

Beispiel 3:

Aus f: x +— 2-3%, xeR, erhidlt man die Zahlenfolge a; = 6, a, =18, E
ay = 54, a, =162, ..., allgemein @, = 6-3"" 1.

Beispiel 4:
Ausf: x — 100-0,5%, xR, erhdlt man die Zah
a, =12,5; a, = 6,25; ...; allgemein a, = 500,

lenfolge a, = 50;a, = 25;
::' 1

Man erkennt, dal die Glieder diesu Zahlenfolgen sich einfach dadurch
ergeben, daB man, ausgehend von a, # 0, immer wieder mit einem Faktor ¢,
nimlich der Basis der Fnpommaaltunkllon multipliziert. Zur Vereinfachung :
bezeichnen wir im folgenden das 1. Glied mit a. Damit gilt: =

2
@, =a, a,=a'q, d3=0,§=0aq’, @ =0a3=2a s

allgemein gilt also a, = a¢"" ', neN.

—

Die Zahl g kann auch als Quotient aufeinanderfolgender Glieder gedeutet
werden:

@ dz d a1
g=—2=23="2— alsog=-—"—,neN.
ay a, (25 a

n

Bei solchen Zahlenfolgen besteht auch eine interessante Beziehung zwischen
drei aufeinanderfolgenden Gliedern:

a, A . P =

Aus g=—"= L folegt a2 =a, -a,,4 bzw. |al=Va,_;-a,.;
{ da a =) =1 n+1 n n—1 n+1
1 n

n

daher ist |a,| das geometrische Mittel aus den beiden Nachbargliedern. Diese
Eigenschaft erklirt die fiir solche Zahlenfolgen ibliche liu:.n,hnunw

| l)cﬁnitinn 135.1: Eine Zahlenfolge a,, u:. a,, ... mit dem Bildungsgesetz
a,=a-g" ' (neN,a#+0,q%0, g+ 1) heilit geometrische Folge. a ist
dd‘n Anfangsglied und ¢ der Quotient der u..,omt,ltm,hen Folge.

In Beispiel 3 handelt es sich also um die geometrische Folge mit dem An-
fangsgl 1ed 6 und lem Quotienten 3, in Bempu,l 4 um die geometrische Folge
mit dun Anfangsglied 50 und dem Quotienten 0,5.

Zuriick zur Schachbrettaufgabe! Die Anzahlen der Korner auf den einzelnen

Feldern sind die ersten 64 Glieder der geometrischen Folge mit ¢ =1 und
g = 2. Die Gesamtzahl der Kérner, die der Erfinder des c\LhdL,hH])lLl\ als Lohn

verlangte, ist die Summe aus diesen 64 Folgegliedern:

: | L 63
Sqa =ay+ay+as+...+ag, =1+2+4+...+2°.
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So viele Korner sollte also QAFLAN erhalten! Die Fortsetzung des Berichts von
Seite 134 lautet:

Da sagte sie: »Und wieviel macht das aus?« Hierauf befahl sie, dal} der Weizen
herbeigebracht werde. Und er reichte nicht aus, selbst als die Getreidevorriite des
Landes erschopft waren; dann wurde das Korn in Geld umgewertet, bis der Schatz
erschopft war. Da dies nun viel war, sagte er: »Ich brauche das nicht, mir geniigt eine
geringe Menge von irdischem Gut.« Dann fragte sie ihn nach der Zahl der Kérner,
die er verlangt hatte.

Offenbar mull man sich also beim Versuch, s,, zu berechnen, auf Schwierig-
keiten gefaBBt machen. Es handelt sich hier allgemein um das Problem, die
Summe aus den ersten n Gliedern einer geometrischen Zahlenfolge zu
bestimmen. Man bezeichnet eine solche Summe als endliche geometrische
Reihe.

‘ Definition 136.1: Die Summe a+a-q+a q*+a ¢*>+...+a-q" !
(@ =+0, g0, g=+1) heilBt endliche geometrische Reihe, der mit s,

i bezeichnete Summenwert heil3t Wert der Reihe.

Da die Bestimmung des Reihenwertes durch gliedweises Addieren im
allgemeinen sehr mithsam sein diirfte, empfiehlt es sich, nach einer Formel fiir
die Summe zu suchen. Eine solche 148t sich fiir endliche geometrische Reihen
tatsiachlich leicht gewinnen. Man beniitzt z. B. die Tatsache, dal} im Produkt
q- s, viele der in s, enthaltenen Summanden wieder auftreten:

S,=a+a-q+ cf-r;3+f£-c;"+...+u-q”" (D)
g 8= a‘g+a-q*+a qg*+...4+a ¢ '+aq" (1)

Bildet man nun die Differenz aus den Gleichungen (I) und (II), so fallen alle
untereinanderstehenden Glieder weg, und man erhilt

s,(1—g)=a-(1—g"). Wegen ¢ =+ 1 ergibt sich

1 =7 " n__ 1
L oder auch s, =a: Lisi (111)

5, =a- —
1—g¢q : g—1

n
Ein anderer Weg zur Herleitung dieser Summenformel ergibt sich aus der auf
Seite 44 bewiesenen Gleichung (m)

]

a"—b'=(a—b)(a" " +a"  b+a" (b ... +ab 24",
Setzt man a =1 und b = g, so erhilt man
1—g¢"=(1—g@U+g+q*>+...4q" >+g¢" V),

woraus fur g + 1 die Beziehung

T_(rr
1+ff—£-f;2+,..+cf”"=l 4 folgt.
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Das,=a+a-q4+a ¢+..+aq" '=a(l+q+q°+ A" gilt, er-
hilt man wieder das Ergebnis (IIT), das wir schon bei EUKLID — natiirlich
anders formuliert — als Satz 35 in Buch IX seiner Elemente finden.

Satz 137.1: Die endliche geometrische Reihe —‘
atag+a-qg*+...+aq"""' (@$0,g%0,9+1) -
‘! n
hat den Wert s, = a- " L
e : q

Damit sind wir nun in der Lage, diec von QAFLAN geforderte Zahl von
Weizenkornern anzugeben. Mit ¢ =1 und g = 2 gilt:
1 = -)t'a-i
y . 3 o 64
Sea =1 'I—-?._Z —1.

QAFLAN hat allerdings seine Antwort etwas umstindlicher formulert. Der
Bericht schliel3t so:

Da sagte er: [...]
»Die Gesamtsumme auf dem Schachbrett ist 18 446 744 (073 709 551 615.«

Aufgaben
I. Wie heiBen die ersten fiinf Glieder der geometrischen Folge mit
a) a=5,q9=2 b) a=—-3;9=13 ¢) a=1,g=—-2
d) a=10;g=—02 € a=8;g=1V2 ) a=—8;9=—V3.
2. Bestimme @ und ¢ fiir die geometrische Folge mit

a) a,=—4; a,=16 b) ay=4;a,=2
¢) a,=025a,=225 d) g;=— 3;ac=24.
Ist die Losung jeweils eindeutig?
3. Zeichne den Graphen der Zahlenfolge fiir n < 10.
8) @, = 10871 b) a,=2(—12)"""
&) ‘g =50 d) a,=—8(- 0,8)" 1
4. Etwas ilter als die Textstelle aus dem Papyrus Rhind, die wir in Aufgabe
19/26 behandelt haben, ist das Problem der altbabylonischen Keilschrift-

tafel SKT 362 (um 1900 v.Chr.):

Fine Strecke. 1 Elle 1 Finger lang, immer um sich selbst verdoppelst du
und bildest die volle Summe. [...] Bis 1 GAR 33 Ellen bin ich gegangen.
[6m = 1 GAR = 12 Ellen; 1 Elle = 30 Finger]

Aus der im Text angegebenen Losung ergibt sich die Frage: Aus wieviel
Stiicken ist die Gesamtstrecke zusammengesetzt?
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5. Beim DIN-Papierformat sind Lange / und Breite b (mit /> b) so auf-
einander abgestimmt, daB8 durch Halbieren der Linge (z. B. durch Falten)
ein dem ganzen Blatt dhnliches kleineres Rechteck entsteht.*

a) Zeige, dal bei den durch fortgesetztes Halbieren der jeweiligen Lingen

entstehenden Rechtecken sowohl die Langen als auch die Breiten eine
geometrische Folge bilden. Wie grof3 sind die Quotienten?

b) Das Format DIN A0 ist ein Rechteck mit 1 m? Flicheninhalt. Durch

fortgesetztes Halbieren entstehen daraus die Formate A1, A2, A3, ...

1) Besimme Lange und Breite des Formats AQ.

2) Berechne Linge, Breite und Flicheninhalt des Formats DIN A4
(grolies Heftformat) und DIN A5 (kleines Heftformat).

6. Ein Blatt Papier, das 0.1 mm dick ist, wird n-mal gefaltet. Wie dick ist der

entstehende Stapel fiir a) n=> b) n =10 e} n=157
7. Berechne den Wert s, der geometrischen Reihe:

aya—1;q9=2:n=>5 b) a=1;9=2;n=10

¢) a=10;4¢=0,5:n=5 d) a=10;9g=0,5n=10

e) a=5qg=—1:n=10 fy a=5q9g=—1;n=11

8. a)
b)
c)

od)

Das fiinfte Glied einer geometrischen Folge mit ¢ = 1,5 heif3it 20.25.
Berechne ..

Das erste Glied einer geometrischen Folge heiBt 100, das vierte Glied
—12.5. Berechne s, ..

Die Summe aus den ersten fiinf Gliedern einer geometrischen Folge
mit ¢ = 0,6 hat den Wert 288,2. Wie heil3t der letzte Summand?
Die Summe der ersten drei Glieder einer geometrischen Folgeist 7, der
letzte Summand heifit 1. Berechne die beiden anderen Summanden.

$9. Aufgabe 28 aus Kapitel LXVI der Practica Arithmeticae (1539) des

Geronimo CARDANO (1501-1576), die 1544 Michael STIFEL (14877-1567)
in seine Arithmetica integra (fol. 304r) iibernimmt:

Die ersten drei Zahlen einer geometrischen Folge mit positivem An fangs-
glied haben folgende Eigenschaft: Dividiert man 25 durch jedes Glied und
addiert die drei Quotienten, dann erhélt man sowohl die Summe der drei
Glieder wie auch ihr Produkt. Wie heillen sie?

$10. Aus fol. 313r der Arithmetica integra (1544) des Michael STIFEL:

Die ersten drei Glieder einer geometrischen Folge mit positivem Quo-
tienten ergeben zusammen 119. Multipliziert man die Summe des ersten
und dritten Gliedes mit der Summe aus den Differenzen des dritten und
zweiten bzw. des zweiten und ersten Gliedes, so ergibt sich 4335. Wie
heiflen die Glieder?

* Dieses Papierformat wurde 1922 vom Normenausschub fiir die Deutsche Industrie durch das Normenblatt
DIN 476 festgelegt. Die Idee dazu hatte 1911 der Chemiker (Nobelpreis 1909) und Philosoph Wilhelm
OstwaLD (2.9.1853 Riga—4.4.1932 GroBbothen bei Leipzig).
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Aufgabe 83 aus Kapitel LXVI der Practica Arithmeticae (1539) des
Geronimo CARDANO (1501-1576), die 1544 Michael STIFEL (14877-1567)
in seine Arithmetica integra (fol. 301v) iibernimmt:

Die ersten drei Glieder einer geometrischen Folge geniigen folgender
Eigenschaft: Teilt man die Summe aus jeweils zweien von ihnen durch das
iibrige Glied und addiert die drei entstandenen Quotienten, dann ergibt
sich 13. Wie lauten die Glieder?

Lise und Fritz hat die Geschichte von dem Erfinderlohn fur das

Schachspiel sehr beeindruckt.

a) Fritz sagt: »Wenn ich der Erfinder gewesen wire, hétte ich mir fiir das
1. Feld 1 Million DM, fiir das 2. die Hilfte davon, usw. auszahlen
lassen.« Wie grof3 wire dann sein Lohn gewesen?

b) Lise wendet ein: »Das konnte man doch gar nicht richtig auszahlen; da

kommen ja Felder vor, denen weniger als 1 Pfennig entspricht.«

Zeige, daf sie recht hat. Um welche Felder handelt es sich?

(Hinweis: Berechne zuerst a,, und as,.)

Darauf meint Fritz: »Auf Pfennigbetrige wiirde ich sowieso verzichten

und nur das Geld von den Feldern nehmen, auf die ganze DM-Betrage

entfallen.« Wie groB wire dann sein Erfinderlohn? Auf welche Summe
wiirde er verzichten?

c)

Das Schema der Schachbrettauf-
gabe wurde vielfach auf andere
Situationen iibertragen. Das ne-
benstehende Beispiel stammt aus
der 1527 in Ingolstadt erschiene-
nen Schrift Eyn Newe Vnnd wol-
gegriindte  vnderweysung  aller
Kauffmannfp Rechnung des Peter lenchaler 32 Cieaclly
APIAN (1495-1552), den 1541 S0 roil er Den crftenn

g i S N nadel gcﬁmrn:ﬁcwé\ .
Kaiser KarL V. (¥1500; 1519 bis haller/ven anvern wmB 2 ballers e drittd

Erempel der vnder{chnitten
Lwgzeffionn.

“Jeemeiner wil einref
vertaupjenn nad) den
Licgeln . Dasref Bat

sEvfen 1Eintchich ey
it 8 neaclmadqenc al

1556: t1558) in den Adelsstand
erhob und zu seinem mathema-
ticus seu astronomus familiaris
machte. Er bekleidete auch das
Amt eines Hofpfalzgrafen.

Auch Kinderreime enthalten ge-
legentlich mathematische Proble-
me, wie das Beispiel aus England
zeigt. Es handelt sich dabei um
eine Aufgabe, die in dhnlicher
Form schon im altdgyptischen
Papyrus Rhind vorkommt (siehe
Aufgabe 19/26).

b 4 baller/Der vierden vmb § ball/den
fimnffcen om8 16 7. allemal nadh [ocexcer.
~j( ie frag weie texrer / Das Rof verbunfjc
wire.

As I was going to Saint lves,

[ met a man with seven wives,

Every wife had seven sacks,

Every sack had seven cats,

Every cat had seven Kits;

Kits, cats, sacks and wives,

How many were there going (o
Saint Ives?
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Gegeben ist die geometrische Folge mit a =1 und ¢ = 1.

a) Berechne die Summen s, 5,,, 5,5 und s,,.

b) Wird s, mit wachsendem n immer groBer? Wird es beliebig groB3? Gibt
es eine Zahl, der sich s, beliebig nahert, wenn # immer gréBer wird?

Lose Aufgabe 15 fiir die geometrische Folge mit
1) a=1;g=1,5 2) a=8,9g=—0,6

Die geometrische Folge mit Anfangs-

glied @ und Quotient ¢ sowie ihre P o
Summen s, kann man in einem Ko- B
ordinatensystem mit Hilfe der Gera-
den g: y=¢gx und h: y=x —a ver-
anschaulichen, indem man, wie Ab- S y
bildung 140.1 zeigt, den zwischen 1 ; PR :
g und /A verlaufenden Streckenzug St 5
OA,B,A,B,A, ... zeichnet; die Teil- :
strecken sind abwechselnd parallel zur Abb. 140.1
x- bzw. y-Achse.

Zu Aufgabe 17

A . =t e _
a) Zeige, daB die zur x-Achse parallelen Pfeile OA,, B, A,, ... die Zahlen
a, ag, aq?, ... darstellen.

b) Wo liegen auf der x-Achse die den Zahlen s, s, 55, ... entsprechenden
Punkte?

a) Zeichne zu der geometrischen Folge mit ¢ =10 und ¢ =4 die in
Aufgabe 17 beschriebenen Geraden g und 4 fiir 0 < x < 20 und
konstruiere die Punkte s,, s,, 55, ... auf der x-Achse.

b) Berechne den Schnittpunkt S(s|f) von g und 4. Welche Bedeutung hat
s fur die Summen s,?

¢) Beweise: Auch die Lingen A A,, A,A;, A,A,, ... und ebenso OB,,
B,B,, B,B,, bilden jeweils eine geometrische Folge. Welchen
Zahlen kommen die Summen s, dieser Folgen mit wachsendem
n beliebig nahe?

Zeichne die in Aufgabe 17 erklirten Geraden g und 4 und konstruiere die
Punkte s,, s,, 55, ... auf der x-Achse fiir

ala=1"g="> b) a=9; g=—3 h.,_ g
dg 5

c) a=2; g=—1.5.

Wie verhalten

sich jeweils die Summen

s, mit wachsendem »?

20. In Abbildung 140.2 ist g die Gerade
mit der Gleichung y = 2x und 4 das
Lot zu g durch A(9|0). Die Strecken a;

sind parallel zur x- bzw. y-Achse.

a,

o

a, \

Abb. 140.2

A

Zu Aufgabe 20
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a) Beweise, daB die Langen a, a,, @5, ... eine geometrische Folge bilden.
b) Wie groB ist die Gesamtlinge der ersten n Abschnitte der »eckigen
Spirale«? Welchem Wert kommt diese Lange mit wachsendem #n belie-

big nahe?

¢) Jede Strecke a; schlieBt mit g und 4 ein rechtwinkliges Dreieck ein.
Bilden die Flicheninhalte A; dieser Dreiecke ebenfalls eine geometri-

sche Folge?

Ausgehend von einer Strecke [AB]
der Lidnge [/, erzeugt man neue
Streckenziige, indem man uber dem
mittleren Drittel der Strecke ein
gleichseitiges Dreieck errichtet und
dann dieses Drittel wegnimmt.

Beim nédchsten Schritt wird dieses

Verfahren auf jede der vier Teil-

strecken angewandt, usw. (vgl. Ab-

bildung 141.1).

a) Zeige, daB die Lingen /; der so
entstehenden Streckenziige eine
geometrische Folge bilden.

b) Berechune iy, Lo, ligo 1 Ab-
hangigkeit von /,. Wie verhalt
sich /. mit wachsendem n?

¢) Wenn man sich dieses Konstruk-
tionsverfahren ohne Ende fort-
gesetzt denkt, ndhern sich die
Streckenziige einer bestimmten,
von A nach B verlaufenden
Kurve, die man als Von-Koch-
Kurve bezeichnet.* Was ist uber
die »Linge« dieser Kurve zu
sagen?

A B
N
/\
ol B
i iy
v
i
A / \'\ B
,-"I\'\
b
i 4
\\ (j
A\ /
A [N e
=i
i E
Y 8
A TR
&f‘\ 7 Lr’\_.‘)_/ <\_/\_.f1 A\ f\B
f,,b o2

51

| P . ’ Ta,
A L?I b CL-.J"L_IT’ CL,J‘“'P

AT TAT T

Abb.141.1 Erzeugung der Von-Koch-
Kurve

22. Uber dem mittleren Drittel einer Strecke wird ein Quadrat konstruiert und
dann dieses Drittel entfernt. Danach wird dasselbe Verfahren aul die
Teilstrecken des entstandenen Streckenzuges angewandt, usw.

* Nils Fabian Helge vox KocH (25.1.1870 Stockholm

dieser Kurve, dalB es stetige Kurven gibt, die an keiner Stelle eine Tangente besitzen. Sein Artikel Sur une

a) Zeichne, beginnend mit einer Strecke [AB] der Lange [, =

9cm die

niichsten drei daraus entstehenden Streckenziige; la3 dabei die »qua-
dratischen Hocker« abwechselnd nach links und rechts aus dem (von
A nach B durchlaufenen) Streckenzug herauswachsen.

11.3.1924 Danderyd bei Stockholm) zeigte mit

courbe continue sans tangente obtenue par une consiruction géometrique élémentaire erschien 1904 im Arkiv

for Matematik. Astronomi och Fysik, 1. Stockholm, und wurde 1906 in einer erweiterten Fassung unter
dem Titel Une méthode péométrique élémentaire pour ['étude de certaines questions de la théorie des courbes
planes in den Acta mathematica, 30, Stockholm, veroffentlicht.
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b) Berechne die Liangen /,, /; und /, der gezeichneten Streckenziige und

begriinde, dall die Funktion n — /,, ne N, eine geometrische Folge ist.
deren Glieder beliebig groll werden.

8, L R
23. Die  Seitenmitten eines Quadrats ‘ /'\
P,Q,R,S; sim‘l‘ die Ecken eines Qua- | Ry = Qs
drats P,Q,R,S,, dem nach demsel- / A \\
ben Verfahren wieder ein Quadrat B kel ol
P;Q;R;S; eingeschrieben wird, usw. N / /
(Abbildung 142.1). 5\ 4 ‘
a) Gib die Folge g; der Quadratsei- s fadaicn
P = s . . P Pz Ql
tenlingen in Abhingigkeit von
a=P,Q, an. Abb.142.1 Zu Aufgabe 23
eb) Firdas durch die ersten n Quadrate gebildete Netz soll ein Fadenmo-
dell hergestellt werden. Welche Fadenlinge /, ist dazu notwendig?
Wie viele Quadrate kann man im Fall ¢ = 1 dm mit einem Faden von
2m Lange herstellen?
ec) Stelle dir vor, daB die verschiedenen Quadrate aus einer Sperrholz-

platte von 5 mm Dicke herausgesigt und aufeinandergestapelt werden.
Wie gro3 mul} bei @ = 1 dm die Sperrholzplatte mindestens sein, damit
beliebig viele dieser Quadratplatten aus ihr hergestellt werden kénnen?
Was ldlt sich iiber die Hohe und das Volumen des entstehenden
Korpers sagen, wenn die Anzahl n der Schichten immer gréBer wird?

24. In Abbildung 142.2 wird durch

Zusammensetzen von Halbkrei-
sen mit den Radien r,=2'""

(fe N) eine Spirale erzeugt.

a)

ob)

Wie grof} sind die Lingen /
der Halbkreisbogen? _
Welche Lange L, hat der aus =
den ersten n Halbkreisen be-
stehende Teil der Spirale? —
Wird  mit  unbeschrinkt  Abb.142.2 Zu Aufgabe 24
wachsendem n die Spiralen-

lange beliebig groB, oder gibt es einen »Grenzwert« fiir L,? Wenn ja,
wie heil3t er?

Bestimme die den Punkten P, entsprechenden Zahlen x,. Zeige, daf
diese Punkte mit wachsendem n gegen einen »Grenzpunkt« streben.
Welche Zahl entspricht ihm? (Hinweis: Betrachte getrennt die Folgen
der Punkte mit geradem und mit ungeradem Index.)

Jezwei Halbkreise mit den Radien r, und r; , , begrenzen zusammen mit

.
’

der x-Achse ein sichelférmiges Flichenstiick. Wie groB ist dessen
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Inhalt 4,2 Welchen Wert hat die Summe S, =4, +4,+...+4,?

Welcher Zahl kommt S, mit wachsendem n hLIwb]g nahe?
Wie kann man dieses hrgebnis einfacher gewinnen?

$d) Lose die Teilaufgaben a), b) und c¢) fiir folgende Halbkreisradien:

1) r=G"" By =00 ), — 008
e 25. Zu der reinperiodischen Dezimalzahl z = 0,3 37 erhilt man eine Folge von
"iihr::ruanhrL'lchen wenn man nach der 1., 2., 3., ... Periode abbricht:

= 0,37; z, = 0,3737; z; = 0,373737; ... Die verschiedenen Werte, wel-

LhC die Periode 37 jeweils darstellt, kmm man durch folgende Schreibweise

fir die Ndherungsbriiche n,rdeullichcn:

P e L) s z,=37-1072+37-107%,

zyo= 37-107% 4 37-107* 4371072, usw.

a) Wie lautet allgemein diese Summendarstellung fiir den Naherungswert
z, (n = 2)? Begriinde, daB es sich dabei um eine endliche geometrische
Reihe handelt.

b) Welche Darstellung fiir z, erhilt man mit Hilfe von Satz 137.1?
Welcher rationalen Zahl y kommt somit z, beliebig nahe, wenn man
n unbeschrinkt wachsen laB3t?

Zeige an Hand der Dezimalentwicklung von y, dall y = z gilt.

¢) Bestimme nach dem in a) und b) am Beispiel 0,37 gezeigten Verfahren
die Bruchschreibweise fiir
1) 07 2) 0,06 3) 0,481 4) 04321 .

26. Stelle die folgenden unendlichen Dezimalzahlen als gewohnliche Briiche
dar (vgl. Aufgabe 25):
a) 3,15 b) 0,06 ¢) 0,518 d) 10,70185

**6.3 Arithmetische Folgen und Reihen

Einen besonders einfachen Typ einer Zahlenfolge erhilt man, wenn man bel
einer linearen Funktion die Definitionsmenge auf N einschrankt.

Beispiele:
1) /> x — 3x —1 ergibt die Zahlenfolge
a;=2; a; =235 a5=8; 4, =115 ..} also a,=3n—1, neN.
2) f: x — —1,5x+ 3 ergibt die Zahlenfolge
gy =150, =las= 1,50, =— 3;...;alsoq, = —1,5n+3,neN.

Als typisches Merkmal dieser Folgen erkennt man die Eigenschaft, dal} die
Differenz aufeinanderfolgender (JI]L(iC] konstant ist: es handelt sich bei ihr

jeweils um den Koeffizienten von x in der entsprechenden linearen Funktion.
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Bezeichnen wir wie iiblich das Anfangsglied der Folge mit a und die Differenz
mit d, so gilt

a,=a, ay=a+d, ay=a,+d=a+2d, a,=a,+d=a+3d,...,
allgemein also @, = a+(n—1)d, neN.

Fiir drei aufeinanderfolgende Glieder einer solchen Folge ergibt sich (vgl.
Aufgabe 145/2):

a,+a,.,=2a,,., unddamit a, ,= ﬁ#

Das mittlere von drei aufeinanderfolgenden Gliedern ist damit das arithmeti-
sche Mittel der Nachbarglieder. Das erklirt den fiir solche Zahlenfolgen
verwendeten Namen:

Definition 144.1: Eine Zahlenfolge mit dem Bildungsgesetz
a,=a+n—1)d, neN, heibit arithmetische Folge mit dem
Anfangsghed a und der Differenz d.

Bei vielen Anwendungen benotigt man die Summe aus den ersten n Gliedern
einer arithmetischen Folge. Dazu gilt

Definition 144.2:
Die Summe a+(a+ d)+(a+2d)+...+(a+(n—1)d)
heil3t arithmetische Reihe, der mit s, bezeichnete Summenwert heif3t
Wert der arithmetischen Reihe.

Fiir die Berechnung von s, 1aBt sich leicht eine Summenformel herleiten:
ANSS. — a +  (a+d) +..4+@a+m—=-2)d)+ @+ (n—1)d)
und s, =(a+n—1)d)+(@a+n—2)d)+...+ (a+d) -+ a

folgt durch Addition dieser Gleichungen, bei der wir jeweils die beiden
untereinanderstehenden Summanden zusammenfassen, die Beziehung

28 :(-a+ n—1)d) + ("‘u +n—Dd)+...+2a+ (n—1)d),
also 2s, = 2a+(n—1)d)-

dh, 5,=2Qa+@n—1)d).

n

Da der zweite Faktor als die Summe a, + a, gedeutet werden kann, gilt auch

H
Sn =15 (a, +a,).

Satz 144.1: Die arithmetische Reihe a4+ (a+d)+ ... +(a+ (n—1)d)

H n
hat den Wert s, = 5 Qa+(n—1)d) = (a; +a,).




Beispiele:
3) Bei der arithmetischen Folge mit ¢ = 2 und d = 3 (Beispiel 1)) gilt
511072 193:29. f15[3922+499'3=1499,
10 =R (24 29) =155, Ss00 = 220 (2 4 1499) = 375250.
4) Bei der arithmetischen Folge mit @ = 1,5 und d = — 1,5 (Beispiel 2))
gilt
aro =1,5+19-(—1,5) = —27, s3=%2-15+2:(—1,5) =0,
S3g = 21,5+ "9 (—1 5)) = —607,5.
Aufgaben

1
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Gib fiir die arithmetische Folge mit Anfangsglied ¢ und Differenz d die
ersten vier Glieder an und berechne a,:
a8y a=0d=1 b) a=10;d=—1 ¢) a=—16;d=2,5

. Beweise, daB bei einer arithmetischen Folge fiir je drei aufeinanderfolgen-

de Glieder die Beziehung a, ., = (a,+ a,.,):2 gilt

. Berechne fiir die Zahlenfolgen von Aufgabe 1 die Summen s,, und 5, 4¢.

4. Bestimme Anfangsglied und Differenz der arithmetischen Folge aus

a) a,=5a,=—1 b)a,=16a,=4 ©) a;=—15/ a0 = 33.
5. Zwischen 25 und 64 sollen

a) zwei Zahlen b) vier Zahlen ¢) zwolf Zahlen

e 8.

so eingefligt werden, dal} eine arithmetische Folge entsteht.

. Berechne Anfangsglied @ und Differenz d der arithmetischen Folge mit
a) a, = 5,5; 54 =25 b) ay =4;s55=20()
¢) as="5;5,=0 d) s, =13,5; 5,5 = — 67,5

. Aufgabe 64 aus dem Papyrus Rhind (um 1800 v.Chr. entstanden):

1(}0 Scheffel Gerste werden so an 10 Leute verteilt, daB der jeweils nidchste
1 Scheffel mehr erhilt als sein Vorgdnger. Wieviel erhalt jeder?

Eine der frithesten Aufgaben iiber arithmetische Folgen findet man auf

der altbabylonischen Keilschrifttafel SKT 362 (um 1900 v.Chr.):

10 Briider; 12 Minen Silber. Bruder iiber Bruder hat sich erhoben. Um was
er sich uhobn.n hat. weiB ich nicht. Der Anteil des achten Bruders ist
6 Schekel. Bruder iiber Bruder, um wieviel hat er sich erhoben?
Berechne den Anteil des ersten Bruders und den konstanten Unterschied
zum jeweils nichsten. [60 Schekel = 1 Mine = 0,503 kgl
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9. Aufgabe 40 aus dem Papyrus Rhind (um 1800 v. Chr. entstanden) 1483t zweli
Deutungen zu:

100 Brote werden in arithmetischer Folge so an 5 Leute verteilt, daB

= a) die beiden ersten zusammen 7 dessen erhalten, was die drei letzten
= zusammen erhalten.

b) die beiden letzten zusammen 4 dessen erhalten, was die drei ersten
zusammen erhalten.

AR

Wie grol3 ist der Unterschied vom einen zum anderen, und wie wurden die
Brote verteilt?

itthHis i

10 einer

Sind folgende Merkregeln fiir die Berechnung des Wertes s
arithmetischen Reihe richtig?

a) »halbe Anzahl der Glieder mal (erstes Glied plus letztes Glied)«
b) »n-mal erstes Glied plus n(n — 1)-mal halbe Differenz«

n

T GER i T R

E 11. Achte bei den folgenden Aufgaben darauf, ob die Losung eindeutig ist.

a) Eine arithmetische Reihe mit Anfangsglied —3 und Differenz 2 hat
= den Wert 60. Wie grol} ist die Anzahl »n ihrer Summanden?
3 b) Bestimmen e N so, daB bei einer arithmetischen Folge mita = — 6 und

d =1,5 die Summe s, den Wert —10,5 erhilt.

- ¢) Bei einer arithmetischen Reihe mit dem Wert 28,8 heillt der erste
Summand 9 und der sechste 3. Wieviel Summanden hat die Reihe?
= 12. a) Carl Friedrich Gauss (1777-1855) bestimmte schon als Neunjihriger
= zur Uberraschung seines Lehrers J.G. BUTTNER in kiirzester Zeit
den Summenwert einer arithmetischen Reihe.* Es soll sich um
Si00 =1+2+3+...+100 gehandelt haben, was Gauss als das
- Produkt 50-101 berechnet habe. Begriinde sein Vorgehen.

b) Berechne die Summe der natiirlichen Zahlen von 1 bis 10%.

¢) Wie groB ist die Summe aller hochstens dreistelligen Vielfachen von 7?

13. a) Berechne die Summe aller ungeraden Zahlen von 1 bis 2n — 1.

s @ x 123 n
b) Bestimme den Wert der Summe S, = — 4+ —+ =+ ...+ —; neN.
A H R n
1 2 3 ] 7 z ! :
¢) Berechne 7,=—+ 5+ —+...+—. Wie verhilt sich 7 mit
H T2 n- n-
wachsendem n?
, 1 3 5 2n—1
d) Berechne U, = -+ S+ S +...+ ———; neN.
fi 2 2 2
I 1 iyl H

* Wolfgang SARTORIUS FREMERR vON WALTERSHAUSEN (1809-1876) zeichnete viele Gespriche mit GAUSS,

zum Teil wortlich, auf und gab sie 1856 unter dem Titel Gawff zum Gedéchtnis heraus. Darin berichtet er, daB

Gauss dieses Ereignis »uns in seinem hohen Alter mit groBer Freude und Lebhaftigkeit &fter erzihlt hat.«

Und daB, als BOrTner schlieBlich die Ergebnisse priifte, »das seinige zum Staunen aller Anwesenden als

- richtig befunden, wihrend viele der iibrigen falsch waren«. — Getauft wurde Gauss iibrigens auf Johann

in die Matrikel des Collegium Carolinum zu Braunschweig ein.
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14. In einem Stapel von Rohren liegen in der untersten Schicht 12 Rohre, in
der obersten 5 Rohre. Aus wieviel Rohren besteht der ganze Stapel, wenn
die Rohre wie iiblich »auf Liicke« iibereinandergeschichtet sind?
Wieviel Rohre konnte man noch auf den Stapel legen, ohne die Basis zu
verbreitern?

15. Eine trapezformige Dachflidche soll mit Ziegeln gedeckt werden. Fiir die
erste Reihe benotigt man 64, fiir die letzte 30 Dachziegel. Es sind 18
Reihen. Wieviel Paletten zu je 100 Ziegeln wird man bestellen, wenn man
5% Verlust durch Bruch einkalkuliert?

16. Aus der Stereometrica des HERON von Alexandria (um 62 n.Chr.):

a) Aufgabe43: In einem Theater mit 250 Sitzreihen enthélt die unterste
40 Sitze, jede hohere jeweils 5 Sitze mehr. Wieviel Sitze enthdlt die
oberste Rethe?

b) Die Aufgabe 42 »In einem Theater mit 280 Sitzreihen hat die unterste
120, die oberste 480 Sitze. Wieviel Sitze hat das Theater insgesamt?«
l6st HERON durch folgende Rechnung:

480 4120 . S
———— +280 =8400. Nimm dazu kritisch Stellung.

17. Wenn ein diinnes MaBband auf einen Zylinder aufgerollt ist, kann man die
einzelnen Windungen mit guter Niaherung als Kreise betrachten.

a) Wieviel mm betriigt der Durchmesser einer Trommel, auf die ein
MaBband von 2 mm Dicke und 2m Lange aufgerollt wird, wenn sich
dabei 16 Windungen ergeben?

b) Ein20m langes MaBband, das 0,5 mm dick ist, wird auf eine Achse von
20 mm Durchmesser aufgewickelt. Wie viele Windungen ergibt das?

6.4 Aus der Finanzmathematik

Wichtige Anwendungen von geometrischen Folgen und Reihen ergeben sich
in der Finanzmathematik:

a) Zinseszinsrechnung
Ein Kapital K, das zu einem Zinssatz von p % angelegt wird, bringt im ersten

K : . :
Jahr den Zins Z, = 1(;{}} -p. Am Ende des ersten Jahres ist somit das Kapital

b

K.=K,+7Z, =K, (1 55 ﬁ;(]) vorhanden. Die Verzinsung mit p% bewirkt

also, daB das anfangs vorhandene Kapital sich im Laufe eines Jahres mit dem

Faktor 1+ -2 multipliziert; man nennt ihn Zinsfaktor.
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Wird der Zins nicht abgehoben, so verzinst sich im zweiten Jahr neben dem
Anfangskapital K, auch der hinzugekommene Zins Z,; man spricht daher
von Zinseszins*. Als Kontostand am Ende der folgenden Jahre erhiilt man so

, ! P\
= el | 12

200 £ 100

3

. - P ; S
K;=K,11+—]=K (T —)

3= %20 - T Top o & 100,
allgemein also am Ende des n-ten Jahres
i i | ]} n o: ,
K, = K{}(i + 100 fur neMN.

Die Kontostinde am jeweiligen Jahresende bilden somit eine geometrische
Folge mit dem Anfangsglied K, (= Anfangskapital) und dem Quotienten
P

=

g
g 100 |

= Zinsfaktor).
Beispiel:
1000 DM, die zu 6 % angelegt werden, erreichen nach 10 Jahren den Wert

K, =1000DM -1,06'° = 1790,85 DM und nach 20Jahren den Wert
Ky = 1000 DM - 1,062° = 3207,14 DM.

b) Ratensparen

Angenommen, jemand zahlt zu Beginn eines jeden Jahres einen festen
Geldbetrag R (= Rate**) auf ein Sparkonto ein. Welchen Wert S, hat sein
Guthaben am Ende des n-ten Jahres, wenn die Einlagen mit p% verzinst
werden?

P

Offenbar gilt, wenn wieder g = 1
€n g NVENm Vv q = 100

S, =Rgq
S, =(S;+R)g = Rg*+ Ryq
Sy = (S,+7)q = Rg* + Rg* + Rq

allgemein

gesetzt wird,

Srr = (‘S‘u fisal j?}q = Rff” -+ quu_] S qu I .Rff.. nenl.

* Kapital stammt aus dem [talicnischen und bedeutet in etwa Hauptfeld: zugrunde liegt ihm das lateinische
capitalis in seiner Bedeutung vorziglich, hauptsdchiich. Zins entstand aus dem lateinischen census — Sehét-
zung, Abgabe, Vermdgen, Zins und ist bereits im Althochdeutschen nachweisbar. Obgleich esim 16. Jh. auch
schon in Rechenbiichern auftaucht, verdriingt es erstim 19. Jh. das bis dahin fibliche Fachwort Inreresse (lat
inferesse = dazwischen sein, dazwischen liegen). Das Wort Zinseszins taucht erstmals wohl 1616 auf.

** Rate, italienisch rata, aus lateinisch pro rata (parte) = in bestimmtem Verhdltnis, Zugrunde liegt
ratus = berechnet.
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Man erkennt, dal es sich be1 S, um eine geometrische Reihe handelt. Mit der
Summenformel von Satz 137.1 erhilt man

n

y g —1 3 p
Se— R~ mit ¢ =1 ]
b= = I T0h

Beispiel:
Bei einer jahrlichen Rate von 1000 DM und einem Zinssatz von 6%
betragt das Guthaben

: 1,067 — 1
am Ende des 10.Jahres S,, = 1060 DM - (; e 13971.64 DM
LU0
, 1,06%% —1
am Ende des 20. Jahres S,, = 1060 DM - - T 38992,73 DM.

¢) Tilgung eines Darlehens
Ein Darlehen D, fir das die Bank p% Schuldzinsen fordert, soll durch
gleichbleibende Raten R, die jeweils zum Jahresende fallig sind, getilgt wer-
den. D, sei der Darlehensrest am Ende des n-ten Jahres. Dann gilt, wieder mit
7
g=1+ ¢ .
100
D,=Dg—R
D,=D,g—R=Dg*—Rq—R
D,=D,q—R=Dg>—Rq*—Rqg—R
allgemein D, = Dg"— R(¢" ' +¢" %>+ ... +q+1).
In der Klammer steht eine geometrische Reihe. Mit Satz 137.1 erhélt man
schlieBBlich
gl : P

D, = Dg"— R = mitg =1+ —-.

i g1 . 100
Demnach kann der Darlehensrest D, als Differenz zweier Kontostinde
gedeutet werden: Dg" ist der Wert, auf den das Darlehen mit Zinseszinsen

. . T ” q"—1. 4 : .
anwichst, falls keine Tilgung erfolgt; R—— ist das Guthaben, das sich beim
q—
Einzahlen der Raten R auf ein Sparkonto ergibt.

Beispiel 1:
Ein Darlehen von 50000 DM zu einem Zinssatz von 10% wird mit
Jahresraten von 10000 DM getilgt. Dann betrdgt der Darlehensrest

nach 6 Jahren noch
6

; 15— i
D, = 50000DM -1,1° — 10000 DM - — 0 = 11421,95 DM.
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Beispiel 2:

G T

1.

TR P

pi s

il
(5]

g

wn

Das Darlehen von Beispiel 1 wird durch vierteljdhrlich gezahlte Raten
von 2500 DM getilgt. Dann gilt, da in einem Vierteljahr jeweils 2,5 % des
Darlehensrestes als Zinsen anfallen, nach 6 Jahren:

3 ey {025 0 1=
D = 50000 DM -1,025* — 2500 DM - =~ = 9563,71 DM.

Aufgaben

Auf welchen Wert wachsen 25000 DM, auf Zinseszinsen angelegt,
a) bei 4% in 5Jahren b) bei 6% in 10Jahren?

. Welchen Geldbetrag mull man heute auf ein Konto einzahlen, um

a) bei 6% nach 5 Jahren b) bei 7,5% nach 8 Jahren
den Endbetrag 10000 DM zu erreichen?

. Bei welchem Zinssatz wachsen

a) 34000 DM in 7 Jahren auf 46265.30 DM an
b) 7339 DM in 12 Jahren auf 19000 DM an?

. Bei welchem (auf Zehntel gerundeten) Prozentsatz verdoppelt sich ein

Kapital
a) in 11 Jahren b) in 18 Jahren ¢) in 9 Jahren d) in 3 Jahren?

Welche Endwerte ergeben sich in Aufgabe 1, wenn die Kapitalisierung des
Zinses 1) vierteljihrlich 2) monatlich erfolgt?

. Jemand zahlt jeweils am Jahresanfang 5000 DM auf ein Konto ein. Die

Bank zahlt 7,5% Zinsen. Wie hoch ist der Kontostand
a) im 2. Jahr b) im 5.Jahr ¢) im 10. Jahr ?

a) Welche jdhrliche Sparrate mufl man aufbringen, wenn man nach
Ablauf von 10 Jahren, gerechnet vom Einzahlen der ersten Rate an,
einen Betrag von 100000 DM zur Verfiigung haben will und wenn die
Einlagen mit 1) 6,25% 2) 10% verzinst werden?

b) Welcher Endwert ergibt sich, wenn man die errechnete Rate jeweils auf
ganze Hunderter rundet?

. Herr Kluge hat mit seiner Bank einen Sparvertrag abgeschlossen. An

jedem Monatsende, erstmals im Januar, zahlt er 500 DM ein. Der Zins von
8 % wird am Jahresende berechnet und zum Kapital geschlagen.

a) Zeige, dal der Kontostand am Ende des 1.Jahres 12.44- 500 DM
betragt.

b) Welchen Wert weist das Sparkonto am Ende des 2. Jahres auf?

¢) Uber welches Kapital kann Herr Kluge am Ende der fiinfjdhrigen
Laufzeit des Sparvertrages verfiigen?
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d) Welcher Endwert hitte sich ergeben, wenn schon an jedem Monatsen-
de die Zinsen dem Kapital hinzugefiigt worden wiren?

9. a) Eine Bank bietet einen Progressiv-Sparvertrag mit flinfjahriger Lauf-
zeit an, bei dem der Zinssatz im 1. Jahr 4% betragt und sich in jedem
weiteren Jahr jeweils um 1% erhoht. Welchen Endwert erreicht bei
dieser Sparform ein Kapital von 20000 DM?

b) Ein anderes Geldinstitut bietet fiir Einlagen mit fiinfjahriger Laufzeit

i

einen Zinssatz von 6% an. Fuhrt dies zu demselben Endwert?

10. Die Bundesrepublik Deutschland verkaufte im Fruhjahr 1990 Bundes-
schatzbriefe vom Typ A mit sechsjihriger und vom Typ B mit siebenjahri-
ger Laufzeit zu folgenden Bedingungen: Variabler Zinssatz, und zwar im
1.Jahr7,50%,im 2. und 3. Jahr 8,00%,im 4. und 5. Jahr 8,25 %, im 6. und
(bei Typ B) 7. Jahr 8,50%. Beim Typ A werden die Zinsen jeweils nach
einem Jahr ausbezahlt, beim Typ B aber zum Kapital geschlagen.
a) Angenommen, jemand hat am 1.3.1990 fiir 1000 DM Bundesschatz-
briefe vom Typ B gekauft. Welchen Wert stellen diese
1) am 1.3.1993 2) am 1.3.1995 3) am 1.3.1997 dar?
b) Als Rendite* der Schatzbriefe vom Typ B werden in der Ausschreibung
8,14% angegeben. Zeige, dall bei diesem festbleibenden Zinssatz die
Wertpapiere in sieben Jahren (ziemlich genau) denselben Wert errei-
chen wiirden.

11. Schuldverschreibungen werden oft zu einem unter ihrem Nennwert
liegenden Betrag verkauft (Ausgabekurs < 100%) und am Ende ihrer
Laufzeit zum Nennwert eingelost.

a) »Finanzierungs-Schitze des Bundes« mit Nennwert 10000 DM und
2 Jahren Laufzeit wurden im Mérz 1990 fiir 8521,70 DM angeboten.
Welche Verzinsung ergibt sich daraus?

b) Welche Schuldverschreibung bringt eine hohere Rendite?

1) Ausgabekurs 79,38 % und 3 Jahre Laufzeit
2) Ausgabekurs 68.85% und 5 Jahre Laufzeit

12. Ein Darlehen von 40000 DM wird mit Raten von 10000 DM getilgt, die

jeweils am Jahresende fallig sind. Die Bank berechnet 7,5 % Schuldzinsen.

Vervollstindige den folgenden Tilgungsplan. Wie grol ist die Restzahlung

im letzten Jahr?

Jahr Schuld am Schuld- Jahresrate Tilgung
Jahresanfang zinsen
1 40000, 3000, 10000, 7000,
2 33000, 2475,- 10000, 7525,—

* Rendite: Aus dem lateinischen reddere in der Bedeutung von einem etwas anderes als Entgelt zuriickgeben

wurde das italicnische rendere = einbringen; dazu gehért das Substantiv rendita.
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Erstelle fiir das Darlehen von Aufgabe 12 den Tilgungsplan fiir den Fall,
daBl man am Ende jedes Jahres die Zinsen und ein Flnftel der Dar-
lehenssumme, also 8000 DM, zuriickzahlt.

Ein Kleinkredit von 2000 DM wird durch monatliche Raten von 200 DM,
zahlbar jeweils am Monatsende, getilgt. Der Zinssatz betrdgt 12%.
a) Wie grol} ist die Restschuld nach

1) 5 Monaten 2) 8 Monaten?

b) Die Tilgung wird mit einer Restzahlung am Ende des 11. Monats
abgeschlossen. Wie grol} ist diese letzte Rate?

Eine Hypothek* von 100000 DM soll durch jeweils am Jahresende fillige
Raten getilgt werden. Wie groB8 mull die auf Vielfache von 100 DM
gerundete Jahresrate gewahlt werden und wie grob ist der am Ende des
letzten Jahres zu zahlende Betrag, wenn

a) 8% Zinsen zu zahlen sind und die Tilgung in 12 Jahren erfolgen soll
b) 6,5% Zinsen zu zahlen sind und die Tilgung in 20 Jahren erfolgen soll?

Eine Hypothek* von 150000 DM wird durch vierteljahrlich zu zahlende

gleichbleibende Raten von 3375DM getilgt. Es werden 8% Zinsen

berechnet. Mit jeder Rate werden die im vorausgehenden Vierteljahr

angefallenen Zinsen beglichen; der Rest wird als Tilgung verrechnet.

a) Wie groB ist die Restschuld nach 15 Jahren?

b) Welche Restschuld verbleibt nach 27 Jahren? Welche Zahlungen
miissen im 28. Jahr noch geleistet werden, bis die Hypothek vollstindig
getilgt ist?

a) Wie groB mubB ein Kapital sein, damit man bei einem Zinssatz von 8 %
jahrlich gleichbleibend 12000 DM Zinsen erhilt (sog. ewige Rente)?

b) Welches Kapital muB3 man auf ein Konto einzahlen, damit man bei
einer Verzinsung mit 8% 20Jahre lang jeweils zum Jahresende
12000 DM entnehmen kann? (Nach 20 Jahren soll das Kapital aufge-
zehrt sein.)

* imodnkn (hypothcke) = Unterlage, Pfand. Heute versteht man darunter ein im Grundbuch eingetragenes
= Pfandrecht an einem Grundstiick zur Sicherung einer Geldforderung. Umgangssprachlich — wie in dieser
E Aufgabe — verwendet man »Hypothek« fiir »Hypothekarkredit«, d.h. fiir einen durch Eintragung einer
Hypothek gesicherten Kredit.
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