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Folium 24v aus den Libros de Acedrex, de los Dados und de las Tablas, dem Schach¬
zabelbuch, das Alfons X . der Weise, König von Kastilien und Leon (* 1221 , reg.
1252- 1284) in Auftrag gab und das 1283/84 vollendet wurde . Dargestellt sind zwei

junge Damen mit offenem Haar , die in Hauskleidung Schach spielen . Eine weitere
junge Dame , die Zöpfe in einem roten Haarnetz , erteilt einer der Spielerinnen

Ratschläge .

»Schachzabel« ist ein altes Wort für Schachbrett . Das Schachzabelbuch ist die älteste

Sammlung von Schachendspielen ; darüber hinaus gibt es Kunde von Würfel - und von
weiteren Brettspielen .
Alfons X . wurde am 1 . 4 . 1257 zum römisch -deutschen König gewählt , da seine Mutter

Beatrix die Tochter des Staufers Philipp von Schwaben (1177- 1208) war . In seinem

Auftrag wurden auch die AlfonsinischenTafeln berechnet (abgeschlossen 1272) , die zur

Ortsbestimmung von Sonne , Mond und den fünf bekannten Planeten dienten . Trotz
ihrer Schwächen blieben sie bis zur Aufstellung der Prutenischen Tafeln (1551) durch
Erasmus Reinhold (1511- 1553) und schließlich der Rudolphinischen Tafeln (1627

[siehe Seite 201 ff.]) durch Johannes Kepler (1571- 1630 ) in Gebrauch . Alfons X.
gründete außerdem in Toledo eine Übersetzerschule , der wir viele Übersetzungen aus

dem Arabischen ins Lateinische verdanken .
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6 . 1 Definition und Eigenschaften
Bei einer Potenz mit positiver Basis a kann bekanntlich als Exponent x jede
reelle Zahl gewählt werden ; ax ist dann stets eine eindeutig bestimmte positive
Zahl . Durch die Zuordnungsvorschrift x \- * ax wird also eine Funktion
erklärt , die für a > 0 die Definitionsmenge [R hat und deren Wertemenge nur
positive Zahlen enthält . Eine solche Funktion , bei der die Variable im
Exponenten steht , heißt Exponentialfunktion .

Definition 124 . 1 : Die Funktion / : x \—> ax
Exponentialfunktion mit der Basis a .

mit a > 0 und x e [R heißt

Wegen a° = 1 hat jede Funktion xi- * ax an der Stelle x = 0 den Wert 1 ; die
Graphen dieser Funktionen enthalten alle den Punkt (0 | 1 ) .
Eine Exponentialfunktion x \—> ax ist durch Angabe ihrer Basis vollständig
bestimmt . Da es bei einer Potenz einen wesentlichen Unterschied ausmacht ,ob die Basis größer , gleich oder kleiner als 1 ist, untersuchen wir im folgenden
diese drei Fälle getrennt .
(1) Die Exponentialfunktion x i—►l x , x e IR
Da stets l x = 1 gilt , enthält die Wertemenge dieser Funktion nur die Zahl 1 , es
handelt sich also um eine konstante Funktion . Die Funktionsgleichung y = l x
ist gleichwertig mit y = 1 , der Graph ist somit die Parallele zur v-Achse durch
den Punkt (011 ) .
(2) Die Exponentialfunktionen x i—►ax

, x e IR, mit a > 1
Nach dem Monotoniegesetz von Satz 88 . 1 wächst im Fall a > 1 der Potenz¬
wert mit dem Exponenten , d . h . , es gilt
x l < x2 o a Xl < a X2 .
Die Funktion x i—> ax ist also für a > 1 echt monoton zunehmend . Abbildung
125 . 1 zeigt den Graphen der Funktion xi—> 2*

, der sich mit Hilfe einer
Wertetabelle leicht zeichnen läßt . * Der Funktionswert verdoppelt sich bei
xi—> 2* jeweils , wenn man x um 1 vergrößert . Das bewirkt , daß die
Funktionswerte mit wachsendem x beliebig groß werden , also jede noch so
große Zahl übertreffen . Man kann sich leicht klarmachen , wie schnell sie
wachsen ; z . B . gilt wegen 210 = 1024 > 103 auch 2 20 > 106

, 2 3O > 109 ,
1 1240 > 10 12 usw . Wegen 2 ~ x = — gilt andererseits 2 “ 10 = - < 10 3 ,2 1024

Statt »Graph der Funktion xk/ (x )« bzw . »Graph mit der Gleichung ; ; = f (x)« verwenden wir im folgendenauch die kürzere Sprechweise »Graph y ~ / (x)«.
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Abb . 125 . 1 Graph der Funktion xt—>2:

2 - 20 < 10 - 6
, 2 - 3O < 10 _ 9

, 2 ~ 4O < 10 - 12 usw . ; es gibt also auch beliebig nahe
bei null liegende Funktionswerte . Der Graph der Funktion nähert sich nach
links hin beliebig der x-Achse . Man erkennt so , daß die Wertemenge der
Funktion x i—>■2 X

, x e IR , alle positiven Zahlen umfaßt , also die Menge [R + ist . *

Die vorausgehenden Feststellungen gelten nicht nur für die Basis 2 . Es läßt
sich vielmehr zeigen , daß jede Exponentialfunktion xi—> ax

, deren Basis
a größer als 1 ist , die Wertemenge [R + hat ; die Funktionswerte werden mit
unbeschränkt wachsendem x beliebig groß , mit unbeschränkt abnehmendem
x nähern sie sich beliebig der Zahl 0 .

Ein Beweis für diese Behauptung sei im folgenden kurz beschrieben . Wir wählen dazu
für die Basis die Darstellung a = 1 + h mit h > 0 . Die Beispiele

a 2 = (1 + h)2 = 1 + 2h + h2 > 1 + 2h
a 3 = (1 + h) 3 = 1 + 3A + 3h 2 + h3 > 1 + 3 h
a4 = ( 1 + k)4 = 1 + 4h + 6h 2 + Ah3 + h4 > 1 + 4h

lassen vermuten , daß für jede natürliche Zahl n 2 die Abschätzung (1 + h)n > 1 + nh
gilt . Daß dies zutrifft , erkennt man , indem man sich die Berechnung von ( 1 + h)n als
Ausmultiplizieren von n Klammern vorstellt :

( 1 + h)n = . . .Jl + h)

Die Zahl 1 ergibt sich, wenn man in jeder Klammer den ersten Summanden nimmt
(schwarze Bögen) . Wählt man aus der ersten Klammer den Summanden h und aus
allen übrigen die 1 , so erhält man 1 • h (rote Bögen) . Dasselbe Produkt ergibt sich aber

Daß wirklich alle positiven reellen Zahlen als Funktionswerte auftreten , daß also keine Lücken Vorkommen ,
werden wir uns im Abschnitt 7.1 noch genauer klarmachen .
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auch , wenn man in der 2 . bzw . 3 . bzw . 4 . . . . bzw . «-ten Klammer den Summanden h und
in allen anderen die 1 wählt . Man erhält also genau n Produkte mit dem Wert h . Dazu
kommen noch weitere Produkte , in denen der Faktor h mindestens zweimal auftritt ;
wegen h > 0 sind diese Produkte positiv . Daher gilt für n ^ 2 :

( 1 + h)n = 1 + nh + positive Glieder > 1 + nh .
Mit wachsendem n wird bereits 1 + nh beliebig groß , die Punkte (n | 1 + nh) liegenja auf
einer steigenden Geraden (Abbildung 126 . 1 ) . Also nimmt erst recht ( 1 + h)n beliebig
große Werte an . Wegen der echten Monotonie gilt dann allgemein , daß ( 1 + h)x mit

1unbeschränkt wachsendem x beliebig groß wird . Umgekehrt nähert sich - — =
( 1 + nf

= (1 + h)
~ x mit wachsendem x , also mit abnehmendem Exponenten — x , beliebig der

Zahl 0 .

Abb . 126 .1 Veranschaulichung von (1 + h)n > 1 + nh für n e IN \ { 1 } mit h

Wir wollen nun zwei verschiedene Exponentialfunktionen , deren Basen
größer als 1 sind , miteinander vergleichen :
f {. xv ^ a\ und / 2 : xi — mit l < a 1 < a2 .
Nach dem Monotoniegesetz von Satz 87 . 1 gilt für x > 0 auch ax < a2 .
Bei positivem Exponenten x gehört zur größeren Basis auch der größere
Funktionswert ; der Graph y — a2 verläuft im 1 . Quadranten also über dem
Graphen y = a\ .
Bei x = 0 haben die Graphen den Punkt (0 j 1 ) gemeinsam .
Was gilt für negative Exponenten x? Aus der für jedes x =t= 0 gültigen
Beziehung d ' x '' < ajf 1 folgt für x < 0 :

a 1
x < a2

x <s> — < — <t> a\ > a\ .a x al
Unter der Voraussetzung 1 < a 1 < a2 gehört also bei negativem Exponenten
x zur kleineren Basis der größere Funktionswert ; der Graph y = a2 verläuft
im 2 . Quadranten unter dem Graphen y = ax .
In Abbildung 127 . 1 sind die Zusammenhänge an einigen Beispielen veran¬
schaulicht . Beachte , daß die grau gerasterten Gebiete von den Graphen y = ax
mit a > 1 nicht erfaßt werden .
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Abb . 127 . 1 Graphen der Funktion xi-+ a x für a = 1,1 ; fl = 1,5 ; a = 2 ; a = 10

(3) Die Exponentialfunktionenx i—>■ ax
, x e IR, mit 0 < a < 1

Nach dem Monotoniegesetz von Satz 88 . 1 sind diese Funktionen echt
monoton abnehmend . Abbildung 127 .2 zeigt den Graphen von x i- » C2 )x

. Ein
Vergleich mit Abbildung 125 . 1 läßt vermuten , daß er durch Spiegelung des
Graphen y = 2* an der p-Achse entsteht . Tatsächlich gilt für zwei entgegen¬
gesetzte x-Werte, nennen wir sie t und — t , die Gleichung ( l )1 = 2 ~ ‘

. Die
Punkte ( tKjf ) und ( — 1 \ 2

~ ‘) liegen also , da sie entgegengesetzte Abszissen
und gleiche Ordinaten haben , symmetrisch zur y-Achse .

Abb . 127 .2 Graph der Funktion
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Abb . 128 . 1 Symmetrie der Graphen y = ax und y = Ca )x

Ganz allgemein kann man durch die Umformung ax = j die Unter¬

suchung der Exponentialfunktionen mit 0 < a < 1 auf den Fall (2) zurück -
1 fl \ ~ x

führen , da nun - > 1 gilt . Der Graph y = I - ) , d . h . y = ax
, geht aus der

Kurve y = durch Spiegelung an der y-Achse hervor . Also liegen die
IV

Graphen ; ; = ax und y =
y

~
j symmetrisch zur y-Achse , wie Abbildung 128 . 1

zeigt . Aus den Ergebnissen von (2) erhält man damit :

Abb . 128 .2 Graphen der Funktion xt—> ax für a
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Für 0 < a < 1 sind die Funktionen xi—> a*
, xe (R , echt monoton abnehmend

und haben die Wertemenge [R +
. Ihre Graphen gehen durch den Punkt (011 )

und nähern sich nach rechts hin beliebig der x-Achse , nach links hin werden
die Ordinaten beliebig groß . Für zwei Funktionen xiund xi— mit
0 < a 1 < a2 < 1 gilt auch jetzt wieder : Der Graph y = a\ verläuft im 1 . Qua¬
dranten über , im 2 . Quadranten unter dem Graphen y = a\ . (Abbildung
128 .2)
Wir fassen die wichtigsten Ergebnisse zusammen in

Satz 129 . 1 : Die Exponentialfunktionen xi—> a* mit a > 0 haben die
Definitionsmenge [R und , falls a =t= 1 , die Wertemenge tR +

. Für a > 1
sind sie echt monoton zunehmend , für 0 < a < 1 echt monoton
abnehmend . Alle Graphen gehen durch den Punkt (0 | 1 ) .

Abbildung 129 . 1 vermittelt eine Vorstellung vom »Büschel« der Graphen
y = ax mit beliebigen positiven Basen .

Abb . 129 . 1 Graphen von Exponentialfunktionen

Aufgaben
1 . Zeichne in einem Koordinatensystem mit Längeneinheit 1 cm die Gra¬

phen folgender Funktionen :
a) xi—> 3*

; — 2,5 ^ x ^ 2,5
c) xi—» 1,4*

; — 8 ^ x 8
b) XK> (| )*

; - 2,5 ^ x ^ 2,5
d) xi—> 0,75 *

; — 8 ^ x ^ 8
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2 . Zeichne die folgenden Graphenpaare :
a) y = 1,2* und y = (f )*

; - 10 g x ^ 10
b) y = (W und y = (^ )*

; - 4 ^ x ^ 4
c) y = 0,625* und y = 1,6*

; — 5 ^ x ^ 5

3 . Bestimme diejenige Exponentialfunktion , deren Graph durch den angege¬
benen Punkt geht .
a) (219 ) b) (2 (7) c) (3 | £ ) d) (1,5 | 8)
e) ( - 5 | 32) f) ( — 711) g) ( - ili ) h) (]/819 1/2 )

4 . Gibt es eine Exponentialfunktion , deren Graph den folgenden Punkt
enthält ?
a) (110) b) (0 | 1 ) c) (0 | 3) d) ( — 215) e) (5 | - 2)

5 . a) Zeichne den Graphen von x t- > 2* und entwickle daraus die Graphen
von x i—►2* — 3 und x i- » 2* + 1,5 .

b) Wie erhält man allgemein aus dem Graphen y = ax die Kurve mit der
Gleichung y = ax + c ?

6. a) Zeichne den Graphen von x i—> 0,7* und entwickle daraus die Graphen
von xi—> 0,7* + 2 und xi—> 0,7* - 1,5 .

b) Wie erhält man allgemein aus dem Graphen y = ax die Kurve mit der
Gleichung y = tz* + c ?

7 . a) Zeichne die Kurve mit der Gleichung y = 1,5 2* und weise nach , daß es
sich dabei um den Graphen einer Exponentialfunktion x i- > ax handelt .
Wie groß ist in diesem Fall die Basis a?

b) Skizziere die Kurve ^ = l,2 3 <* - 4> und zeige, daß man sie aus dem
Graphen einer Funktion xi- > a* durch eine Verschiebung erzeugen
kann . Gib den entsprechenden Wert von a und den Verschiebungs¬
vektor an .

c) Löse die in b) gestellte Aufgabe für die Kurve y = 1,23 * - 4 .
d) Begründe , daß jede Kurve mit der Gleichung y = uvx + w

, u > 0 , v 4= 0 ,
aus dem Graphen einer Funktion xi—* ax durch eine Verschiebung
hervorgeht . Wie hängen a und der Verschiebungsvektor von u , v und
w ab?

8 . a) Vergleiche die beiden Funktionen x i—> 0,25 • 2* und x i- * 2X~ 2 an Hand
einer Wertetabelle . Begründe sodann den offenbar zwischen ihnen
bestehenden Zusammenhang .

b) Zeige , daß jede Funktion mit der Gleichung y = uvx + w
, mit u > 0 und

v 4= 0 , auch durch eine Gleichung der Form y = c - ax beschrieben
werden kann . Wie hängen dabei a und c von u , v und w ab?

9. a) Zeichne in einem Koordinatensystem die Gerade y = 3x + 1 und die
Kurve y = 2*

. Im Schnittpunkt (011 ) verläuft die Kurve flacher als die
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Gerade , sie wird aber mit wachsendem x immer steiler und übersteigt
schließlich die Gerade . Bestimme die kleinste natürliche Zahl n , für die
2" > 3« + 1 gilt .

• b) Die Funktion xi—> 2X übertrifft für hinreichend großes x sogar jede
lineare Funktion x i—> mx + 1 , auch bei noch so großer Steigung m . Gib
als Beispiel dafür zu
1) m = 10 2) m = 1000 3) m = 100000
die kleinste natürliche Zahl an , für die 2X > mx + 1 gilt .
(Taschenrechner verwenden !)

S c) Jede Exponentialfunktion xi- > aJ mit a > 1 wächst schließlich (d . h . bei
hinreichend großen x-Werten ) schneller als jede lineare Funktion !
Bestätige dies bei den folgenden Beispielen durch Angabe der kleinsten
natürlichen Zahl , für die ax > mx + 1 gilt . (Taschenrechner !)
1) xi—» lj * und xi—> 100x + l
2) xi—►1,01* und xi—>- 100x + l
3) xi—►1,01 * und xi—GOOOx + 1

10 . Das exponentielleWachstum , d . h . das Wachstum einer Exponentialfunk¬
tion xi—» a* mit a > 1 , übertrifft nicht nur dasjenige jeder linearen
Funktion (vgl . Aufgabe 9) , sondern sogar das Wachstum jeder Potenz¬
funktion x i—> x r mit r e (R +

. Überzeuge dich davon an folgenden Beispie¬
len:
a) Zeichne in einem Koordinatensystem mit Längeneinheit 5 mm die

Graphen der Funktionen xi—> 2* und xi—> x 2 für 0 A x A 4,5 . Von
welcher Stelle ab gilt stets 2X ^ x 2 ?

b) Bestimme an Hand einer Wertetabelle mit xelt \l 0 diejenigen natürli¬
chen Zahlen , für welche 2X > x 3 gilt.

c) Vergleiche an Hand einer Wertetabelle mit xe (0,1,10,100,1000 } das
Wachstum der Funktionen xh -> 1,1 x und xi- >- x 10

. Bestimme die
kleinste natürliche Zahl n , für die 1,1 , 0°" > (100h) 1 0 gilt.

11 . Wenn man ein Kapital über lange Zeit anlegt, werden am Ende jedes
Jahres die Zinsen »zum Kapital geschlagen« und im nächsten Jahr
ebenfalls verzinst . Man spricht dann bekanntlich von Zinseszins . *

a) Die Vermehrung eines Kapitals K0 um den Zins Z im Laufe eines
Jahres kann man als Multiplikation von K0 mit einem Faktor q > 1
beschreiben . Wie wird dieser Faktor aus dem Zinssatz p % berechnet ?

b) Auf welchen Wert Kn wächst K0 beim Zinssatz p % in n Jahren an?

Was ergibt sich speziell für
1 ) K0 = 1000 DM , p = 4 % , n = 5
2) K0 = 1000 DM , p = 4 % , n = 10
3) K0 = 1000DM , p = 8 % , n = 5 ?

Zu den Wörtern Kapital , Zins und Zinseszins siehe die Fußnote auf Seite 148.
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c) Um wieviel Prozent seines Anfangswertes wächst ein Kapital
1 ) bei 10 % in 5 Jahren ; 2) bei 5 % in 10 Jahren ;
3) bei 10 % in 10 Jahren ?

d) 2500 DM werden zu 5,5 % angelegt . Der Anleger möchte erreichen ,
daß sein Guthaben auf 10000 DM anwächst ! Wieviel Jahre würde das
(ungefähr ) dauern ? Nach welcher Zeit hat sich das Kapital (ungefähr )
verdoppelt ?

e) Löse Aufgabe d) für p = 8 % .
12 . Das Wachstumeiner Pilzkulturverläuftunter gleichbleibenden Bedingun¬

gen nach einer Exponentialfunktion . In einem bestimmten Fall gelte für
die aus 1 g Pilzsubstanz in x Tagen entstandene Masse y g das Wachstums¬
gesetz y = 2° ' 25x

. Nach wieviel Tagen hat sich die Masse verdoppelt bzw.
vervierfacht bzw . verachtfacht ?

13. Bei der Entladung eines Kondensators über einen Widerstand nimmt die
Stromstärke / nach einer Exponentialfunktion ab . In einem speziellen Fall
sei / = 0,38 A • io ( ~ 162/s )(

, wobei t die seit Beginn der Entladung verstri¬
chene Zeit bedeutet . Nach welcher Zeit ist die Stromstärke auf 1 % bzw.
auf 1 %0 ihres Anfangswertes gesunken ?

14. Das mit der Basis \ geschriebene Zerfallsgesetz für das radioaktive
Element Radium 223 lautet : N ( t) = N0

• ( ) ) (0 -086/d) ' . Dabei ist N0 die Zahl
der zur Zeit t = 0 und N (t) die Zahl der zur Zeit t vorhandenen
Radiumatome .
a) Nach wieviel Tagen ist die Hälfte der anfangs vorhandenen Atome

zerfallen (sog . Halbwertszeit ) ?
b) Wieviel Promille der Radiumatome sind nach 100 Tagen noch vorhan¬

den?
15 . Beim Element Radium 226 beträgt die Halbwertszeit 1620 Jahre .

a) Bestimme den Wert von c im Zerfallsgesetz N { t) = N0 2ct für Radium
226 .

b) Wieviel Prozent einer Menge von Radium 226 sind
1 ) nach 1000 Jahren 2) nach 2000 Jahren 3) nach 10000 Jahren
noch vorhanden ?

16 . Im Jahre 1825 betrug die durchschnittliche wöchentliche Arbeitszeit
der deutschen Arbeiter 82 Stunden ! Die seitherige Entwicklung dieser
Arbeitszeit wird näherungsweise durch die Funktion x \- > T(x) =
= 82 • 0,9955* “ 1825 beschrieben ;

* dabei bedeutet x die Jahreszahl und
T (x) die Anzahl der wöchentlichen Arbeitsstunden .
a) Welche Arbeitszeit ergibt sich danach für die Jahre 1875 , 1960 , 1980 ?

(Die erhaltenen Werte stimmen gut mit den statistisch ermittelten
überein .)

* W. Schmidt : Mathematikaufgaben , Klett -Verlag , 1984
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b) Welche Arbeitszeit ergäbe sich daraus für das Jahr 2000?
Erscheint sie dir realistisch ?

17 . In einem Zeitungskommentar zum Weltbevölkerungsbericht 1990 der
UNO heißt es : »Heute leben 5,3 Milliarden Menschen auf der Erde , im
Jahre 2000 werden es weit über 6 Milliarden sein.« *

a) Bei wieviel Promille jährlicher Zunahme würde die Weltbevölkerung
bis zum Jahre 2000 auf 6,0 Milliarden anwachsen ?

b) Es gibt Länder mit besonders hoher Wachstumsrate ; z . B . betrug sie
nach dem UNO -Bericht im Irak 3,4 % pro Jahr . Wieviel Menschen
würden im Jahre 2000 auf der Erde leben , wenn diese Rate weltweit
gültig wäre ?

6 .2 Geometrische Folgen und Reihen

Die berühmte Anekdote von der Erfindung des Schachspiels * * findet man
zum erstenmal bei dem arabischen Historiker al -Jaqübi (um 880 n . Chr .) . Er
schreibt :

Gelehrte Indiens behaupten , daß sich ein Rebell gegen Königin Hawsin , die ein

kluges Weib war , erhob . Da sandte sie einen Sohn aus [ . . .] , den der Rebell tötete .
Das Volk ihres Reichs [ . . .] scheute sich, es ihr zu sagen . Sie versammelten sich bei
einem Weisen namens Qaflän . [ . . .] Er sagte : »Wartet auf mich drei Tage.«

Al -Jaqübi berichtet nun , daß und wie Qaflän in diesen drei Tagen das

Schachspiel erfand und mit einem Schüler durchspielte , dem er dabei erklärte :

»Das ist ein Krieg , ohne daß die Seelen davongehen .«

Und später heißt es dann bei al -Jaqübi :

Der Königin wurde die Geschichte über Qaflän berichtet . Sie ließ ihn kommen und
befahl ihm , ihr seine Weisheit zu zeigen. Er ließ seinen Schüler und das Schach
kommen . [ . . .] Einer von ihnen überwand seinen Gefährten [und sagte] »Schah
mät « . Die Königin verstand den Wink [ . . .] und sagte zu Qaflän : »Mein Sohn ist

getötet .« Er antwortete : »So ist es .« Da sagte sie zu ihrem Kämmerer : »Laßt die
Leute zum Kondolenzbesuch herein .« Anschließend ließ sie Qaflän kommen und

sagte ihm : »Verlange, was du wünschst .« Da antwortete Qaflän : »Ich bitte mir

* Süddeutsche Zeitung vom 25 ./26 .8 . 1990
** Das Wort Schach ist persisch -arabischen Ursprungs . Es hat sich aus dem Ruf »Schah mat « - »Der König ist

tot « - verselbständigt . Der Ursprung des Schachspiels liegt im Dunkeln der Geschichte . Angeblich soll 569

der chinesische Kaiser Wu -Ti (561 - 578) eine Art Orakel -Urschach erdacht haben , das von vier Personen zu

spielen war . Verwandt damit ist das um 570 belegte indische Tschatur -anga - »Das Vierteilige « ein

Kriegsspiel , bei dem die Figuren die vier Waffengattungen symbolisieren (Infanterie = Bauern , Kavalle¬

rie — Springer , Kriegswagen — Läufer , Kriegselefanten — Türme ) , mit denen bereits König Poros 326

v . Chr . am Fluß Hydaspes (heute Jhelum ) Alexander dem Grossen entgegentrat . Ein mittelpersischer
Roman aus der Zeit um 600 berichtet von seinem Helden Ardaschir , daß er geschickter sei als seine

Gefährten im Ballspiel , Reiten und dem Schach - Tschatrang . Aus diesem Wort wird um 650 das arabische

Schatrandsch . Um 850 entstand das erste arabische Schachbuch . Das Interesse für dieses Spiel muß sehr

groß gewesen sein ; denn verboten wurde es 1011 durch den Fatimidenkalifen al -Hakim (996- 1021) in

Kairo , 1212 auf dem Konzil zu Paris und 1254 von König Ludwig IX . dem Heiligen (* 1214 , reg .

1226- 1270) von Frankreich .
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Getreide zu geben entsprechend der Zahl der Felder des Schachbretts , und zwar so ,daß mir auf das erste Feld ein Korn gegeben wird , [dann dieses mir auf dem zweiten
Feld verdoppelt wird,] dann daß mir auf dem dritten Feld das Doppelte des zweiten
gegeben wird und daß entsprechend dieser Rechnung bis zum letzten Feld
fortgefahren wird .« *

Die Fortsetzung dieses Berichts wollen wir noch etwas zurückstellen und uns
überlegen , wieviel Körner auf die einzelnen Felder des Schachbretts treffen .
Man erhält folgenden Tabellenanfang :
Nummer des Feldes 1 2 3 4 5 6 7 8 9 10 . . .
Zahl der Körner 1 2 4 8 16 32 64 128 256 512 . . .
Die vollständige Tabelle enthält also in der ersten Zeile die natürlichen Zahlen
von 1 bis 64 ; darunter stehen die Zweierpotenzen 2°

, 2 1
, 22

, . . . bis 263
. Es

handelt sich um die ausführliche Beschreibung einer Funktion mit der
Definitionsmenge D = { 1,2,3, . . . ,64 } ; jeder Zahl neD wird der Funktions¬
wert 2" ' 1 zugeordnet . Diese Funktion kann man sich aus der Exponential¬
funktion x i—> 2X ~ \ xelR , dadurch entstanden denken , daß man die Defini¬
tionsmenge auf (1,2,3, . . . , 64} einschränkt . Daß man hier nur die natürlichen
Zahlen bis 64 verwendet , hängt mit der Felderzahl des Schachbretts zusam¬
men . Man kann sich aber die Tabelle ohne Ende fortgesetzt denken , so daß die
Definitionsmenge der entsprechenden Funktion die ganze Menge IM der
natürlichen Zahlen ist . Solche Funktionen treten in der Mathematik häufig
auf ; man verwendet für sie besondere Bezeichnungen :

Definition 134 . 1 : Eine Funktion mit der Definitionsmenge IM heißt
Zahlenfolge. Den der Zahl n zugeordneten Funktionswert bezeich¬
net man mit an und nennt ihn das n-te Glied der Zahlenfolge . * *

In unserem Beispiel gilt also:
a x = 1 , ö2 = 2 , ß3 = 4 , a4 = 8 , . . . , allgemein an = 2" _ 1 .
Offensichtlich kann man aus jeder Funktion , deren Definitionsmenge alle
natürlichen Zahlen enthält , eine Zahlenfolge gewinnen , indem man die
Definitionsmenge auf IM reduziert .
Beispiel 1 :

Aus f : x i—►x z
, xe IR , erhält man die Zahlenfolge a x = 1 , a2 = 4 , a3 = 9 ,

a4 — 16, . . . , also die Folge der Quadratzahlen .
Beispiel 2:

1Aus f : x xe \R +
, erhält man die Zahlenfolge a x = 1 , a2 = j , a 3 =

a4 = \ , also die Folge der Stammbrüche .
* Noch heute heißen die Schachfelder im Indischen und Persischen Kornkammern .

** Diese Definition stammt von Giuseppe Peano (1858- 1932) aus seinem Formulaire de mathematiques , II -§1,
von 1897.
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Die zu unserem Schachproblem gehörende Zahlenfolge entspricht , wie wir
schon feststellten , einer Exponentialfunktion . Mit solchen Zahlenfolgen
wollen wir uns hier genauer befassen . Weitere Beispiele dazu sind

Beispiel 3 :
Aus / : x i—►2 - 3*

, xe (R , erhält man die Zahlenfolge a x = 6 , a 2 = 18 ,
a 3 = 54 , a4 = 162 , allgemein an = 6 - 3 " - 1 .

Beispiel 4 :
Aus/ : xi —> 100 • 0,5 *

, xe (R , erhält man die Zahlenfolge a x = 50 ; a2 = 25 ;
a3 = 12,5 ; a4 = 6,25; . . . ; allgemein an = 50 - 0,5" ~' 1 .

Man erkennt , daß die Glieder dieser Zahlenfolgen sich einfach dadurch
ergeben , daß man , ausgehend von a x =|= 0 , immer wieder mit einem Faktor q ,
nämlich der Basis der Exponentialfunktion , multipliziert . Zur Vereinfachung
bezeichnen wir im folgenden das 1 . Glied mit a . Damit gilt:

a x = a , a2 = a - q , a3 = a2 q = a - q2
, a4 = a3 q = a - q 3

, . . . ;
allgemein gilt also an = a - q" ~ 1

, ne INI.

Die Zahl q kann auch als Quotient aufeinanderfolgender Glieder gedeutet
werden :

# 2 # 3 ^ 4 , @n + 1 ni
q = — = — = — = • ■• , also q = - , ne (Kl .

a x a2 a 3 an
Bei solchen Zahlenfolgen besteht auch eine interessante Beziehung zwischen
drei aufeinanderfolgenden Gliedern :

Aus q = = folgt at = an _ 1
- a„ + 1 bzw . \an \ = 1fa n _ x

- an + l ;
ß„ - i an

daher ist \ an \ das geometrische Mittel aus den beiden Nachbar gliedern . Diese
Eigenschaft erklärt die für solche Zahlenfolgen übliche Bezeichnung :

Definition 135 .1 : Eine Zahlenfolge a x , a2 , a3 , . . . mit dem Bildungsgesetz
an = a - qn ~ l (ne IN , a 4= 0 , q 4= 0 , q 4= 1 ) heißt geometrische Folge , a ist
das Anfangsglied und q der Quotient der geometrischen Folge .

In Beispiel 3 handelt es sich also um die geometrische Folge mit dem An¬
fangsglied 6 und dem Quotienten 3 , in Beispiel 4 um die geometrische Folge
mit dem Anfangsglied 50 und dem Quotienten 0,5 .

Zurück zur Schachbrettaufgabe ! Die Anzahlen der Körner auf den einzelnen
Feldern sind die ersten 64 Glieder der geometrischen Folge mit a = 1 und

q = 2 . Die Gesamtzahl der Körner , die der Erfinder des Schachspiels als Lohn
verlangte , ist die Summe aus diesen 64 Folgegliedern :

^ 54 = a x + a 2 + a 3 + . . . + a M = 1 + 2 + 4 + . . . + 2 63
.
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So viele Körner sollte also Qaflan erhalten ! Die Fortsetzung des Berichts von
Seite 134 lautet :

Da sagte sie : »Und wieviel macht das aus ?« Hierauf befahl sie , daß der Weizen
herbeigebracht werde . Und er reichte nicht aus , selbst als die Getreidevorräte des
Landes erschöpft waren ; dann wurde das Korn in Geld umgewertet , bis der Schatz
erschöpft war . Da dies nun viel war , sagte er : »Ich brauche das nicht , mir genügt eine
geringe Menge von irdischem Gut .« Dann fragte sie ihn nach der Zahl der Körner ,
die er verlangt hatte .

Offenbar muß man sich also beim Versuch , .v64 zu berechnen , auf Schwierig¬
keiten gefaßt machen . Es handelt sich hier allgemein um das Problem , die
Summe aus den ersten n Gliedern einer geometrischen Zahlenfolge zu
bestimmen . Man bezeichnet eine solche Summe als endliche geometrische
Reihe .

Definition 136 . 1 : Die Summe a + a - q + a - q
2 + a - q 3 + . . . + a - qn ~ 1

(a #= 0 , q =1= 0 , q 4= 1 ) heißt endliche geometrische Reihe, der mit sn
bezeichnete Summenwert heißt Wert der Reihe .

Da die Bestimmung des Reihenwertes durch gliedweises Addieren im
allgemeinen sehr mühsam sein dürfte , empfiehlt es sich, nach einer Formel für
die Summe zu suchen . Eine solche läßt sich für endliche geometrische Reihen
tatsächlich leicht gewinnen . Man benützt z . B . die Tatsache , daß im Produkt
q ■sn viele der in sn enthaltenen Summanden wieder auftreten :

sn = a + a - q + a - q 2 + a - q 2 + . . . + a - q " ” 1 (I)
q - sn = a - q + a - q 2 + a - q 2 + . . . + a - q " - 1 + a - qn (II )

Bildet man nun die Differenz aus den Gleichungen (I) und (II) , so fallen alle
untereinanderstehenden Glieder weg, und man erhält
s„ (l — (?) = a ' (1 — qn) - Wegen q =j= 1 ergibt sich

s = a - 1 - qn

1 - q
oder auch 1

s„ = fl -
q - 1 (III )

Ein anderer Weg zur Herleitung dieser Summenformel ergibt sich aus der auf
Seite 44 bewiesenen Gleichung ( ■ )

— bn = (fl — 6) (a ” _ 1 + a ” ~ 2 b + an ~ 3 b 2 + . . . + abn ~ 2 + bn ~ 1) .
Setzt man a = 1 und b = q , so erhält man
1 — qn = ( 1 - q) {\ + q + q 2 + . . . + qn ~ 2 + #" “ 1) ,
woraus für q 4= 1 die Beziehung

1 + q + q 2 + . . . + q n 1 = -
4
— — folgt .i - q
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Da s„ = a + a - q + a - q 2 + . . . + a - qn ~ 1 = a - ( \ + q + q
2 + . . . + q n ~ ^ gilt , er¬

hält man wieder das Ergebnis (III ) , das wir schon bei Euklid - natürlich
anders formuliert - als Satz 35 in Buch IX seiner Elemente finden .

Satz 137 .1 : Die endliche geometrische Reihe
a + a ■q + a ■q2 + . . . + a ■qn ~ 1 (<z #= 0 , q 4= 0 , <? =M )

1 - qn
hat den Wert s„ = a - - .i - q

Damit sind wir nun in der Lage , die von Qaflan geforderte Zahl von
Weizenkörnern anzugeben . Mit a = 1 und q = 2 gilt :

Qaflan hat allerdings seine Antwort etwas umständlicher formuliert . Der

Bericht schließt so:

Da sagte er : [ . . .]
»Die Gesamtsumme auf dem Schachbrett ist 18 446 744 073 709 551 615 .«

Aufgaben
1 . Wie heißen die ersten fünf Glieder der geometrischen Folge mit

a) a = 5 ; g = 2 b) u = — 3 ; <7 = i c) a = l ; q = — 2

d) u = 10; q = - 0,2 e) a = 8 ; q = Vl f) a = - 8 ; q = - ^3 .

2 . Bestimme a und q für die geometrische Folge mit

a) a2 = — 4 ; a3 = 16 b) a3 = 4 ; a4 = 2
c) a2 = 0,25 ; u4 = 2,25 d) a3

= — 3 ; a6 = 24 .
Ist die Lösung jeweils eindeutig ?

3 . Zeichne den Graphen der Zahlenfolge für n 10 .
a) a„ = 1,2" - 1 b) u„

= 2 ( - l,2 )" - 1

c) a„ = 5 • 0,5" ' 1 d) a„ = — 8 ( — 0,8)” _ 1

4 . Etwas älter als die Textstelle aus dem Papyrus Rhind, die wir in Aufgabe
19/26 behandelt haben , ist das Problem der altbabylonischen Keilschrift¬
tafel SKT 362 (um 1900 v . Chr .):
Eine Strecke , 1 Elle 1 Finger lang , immer um sich selbst verdoppelst du
und bildest die volle Summe . [ . . .] Bis 1 GAR 3 ) Ellen bin ich gegangen .
[6m = 1 GAR = 12 Ellen ; 1 Elle = 30 Finger ]
Aus der im Text angegebenen Lösung ergibt sich die Frage : Aus wieviel
Stücken ist die Gesamtstrecke zusammengesetzt ?
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5 . Beim DIN -Papierformat sind Länge / und Breite b (mit l > b) so auf¬
einander abgestimmt , daß durch Halbieren der Länge (z . B . durch Falten )
ein dem ganzen Blatt ähnliches kleineres Rechteck entsteht . *
a) Zeige, daß bei den durch fortgesetztes Halbieren der jeweiligen Längen

entstehenden Rechtecken sowohl die Längen als auch die Breiten eine
geometrische Folge bilden . Wie groß sind die Quotienten ?

b) Das Format DIN AO ist ein Rechteck mit 1 m2 Flächeninhalt . Durch
fortgesetztes Halbieren entstehen daraus die Formate Al , A2 , A3, . . .
1) Bestimme Länge und Breite des Formats AO .
2) Berechne Länge , Breite und Flächeninhalt des Formats DIN A4

(großes Heftformat ) und DINA5 (kleines Heftformat ) .
6 . Ein Blatt Papier , das 0,1 mm dick ist , wird n -mal gefaltet . Wie dick ist der

entstehende Stapel für a) n = 5 b) n = 10 c) n = 15 ?
7 . Berechne den Wert sn der geometrischen Reihe :

a) a = 1 ; q = 2 ; n = 5 b) a = 1 ; q = 2 ; n = 10
c) a = 10; q = 0,5 ; n = 5 d) a = 10; q = 0,5 ; n = 10
e) a = 5 ; q = — 1 ; n = 10 f) a = 5 ; q = — 1 ; n = 11

8 . a) Das fünfte Glied einer geometrischen Folge mit q = 1,5 heißt 20,25.
Berechne s5 .

b) Das erste Glied einer geometrischen Folge heißt 100 , das vierte Glied
— 12,5 . Berechne s10 .

c) Die Summe aus den ersten fünf Gliedern einer geometrischen Folgemit q = 0,6 hat den Wert 288,2 . Wie heißt der letzte Summand ?
• d) Die Summe der ersten drei Glieder einer geometrischen Folge ist 7 , der

letzte Summand heißt 1 . Berechne die beiden anderen Summanden .
• 9 . Aufgabe 28 aus Kapitel LXVI der Practica Arithmeticae (1539 ) des

Geronimo Cardano (1501- 1576 ) , die 1544 Michael Stifel (1487 ?- 1567 )in seine Arithmetica integra (fol . 304r) übernimmt :
Die ersten drei Zahlen einer geometrischen Folge mit positivem Anfangs¬
glied haben folgende Eigenschaft : Dividiert man 25 durch jedes Glied und
addiert die drei Quotienten , dann erhält man sowohl die Summe der drei
Glieder wie auch ihr Produkt . Wie heißen sie?

10. Aus fol . 313r der Arithmetica integra (1544) des Michael Stifel :
Die ersten drei Glieder einer geometrischen Folge mit positivem Quo¬tienten ergeben zusammen 119 . Multipliziert man die Summe des ersten
und dritten Gliedes mit der Summe aus den Differenzen des dritten und
zweiten bzw . des zweiten und ersten Gliedes , so ergibt sich 4335 . Wie
heißen die Glieder ?

* Dieses Papierformat wurde 1922 vom Normenausschuß für die Deutsche Industrie durch das Normenblatt
DIN 476 festgelegt . Die Idee dazu hatte 1911 der Chemiker (Nobelpreis 1909) und Philosoph Wilhelm
Ostwald (2 .9 . 1853 Riga - 4 .4 . 1932 Großbothen bei Leipzig ) .
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11 . Aufgabe 83 aus Kapitel LXVI der Practica Arithmeticae (1539) des
Geronimo Cardano (1501- 1576 ) , die 1544 Michael Stifel (14877- 1567)
in seine Arithmetica Integra (fol . 301 v) übernimmt :
Die ersten drei Glieder einer geometrischen Folge genügen folgender
Eigenschaft : Teilt man die Summe aus jeweils zweien von ihnen durch das
übrige Glied und addiert die drei entstandenen Quotienten , dann ergibt
sich 13 . Wie lauten die Glieder ?

12 . Lise und Fritz hat die Geschichte von dem Erfinderlohn für das
Schachspiel sehr beeindruckt .
a) Fritz sagt: »Wenn ich der Erfinder gewesen wäre , hätte ich mir für das

1 . Feld 1 Million DM , für das 2 . die Hälfte davon , usw . auszahlen
lassen .« Wie groß wäre dann sein Lohn gewesen?

b) Lise wendet ein : »Das könnte man doch gar nicht richtigauszahlen; da
kommen ja Felder vor , denen weniger als 1 Pfennig entspricht .«
Zeige , daß sie recht hat . Um welche Felder handelt es sich?
(Hinweis : Berechne zuerst a20 und u30 . )

c) Darauf meint Fritz: »Auf Pfennigbeträgewürde ich sowieso verzichten
und nur das Geld von den Feldern nehmen , auf die ganze DM -Beträge
entfallen .« Wie groß wäre dann sein Erfinderlohn ? Auf welche Summe
würde er verzichten ?

13. Das Schema der Schachbrettauf¬
gabe wurde vielfach auf andere
Situationen übertragen . Das ne¬
benstehende Beispiel stammt aus
der 1527 in Ingolstadt erschiene¬
nen Schrift Eyn Newe Vnnd wol-
gegründte vnderweysung aller
Kauffmannß Rechnung des Peter
Apian ( 1495 - 1552 ) , den 1541
Kaiser Karl V. (* 1500 ; 1519 bis
1556; fl558 ) in den Adelsstand
erhob und zu seinem mathema -
ticus seu astronomus familiaris
machte . Er bekleidete auch das
Amt eines Hofpfalzgrafen .

14. Auch Kinderreime enthalten ge¬
legentlich mathematische Proble¬
me , wie das Beispiel aus England
zeigt . Es handelt sich dabei um
eine Aufgabe , die in ähnlicher
Form schon im altägyptischen
Papyrus Rhind vorkommt (siehe
Aufgabe 19/26) .

t£ pempel bcr »nberfebmcten
pogiefftoim .

einer teil ein rep
«erfauffenn nadi öen
Ptcaeln • ~ aa rep fyst
4 teyten/itlicfi ey
(eil 8 nccrdmadycntal
lencf>alt>eii 3 z Hegcll/
So » 4 er ben cr | tenn
nagetgeltenum? eync
baUer/öcnanöernvmßzbnllcr / bat bn'tte
»m6 4 t>aller/öen vieröai » m6 8 püi/bcn
fünffeen omS 16 -rc .aHcmal nach |orewer .
Qftöie frag wie tewr / bae 2\ 0 (; vertanfjc
wirr .

As I was going to Saint Ives ,
I met a man with seven wives ,
Every wife had seven sacks,
Every sack had seven cats ,
Every cat had seven kits;
Kits , cats , sacks and wives,
How many were there going to

Saint Ives?
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15. Gegeben ist die geometrische Folge mit a = 1 und q = j .
a) Berechne die Summen s 5 , s10 , s ls und ,v20 .
b) Wird sn mit wachsendem n immer größer? Wird es beliebig groß? Gibt

es eine Zahl , der sich sn beliebig nähert , wenn n immer größer wird ?
16. Löse Aufgabe 15 für die geometrische Folge mit

1 ) a = 1 ; <7 = 1,5 2) a = 8 ; q = — 0,6 3) a = 0,2 ; q = 1,1 .
17 . Die geometrische Folge mit Anfangs¬

glied a und Quotient q sowie ihre
Summen sn kann man in einem Ko¬
ordinatensystem mit Hilfe der Gera¬
den g : y = qx und h : y = x — a ver¬
anschaulichen , indem man , wie Ab¬
bildung 140 . 1 zeigt , den zwischen
g und h verlaufenden Streckenzug
OA 1 B 1A2 B 2A 3 . . . zeichnet ; die Teil¬
strecken sind abwechselnd parallel zur
x- bzw . y-Achse .

Abb. 140 . 1 Zu Aufgabe 17

a) Zeige , daß die zur x-Achse parallelen Pfeile OA *
, , B 1A2 , . . . die Zahlen

a , aq , aq 2
, . . . darstellen .

b) Wo liegen auf der x-Achse die den Zahlen .Vj , s 2 , s3 , . . . entsprechenden
Punkte ?

18 . a) Zeichne zu der geometrischen Folge mit a = 10 und q = \ die in
Aufgabe 17 beschriebenen Geraden g und h für 0 ^ x ^ 20 und
konstruiere die Punkte j l5 s2 , s3 , . . . auf der x-Achse .

b) Berechne den Schnittpunkt S (ä | /) von g und h . Welche Bedeutung hat
s für die Summen j „ ?

c) Beweise: Auch die Längen A 1A2 , A2A 3 , A 3A4 , . . . und ebenso OB l5
B 1 B 2 , B2B3 , . . . bilden jeweils eine geometrische Folge . Welchen
Zahlen kommen die Summen sn dieser Folgen mit wachsendem
n beliebig nahe ?

19. Zeichne die in Aufgabe 17 erklärten Geraden g und h und konstruieredie
Punkte s2 , s2 , . . . auf der x-Achse für
a) a = 1 ; <7 = 2 b) a = 9 ; q = — j
c) a = 2 ; q = — 1,5 .
Wie verhalten sich jeweils die Summen
s„ mit wachsendem n ?

20. In Abbildung 140 .2 ist g die Gerade
mit der Gleichung y = f x und h das
Lot zu g durch A (910) . Die Strecken atsind parallel zur x- bzw . y-Achse . Abb. 140 .2 Zu Aufgabe 20
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a) Beweise , daß die Längen au a2 , a3 , . . . eine geometrische Folge bilden .
b) Wie groß ist die Gesamtlänge der ersten n Abschnitte der »eckigen

Spirale « ? Welchem Wert kommt diese Länge mit wachsendem n belie¬
big nahe ?

c) Jede Strecke at schließt mit g und h ein rechtwinkliges Dreieck ein .
Bilden die Flächeninhalte A t dieser Dreiecke ebenfalls eine geometri¬
sche Folge ?

21 . Ausgehend von einer Strecke [AB]
der Länge 4 erzeugt man neue
Streckenzüge , indem man über dem
mittleren Drittel der Strecke ein
gleichseitiges Dreieck errichtet und
dann dieses Drittel wegnimmt .
Beim nächsten Schritt wird dieses
Verfahren auf jede der vier Teil¬
strecken angewandt , usw . (vgl . Ab¬
bildung 141 . 1 ) .
a) Zeige , daß die Längen /; der so

entstehenden Streckenzüge eine
geometrische Folge bilden .

b) Berechne / 10 , /50 , / 100 in Ab¬
hängigkeit von lv Wie verhält
sich /„ mit wachsendem «?

c) Wenn man sich dieses Konstruk¬
tionsverfahren ohne Ende fort¬
gesetzt denkt , nähern sich die
Streckenzüge einer bestimmten ,
von A nach B verlaufenden
Kurve , die man als Von-Koch -
Kurve bezeichnet .

* Was ist über
die »Länge « dieser Kurve zu
sagen ?

A B

A B

A B

Abb . 141 . 1 Erzeugung der Von-Koch-
Kurve

22 . Über dem mittlerenDrittel einer Strecke wird ein Quadratkonstruiertund
dann dieses Drittel entfernt . Danach wird dasselbe Verfahren auf die
Teilstrecken des entstandenen Streckenzuges angewandt , usw .

a) Zeichne , beginnend mit einer Strecke [AB ] der Länge 4 = 9 cm die
nächsten drei daraus entstehenden Streckenzüge ; laß dabei die »qua¬
dratischen Höcker « abwechselnd nach links und rechts aus dem (von
A nach B durchlaufenen ) Streckenzug herauswachsen .

* Nils Fabian Helge von Koch (25 . 1. 1870 Stockholm - 11 . 3 . 1924 Danderyd bei Stockholm ) zeigte mit

dieser Kurve , daß es stetige Kurven gibt , die an keiner Stelle eine Tangente besitzen . Sein Artikel Sur une

courbe continue sans tangente obtenue par une construction geometrique elementaire erschien 1904 im Arkiv

för Matematik , Astronomi och Fysik , 1, Stockholm , und wurde 1906 in einer erweiterten Fassung unter

dem Titel Une methode geometrique elementaire pour Vetude de certaines questions de la theorie des courbes

planes in den Acta mathematica , 30 , Stockholm , veröffentlicht .
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b) Berechne die Längen l2 , l3 und /4 der gezeichneten Streckenzüge und
begründe , daß die Funktion n i—> n e INI, eine geometrische Folge ist ,
deren Glieder beliebig groß werden .

23 . Die Seitenmitten eines Quadrats
PiQ 1R 1 S 1 sind die Ecken eines Qua¬
drats P2Q2R 2S 25 dem nach demsel¬
ben Verfahren wieder ein Quadrat
PoQ,R,S , eingeschrieben wird , usw.
(Abbildung 142 . 1 ) .
a) Gib die Folge a t der Quadratsei¬

tenlängen in Abhängigkeit von
a = PiQj an .

• b) Für das durch die ersten n Quadrate gebildete Netz soll ein Fadenmo¬
dell hergestellt werden . Welche Fadenlänge /„ ist dazu notwendig ?
Wie viele Quadrate kann man im Fall a = 1 dm mit einem Faden von
2 m Länge hersteilen ?

• c) Stelle dir vor, daß die verschiedenen Quadrate aus einer Sperrholz¬
platte von 5 mm Dicke herausgesägt und aufeinander gestapelt werden .
Wie groß muß bei a = 1 dm die Sperrholzplatte mindestens sein, damit
beliebig viele dieser Quadratplatten aus ihr hergestellt werden können ?
Was läßt sich über die Höhe und das Volumen des entstehenden
Körpers sagen , wenn die Anzahl n der Schichten immer größer wird ?

SL R2 Rj

Pt p 2 Qi

Abb. 142 . 1 Zu Aufgabe 23

24 . In Abbildung 142 .2 wird durch
Zusammensetzen von Halbkrei¬
sen mit den Radien ri = 2 1 ~ i
(ie N ) eine Spirale erzeugt ,
a) Wie groß sind die Längen /;

der Halbkreisbögen ?
Welche Länge L„ hat der aus
den ersten n Halbkreisen be¬
stehende Teil der Spirale ?
Wird mit unbeschränkt
wachsendem n die Spiralen¬
länge beliebig groß , oder gibt
wie heißt er?

Abb. 142 .2 Zu Aufgabe 24

einen »Grenzwert « für L„ ? Wenn ja ,es

• b) Bestimme die den Punkten Pn entsprechenden Zahlen x„ . Zeige, daß
diese Punkte mit wachsendem n gegen einen »Grenzpunkt « streben .
Welche Zahl entspricht ihm ? (Hinweis : Betrachte getrennt die Folgender Punkte mit geradem und mit ungeradem Index .)

• c) Je zwei Halbkreisemit den Radien r; und ri + 2 begrenzenzusammen mit
der x -Achse ein sichelförmiges Flächenstück . Wie groß ist dessen
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Inhalt AA. Welchen Wert hat die Summe S„
= A x + A 2 + . . . + A n?

Welcher Zahl kommt S„ mit wachsendem n beliebig nahe ?
Wie kann man dieses Ergebnis einfacher gewinnen?

• d) Löse die Teilaufgaben a) , b) und c) für folgende Halbkreisradien :
1) r£ = (fr 1 2) rt = 0,9 ' “ 1 3) r; = 0,99 ' “ 1

• 25 . Zu der reinperiodischen Dezimalzahl z = 0,37 erhält man eine Folge von
Näherungsbrüchen , wenn man nach der 1 . , 2 . , 3 . , . . . Periode abbricht :
z 1 = 0,37 ; z2 = 0,3737 ; z 3 = 0,373737; . . . Die verschiedenen Werte , wel¬
che die Periode 37 jeweils darstellt , kann man durch folgende Schreibweise
für die Näherungsbrüche verdeutlichen :
z 1 = 37 - 10 “ 2

, z2 = 37 - 10 _ 2 + 37 - 10 - 4 ,
z3 = 37 - 10 - 2 + 37 - 10 _ 4 + 37 - 10 ^ 6

, usw.
a) Wie lautet allgemein diese Summendarstellung für den Näherungswert

zn (n A 2) ? Begründe , daß es sich dabei um eine endliche geometrische
Reihe handelt .

b) Welche Darstellung für zn erhält man mit Hilfe von Satz 137 . 1 ?
Welcher rationalen Zahl y kommt somit zn beliebig nahe , wenn man
n unbeschränkt wachsen läßt ?
Zeige an Hand der Dezimalentwicklung von y , daß y = z gilt.

c) Bestimme nach dem in a) und b) am Beispiel 0,37 gezeigten Verfahren
die Bruchschreibweise für
1 ) 0,7 2) 0,Ö6 3) 0,481 4) 0,4321 .

26 . Stelle die folgenden unendlichen Dezimalzahlen als gewöhnliche Brüche
dar (vgl . Aufgabe 25) :
a) 3,15 b) 0,06 c) 0,5l8 d) 10,70l85

* *6.3 Arithmetische Folgen und Reihen

Einen besonders einfachen Typ einer Zahlenfolge erhält man , wenn man bei
einer linearen Funktion die Definitionsmenge auf N einschränkt .

Beispiele :
1) f : x i—> 3 jc — 1 ergibt die Zahlenfolge

a x = 2; a2 = 5 ; a3 = 8 ; a4 = 11 ; . . . ; also an = 3n - 1 , « gN .

2) / : xi —> — 1,5 .x + 3 ergibt die Zahlenfolge
at = 1,5 ; a2 = 0 ; a3 = - l,5 ; n4 = - 3 ; . . . ; alsou „ = - 1,5« + 3,ne IN .

Als typisches Merkmal dieser Folgen erkennt man die Eigenschaft , daß die
Differenz aufeinanderfolgender Glieder konstant ist ; es handelt sich bei ihr
jeweils um den Koeffizienten von x in der entsprechenden linearen Funktion .
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Bezeichnen wir wie üblich das Anfangsglied der Folge mit a und die Differenz
mit d, so gilt
a 1 = a , a2 = a + d, a 3 = a2 + d = a + 2d , a4 = a 3 + d = a + 3d,
allgemein also an = a + (n — l ) d, ne IN .
Für drei aufeinanderfolgende Glieder einer solchen Folge ergibt sich (vgl .
Aufgabe 145/2):

a„ + an + 2 = 2a n + 1 und damit an + 1 = an +
^

n + 2 .

Das mittlere von drei aufeinanderfolgenden Gliedern ist damit das arithmeti¬
sche Mittel der Nachbarglieder . Das erklärt den für solche Zahlenfolgen
verwendeten Namen :

Definition 144 . 1 : Eine Zahlenfolge mit dem Bildungsgesetz
a„ = a + (n — \ ) d, He IN , heißt arithmetische Folge mit dem
Anfangsglied a und der Differenz d.

Bei vielen Anwendungen benötigt man die Summe aus den ersten n Gliedern
einer arithmetischen Folge . Dazu gilt

Definition 144 .2:
Die Summe a + (a + d) + (a + 2d) + . . . + (a + (n — 1 ) d)
heißt arithmetische Reihe , der mit s„ bezeichnete Summenwert heißt
Wert der arithmetischen Reihe .

Für die Berechnung von s„ läßt sich leicht eine Summenformel herleiten :
Aus sn

= a + (a d) + . . . -\~ (a (fi — 2) d) (a -)- (n — 1 ) d)
und sn ~ (a (fi — 1 ) d) -\- (a (fi — 2) cd) ■. . -f (a d) -{- a

folgt durch Addition dieser Gleichungen , bei der wir jeweils die beiden
untereinanderstehenden Summanden zusammenfassen , die Beziehung

2s„ = (2a + (n — i ) d) + (2a + (n — 1 ) d) + . . . + (2a + (n — 1 ) d) ,
also 2sn = (2a + (« — 1 ) d) • n ,
d . h . , s„ = ^ (2a + (n - \ ) d) .

Da der zweite Faktor als die Summe a , + an gedeutet werden kann , gilt auch

Sn =
\ i a l + ü n) -

Satz 144 . 1 : Die arithmetische Reihe a + (a + d) + . . . + (a + (n — \ ) d)
hat den Wert s„ = ^ (2a + (n — \ ) d) = ^ (a 1 + an) .
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Beispiele :
3) Bei der arithmetischen Folge mit a = 2 und d = 3 (Beispiel 1)) gilt

a 10 = 2 + 9 - 3 = 29 , a 500 = 2 + 499 ■3 = 1499 ,
s lQ = ¥ (2 + 29) = 155 , s500 = ^ (2 + 1499 ) = 375250 .

4) Bei der arithmetischen Folge mit a = 1,5 und d = — 1,5 (Beispiel 2))
gilt
ö20 = 1,5 -F 19 ( - 1,5) = - 27 , 53 = f (2 - 1,5 + 2 • ( - 1,5)) = 0 ,
s 30 = (2 • 1,5 + 29 • ( - 1,5)) = - 607,5 .

Aufgaben
1 . Gib für die arithmetische Folge mit Anfangsglied a und Differenz d die

ersten vier Glieder an und berechne a20 :
a) a = 0 ; d = 2 b) a = 10; d = — 1 c) a = — 16 ; t/ = 2,5

2 . Beweise, daß bei einer arithmetischen Folge für je drei aufeinanderfolgen¬
de Glieder die Beziehung a„ + 1 = (a„ + an + 2) : 2 gilt.

3 . Berechne für die Zahlenfolgen von Aufgabe 1 die Summen s20 und j 100 .

4 . Bestimme Anfangsglied und Differenz der arithmetischen Folge aus
a) a2 = 5 ; a 3 = — 1 b) a4 = 1,6 ; a1 = 4 c) a 5 = — yz ; a20 = 3 -j .

5 . Zwischen 25 und 64 sollen
a) zwei Zahlen b) vier Zahlen c) zwölf Zahlen
so eingefügt werden , daß eine arithmetische Folge entsteht .

6 . Berechne Anfangsglied a und Differenz d der arithmetischen Folge mit

a) a2 = 5,5 ; j4 = 25 b) a3 = 4 ; = 20 ( !)
c) a 5 = 5 ; s 5 = 0 d) s3 = 13,5 ; s 15 = — 67,5 .

7 . Aufgabe 64 aus dem Papyrus Rhind (um 1800 v . Chr . entstanden ) :
100 Scheffel Gerste werden so an 10 Leute verteilt , daß der jeweils nächste
| Scheffel mehr erhält als sein Vorgänger . Wieviel erhält jeder ?

• 8 . Eine der frühesten Aufgaben über arithmetische Folgen findet man auf
der altbabylonischen Keilschrifttafel SKT 362 (um 1900 v . Chr .) :
10 Brüder ; 1 f Minen Silber . Bruder über Bruder hat sich erhoben . Um was
er sich erhoben hat , weiß ich nicht . Der Anteil des achten Bruders ist
6 Schekel . Bruder über Bruder , um wieviel hat er sich erhoben ?
Berechne den Anteil des ersten Bruders und den konstanten Unterschied
zum jeweils nächsten . [60 Schekel = 1 Mine = 0,505 kg]
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9 . Aufgabe 40 aus dem PapyrusRhind (um 1800 v . Chr . entstanden) läßt zwei
Deutungen zu :
100 Brote werden in arithmetischer Folge so an 5 Leute verteilt , daß
a) die beiden ersten zusammen 7 dessen erhalten, was die drei letzten

zusammen erhalten .
b) die beiden letzten zusammen 7 dessen erhalten, was die drei ersten

zusammen erhalten .
Wie groß ist der Unterschied vom einen zum anderen , und wie wurden die
Brote verteilt ?

10 . Sind folgende Merkregeln für die Berechnung des Wertes s„ einer
arithmetischen Reihe richtig ?
a) »halbe Anzahl der Glieder mal (erstes Glied plus letztes Glied)«
b) »«-mal erstes Glied plus n (n — l ) -mal halbe Differenz«

11 . Achte bei den folgenden Aufgaben darauf, ob die Lösung eindeutig ist .
a) Eine arithmetische Reihe mit Anfangsglied — 3 und Differenz 2 hat

den Wert 60 . Wie groß ist die Anzahl n ihrer Summanden ?
b) Bestimmen e IM so , daß bei einer arithmetischenFolge mit a = — 6 und

d = 1,5 die Summe sn den Wert — 10,5 erhält .
c) Bei einer arithmetischen Reihe mit dem Wert 28,8 heißt der erste

Summand 9 und der sechste 3 . Wieviel Summanden hat die Reihe ?
12 . a) Carl Friedrich Gauss (1777- 1855 ) bestimmte schon als Neunjähriger

zur Überraschung seines Lehrers J . G . Büttner in kürzester Zeit
den Summenwert einer arithmetischen Reihe . * Es soll sich um
Goo = 1 + 2 + 3 + . . . + 100 gehandelt haben , was Gauss als das
Produkt 50 - 101 berechnet habe . Begründe sein Vorgehen .

b) Berechne die Summe der natürlichen Zahlen von 1 bis 104 .
c) Wie groß ist die Summe aller höchstens dreistelligenVielfachen von 7 ?

13 . a) Berechne die Summe aller ungeraden Zahlen von 1 bis 2« — 1 .
12 3 nb) Bestimme den Wert der Summe Sn = - -\- 1- n e INI.n n n n

12 3 TIc) Berechne = ~ -\— =- + . . . H— 7 . Wie verhält sich T„ mitn n 2 n 2 n 2
wachsendem «?

„ „ , T7 1 3 5 2n - ld) Berechne E/„ = -T + -T + - ^ + . . . -|- ; ne INI.n n n n
* Wolfgang Sartorius Freiherr von Waltershausen (1809- 1876) zeichnete viele Gespräche mit Gauss ,

zum Teil wörtlich , auf und gab sie 1856 unter dem Titel Gauß zum Gedächtnis heraus . Darin berichtet er , daß
Gauss dieses Ereignis »uns in seinem hohen Alter mit großer Freude und Lebhaftigkeit öfter erzählt hat .«
Und daß , als Büttner schließlich die Ergebnisse prüfte , »das seinige zum Staunen aller Anwesenden als
richtig befunden , während viele der übrigen falsch waren « . - Getauft wurde Gauss übrigens auf Johann
Friderich Carl , so trug er sich auch noch , nur mit anderer Schreibweise des mittleren Namens , am 18 . 2 . 1792
in die Matrikel des Collegium Carolinum zu Braunschweig ein .
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14. In einem Stapel von Rohren liegen in der untersten Schicht 12 Rohre, in
der obersten 5 Rohre . Aus wieviel Rohren besteht der ganze Stapel , wenn
die Rohre wie üblich »auf Lücke « übereinandergeschichtet sind?
Wieviel Rohre könnte man noch auf den Stapel legen , ohne die Basis zu
verbreitern ?

15. Eine trapezförmige Dachfläche soll mit Ziegeln gedeckt werden. Für die
erste Reihe benötigt man 64 , für die letzte 30 Dachziegel . Es sind 18
Reihen . Wieviel Paletten zu je 100 Ziegeln wird man bestellen , wenn man
5 % Verlust durch Bruch einkalkuliert ?

16. Aus der Stereometrica des Heron von Alexandria (um 62 n . Chr . ) :
a) Aufgabe 43 : In einem Theater mit 250 Sitzreihen enthält die unterste

40 Sitze, jede höhere jeweils 5 Sitze mehr . Wieviel Sitze enthält die
oberste Reihe ?

b) Die Aufgabe 42 »In einem Theatermit 280 Sitzreihen hat die unterste
120 , die oberste 480 Sitze. Wieviel Sitze hat das Theater insgesamt ?«
löst Heron durch folgende Rechnung :

—0 ^
• 280 = 8400 . Nimm dazu kritisch Stellung .

17 . Wenn ein dünnes Maßband auf einen Zylinderaufgerollt ist , kann man die
einzelnen Windungen mit guter Näherung als Kreise betrachten .
a) Wieviel mm beträgt der Durchmesser einer Trommel , auf die ein

Maßband von | mm Dicke und 2 m Länge aufgerollt wird , wenn sich
dabei 16 Windungen ergeben ?

b) Ein 20 m langes Maßband, das 0,5 mm dick ist , wird auf eine Achse von
20 mm Durchmesser aufgewickelt . Wie viele Windungen ergibt das ?

6 .4 Aus der Finanzmathematik

Wichtige Anwendungen von geometrischen Folgen und Reihen ergeben sich
in der Finanzmathematik :

a) Zinseszinsrechnung
Ein Kapital K0 , das zu einem Zinssatz von p % angelegt wird , bringt im ersten

Jahr den Zins Z , _ —- • n . Am Ende des ersten Jahres ist somit das Kapital1 100 ^

K , = Kn + Z , = Kn I 1 + 1 vorhanden . Die Verzinsung mit p % bewirkt
1 U

^ 100 /
also , daß das anfangs vorhandene Kapital sich im Laufe eines Jahres mit dem

Faktor 1 + multipliziert ; man nennt ihn Zinsfaktor .
100
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Wird der Zins nicht abgehoben , so verzinst sich im zweiten Jahr neben dem
Anfangskapital K0 auch der hinzugekommene Zins Z, ; man spricht daher
von Zinseszins * . Als Kontostand am Ende der folgenden Jahre erhält man so

K0 1 +Kt 1 +

K0 1 +K2 1 +

allgemein also am Ende des n-ten Jahres

K0 1 + n e IKI .

Die Kontostände am jeweiligen Jahresende bilden somit eine geometrische
Folge mit dem Anfangsglied K0 ( = Anfangskapital ) und dem Quotienten
<7 = 1 + -Z - ( = Zinsfaktor ) .* 100 v

Beispiel :
1000 DM , die zu 6 % angelegt werden , erreichen nach 10 J ahren den Wert
K10 = 1000 DM • 1,06 10 = 1790,85 DM und nach 20 Jahren den Wert
K20 = 1000DM • 1,06 2 ° = 3207,14DM .

b) Ratensparen
Angenommen , jemand zahlt zu Beginn eines jeden Jahres einen festen
Geldbetrag R ( = Rate * *) auf ein Sparkonto ein . Welchen Wert S„ hat sein
Guthaben am Ende des n- ten Jahres , wenn die Einlagen mit p % verzinst
werden ?

Offenbar gilt , wenn wieder q = 1 + gesetzt wird ,
Sx = Rq
S2 = (S^ + R) q = Rq 2 + Rq
S2 = (<S2 + r)q = Rq 3 + Rq 2 + Rq
allgemein
S n = (S„ _ ! + R) q = Rq n + K^ “ 1 + . . . + Rq 2 + Rq , neN .

Kapital stammt aus dem Italienischen und bedeutet in etwa Hauptfeld; zugrunde liegt ihm das lateinische
capitalis in seiner Bedeutung vorzüglich , hauptsächlich . Zins entstand aus dem lateinischen census = Schät¬
zung , Abgabe , Vermögen, Zins und ist bereits im Althochdeutschen nachweisbar . Obgleich es im 16 . Jh . auch
schon in Rechenbüchern auftaucht , verdrängt es erst im 19 . Jh . das bis dahin übliche Fachwort Interesse (lat .
interesse = dazwischen sein , dazwischen liegen) . Das Wort Zinseszins taucht erstmals wohl 1616 auf .

* * Rate , italienisch rata, aus lateinisch pro rata (parte) = in bestimmtem Verhältnis. Zugrunde liegt
ratus = berechnet .
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Man erkennt , daß es sich bei Sn um eine geometrische Reihe handelt . Mit der
Summenformel von Satz 137 . 1 erhält man

Sn
= Rq - qn - 1

q - 1
mit q = 1 + P

100 '

Beispiel :
Bei einer jährlichen Rate von 1000 DM und einem Zinssatz von 6 %
beträgt das Guthaben

1 06 10 - 1
am Ende des 10 . Jahres S10 = 1060 DM ■ ’

n ^ — = 13971,64DM
0,06

1,06 20 — 1
am Ende des 20 . Jahres S20 = 1060DM • — — = 38992,73 DM .

c) Tilgung eines Darlehens

Ein Darlehen D , für das die Bank p % Schuldzinsen fordert , soll durch
gleichbleibende Raten R , die jeweils zum Jahresende fällig sind , getilgt wer¬
den . Dn sei der Darlehensrest am Ende des n-ten Jahres . Dann gilt , wieder mit

D 1 = Dq — R
D 2 = D x q — R = Dq 2 — Rq — R
D 3 = D2 q — R = Dq 3 - Rq 2 - Rq - R
allgemein Dn = Dq n — R {qn ~ 1 + q n ~ 2 + . . . + q + 1 ) .
In der Klammer steht eine geometrische Reihe . Mit Satz 137 . 1 erhält man
schließlich

Dn = Dq n - R qn ~ 1
q - 1

mit q = 1 + P
100 '

Demnach kann der Darlehensrest D„ als Differenz zweier Kontostände
gedeutet werden : Dq n ist der Wert , auf den das Darlehen mit Zinseszinsen

anwächst , falls keine Tilgung erfolgt ; R q" — 1
ist das Guthaben , das sich beim

Einzahlen der Raten R auf ein Sparkonto ergibt .

Beispiel 1 :
Ein Darlehen von 50000 DM zu einem Zinssatz von 10 % wird mit
Jahresraten von 10000 DM getilgt . Dann beträgt der Darlehensrest
nach 6 Jahren noch

1 l 6 - 1
= 50000 DM - 1,1 6 — 10000 DM ■ -2——— = 11421,95 DM .

O 7 A4
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Beispiel 2:
Das Darlehen von Beispiel 1 wird durch vierteljährlich gezahlte Raten
von 2500 DM getilgt . Dann gilt , da in einem Vierteljahr jeweils 2,5 % des
Darlehensrestes als Zinsen anfallen , nach 6 Jahren :

1 025 24 — 1
D6 = 50000DM • 1,025 24 - 2500DM • ’

Q ^
— = 9563,71 DM .

Aufgaben
1 . Auf welchen Wert wachsen 25000 DM , auf Zinseszinsen angelegt ,

a) bei 4 % in 5 Jahren b) bei 6 % in 10 Jahren ?
2 . Welchen Geldbetrag muß man heute auf ein Konto einzahlen, um

a) bei 6 % nach 5 Jahren b) bei 7,5 % nach 8 Jahren
den Endbetrag 10000 DM zu erreichen ?

3 . Bei welchem Zinssatz wachsen
a) 34000 DM in 7 Jahren auf 46265,30 DM an
b) 7339 DM in 12 Jahren auf 19000 DM an?

4 . Bei welchem (auf Zehntel gerundeten) Prozentsatz verdoppelt sich ein
Kapital
a) in 11 Jahren b) in 18 Jahren c) in 9 Jahren d) in 3 Jahren ?

5 . Welche Endwerteergeben sich in Aufgabe 1 , wenn die Kapitalisierungdes
Zinses 1) vierteljährlich 2) monatlich erfolgt ?

6 . Jemand zahlt jeweils am Jahresanfang 5000 DM auf ein Konto ein . Die
Bank zahlt 7,5 % Zinsen . Wie hoch ist der Kontostand
a) im 2 . Jahr b) im 5 . Jahr c) im 10 . Jahr ?

7 . a) Welche jährliche Sparrate muß man aufbringen , wenn man nach
Ablauf von 10 Jahren , gerechnet vom Einzahlen der ersten Rate an ,
einen Betrag von 100000 DM zur Verfügung haben will und wenn die
Einlagen mit 1) 6,25 % 2) 10 % verzinst werden ?

b) Welcher Endwertergibt sich , wenn man die errechnete Rate jeweils auf
ganze Hunderter rundet ?

8 . Herr Kluge hat mit seiner Bank einen Sparvertrag abgeschlossen . An
jedem Monatsende , erstmals im Januar , zahlt er 500 DM ein . Der Zins von
8 % wird am Jahresende berechnet und zum Kapital geschlagen .
a) Zeige , daß der Kontostand am Ende des 1 . Jahres 12,44 - 500 DM

beträgt .
b) Welchen Wert weist das Sparkonto am Ende des 2 . Jahres auf ?
c) Über welches Kapital kann Herr Kluge am Ende der fünfjährigen

Laufzeit des Sparvertrages verfügen ?
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d) Welcher Endwerthätte sich ergeben, wenn schon an jedem Monatsen¬
de die Zinsen dem Kapital hinzugefügt worden wären ?

9 . a) Eine Bank bietet einen Progressiv-Sparvertrag mit fünfjähriger Lauf¬
zeit an , bei dem der Zinssatz im 1 . Jahr 4 % beträgt und sich in jedem
weiteren Jahr jeweils um 1 % erhöht . Welchen Endwert erreicht bei
dieser Sparform ein Kapital von 20000 DM ?

b) Ein anderes Geldinstitut bietet für Einlagen mit fünfjähriger Laufzeit
einen Zinssatz von 6 % an . Führt dies zu demselben Endwert ?

10. Die Bundesrepublik Deutschland verkaufte im Frühjahr 1990 Bundes¬
schatzbriefe vom Typ A mit sechsjähriger und vom Typ B mit siebenjähri¬
ger Laufzeit zu folgenden Bedingungen : Variabler Zinssatz , und zwar im
1 . Jahr 7,50 % , im 2 . und 3 . Jahr 8,00 % , im 4 . und 5 . Jahr 8,25 % , im 6 . und
(bei Typ B) 7 . Jahr 8,50 % . Beim Typ A werden die Zinsen jeweils nach
einem Jahr ausbezahlt , beim Typ B aber zum Kapital geschlagen .
a) Angenommen , jemand hat am 1 . 3 . 1990 für 1000 DM Bundesschatz¬

briefe vom Typ B gekauft . Welchen Wert stellen diese
1 ) am 1 . 3 . 1993 2) am 1 . 3 . 1995 3) am 1 . 3 . 1997 dar?

b) Als Rendite* der Schatzbriefevom Typ B werden in der Ausschreibung
8,14 % angegeben . Zeige, daß bei diesem festbleibenden Zinssatz die
Wertpapiere in sieben Jahren (ziemlich genau ) denselben Wert errei¬
chen würden .

11 . Schuldverschreibungen werden oft zu einem unter ihrem Nennwert
liegenden Betrag verkauft (Ausgabekurs < 100 % ) und am Ende ihrer
Laufzeit zum Nennwert eingelöst .
a) »Finanzierungs-Schätze des Bundes « mit Nennwert 10000 DM und

2 Jahren Laufzeit wurden im März 1990 für 8521,70 DM angeboten .
Welche Verzinsung ergibt sich daraus ?

b) Welche Schuldverschreibungbringt eine höhere Rendite?
1 ) Ausgabekurs 79,38 % und 3 Jahre Laufzeit
2) Ausgabekurs 68,85 % und 5 Jahre Laufzeit

12. Ein Darlehen von 40000 DM wird mit Raten von 10000 DM getilgt, die
jeweils am Jahresende fällig sind . Die Bank berechnet 7,5 % Schuldzinsen .
Vervollständige den folgenden Tilgungsplan . Wie groß ist die Restzahlung
im letzten Jahr ?

Jahr Schuld am
Jahresanfang

Schuld¬
zinsen

Jahresrate Tilgung

1 40000,- 3000 - 10000 - 7000 -
2 33000,- 2475,- 10000 - 7525,-

Rendite : Aus dem lateinischen reddere in der Bedeutung von einem etwas anderes als Entgelt zurückgeben
wurde das italienische rendere = einbringen ; dazu gehört das Substantiv rendita .
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13 . Erstelle für das Darlehen von Aufgabe 12 den Tilgungsplan für den Fall,
daß man am Ende jedes Jahres die Zinsen und ein Fünftel der Dar¬
lehenssumme , also 8000 DM , zurückzahlt .

14 . Ein Kleinkreditvon 2000 DM wird durch monatliche Raten von 200 DM ,
zahlbar jeweils am Monatsende , getilgt . Der Zinssatz beträgt 12 % .
a) Wie groß ist die Restschuld nach

1) 5 Monaten 2) 8 Monaten ?
b) Die Tilgung wird mit einer Restzahlung am Ende des 11 . Monats

abgeschlossen . Wie groß ist diese letzte Rate ?
15 . Eine Hypothek * von 100000 DM soll durch jeweils am Jahresendefällige

Raten getilgt werden . Wie groß muß die auf Vielfache von 100 DM
gerundete Jahresrate gewählt werden und wie groß ist der am Ende des
letzten Jahres zu zahlende Betrag , wenn
a) 8 % Zinsen zu zahlen sind und die Tilgung in 12 Jahren erfolgen soll
b) 6,5 % Zinsen zu zahlen sind und die Tilgung in 20 Jahren erfolgen soll?

16 . Eine Hypothek * von 150000 DM wird durch vierteljährlichzu zahlende
gleichbleibende Raten von 3375 DM getilgt . Es werden 8 % Zinsen
berechnet . Mit jeder Rate werden die im vorausgehenden Vierteljahr
angefallenen Zinsen beglichen ; der Rest wird als Tilgung verrechnet .
a) Wie groß ist die Restschuld nach 15 Jahren ?
b) Welche Restschuld verbleibt nach 27 Jahren ? Welche Zahlungen

müssen im 28 . Jahr noch geleistet werden , bis die Hypothek vollständig
getilgt ist ?

17. a) Wie groß muß ein Kapital sein , damit man bei einem Zinssatz von 8 %
jährlich gleichbleibend 12000 DM Zinsen erhält (sog . ewige Rente )?

b) Welches Kapital muß man auf ein Konto einzahlen, damit man bei
einer Verzinsung mit 8 % 20 Jahre lang jeweils zum Jahresende
12000 DM entnehmen kann ? (Nach 20 Jahren soll das Kapital aufge¬
zehrt sein .)

* üttoSt |kti (hypotheke ) = Unterlage , Pfand . Heute versteht man darunter ein im Grundbuch eingetragenes
Pfandrecht an einem Grundstück zur Sicherung einer Geldforderung . Umgangssprachlich - wie in dieser
Aufgabe - verwendet man »Hypothek « für »Hypothekarkredit « , d . h . für einen durch Eintragung einer
Hypothek gesicherten Kredit .


	[Seite]
	6.1 Definition und Eigenschaften
	[Seite]
	Seite 125
	Seite 126
	Seite 127
	Seite 128
	Seite 129
	Seite 130
	Seite 131
	Seite 132
	Seite 133

	6.2 Geometrische Folgen und Reihen
	Seite 133
	Seite 134
	Seite 135
	Seite 136
	Seite 137
	Seite 138
	Seite 139
	Seite 140
	Seite 141
	Seite 142
	Seite 143

	6.3 Arithmetische Folgen und Reihen
	Seite 143
	Seite 144
	Seite 145
	Seite 146
	Seite 147

	6.4 Aus der Finanzmathematik
	Seite 147
	Seite 148
	Seite 149
	Seite 150
	Seite 151
	Seite 152


