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7 Logarithmen

7.1 Der Logarithmus

Kann man, wenn in der Gleichung 52 = a zwei der drei Zahlen gegeben sind,
die dritte stets berechnen?

Falls b und ¢ gegeben sind, ist a die Lésung der Gleichung x = 4% man findet
sie durch Berechnung der Potenz 4, also durch Potenzieren. Wenn o und
a gegeben sind, hat man zur Bestimmung von b die Gleich ung x? = a zu losen.
Auch hier handelt es sich um einen schon bekannten Aufgabentyp (vgl.
Kapitel 3). Falls g % 0, erhilt man x = c;rilﬂ.

Eine neue Situation ergibt sich aber, wenn die Basis » und der Potenzwert
a gegeben sind. Nunist die Gleichung b* = g zu 16sen. Da hier die Unbekannte
im Exponenten auftritt, spricht man von einer Exponentialgleichung. Wie
steht es um die Losbarkeit einer solchen Gleichung? Betrachten wir dazu
einige

Beispiele:
1) SF =125 2) (3)* =241 Jier =1
4) 1= =i6 85).9% =10 1,5 = —225

Wie man leicht erkennt, haben die Beispiele 1) bis 3) die Lésungen x = 3 bzw.
x = —3bzw. x = 0. Die Gleichungen 4), 5) und 6) sind unlésbar, da flir jedes
xeR 1* =1 bzw. 2*> 0 bzw. 1,5*> 0 gilt.

Die Losbarkeit der Exponentialgleich ung b* = g steht offensichtlich in enger

b>1

" y=b) \y:bx Y4

n = . +— e —
1 1 Xo %

Abb.154.1 Zur Losbarkeit der Exponentialgleichung b* = afiirb > 1bzw. 0 < b < 1



7.1 Der Logarithmus 155

Beziehung zu den Eigenschaften der Exponentialfunktion x— 5%, die im Fall
h> (0 bekanntlich in ganz R definiert ist, nur positive Funktionswerte
annimmt und fiir » > 1 echt monoton zunimmt, fiir 0 <5 <1 echt monoton
abnimmt. Abbildung 154.1 liBt vermuten, dall sowohl fiir » > 1 als auch fiur
0 < b < 1 zu jeder positiven Zahl a genau eine Zahl x,, existiert, fiir die b = a
gilt.

Wegen der Monotonie der Exponentialfunktionen kann es jedenfalls nur
héchstens eine solche Zahl geben; denn die Gerade y = a hat mit dem
Graphen y = b* hochstens einen Schnittpunkt S(x,|a). In den Beispiclen 1)
bis 3) konnten wir x, tatséichlich angeben. Ob eine solche Losung immer
existiert, hingt mit der schon frither (Seite 125) erwdhnten Frage zusam-
men. ob im Fall >0 und b =1 die Exponentialfunktion x+— b* wirklich
jede positive Zahl als Funktionswert annimmt. Wir betrachten dazu das

Beispiel: 3* =7
Fiir eine eventuelle Losung x, findet man, da x+— 3* monoton zunimmt,
folgende Abschatzungen:

<<t denn 3= s 32
Ll <x,<1b denn 3T < 7< 318
17T <x,< 1,78 denn’ 317 <q <3010

1,771 = 3|_'."72

1,770 =< %= 4,712 Ldenn =3
1.7712'< x5 < 1,703 dedn 31

Denkt man sich dieses Verfahren fortgesetzt, was prinzipiell méglich ist,
so erhélt man eine Intervallschachtelung fiir x,. Die so dargestellte Zahl
x, ist der einzige Exponent, fir den 3% in jedem der Intervalle [3'; 3%],
[31.7:31.8], [31:77;3178], ... liegt. Diese Intervalle sind so konstruiert,
daB sie stets die Zahl 7 enthalten und, da sie offensichtlich wieder eine
Intervallschachtelung bilden, nur die Zahl 7. Daher mul} gel-
ten: 3= 1.

So wie in diesem Beispiel kann man bei jeder Gleichung 6* = amita > 0, b>0
und b =1 eine Intervallschachtelung fiir die Losung konstruieren (vgl.
Aufgabe 158/3). Es gilt daher

Satz 155.1: Jede Gleichung »* = a mit a>0, b>0 und b + 1 besitzt
genau eine Losung.

Fiir die Losung einer solchen Exponentialgleichung hat man eine besondere
Schreibweise eingeflihrt:

Definition 155.1: Die Losung der Gleichung * = g mita > 0, 5 > 0 und
b + 1 bezeichnet man mit log, a, gelesen Logarithmus von @ zur
Basis b.
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156 7 Logarithmen

Eigentlich mii3te man log, (@) schreiben. Wenn aber kein MiBverstindnis zu
befiirchten ist, kann man die Klammer weglassen.

Beispiele:
log=125 =3, denn 5% =125 (vgl. Beispiel 1))
Iog%(z}f-) = —2 denn (%) P i (vgl. Beispiel 2))
log. 1 =0, denn 6° = 1 (vgl. Beispiel 3))

Nach Satz 155.1 und Definition 155.1 stellt x = log, a die Auflsung der
Gleichung b* = a nach x dar. Also sind beide Gleichungen dquivalent:

Die Bedeutung des neuen Terms log,a prigt man sich zweckmaBig in
folgender Form ein:

log, a ist diejenige Zahl, mit der man b potenzieren muB, um a zu
erhalten.

Das heil3t: hEt = g

Die Bestimmung des Logarithmus einer Zahl beziiglich einer Basis 4 stellt eine
neue Rechenart dar, die man als Logarithmieren bezeichnet.

**7Zur Geschichte

Das Fachwort Logarithmus geht auf John NaPER* (1550-1617) zuriick, der es in
seiner 1614 erschienenen Mirifici Logarithmorum canonis descriptio (siche Abbildung
153) ohne irgendeine Erkldrung prigte. Es ist zusammengesetzt aus Adyog (16gos) =
Verhdltnis und dpiSpog (arithmos) = Zahl; Anzahl.** Das Verbum logarithmieren

* gesprochen 'neipia

** John WALLIS greift 1685 in seinem A Treatise of Algebra, both Historical and Practical zur Erkli rung des
Wortes Logarithmus auf den Begriff des Verhiltnisses zuriick, wie wir ihn auf Seite 62 bei EUKLID und
ARCHIMEDES kennengelernt haben. (In der verbesserten lateinischen Ausgabe von 1693 zitiert WALLIS
ibrigens explizit EUKLID, und zwar Elemente, Buch V, Def. 10 und Buch VI, Def. 5.) Er betrachtet zunichst
wie NAPIER arithmetisch-geometrische Doppelfolgen (siche 7.6) und geht dann zu der schon von Michael
SmiFeL her bekannten geometrischen Folge der Potenzen und der arithmetischen Folge ihrer Exponenten
iiber und schreibt:
»then doth this Exponent always give us the Number of Rations [...] in the Term to which it belongs

B e e e T L

e L 2 S dn o 0.l
(as3in r*, 6in r® and so every where,) or shews How many fold {quam multiplicara) the Proportion (for
instance) of r® to 1, is of r to 1. That is, how many Rations or Proportions of r to 1, are compounded in r® to
1, to wit 6. To which the name Logarithmus fitly answers, that is, Adyev apripde, the Number of Proportions
50 compounded.«
»Dann gibt uns dieser Exponent immer die Anzahl der Verhiltnisse [...] in dem Term an, zu dem er gehort
[...]. Anders ausgedruckt: Er zeigt an, wievielfach (z.B.) das Verhiltnis r° - 1 beziiglich r: 1 ist. Das heilBt.
wie viele Verhéltnisse r: 1in ®: 1 [multiplikativ] zusammengesetzt sind, namlich 6. Genau dies driickt aber
der Name Logarithmus aus, d.h. Aoyov apidpoc oder die Anzahl der so zusammengesetzien Verhdlinisse.«
Beachte: WALLIS benutzt stillschweigend r®:1 = (r:1)5. — Weitere Erklirungen des Wortes Logarithmus
siche Seite 202f,
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erscheint erst 1836 in Carl KoOPPEs
(1803—-1874) Anfangsgriinde der reinen
Mathematik fiir den Schulunterricht
(§173). Die Verwendung des Wortes Basis
stammt von Leonhard EuLER (1707 bis
1783), der 1748 in seiner [ntroductio in
Analysin infinitorum — »Einleitung in die
Analysis des Unendlichen« — die in der
Gleichung b* = a vorkommende kon-
stante Zahl b als »Basis der Logarith-
men« bezeichnete. (Siehe auch Seite 205.)
NapiER hat »Logarithmus« noch aus-
geschrieben. Aber bereits 1624 verwendet
Johannes KEPLER (1571-1630) in seinen
Chilias Logarithmorum ad totidem nume-
ros rotundos — »Tausend Logarithmen zu
ebensoviel runden Zahlen« — die Ab-
kiirzung »Log.«, woraus 1632 bei dem
Jesuater Fra Bonaventura CAVALIERI
(15987-1647) »log.« wird. August Leo-
pold CreLLE (1780-1855) fordert 1821,
dem Logarithmussymbol auch die Basis
beizufiigen, und schligt vor, sie dartiber
zu setzen: ]L#g_ x. Bis zur Festsetzung der
Schreibweise log, x durch den Deutschen
Normenausschull im Februar 1968 ge-
milB DIN 1302 gab es noch die Schreib-
weisen "logx, Jogx und log’x, die du
noch in dlteren Biichern findest.

Aufgaben

1616

horo—mopa-
e fRes

Abb.157.1. John NAPIER, auch NEPER,
Fear* of Merchiston

(1550 Merchiston Castle bei Edinburgh
bis 4.4.1617 ebd.)

1. Bestimme die Losung der Exponentialgleichung.

a) 2% =128
d) 5 =004

b) 0,5% = 32
e) 0,25% = 512

OL@F=1
f) 0,125*=0,5

2. Die folgenden Gleichungen aus der Arithmetica integra (1544) von
Michael STIFEL (14872—1567) haben rationale Losungen. Schreibe sie als

Logarithmen und berechne sie.

a)(

b2 | 2

64 8

* Fear, engl. fiar, bezeichnet den Eigentiimer eines ihm voll zustehenden Besitzes.

x 729 2
- B

2187
128
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3. a) Bestimme die ersten vier Intervalle einer Intervallschachtelung fiir die
Losung der Exponentialgleichung. Beginne dabei mit dem aus auf-

einanderfolgenden ganzen Zahlen bestehenden Intervall und verwende
& die Zehnteilungsmethode.
5 1) 25 =5 2) 10* = 37 3) 1,55 =1,1
3 4) 5* =0,75 5 0,4*=4 6) (3)*=0,56
3 b) Berechne fiir den folgenden Logarithmus den auf drei geltende Ziffern
E gerundeten Ndherungswert mit Hilfe einer Intervallschachtelung der
= in a) beschriebenen Art.
1) log,5 2) log,0,7 3) logy s(3) 4) log,s)/2
' Zu den Aufgaben 4 bis 13: Berechne die Logarithmen.
4. a) log, 25 b) log,16 ¢) log,,10000 d) log,,10"
3 e) log,1024 f) log,343 g) log.216 h) log,256
E 5. a) |0§3(%J b) ]0g|0(1]0) c) i(}gn lnlzt} d) log. f:u)
3 e) log, 0,5 f) log,0,125 g) logs 0,04 h) log,,0,01
6. a) log 8 b) log, 81 ¢) logy 121 d) logy 1296
: e) log, 128 f) lr:mﬂ 2125 g) log, 0,001 h) log, ,,10°
7. a) logs (39) b) logs (£3) ¢) logs (33) d) logs (39)
_: e) logz (353 f) logz;,(ﬁﬁ'f,} g) log, - (%) h) Iog,_z_q(].fi'l?,
- 8. a) log, 8 b) log, 81 c¢) log,. 125 d) log,,.25
e) log,. (%) f) Iog_é_m g) log,, 1024 h) log,,.,49
i) 108001000 k) log; ;50100 1) log,,, 0,1 m) log, ,, 0,00001
— 3 — 11— 9 —
9. a) log;, V10  b) log, /2 ¢) logs /25 d) log, /81
_ E S L I
.; O log,[lz D log]l-— g 1og]5(-f-:. ) w log,
@ pale /225 \J/312
j i) logi)/343 k) lo 1 D 1 TE )1 ( 1 )
1V 342 o4 E (o 0gq 1 V¥ m) 10g, 5| 3
: = I 924 i \J/3125
10. a) log -3 b) logi . (3¢) ¢) log;- 64 d) log 4 125
v Vs
1 5 i 3, [ -
e) log,- V64  f) logi. V75 g) log,-1/0,04 h) log , 10,125

V2
log, 216 — Iog1 216+ 2-log; 0,2 + log, 5 (55) — log, ;1
logg 0,125 + 10U 0,008 + log, , 2,5+ logU 01 1000 + log, 5, 0,001

5

A —
log, V4 —log, /27 — Ioch;(,—) 108 6 145> S 4 log, <5i:




13.

16.

19.

20.
21
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2. a) log,1 b) log,a ¢) log,a” d) log, a"

1\_ s 1 5 | i\ 2
C) IOgu(_) f} logu(__‘l) g} 10.%"(_) h} ]OEH '.“
a a a’ 7

: 3 — 5 — /1 ' 4—i
i) log,Va k) log,V a* ) log, l . m) ](}gﬂ(l-"c:")'
[ a
- il a4 =
a) log,a b) ]ogﬂ;( : ¢) log.:la d) log, I'a*
a a- al
3, 1
e) log,-a" f) log, Va g) log, a° h) log, | —
Va “\a
14. Lose folgende Gleichungen:
a) log,x=3 b) logsx=-2 ¢) loggx =0,5 d) logysx=—3
¢) log,121=2 1) log,(f)=—2 g log.=—6 h) log, V0.5 =3
i) log, 16 =2 k) log..49 = A ) log,,,64=2 m)log,, s1=(

. Bestimme den auf vier geltende Ziffern gerundeten Wert von x aus

a) log,x =125 b) log,x = 2,8118 ¢) logygx=—14,2
d) log,ox = —0,35223 e) log;oox=1.5 f) log,sx = 3,023.

Nenne alle hochstens dreistelligen natiirlichen Zahlen, die beziiglich der
Basis a einen ganzzahligen Logarithmus haben, fur
a) a=10 b oa—"7 ¢) @a=3 a3y =01,

. Welche Quadratwurzeln aus natiirlichen Zahlen haben beziiglich der Basis

10 einen rationalen Logarithmus, der nicht groBer als 3 ist?

. Beweise, daB die folgenden Logarithmen irrationale Zahlen sind.

a) log,,2 b) log,, 5 ¢) log,,6 d) log,3 e) log,9
f) log,p, falls p und ¢ verschiedene Primzahlen sind.

(Anleitung: Gehe von der gegenteiligen Annahme aus und leite daraus
einen Widerspruch zur Eindeutigkeit der Primfaktorenzerlegung natirli-
cher Zahlen ab.)

Gib zur Gleichung log, y = x alle ganzzahligen Losungspaare (x|y) an,
fiir welche y kleiner als 10° ist.

Warum kann man die Zahl 1 nicht als Basis von Logarithmen verwenden?

Weshalb haben sowohl die Addition als auch die Multiplikation nur eine
Umkehrung, wihrend das Potenzieren zwei verschiedene Umkehrungen
besitzt?

SRS e e e R -
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L=

' 7.2 Rechenregeln fiir Logarithmen

i

Da das Logarithmieren eine Umkehrung des Potenzierens darstellt, ergeben
sich aus den bekannten Rechenregeln fiir Potenzen entsprechende Regeln fiir
das Rechnen mit Logarithmen.

ittt

Beispiel 1:
1) log, 4 = log,(2%) = 2; 2) log, 8=1log,(2°) =3
3) log,(4-8) =log,(2%-2°) = log,(2**°) = 2+ 3.
Aus 1), 2) und 3) erhilt man: log,(4-8) = log, 4+ log, 8.

L b

o e

Das Ergebnis dieses Beispiels 1d6t sich verallgemeinern zu

Satz 160.1: Der Logarithmus eines Produkts ist gleich der Summe aus
den Logarithmen der Faktoren.
Fur u>0,v>0,5>0 und b £1 gilt also:

log, (u* v) = log, u + log, v

E Beweis: Mit x:=log,u und y:=log,v gilt b*=u und » =v.
Also ist w-v = b*- b* = b*** und damit

logy(u-v) = log, (b)) =x+y, d.h. log,(u-v) =log,u+log,v.

Satz 160.1 gilt natiirlich auch fiir Produkte mit mehr als zwei Faktoren; z. B. ist
log,(u-v-w) =log,(u:(v-w)) =

= log, u+ log, (v-w) =

= log, u+ log, v+ log, w.

Ganz analog zu Satz 160.1 1d6t sich auch eine Rechenregel fiir den
Logarithmus eines Quotienten aufstellen:

Satz 160.2: Der Logarithmus eines Quotienten ist gleich der Differenz
aus den Logarithmen von Dividend und Divisor.
Firu>0,v>0,5>0 und b + 1 gilt also:

log, (ft—’) = log,u—log, v

Den Beweis kannst du leicht selbst durchfiithren (Aufgabe 161/1).

Bemerkung: In den Formeln von Satz 160.1 und 160.2 ist die linke Seite auch
noch definiert, wenn « und v beide negativ sind, die rechte dagegen nicht mehr.
Die folgende Form dieser Formeln erfaBt jedoch auch diesen Fall:

u y
log, (u - v) = log,|u| + log,|v| bzw. logb(—) = log,|u| — log, |v|.
\ U




7.2 Rechenregeln fiir Logarithmen 161
Zu einem Satz iiber den Logarithmus einer Potenz fithrt uns

Beispiel 2:
1) log,9 = log;(3%) = 2;
2) log;(9°) = log,[(3%)°] = log;(3*) =2-5=5-2
Aus 1) und 2) erhiilt man: log,(9°) = 5-log,9.

Il

Auch dieses Ergebnis ldBt sich verallgemeinern zu

Satz 161.1; Der Logarithmus einer Potenz ist gleich dem Produkt aus
dem Exponenten und dem Logarithmus der Basis.
Firu>0,5>0,b+1 und geR gilt also:

L log, u® = ¢ log, u

Beweis: Mit x:=log,u gilt b*=wu und damit u®= (b*)* = b°*.
Daher ist log, u® = log, (b**) = ¢ * x, also log,u® = ¢ -log, u.

Die drei in den vorausgehenden Sitzen enthaltenen Rechenregeln besagen,
daB das Logarithmieren ein Produkt zu einer Summe, einen Quotienten zu
einer Differenz und eine Potenz zu einem Produkt macht. Auf dieser
Vereinfachung der Rechenarten beruhte bis in die jlingste Zeit, d.h. bis zur
Einfithrung von elektronischen Rechnern, die groBe Bedeutung der Logarith-
men fiir das praktische Rechnen. Historisch gesehen fiihrte gerade das
Bediirfnis, schwierige numerische Rechnungen zu vereinfachen, zur Ent-
deckung der Logarithmen (vgl. 7.6).

Aufgaben
"
1. Beweise die Rechenregel: iugﬂ( 5 log, u—log,v
\
2. Zerlege in ein Aggregat von einfacheren Logarithmen unter der Voraus-
setzung, daB alle Variablen positive Zahlen vertreten:

| UW
a) log,(3uv) b) log,(2mnv) ¢ ]Og“(‘w) d) IOg“(h')

Suv

e) log, (4'\;"1‘) f) log,[(15¢d)- (3ce)] o) log,[(16pg):(12qr)]

27z
3. Driicke die folgenden Logarithmen durch Logarithmen von Primzahlen
aus.
a) log,6 b) log,24 ¢) log,75 d) log, 81
; £ 4o 1 12
e) log,1000 f) log,(%) g) log,(i1) h) log,(35)

e

i) log, 0,04 k) log,8.45 ) log, V3 m) log, 1/ 24
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4, Fasse zu einem einzigen Logarithmus zusammen:

a) log,2+log,3 b) log, 5—log,7 ¢) log,1 —log,11 + log,2
d) 2log,16 —log,8 e) 3log,2+log, 4 1) log, l 243 —log, 6 + log, 2

il
n

. Alle Variablen vertreten positive Zahlen. Vereinfache

(3L uly

a) log, u’ b) log, 2c* c) Imz“( J d) h.}gu( ‘)
. OW \2w)”,
_ i« 6 ;I,-"“:‘. ) A s
e) log,Vu 1) log,|/— g) log, -jf—) h) log, (V/p-] Eq_)
i Vr?st
6. Sind die folgenden Terme dquivalent?
3 a) log,x+2 und log,,{.\' +2) b) log,a® und (log,a)’
¢) log,(a?)’, (log,a?)® und [(log,a)*]?
= 7. Fasse zusammen:
. 0

a) 2log,m+3log,n b) 0,5log, p” Ing”([ )

X Vg
o C
- ¢) 2log,(c*) {'(r’}—4log‘_;(F) d) log,c+1
= a”
= 3 2 oz (u%0) { . > Lf:
= ¢ OB, \U"V f) —(lD_” m°n—3) (U' 5—log,—
S 2 m
8. Berechne:
a) log,, 5+ log,,2 b) log, 4+ log, 9 ¢) log,.5—log,s75
d) 3log,, 5+ log,, 8 e) 2log.12 +log.1.5 f) 2log,s3—log,s 72

9. Vereinfache:

a) log;(5+4)+log,(5—4) b) log,(6 +2) —log, (6 —2)

¢) logs(25—5)—logs(125—25)  d) log,(48 —17-2)+log,(3 + 52)
e) log,(2+4+8)—log,(30—2) 1) 300(9 +9:2) +logy (27 + 270)

10. Berechne:

FaE 3
2 3 5 )
a) log,a+log,.a b) log,.a’ +log,.a ¢) log,Va’> —log,lVa*
= 3 6 r 3
= d) log,-Va+log,-Va e) log, l/a—2log, |/ a+ log,al a

11* Lose mit Hilfe der Rechengesetze fiir Logarithmen:
a) log,(2x+6)—log,(x—2) =2
b) log-(x+4)+log,(x—2) =1
¢) log,i(x + 8) + log,(x+9) = log;(13x + 93)

* Die Bearbeitung

d} logz {-Y = 1} = lf}gz(S.Y = 5) = 1 = lOgZ X dieser Aufgabe
E) lOg-_‘{.\' 1} f ]C';{—fg,(.s-\' 2) =2 t I(’Jgﬂf o 2_,(} kann auch erst im

3 Abschnitt 7.5.2
f) ]Oga (_\'“ = 21) = l(’lg“(_\' = 2) - hﬁgn{z_\’ = 3) erfolgen.
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12. Vereinfache:
a) log,(—2)° b) log,(—9)* ¢) logi(—49)2
d) logy,(—5* e) log;%=3 + log;(10 —4)

f) logy s//(120—11%)-(12—3,5%)  g) log,5((12-13 —4-47):log, 0,2

13.#*Lose mit Hilfe der Rechengesetze fur ],ogarithnwn:

14.*

a) log,x =log,5—2-log,3 b) log,x=1+1log,5
¢) log,V'x+3-log,2=2-log,3 d) log,(—2x) = 4log,2 +log, 4 —

¥

: :
e) log.x*—log.x+1=0 f) log.x’ +log x*—log.x =0

3 ;
g) log,//x—2-log,x =0,5—3-log, V/x
h) log,,(0,01x) + log, 4 (100x)* = log,, 0,0001 — 2-log,, Vx
Lose mit Hilfe der Rechengesetze fiir Logarithmen:

a) log,,//x*=—4 b) 2log,,Vx=—4 ¢) 2log,,Vix|=—4
e

1 oy, BF v
d) mgﬁ( Irl) —2 ¢ ilog,V|2x—1]+05=0 ) log,//5x—3=3

7.3 Verschiedene Logarithmenbasen

7.3.

1 Die Umrechnungsregel

Bei den in 7.2 behandelten Rechenregeln war wesentlich, daB die darin
vorkommenden Logarithmen jeweils dieselbe Basis hatten. Natur lich dndert
sich der Louan[hmus einer (von 1 verschiedenen) Zahl, wenn man die Basis
wechselt. Welcher Zusammenhang besteht zwischen den auf verschiedene
Basen bezogenen Logarithmen einer bestimmten Zahl?

Beispiel 1:

* Die Bearbeitung dieser Aufgabe kann auch erst im Abschnitt 7.5.2 erfolgen.

Esist log,8=3; log,8=3; log;s8=3.
Da auBerdem log,4 =2 und log,16 = 4 gilt, kann man log,8 und
log, 8 in folgender Form darstellen:

log, 8 log, 8

log, 8 ——-: log e
T 2 log, 16

Aus dem Logarithmus der Zahl 8 zur Basis 2 erhélt man also ihren

Logarithmus beziiglich der neuen Basis 4 bzw. 16, indem man log, 8

durch log, 4 bzw. log, 16 dividiert.

J)

5
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Allgemein gilt

Satz 164.1: Umrechnungsregel

Aus den Logarithmen bezliglich einer Basis a erhilt man die
Logarithmen beziiglich einer neuen Basis » mit Hilfe der Formel:

log,u

log, u =
: log, b

Dabeiist u>0,a>0, a1, b>0,56%1.

Beweis: Wir setzen log, u =: x; dann gilt
b*=u
log, b* = log, u
x-log, b =log,u

ok , also log,u= log, u , q.ed
log, b log, b
Aufgaben
1. Verwandle in Logarithmen zur Basis 8:
a) log,2 b) log, 3 ¢) log, /5
d) log, u e) log, v f) logy,w

[ o]

a) Driicke log, 5 durch Logarithmen zur Basis 2 aus.

b) Driicke log;1,7 durch Logarithmen zur Basis 5 aus.
¢) Driicke log: 64 durch Logarithmen zur Basis 4 aus.
d) Driicke log, ,(3z5) durch Logarithmen zur Basis 7 aus.
e) Driucke logg 2 durch Logarithmen zur Basis 3 aus.

f) Driucke log;1,63 durch Logarithmen zur Basis 25 aus.

3. Driicke durch Logarithmen zur Basis 10 aus:

a) log,10 b) logs100 ¢) log,,,5 d) log;p002 ) log,1000

f) log,,1000 g) log,,7 h) log, /0,1 i) log,—6 k) log,;)/0,001

=110
) log,2 m) log: 0.5 n) logg)(‘;) o) log,,523 p) log, 49
4. Beweise: Fiir a>0,a+1und >0, b +1 gilt log,a-log, b =1.
5. a) Beweise: log, x = log,. x" (falls a >0, a + 1, x > 0).

eb) Kann man stets log,. x" durch log, x ersetzen?
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o 6. Lose folgende Gleichungen:

a) log, x =log,9 b) log, x =logi15 ¢) log, ,x—1log,s3=0

1
4

=2+ logi2

a

g) log,(1 + log, x) = log, 2

\..-/
I-\.}

d) log. Vx = log <7 og,.
f) log,-(x—3)=log,(x+

h) log;(1 +log, x) = log12

F

el
e

e TR e

7.3.2 Zehner- und Zweierlogarithmen

Die groBe Bedeutung der Umrechnungsregel liegt offensichtlich darin, dal es
geniigt, die Logarithmen beziiglich einer einzigen Basis a zur Verfigung zu
haben, um daraus dann die Logarithmen fiir jede andere Basis recht einfach =
berechnen zu kénnen. Welche Zahl man als Basis @ wihlt, ist grundsitzlich
gleichgiiltig. In der Praxis hat man sich vor allem fiir die Basis 10, die
Grundzahl unseres Zahlensystems, entschieden.

Definition 165.1: Die Logarithmen zur Basis 10 nennt man Zehnerlog-
arithmen oder dekadische Logarithmen.
Fiir log,, x ist die kiirzere Bezeichnung lg x ublich.*

Jahrhundertelang beniitzte man zum praktischen Rechnen sogenannte Log- _
arithmentafeln, in denen fiir sehr viele Zahlen die Zehnerlogarithmen =
aufgelistet waren. Solche Tafeln mufiten urspriinglich in sehr mithsamer und
langwieriger Arbeit berechnet werden; mehr dariiber erfihrst du im Abschnitt

7.6. Heute verwenden wir elektronische Rechner, die den dekadischen

Logarithmus einer Zahl an Hand eines einprogrammierten Rechenverfahrens

in kiirzester Zeit mit hoher Genauigkeit berechnen. Uberpriife mit einem

Taschenrechner die folgenden

Beispiele s

1) |
3) 1

,30103 2) 1g876 = 2,94250
—(].6*)89? 4) 10,01 =-2

f]-.

fr-

Mit Hilfe der uns somit zur Verfiigung stehenden Zehnerlogarithmen lassen
sich nun die Logarithmen beziiglich einer beliebigen Basis b nach Satz 164.1
I

b

,_.
g

mit der Formel log, u = berechnen.

1

i =]

* Sexadens (dekadeus) = zu zehn gehorend. Das Symbol »lg« wurde 1968 durch den Deutschen Normenaus-
schulB gemdB DIN 1302 festgelegt.

* Die angegebenen Dezimalbriiche sind jeweils auf 5 Stellen nach dem Komma gerundet.
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Beispiele *:

1g 10

lg5  0,69897
lg41  1,61278
Ig3,7  0,56820
18,5  0,92942
lg0,4  —0,39794
1g0,5 —0,30103

4) log,,0,5=—="" = — =0,30103
) 1080, lg 0,1 —1

1) log;10 = = 1,43068

2) log, 41 = = 2,83840

N
Il

3) log, 8.5 : —2,33558

i]=]

g

Oft spielt in der Mathematik und Physik auch der Logarithmus zur Basis
2 eine wichtige Rolle. Daher gibt es auch fiir ihn eigene Bezeichnungen:

arithmen.

auch Ib x, gelesen binéirer Logarithmus von x **

Definition 166.1: Die Logarithmen zur Basis 2 nennt man Zweierlog-

Fir log, x schreibt man Id x, gelesen logarithmus dualis von x, und

Beispiele:

1) Id64 =6 2) 1d0,125 =—3

3) 1d10 = 3,32193 4) 1d 0,64 = — 0,64386
Aufgaben

I. Welche dekadischen Logarithmen haben die folgenden Zahlen?
a) 1; 10; 100; 1000; 10000; 100000; 1000000
b) 0,1; 0,01; 0,001; 0,0001; 0,00001; 0,000001

; 3 —
¢) 10% 1072 10: Vin?: 100-10%  $000°

gerundeten Zehnerlogarithmen der folgenden Zahlen:

a) 3478 347.8 3.478 0,03478
b) 6002 600200 6,002 0,6002
c) 591 0,00591 59100 0,591
d) 21 210000 0,00021 2,100
e) 201 2010 0,201 20,1

* Die angegebenen Dezimalbriiche sind jeweils auf 5 Stellen nach dem Komma gerundet.

** dualis (lat.) = zwei enthaltend — bini (lat.) = je zwei; bindr = aus zwei Einheiten bestehend.

2. Bestimme mit dem Taschenrechner die auf 4 Stellen nach dem Komma



* 1808 hat Carl Friedrich Gauss (1777-1855) fir die grofite Ganze einer Zahl x das Zeichen [x] eingefiithrt. Es
heiBit gelegentlich GauBklammer.

e i e e e e I R T
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. Jede positive Zahl z 1aBt sich bekanntlich eindeutig in der Formz = a- 10*
mit 1 < a< 10 und keZ schreiben (Gleitkommadarstellung!). Fur Igz
ergibt sich (Idm!l

lgz = lg(a-10¥) = lga+1g(10") = lga+k

Beispiele:
1g300 = 1g(3-10%) =1
1g0,03 = 1g(3-107?)

Zuriickgehend auf Johannes KEPLER (1571-1630) heiBit die Zahl z
diesem Zusammenhang Numerus. Die ganze Zahl k nannte 1624 Henry
BRIGGS (1561-1631) in seiner Arithmetica logarithmica characteristica.
Das auch im Deutschen verwendete »Charakteristik« wurde 1758 durch
Abraham Gotthelf K ASTNER (1719-1800) in seinem Werk Anfangsgriinde
mit Kennziffer iibersetzt. Ernst Gottfried FiscHER (1754—-1831) fithrte 1824
in seinem Lehrbuch der Elementarmathematik zum Gebrauch in den oberen

Klassen gelehrter Schulen (Bd.3) das heute iibliche Wort Kennzahl ein.

Damit wird im Gegensatz zu »Kennziffer« richtig wiedergegeben, dal3 &
sowohl mehrstellig wie auch negativ sein kann. Das von John WALLIS
(1616-1703) stammende Wort mantissa verwendete Leonhard EULER
(1707-1783) ausschlieBlich fiir die in Iga nach dem Komma auftretende
Dezimalziffernfolge (Introductio in Analysin infinitorum, 1748), das KAsT-
NER 1764 zu Mantisse eindeutschte. Wir merken uns also

IL":}(]—]UB 10?) —04?7"]7 g

42 =047712+2 = 2,47712
Ig. 34 (—2) = 047712 — 2 = —1,52288

fJ‘G

Numerus Mantisse Kennzahl

Die so als Ziffernfolge definierte Mantisse darf nicht verwechselt werden
mit der Mantisse a in der Gleitkommadarstellung a- 10*, die als Faktor
vor der Zehnerpotenz definiert, also eine Zahl ist. (Siche auch die FuBnote

auf Seite 8.)
a) Begriinde,dalausz=a- 10* mit 1 € a < 10 und k € Z die Ungleichung

k= lg z < k +1 folgt, d.h., daB die Kennzahl k die groBte Ganze von
Ig z ist, wofiir man auch [lg z] schreibt.*

b) Wie lautet die Kennzahl des dekadischen Logarithmus von
1) 7 2) 28,4 3) 1429.35 4) 365000 ?
Nach welcher Regel erhilt man also sehr einfach die Kennzahl des
dekadischen Logarithmus einer Zahl z> 17

¢) Wie lautet die Kennzahl des dekadischen Logarithmus von
1) 0,5 2) 0,064 3) 0,00001 4) chr ?
Nach welcher Regel erhiilt man also die Kennzahl des dekadischen
Logarithmus einer Zahl zwischen 0 und 17

i
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4. Beweise:

= a) Wenn zwei Zahlen sich lediglich durch die Stellung des Kommas
E unterscheiden, dann unterscheiden sich ihre dekadischen Logarithmen
= um eine ganze Zahl.
b) Auch die Umkehrung des Satzes von a) ist richtig,
f 5. Bestimme mit Hilfe des Taschenrechners zu den folgenden dekadischen
£ Logarithmen die auf vier geltende Ziffern gerundeten Zahlen:

a) 0,3414 2,3414 5,3414 0,3414 — 1
4 b) 3,7777 0,7777 =2 4, 7777 0,7777—5
__ ¢) 1,7553 0,7553 0,7553 — 4 34353
d) 0,2416 6,2416 0,2416 — 3 2,2416
: 6. Bestimme die auf vier geltende Ziffern gerundeten Werte der zu den
folgenden Zehnerlogarithmen gehorenden Zahlen:
a) 2,3515 b) 0,3796 — 1 ¢) 1,4303 d) 0,4617 —13
e) 0,0128 f) 0,1280 g) 1,28 h) 12,8
i) —0,5913 k) —0,0346 ) —2,8511 m) —5,6347

. Berechne mit Hilfe der dekadischen Logarithmen den auf drei geltende

Ziffern gerundeten Wert von

a) log,7 b) log-5 ¢) log;0.3 d) log, ; 64
e) log, ;1000 ) log,1,35° g) logz1/73 h) log,; 10.
E 8. Berechne mit einer Genauigkeit von vier geltenden Ziffern:
B 3-log,4.5
a) 14+ log;8—log.7 b) - e
: 2+1log16
¢) log,(lgl'1560 — log, 3.48) d) (log,(log,(logs1000)))
e 9. Bestimme mit Hilfe der Zehnerlogarithmen die Stellenzahl folgender
Zahlen:
3} Eiﬂ(} h) 2].000 C) 5150 d} 5{]1:’\()
&) 57°7 f) 99°° g) 4% n 7
I) 34-“ I\) 54-‘ |) {91[J+ Il”‘]” m){@"-’-l]”)”
¢10. a) Wie heiB3t die Endziffer (= Einerziffer) von 5'°°; welche Ziffer steht am

Anfang? (Hinweis: Betrachte den Zehnerlogarithmus dieser Zahl.)
b) Wieviel Endnullen hat die Zahl 50'°°? Mit welcher Ziffer beginnt sie?
¢) Wie heil3t die erste und wie die letzte Ziffer von 2'°°°? Kann man auch

die zweite Ziffer angeben?

(Hinweis: Betrachte die Folge der Endziffern der Potenzen von 2.)
d) Wie heilBlt die erste und wie die letzte Ziffer von

1) 4% g 3) 3= 2
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11. a) Bestimme 1) Id2 2) Id128 3) 1d1024.
b) Bestimme 1) 1d0,5 2) Id ¢, 3) Id /2.
¢) Berechne die auf vier Stellen gerundeten Werte von

1) 1d 10 2) 1d 20 3) 10,8 4) 1dV/5.

$12. Wenn man eine natiirliche Zahl n im Zweiersystem darstellt, erhalt man
eine Dualzahl mit [Idn] + 1 Stellen.
a) Prife diese Behauptung fir
Lyn—ii FLEE s J)in =32 4) n=100
b) Beweise die Giiltigkeit des Satzes.

$13. a) Otto erkundigt sich bei seiner Schwester Ute, einer Schiilerin der
Kollegstufe, welche Punktezahl sie bei ihrer letzten Mathematikarbeit
erreicht habe. »Viermal darfst du fragen«, sagt Ute. Otto weil’, daf3 in
der Kollegstufe die Punktezahlen 0, 1, 2, ..., 15 vergeben werden. Er
meint, es sei doch ziemlich aussichtslos, mit nur vier Fragen unter 16
Zahlen die richtige zu finden. »Doch, sagt Ute, »das ist moglich.« Wie
geht das?

b) Aus einer Menge von n Gegenstinden soll ein bestimmter herausge-
funden werden. Zeige, dall dies mit hochstens [Idn] +1 Fragen
moglich ist, wenn diese jeweils nur mit »ja« oder »nein« wahrheitsge-
miDB beantwortet werden. In welchen Fillen gentigen sogar [ld n]
Fragen?

*%7.3.3 Berechnung von Logarithmen

Die Logarithmen zur Basis 10 liefert uns der Taschenrechner. Nach Eingabe
des Numerus wird durch Driicken der Ig-Taste ein Rechenprogramm
gestartet, das in kiirzester Zeit den gesuchten Logarithmus mit hoher
Genauigkeit ermittelt. Die hierzu beniitzten Programme beruhen auf Metho-
den der hoheren Mathematik, so daB wir hier nicht néher darauf eingehen
konnen. Grundsitzlich geht es darum, die Berechnung der Logarithmen mit
Hilfe von schon bekannten Rechenverfahren durchzufithren. Eine einfache
Methode, die wir schon in Aufgabe 158/3 angewandt haben, ist die
Berechnung einer Intervallschachtelung fiir den gesuchten Logarithmus. Ihre
Beschreibung und die Durchfiihrung mit dem Taschenrechner oder einem
Computer vereinfacht sich, wenn man statt des Zehnteilungsverfahrens die
Halbierungsmethode beniitzt und die Rechenregeln fiir Logarithmen ge-
schickt anwendet:

Zu berechnen sei log, a, wobel wir b > 1 voraussetzen.

Man bestimmt zunichst ein Intervall [u,;v,] so, daB b"' < a < b"* und damit
u, <log,a <wv, gilt. Mit der Intervallmitte m,:= (u; +v,): 2 berechnet man
sodann A™. Wire b™ = a, so hitte man bereits log, @ = m, gefunden. Von
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diesem in der Praxis kaum auftretenden Fall wollen wir im folgenden absehen.
Falls 6™ < a, setzt man u, :=m, und v, :=v,;

falls 5™ > g, setzt man u, = u, und v, :=m,.

Damit hat man ein kleineres Intervall [u,;v,] gefunden, in dem log, a liegt.
Das neue Intervall wird nun durch m, := (u, + v,):2 wieder halbiert, ™
berechnet, usw. Man wiederholt diesen Schritt so lange, bis log, a auf ein
hinreichend kleines Intervall eingeschrinkt ist.

Der wesentliche Rechenschritt beim Ubergang von einem Intervall [u,;v,]
zum néchsten ist dabei die Berechnung von o™, also von b *7:2 Diese Zahl
laBt sich aber aus den zuvor schon berechneten Werten A* und b ermitteln.
Es gilt namlich pn* )2 — (pin- ""}é = }/b" - b, Man braucht also lediglich
die Quadratwurzel aus dem Produkt der beiden Potenzen zu berechnen.
Bricht man die Rechnung mit dem Intervall [« ; v ] ab, so ist m, = (u,+uv,):2
ein Néiherungswert fiir log, a, dessen Fehler kleiner als die halbe [ntervallinge,
also kleiner als 3(v, —u,) ist.

Beispiel: Zu berechnen sei log, 7.
Man wahlt etwa, da 4' <7<4? gilt, u; =1 und v, = 2.
Wegen f4£—42 =8>7 wird u, =1 und v, =1,5.
Wegen /4! 415 =2.82... <7 wird uy = 1,25 und v, = 1,:

Lh

Wegen V4125415 = 475 ... <7 wird u, = 1,375 und v, = 1,5.
Wegen [/41-372 - 415 = 6,16... <7 wird us = 1,4375 und v, = 1,5.
Wegen |/414375. 415 = 7.02 ... > 7 wird u, = 1,4375 und ve = 1,46875.

Wir  brechen hier ab. Mit m, = (4, +v,):2 = 1,453125 und
3 (vs — ug) = 0,015625 gilt also:

log, 7 = 1.453125 4+ 0,015625.

Aufgaben

1. Berechne, beginnend mit dem ganzzahligen Intervall der Lange 1, nach
dem Halbierungsverfahren die ersten fiinf Intervalle fiir

a) log.3 b) log, 0,5 ¢) 1d10
d) 1d 4,7 e) 1g0,75 f) lg83.,5

2. Berechne fiir die folgenden Logarithmen Nédherungswerte, deren Fehler
kleiner als ein Hundertstel ist.
a) log,9 b) 1d 0.8 ¢) lg123
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7.4 Logarithmusfunktionen

Nach Wahl einer von 1 verschiedenen positiven Zahl b kann man jeder
positiven Zahl x eindeutig ihren Logarithmus zur Basis b zuordnen. Man
erhilt damit eine Funktion.

Definition 171.1: Die Funktion f x — log, x mit der Definitionsmenge
R* heiBlt Logarithmusfunktion zur Basis b.

Abbildung 171.1 zeigt die Graphen der Logarithmusfunktionen mit den
Basen b = 2 und b = 10.

AY
| __—y=ldx

Abb.171.1 Graphen der Logarithmusfunktionen fir 6 = 2 und 6 =10

Die Funktionsgleichung y = log,x ist, wie wir wissen, dquivalent zur
Gleichung x = h (vgl.7.1). Das bedeutet, daBl man die G lughunff y = log, x
eindeutig nach x auflosen kann: jeder Funktionswert y wird an genau einer
Stelle xelR™ angenommen. %onm besitzt die LOgdl‘llhl‘ﬂlefL!l‘lkT.]Ol] eine
Umkehrfunktion, und diese hat, mit y als unabhingiger Variabler geschrie-
ben, die Gleichung x =5". Um ihre Darstellung mit x als undh}mn;__lgc
Variabler zu erhalten, vertauschen wir x und y. Das ergibt y = 5%, also die
Gleichung der Exponentialfunktion mit der Basis 5. Es gilt also

Satz 171.1: Die Logarithmusfunktion x> log, x, xe R™ hat die Expo-
nentialfunktion x +— b*, xelR als Umixc,hmmkkmn und umge-
kehrt.

Da das Vertauschen der Variablen x und y eine Spiegelung des Graphen an der

Winkelhalbierenden y = x bewirkt, liegen die Graphen y = log; x und y = b*

symmetrisch zu dieser Geraden (Abbildung 172.1).
Mit dem in Satz 171.1 beschriebenen Zusammenhang kann man aus den
bekannten Eigenschaften der Exponentialfunktionen die entsprechenden

Eigenschaften der Logarithmusfunktionen erschlielien. Es gilt

=
fc
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Abb.172.1 Graphen der Logarithmus- und Exponentialfunktion bei

gleicher Basis
b>1bzw. 0<bh<1

Satz 172.1: Jede Logarithmusfunktion hat die Definitionsmenge R " und
die Wertemenge [R.
Die Logarithmusfunktion zur Basis b ist
fir 5> 1 echt monoton zunehmend,
fiir 0 < b <1 echt monoton abnehmend.

Die Graphen der Logarithmusfunktionen enthalten den Punkt
(1]0).

S 4 \x
Da die Graphen y= 5" und y = (f) beziiglich der y-Achse zueinander
2}

symmetrisch verlaufen, liegen die Graphen y = log, x und y = log 1 x symme-
_ : ! . g1 % S}

¥4
\ y=log, x
\ s
\ ” o
\ log, x
\
—h \.... i | 1
g -.\ %
4
/ \ log,, x = -log, x
/ \K\\"\
. o
l‘m__x
."I y=log x

Abb.172.2 Symmetrie der Graphen y = log, x und y = log; x
] : g1
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Ya.

 y=log,,x  y=log,,x

y=log,x

y=log,x

i __E.I‘Qg:!:x
= >

~ y=log,x
y=log,

y=log, X

y= Lol'g X y=log,.x

Abb.173.1 Graphen von Logarithmusfunktionen x i— log, x

trisch zur x-Achse, wic Abbildung 172.2 zeigt. Abbildung 173.1 vermittelt
eine Vorstellung vom »Biischel« der Graphen y = log, x mit 5> 0 und b + 1.

Mit Hilfe einer Logarithmusfunktion kann man die Menge der positiven
Zahlen umkehrbar eindeutig auf die Punkte einer Geraden abbilden. Man
wihlt dazu auf der Geraden einen Anfangspunkt O und einen Punkt E, der
zusammen mit O die Lingeneinheit und die Orientierung festlegt. Damit
ordnet man nun jeder Zahl x > 0 denjenigen Punkt der Geraden zu, der sich
ergibt, wenn man von O aus den Pfeil log, x - OFEa btragt. Mit anderen Worten:
man bestimmt auf der Zahlengeraden mit dem Nullpunkt O und dem
Einheitspunkt E den zur Zahl log, x gehorenden Punkt, bezeichnet ihn aber
mit x (Abbildung 173.2). Eine so erzeugte Skala heiBt logarithmische Skala.*

log, x: OE

O E log,x
T ? ? ] ] \ -
b b b X b

Abb.173.2 Erzeugung einer logarithmischen Skala

Bei dieser Zuordnung entspricht, wie man leicht erkennt, dem Punkt O
die Zahl 1 und dem Punkt E die Zahl b, die Basis der Logarithmusfunktion.
Zwei Potenzen von b, deren Exponenten sich um 1 unterscheiden, haben
in dieser Skala stets den gleichen Abstand OE; denn es gilt
log, b**1 — log, b* = (k+1)—k =1.

oh

* scalae (lat.), seala (ital) = Treppe, Leiter

EAE T
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Eine logarithmische Skala ist vor allem durch die zu ihrer Herstellung
verwendete Logarithmusfunktion bestimmt; bei gleicher Wahl der Punkte
O und E ergeben verschiedene Funktionen auch verschiedene Skalen. Man
kann aber zeigen, daBl zwei logarithmische Skalen stets zueinander #dhnlich
sind (Aufgabe 181/22). Meist beniitzt man zur Herstellung logarithmischer
Skalen den dekadischen Logarithmus. Ein Beispiel zeigt Abbildung 174.1.

R
l]ll 0,2 05

i
05 e

=
|||_.1I'4 Vst

BT g eu A

: 10 : 100

Abb.174.1 Logarithmische Skala

[ S

Fir logarithmische Skalen gibt es einige sehr sinnvolle und niitzliche
Anwendungsmaoglichkeiten:

a) Der Rechenstab oder Rechenschieber

Edmund GUNTER (1581-1626) beniitzte die von ihm 1620 erfundene logarith-
mische Skala — sie hieB bald Gunter’s line — auf einem 6 Ful langen Stab zur
Multiplikation und Division zweier Zahlen, indem er auf ihm mit dem Zirkel
Strecken addierte bzw. subtrahierte.* William OUGHTRED (1574—1660) verein-
fachte 1621 diesen Vorgang erheblich, indem er zwei Exemplare einer loga-
rithmischen Skala gegeneinander legte: Der Rechenstab war erfunden! Das
erste Modell mit festem und beweglichem Korper lieB er 1633 konstruieren.
das dlteste erhaltene fertigte 1654 ein gewisser Robert BISSACKER.
Abbildung 174.2 zeigt die Multiplikation zweier Zahlen als Streckenaddition.
Addiert werden die beiden Strecken mit den Langen lga und Igh. Wegen
lga+lgh =lg(a-b) liest man unter der Marke b der oberen Skala das
Produkt a- b auf der unteren Skala ab. Mit derselben Einstellung 16st man
auch die Divisionsaufgabe ¢: b.

Igh 1 lg a® a 10 b 100
Ly ~{b 15 3 I = o | | |

1] la cmabl 101 = ) T I
y L5, 1 F:

-

g nh %

Abb.174.2 Multiplikation bzw. Divi- Abb.174.3 Quadrieren und Wurzelzie-
sion mit dem Rechenstab hen mit dem Rechenstab

Mit zwei logarithmischen Skalen, deren Lingeneinheiten sich wie 2:1
verhalten, kann man quadrieren bzw. die Quadratwurzel ziehen (Abbildung
174.3). Wenn die Marken 1 der beiden Skalen ubereinandergestellt sind, liest
man uber der Zahl a der unteren Skala ihr Quadrat ¢ auf der oberen Skala ab.
Umgekehrt steht unter einer Zahl b der oberen Skala ihre Quadratwurzel auf

* gesprochen 'ganto. Bei den englischen Seeleuten war lange Zeit ein zwei FuB langer flacher Stab in Gebrauch,
der neben der logarithmischen Skala auch logarithmische Skalen trigonometrischer Funktionen enthielt. Er
hieB The Gunter. According to Gunter sagen iibrigens die Amerikaner fiir unser »nach Adam Riese«. (Bei den

Englindern heiBt es dagegen according to Cocker nach dem englischen Mathematiker Edward Cocker

[1631-1675], dessen Arithmetick von 1678 insgesamt 112 Auflagen erfuhr.)
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der unteren Skala. Edmund WINGATE (1596-1656) hat 1645 die »Quadrat-
skala« erfunden und auf dem GUNTERschen Stab anbringen lassen.

Mit Hilfe geeigneter Paare von logarithmischen Skalen lassen sich noch viele
weitere Aufgaben recht einfach 16sen (Aufgabe 181/23 und 182/24).
Rechenstdbe wurden vor der Einfiithrung elektronischer Taschenrechner auch
im Unterricht verwendet. Abbildung 175.1 zeigt einen Rechenstab mit »Lau-
fer«, der erstmals 1837 von MouziN erwahnt wurde.

ARIBTO-BISCHOLAR

Abb.175.1 Rechenstab

b) Das einfach-logarithmische Papier

Abbildung 175.2 zeigt ein Koordinatensystem, dessen y-Achse eine logarith-
mische Skala tragt, wihrend die x-Achse die gcwnhn[e aquidistante Teilung
aufweist. Es handelt sich um ein sog. einfach-logarithmisches Koordinaten-
system; ein Papier, auf dem eine solche Einteilung vorgedruckt ist, heil3t
einfach-logarithmisches Papier.

'y
sl == =]
! = =
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. B ] !
] !
1 : :
| i
| 1 | X
-5 == i 5—
| |
=] 1 |
-DJE —1 it
| ! ]
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| e
| i | ||
S ey ] PR R G I | o5
Abb.175.2 Einfach-logarithmisches Abb.175.3 Graph von x — x4+ 2,
Koordinatensystem x> —2 auf einfach-logarithmischem
Papier

Natiirlich hat in einem solchen Koordinatensystem der Graph einer Funktion
eine andere Form als in den uns geliufigen Systemen mit jeweils dquidistant
geteilten Achsen. Zum Beispiel ist der Glmh einer linearen Funktion auf
einfach- logarithmischem Papier keine (IElddL, sondern eine gekriimmte
Kurve (Abbildung 175.3). Es gibt aber auch Funktionen, deren Graphen sich
bei Verwendung von logarithmischem Papier vereinfachen. Von besonderem
Interesse ist die Frage, welche Funktionen in einem solchen Koordinaten-
system als Graphen eine Gerade haben.
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Um dies zu untersuchen, fithren wir Y4z
eine mit der y-Achse zusammenfal-

lende, dquidistant geteilte z-Achse

ein, und zwar so, dafl der Punktz = 0

mit dem Punkt y =1 und der Punkt y=10%
z =1 mit dem Punkt y =10 zusam- 101
menfallen (Abbildung 176.1). Jedem
Punkt dieser Achse ist dann sowohl
ein y- als auch ein z-Wert zugeordnet; X
dabei gilt z=/lgy. Bine nicht za =2 " [° i e
dieser Achse parallele Gerade hat im
(x,z)-System eine Gleichung der
Form z=ax+5. In den Koordi-
naten x und y hat diese Gerade die
Gleichung lgy = ax+b. Die Um-
formung lgy =ax+b < y=10""" < p = (109"-10° zeigt, daB es sich
um eine Gleichung der Form y = C- B* handelt (mit B:= 10° und C:= 10"),
also um die Gleichung einer Exponentialfunktion. Dabei sind die Basis B
und der Faktor C positiv. Damit haben wir folgendes Ergebnis:

100—-2

Z=ax+b

Abb.176.1 Einfach-logarithmisches
(x, y)-System und ein (x,z)-System mit
dquidistant geteilten Achsen

In einem einfach-logarithmischen Koordinatensystem mit logarithmi-
scher yp-Skala ist eine Gerade, die nicht zur y-Achse parallel ist, der
Graph einer Exponentialfunktion x+— C- B* mit C> 0 und B> 0.

DaB} auch jede derartige Funktion in einem solchen Koordinatensystem durch
eine Gerade dargestellt wird, folgt aus der Tatsache, daB jede positive Zahl in
der Form 10“ bzw. 10° dargestellt werden kann. Aus diesem Grunde heiBt das
einfach-logarithmische Papier auch Exponentialpapier. Abbildung 177.1
zeigt einige Beispiele.

= 5':1?";)(
Lol

¢) Das doppelt-logarithmische Papier Tl
Ein aus zwei logarithmischen Skalen
gebildetes Koordinatensystem heif3t
doppelt-logarithmisch; Papiere, auf > a1y I T R iwi
denen eine entsprechende Einteilung = i E e s
vorgedruckt ist, bezeichnet man als | B i m e
doppelt-logarithmische Papiere (Ab- BENE
bildung 176.2).
Welche Funktionen werden auf dop-
pelt-logarithmischem Papier durch
Geraden graphisch dargestellt? Wir SR
denken uns an Stelle der x-Achse eine Abb.176.2 Doppelt-logarithmisches

aquidistant geteilte r-Achse so, daB} Koordinatensystem
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Abb.177.1 Graphen von Exponentialfunktionen auf einfach-logarithmischem
Papier

t=0mit x=1 und r =1 mit x =10 tibereinstimmt, ebenso an Stelle der
y-Achse eine dquidistant geteilte z-Achse so, daB sich z =0 und y =1 sowie
z=1 und y=10 entsprechen. Es gilt dann t=Igx und z=Igy. Im
(¢, z)-System hat jede Gerade, die nicht zur z-Achse parallel ist, eine Gleichung




178 7 Logarithmen

der Form z = at + b. In den Koordinaten x und y heil3t die Gleichung dieser
Geraden lg y = a-lg x + b; sie 1afit sich folgendermallen umformen:
lgy=a-lgx+b

lgy = lg(x®) + 1g(10°)

lgy = lg(x*-10?)

y=C-x° mit C:=10° also C>0.

Das ist die Gleichung einer Potenzfunktion. Es gilt also:

In einem doppelt-logarithmischen Koordinatensystem ist eine Gerade, ‘
die nicht zur y-Achse parallel ist, der Graph einer Potenzfunktion
xt—C-x*mit C>0.

Da jede positive Zahl C in der Form 10" dargestellt werden kann, hat jede
Potenzfunktion x+— C-x® mit C>0 auf doppelt-logarithmischem Papier
einen geradlinigen Graphen. Aus diesem Grunde heilit das doppelt-logarith-
mische Papier auch Potenzpapier. Abbildung 178.1 zeigt einige Beispiele.

\\\ Yi /
1 \. .'. =
b
N g
0 y=2x y=yix
3 T ™ 1 e
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.\ 5-.—,\- x
R Eiel SL RS
.'\'\.
1 \"\“J- 3
:r,: AR &
; : ] N ) f i :
0 05 - 1 Gi-EHa 50 100
0,5"’ :\.h‘.\
b e
25 Nl
; y=X YEx
' 01l L b ARy R

Abb.178.1 Graphen von Potenzfunktionen auf doppelt-logarithmischem Papier
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Aufgaben

(o

10.

Bestimme die maximale Definitionsmenge:

a) x—log;x b) xi—logs|x| ¢) x—log,V/x
d) x— i?gf —5) e) x—log,2x+5) ) x—log,|2x—3

. Welche maximale Definitionsmenge hat folgende Funktion?

a) xi >1g(.ﬁ +11) b) xi—lg(x?*—1)
¢) x—log, l(::“ F2x 4+ 2) d) x—logs(x*+2x+1)
e) xi—~log, (x*—4x—15) f) .\'|—>10g_1_|2.\'?' + Tx — 4]

. Gib zu den folgenden Funktionsgleichungen y = f(x) jeweils eine Glei-

chung x = 1{}) der Umkehrfunktion an.
a) y=2° b) y=(3)* ¢ y=5* d)y y=01>*

e) y=Idx )y — log;;,\' g) y=Ig(—2x) h) 5 — = log, , Vx

. Zeichne den Graphen der Funktion.

a) x—log,x b) .x'|—>lug_% X ¢) x—log, ¢ X d) x—log, - x

. Bestimme diejenige Funktion x— log, x, deren Graph den angegebenen

Punkt enthilt, und skizziere den Graphen.
a) A(8]3) b) B(8|1.5) ¢) C(8]—
d) D(0,25[2) e) E(5]3) f) F(Hl—2)

. Kann man zu jedem Punkt der rechten Halbebene (x > 0) eine Funktion

x+log, x angeben, deren Graph den Punkt enthidlt? Gibt es Punkte,
durch welche mehr als eine derartige Logarithmuskurve geht?

s peri X . s
. Zeichne die Graphen y = Id 5x und y = Idg und vergleiche sie mit dem

Bild von y = Id x. Welche Zusammenhinge vermutest du? Begriinde deine
Velmutum_ mit Hilfe der Rechengesetze.

. Stelle folgende Funktionen graphisch dar:

a) x—ld(x—1) b) x—Ildx—1
c) .\'I—>|{}g_£‘,[.\'+2} d) x—logix+2

. Zeichne die Graphen der Funktionen fund g auf der jeweiligen maximalen

Definitionsmenge.
a) f(x)=2Ildx, g(x)=1dx*
b) f(x)= 2]0;1__;1?_(2.\' —35), g(x)=1logi1(2x—

©) f(x)=2logs|x—3|, g(x)=logs(x—3)*

h

)2

I»J-.

Werden durch die folgenden Paare von Zuordnungsvorschriften verschie-
dene Funktionen definiert? (Es soll jeweils die groBtmogliche Definitions-
menge genommen werden.)
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a) x+2log, x und x—log,x* b) xr>3log,x und x—log,V/ x

¢) x+—3logsx und x—logsx® d) x—lg(x+1)* und \'—>4l{§l e
e) x—x und x+1d2* f) x—1d2* und x+— 24>

o]

g) x+>x? und x> log, 3* h) x> x* und x4 32083

Stelle die Funktionen x+ log, x, x+—log, x und x+—log, x graphisch
dar. Welche geometrische Beziechung besteht zwischen den Graphen?

. Zeichne das Bild der Funktion x+lgx und konstruiere daraus den

Graphen einer neuen Funktion, indem du alle Ordinaten

a) verdoppelst b) verdreifachst ¢) halbierst.

Handelt es sich bei den neuen Kurven ebenfalls um die Graphen von
Logarithmusfunktionen, und wenn ja, von welchen?

. a) Gegeben sei der Graph y = Id x und ein beliebiger Punkt P(x, | y,) mit

14.

x, > 1 und y, > 0. Zeichne den durch P verlaufenden Graphen einer
Funktion x log, x. (Hinweis: Nach der Umrechnungsregel von Satz
164.1 ist das Verhéltnis der zu einer bestimmten Abszisse gehorenden
Ordinaten der beiden Graphen konstant.)

b) Verwende anstatt des Punktes P einen Punkt Q(x,|y,) mit x, > 1,
¥, <0.

Fur welche Werte von x sind die folgenden Funktionen definiert?
a) f(x)=Id(ld x) b) f(x) = log_;i(log_% X) ¢) f(x) = lg(log, , x)

d) f(x) = log, [log,(logs x)] e) f(x) = log,[log, ,(log; x)]
15. Lose folgende Gleichungen:
a) ld(ld x) =1 b) log.(log; x) =1
c) Iog% (log, x*) = —1 d) Iogl[logli_\‘z —2x+8)] =—2
e) log, [log,(logsx)] =0 f) log, [logy (log, ,x)] =

16

18.

Welche Ungleichung besteht zwischen
a) Id5und 1d7 b) I:wl 5 und log17

¢) log,? und log, 3 d) Im_o , 0,7 und 1 g1 0,699

b S

€) Iog_ﬁ:}_ 15 und logy, - 0,15 f) log,1 und log, 13

. Zwischen welchen aufeinanderfolgenden ganzen Zahlen liegen die folgen-

den Logarithmen?

a) log;100 b) log; 39 c) lgl,67 d) 1g16.,7 e) lg1670

f) log:0,3 g) 1d 0,01 h) 1g0,0011 i) log, ;2 k) ioga?

1) log,s50 m) Eog%{ﬁ{) n) logi(s5) o) log,s0,3 p) Eﬁg“ ,0,05
L.ose folgende Ungleichungen:

a) log; x <logsV/'5 b) log, ; x < log, 511



20.

21.

22.
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¢) 0<logyx<3 d) logi3 = ks =3
=X X
e) ld(2x+5)>log,(4x+1) f) logys(2x+1)<logy(x+2)

). a) Zeichne unter Verwendung des dekadischen Logarithmus und der

Léangeneinheit 5cm eine logarithmische Skala fiir das Inte%r.\ﬂ]
[1; 1000]. Gib auf dieser Skala die den Zahlen 6; 350; )/ 1000 und }/ 100
entsprechenden Punkte an.

b) Fertige fiir das Intervall [1%;1024] eine auf der Funktion x+Id x
beruhende logarithmische Skala mit der Lingeneinheit 1 cm an. Trage

darauf die Punkte /2, 5, 3, %, 100 und 800 ein.

Auf der in Aufgabe 19.a) beschriebenen logarithmischen Skala liege
a) der Punkt A 4cm rechts von der Marke 1,

b) der Punkt B in der Mitte zwischen den Marken 100 und 1000,
¢) der Punkt C 32 mm links von der Marke 100.

Bestimme die auf zwei Stellen nach dem Komma gerundeten Werte der
diesen Punkten zugeordneten Zahlen a, b und c.

a) Wieviel Langeneinheiten betrigt auf einer dekadisch-logarithmischen
Skala der Abstand zwischen den Punkten
1) 2 und 20 2) 0.46 und 460 3) 10,1 und )/ 1000?

b) Begriinde fiir eine beliebige logarithmische Skala (mit Basis b), dal3 auf
thr der Abstand zweier Punkte x, und x, mit x, > x, dem dekadischen
Logarithmus des Quotienten x, : x, proportional ist.

a) In Abbildung 181.1 sind die mit derselben Lingeneinheit OE kon-
struierten logarithmischen Skalen mit Basis 10 und Basis 2 einander
gegeniibergestellt. Mit welchem Faktor mull man die erste Skala
strecken (z.B. vom Punkt 1 aus), um den Abstand der Punkte 1 und
2 auf den gleichen Wert wie in der zweiten Skala zu bringen?

b) Zeige, daB3 das bei dieser Streckung entstehende Bild der ersten Skala
zur zweiten Skala kongruent ist. (Hinweis: Betrachte die einer beliebi-
gen Zahl x > 0 auf den beiden Skalen zugeordneten Punkte.)

0] E
e
Abb. 181.1 , l , ,
Zu Aufgabe 22 B 10 100 1000
i 2 i 5

23. Konstruiere analog zu Abbildung 174.3 tiiber dem Intervall [1;10] einer

logarithmischen Skala eine »Kubikskala« so, dall man mit diesem
Skalenpaar 3. Potenzen und 3. Wurzeln bestimmen kann.*

* Auf den meisten Rechenstiben ist eine solche Skala tatsdchlich vorhanden, 1645 von Edmund WINGATE
{1596-1656) eingefiihrt.

i
—
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26.

28.
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Stelle einer logarithmischen Skala des Intervalls [1; 10] eine »Kehrwert-

skala« gegeniiber, auf der man unter dem Punkt x der ersten Skala die

Zahl — abliest. Zeige, dal3 es sich bei ihr wieder um eine logarithmische
X

Skala handelt.*

. a) Begriinde, dall man die beiden Skalen von Abbildung 174.3 so

einander gegeniiberstellen kann, dal} tiber der Marke x der unteren
Skala der Flacheninhalt eines Kreises mit Radius x abgelesen werden
kann.
b) Welche Anordnung der Skalen liefert zum Durchmesser x den
Flacheninhalt des Kreises?
Zeige, daB man mit zwei gleichen logarithmischen Skalen zu drei positiven
Zahlen a, b, ¢ die 4.Proportionale, d.h. die Losung der Gleichung
a:b = c:x, bestimmen kann. (Hinweis: Vgl. Abbildung 174.2.)

. Stelle in einem einfach-logarithmischen Koordinatensystem mit logarith-

misch geteilter y-Achse folgende Funktionen graphisch dar:

a) x+— 3* b) x+— 0,2° ¢) x— 20-1,5

d) x— 50-(%)* € x— 10-27* f) x—02-057*
Welche Funktion hat in einem einfach-logarithmischen Koordinaten-
system mit logarithmischer y-Skala als Graphen die Verbindungsgerade
der Punkte

a) P(0[100) und Q(2|1) b) R(0|1) und S(4]/100)

¢) T(0|80) und U(—3|10) d) V(1|2) und W(—5|128)?
Angeblich soll in einem frisch eingeschenkten Glas Bier die Hohe des
Schaums exponentiell mit der Zeit abnehmen. Hans will dies nachprifen.

Er schenkt ein Glas Bier ein und mifit in Abstinden von einer halben
Minute die Schaumhdhe. Dabei erhilt er folgende MelBreihe:

(o aen] 00,005 T M5 2005 3 8 T as S

h[in mm]]fﬂf_} et s 1 M [ SR it 5 3 2

Priife graphisch auf einfach-logarithmischem Papier, ob diese Melreihe
die behauptete exponentielle Abnahme der Schaumhoéhe bestitigt. Wie
konnte gegebenenfalls die Gleichung der Zerfallsfunktion ¢ — A(f) lau-
ten? (Konstanten auf zwei geltende Ziffern runden.)

Vom Luftdruck ist bekannt, dal3 er exponentiell mit der Hohe abnimmt,
d.h., daB er durch eine Funktion mit der Gleichung p(h) = p,-b ", mit
b > 1, beschrieben werden kann. Bei einem Ballonaufstieg wird in 1 km
Hohe der Druck p, = 879 hPa und in 5 km Hohe der Druck p, = 533 hPa
gemessen. Wie grol3 ist an diesem Tag der Luftdruck p, am Boden? Mit

* Auf den meisten Rechenstiben ist eine solche Skala tatsichlich vorhanden.
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welchem Druck ist in 10km Hoéhe zu rechnen? Lose die Aufgabe auf
einfach-logarithmischem Papier.

31. a) Zeichne den Graphen der Funktion x> Id x in einem einfach-logarith-
mischen Koordinatensystem, dessen x-Achse logarithmisch geteilt ist.
Welche Vermutung legt das Ergebnis nahe?

« b) Beweise, daB3 der Graph einer Logarithmusfunktion mit der Gleichung
y = log, x in einem Koordinatensystem mit logarithmischer x-Skala
und dquidistant geteilter y-Skala stets eine Gerade ist.

32. Die Hohe tiber dem Erdboden kann aus dem Luftdruck nach der Formel

Po
h =184 km-lg( -
P

Boden. In welcher Hohe befindet sich an einem Tag mit p, = 1010 hPa ein

MeBballon, wenn ein mitgefiihrtes Barometer folgenden Druck anzeigt:

a) 900 hPa b) 800 hPa ¢) 400 hPa d) 200hPa e) 150 hPa?

Lose die Aufgabe graphisch auf einfach-logarithmischem Papier.

bestimmt werden; dabei ist p, der Luftdruck am

33. Zeichne auf doppelt-logarithmischem Papier die Graphen folgender
Funktionen:

a) x— x> b) x 21 3 B Iy G 51/%2
2 g x— 2/ x ) x—|— d) x— SVx
X

34. a) Eine Potenzfunktion x — Cx? hat fir x = 0,2 den Wert y = 0,4 und
fiir x = 20 den Wert y = 10. Bestimme mit Hilfe von doppelt-logarith-
mischem Papier ndherungsweise den Funktionswert fiir
=1 20 =2 3) x =10 4) x =40.

s b) Bestimme fiir die in a) definierte Funktion die Konstanten C und
¢ durch Rechnung.

3S. Priife graphisch, ob die folgende Tabelle von MeBwerten einer Potenz-
funktion entspricht.

X 2 5 10 20 30 50
a)

} 3.8 66 100 151 192 26,1

X 0,5 1 2 - 6 10
b)

} 042 053 085 22 57 37
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7.5 Exponentialgleichungen und Logarithmusgleichungen

7.5.1 Exponentialgleichungen

Bestimmungsgleichungen, bei denen die Unbekannte nur in den Exponenten

von Potenzen vorkommt, nennt man Exponentialgleichungen. Bei einfachen

Gleichungen dieser Art kann man die Losungen exakt bestimmen. Grundlage

dafiir ist

Satz 184.1: Die Gleichung * = @ mit @> 0, » > 0 und 4 # 1 hat genau
eine Losung, namlich x = log, a.

Dal} log, a eine Losung der Gleichung b* = aist, beruht auf der Definition des
Logarithmus (Definition 155.1), daB es die einzige Losung ist, wurde schon in
Satz 155.1 festgestellt.

Beispiel 1:
5% =12 hat die Losung x = log,12.
Den Ubergang von der ersten zur zweiten Gleichung deuten wir so, dal
von beiden Seiten der Gleichung der Logarithmus zur Basis 5 gebildet
wird. Man nennt diesen Schritt Logarithmieren der Gleichung. Wir
schreiben dafiir
S =12 | logs
x=logl>
Beim praktischen Rechnen, z.B. mit dem Taschenrechner, bevorzugt

man den dekadischen Logarithmus. Man erhdlt dann folgenden
Losungsweg:

S | 1g
xrlgy="lgl? |:1g 5
lg12
Pt o 544
g5

DaBl die so gefundene Losung mit log.12 iibereinstimmt, folgt aus
Satz164.1.

Beispiel 2:
Bei der Gleichung 16* = 128 kann man beide Seiten als Potenzen mit
gleicher Basis darstellen. Das Logarithmieren der Gleichung lduft dann
einfach auf das Gleichsetzen der Exponenten hinaus:

16 = 128
=27 |log,
dx =7

x—
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Beispiel 3:
1 g2%F-1 __—;,r--x
Hier steht auf beiden Seiten eine Potenz, deren Exponent die Unbekannte
enthilt. Durch Logarithmieren erhélt man eine lineare Gleichung flir x.

o = l1g
x+1)-1g1,5 = —x-1g7
x(2-1g1,5+1g7) = —lg1,5
—1g1,5
x = = — ~ —0,1471

2-1g1,5+1g7
Beispiel 4:
5 _33x = ‘}Sx-i‘- LR 34
Da rechts eine Differenz steht, fiihrt Logarithmieren nicht weiter. Man
kann aber jedes der beiden Glieder, welche die Unbekannte enthalten,
durch die Potenz 3* ausdriicken.
5.32% — 3¥+3 _34
53T =373 3a

Mit der Substitution z = 3* erhiilt man eine quadratische Gleichung fiir z

2—-272z4+34=0
Sie hat die Losungen z, = 2 und z, = 3,4. Beide Losungen sind positiv
und kommen somit als Werte der Poluu 3* in Betracht. Damit gilt
3*¥=2 Y 3* =34
lg2 lg 3.4
X == v X =—;
g3 lg3
~ 06309 und x,~ 1,114, jeweils auf vier geltende Ziffern ge-
rundet.
Aufgaben

Bestimme die Losungsmenge. Gib fiir irrationale Losungen auch den auf vier
geltende Ziffern gerundeten Niherungswert an.

1. a) 7*=343 b) 3 =11 ¢) 3)*=10 d) 12°—0,6=0
a) 4757 =16 by 8% =30 e) sFt=d @04 =05

=]

3 8) TH= g L e by B =2-31F - ey ies@)ie 2t
4, a) 3*-51=1 b) 42x73.321-* =1

23 e s

¢) —=10 P g e e
it (/5)

T e
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5. a) 4-2Vx=0,5°% b) 55°*3 =25.0,2x 1

6. a) 7*F1_40.-7* =63 b) 9-3)**"1+54-3) 1 —-42=0
7. a) 25% =15-5%—50 b) 3*+9* = V/3(/3+1)

8. a) P2 —5-2°"2_04 - b) (3)* 1 (81 —4%) = 16(4*—8)

9. ImJahre 1990 lebten auf der Erde 5,3 Milliarden Menschen, Die jiahrliche

Wachstumsrate betrug etwa 1,5%.

a) In welchem Jahr wiirde bei gleichbleibender Wachstumsrate die
Weltbevolkerung
1) auf 6,0 Milliarden anwachsen
2) doppelt so groll wie 1990 werden?

b) In welcher Zeit nimmt bei der Wachstumsrate 1,5 % die Bevélkerungs-
zahl von 1990
1) um 1 Million zu (Einwohnerzahl einer GroBstadt)
2) um 77 Millionen zu (Bevolkerungszahl Deutschlands)?

7.5.2 Logarithmusgleichungen

Eine Bestimmungsgleichung, bei der die Unbekannte nur im Argument von
Logarithmen auftritt, bezeichnet man als Logarithmusgleichung. Auch solche
Gleichungen lassen sich in einfachen Fillen exakt 16sen. Grundlage dafiir ist

Satz 186.1: Die Gleichung log,x = ¢ mit >0, b +1 und geR hat
genau eine Losung, ndmlich x = p°.

Dies folgt aus der echten Monotonie der Funktion x+—log, x und der

f=/

Tatsache, daB3 diese Funktion die Wertemenge [ hat.

Beispiel 1:
log, x = 5 hat die Losung x = 4°.
Den Ubergang zur zweiten Gleichung kann man so deuten, dall man jede
Seite der Ausgangsgleichung zum Exponenten einer Potenz mit der Basis
4, also der Basis des Logarithmus, macht. Wir schreiben

log,x=75 |14
4]0}_.(4.: = 45
x = 1024

Diese Umformung, bei der der Logarithmus »beseitigt wird«, bezeichnet
man als Delogarithmieren der Gleichung.
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Beispiel 2:

lg(2x+3)+1g(1 —x)—l1g(1 —4x) =

187

Hier muBl man zuerst die linke Seite zu einem einzigen Logarithmusterm

zusammenfassen:

(2x4-3)(1—x)

lg— =0 19"
i 1 —4x I
(2x+3)(1—x)
=S e (="
T iy |- (1 —4x)

Da die Zusammenfassung von Logarithmen keine Aquivalenzumfor-
mung zu sein braucht, wenn man jeweils die maximale Definitionsmenge

zugrundelegt, mul man die Probe machen. Sie zeigt, dall nur x, eine

Losung der Ausgangsgleichung ist.

Beispiel 3:

logy(x*+1) = logy(2x — 1)

Hier muBl man zuerst Logarithmen mit gleicher Basis herstellen:

leesle 110 (5 1)
= log, (2.

log; 9
log;(x*+ 1) =2-log;(2x — 1) |3
x2+1=02x—1)
3x2—4x =0
T e

Die Probe zeigt, daB nur x, eine Losung der Ausgangsgleichung ist.

Aufgaben

Bestimme die Losungsmenge. Gib fiir irrationale Losungen auch den auf vier

geltende Ziffern gerundeten Néiherungswert an.

1.
2.

gix=8 ¢ lgx=0.1

oy

a) log;x=15 b) |

Alle Gleichungen sollen auf der jeweils maximalen Definitionsmenge

betrachtet werden.

a) Zeige an Hand der Losungsmengen, daf3 die Gleichungen

lg[(x+4)(x+1)]=1 und lg(x+4)+Ilgx+

nicht dquivalent sind.
b) Sind du: Gleichungen log,(x — 8) —log;(1 —

—8
It:);‘.-_ﬁ,li L + 1 = 0 dquivalent?

2x) +

1) =1

1=0

und
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¢) Begriinde, daB fiir die Losungsmengen L, und L, der Gleichungen
(1) log,[(rx +s)(ux+v)] = ¢ und
(2) log,(rx+s)+log,(ux+v) = ¢
gilt: L, ist (echte oder unechte) Teilmenge von L,.

a) lg(7x+2) =1 -l—IE( —4)
b) ld(x*—1)—Id(4x—1)+1d3 =0

4. a) log,(5x—4)— Iogﬁ(.? +x)+log.(2x+1)=1

b) Ig2+1g(x+2)+1g(B3x+5) = lg(5x* —1)
) 1g2+1g[(x +2)(3x + 5)] = lg(5x> — 1)

5. a) log;(3x+4)—log,s(4x—3) =1
b) lg(x? —;—4]!—10Ll ['%\'{-QJ—[]

6. a) logs(x*—5x+1)=1+logs(3x—10)
b) 1g(2x* +x—5) +log, ; (x2 +1) = 1g2

7.5.3 Graphische und numerische Lisungsverfahren

Die in den bisherigen Beispielen betrachteten Exponential- und Logarith-
musgleichungen lieBen sich durch Logarithmieren bzw. Delogarithmieren
oder mit Hilfe einer Substitution auf einfachere Gleichungstypen zuriickfiih-
ren, fur die uns exakte Losungsverfahren bekannt sind. Es gibt aber auch
Gleichungen, bei denen eine solche Vereinfachung nicht moglich ist. Dann
muf3 man sich damit begniigen, fiir die Lmunt‘rm hinreichend gute Néhe-
rungswerte zu bestimmen. Das kann durch graphische Losungsmethoden,
durch lineare Interpolation oder durch ein geeignetes [terationsverfahren
geschehen, wie die folgenden Beispiele zeigen.

Beispiel 1:
=2 =355 =10

a) Graphische Losung: Man bringt die Gleichung z. B. auf die Form
1 + 2% = 37* und sucht die x-Werte, fiir welche die Funktionen x — 1 + 2%
und x—37% xelR, glcichcn Funktionswert haben. Zeichnet man die
Graphen y=1+2* und y=3"% so ergeben sich diese x-Werte als die
Abszissen der gemeinsamen Punkte hudu Kurven. Abbildung 189.1 zeigt,
dal} in diesem Fall genau ein solcher Punkt existiert; fiir seine Abszisse lie.s,t
man x = — (.5 ab.
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Abb.189.1 Graphische Losung der Gleichung 1 +2*—3"*=0
b) Lineare Interpolation: Man berechnet fiir die Funktion f: x - 1 4 2* —37°
eine Wertetabelle, etwa
X ‘ -2 —1 0

2

il =TS 1,5 A2k 4

Offensichtlich liegt zwischen —1 und 0 eine Nullstelle der Funktion, also eine
Losung der gegebenen Gleichung. Wir ersetzen den Graphen zwischen den
Punkten (—1|—1,5) und (0|1) durch die Strecke und berechnen deren
Schnittpunkt mit der x-Achse.

Hat man allgemein zwei Punkte P (x, | y; < 0)und Q(x,| y, > 0) und 1st S (x| 0)
der Schnittpunkt der Geraden PQ mit der x-Achse, so kann man die Steigung
dieser Geraden sowohl aus dem Steigungsdreieck /A STQ als auch aus A PRQ
bestimmen (Abbildung 189.2) und erhilt die Gleichung

y;—0 Vo — ¥

Xyo— X  Xp—X;

Deren Auflésung nach X ergibt

In unserem Beispiel erhédlt man so
fiir die Losung der Gleichung den
Niherungswert

| Px, | y,)

1=-—0,4.

F=0———07u .
14145 Abb.189.2 Zur linearen Interpolation

i
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Die Probe zeigt, dall f(—0.4) ~ 0,206 gilt; also liegt, da die Funktion in
diesem Bereich zunimmt, — 0.4 rechts von der Nullstelle. /(—0,5) ~ — 0,025
zeigt weiter, daf die Nullstelle zwischen —0,5 und —0.4 liegt. Fithrt man mit
den Punkten P'(—0,5]0,025) und Q'(—0,4|0,206) noch einmal die lineare
0,206

0,206 + 0,025

Interpolation durch, so erhdlt man ¥ = — 0,4 — 0,1 ~—0,49

als genaueren Wert fiir die gesuchte Losung.

o

¢) Iterationsverfahren: Um aus 1 + 2*— 3~ * = 0 eine Gleichung der Form
x = g(x) zu gewinnen, kann man z. B. so vorgehen:

14+2*—-37*=0
14+2*=3"* I 1g
lg(1+42%) = —xlg3 | :(—=1g3)
lg(1 + 2%)
R o '!g?)

lg(1 + 2*)

Mit der Iterationsformel x, ., = I -und x, = — 0,5 erhidlt man:
g3

X, =—0,486... | x,=—04893... | xs=—048952...

%o=—0490... | x;——048958 . | % ——0489530

Daraus kann man bereits einen sehr genauen Ndherungswert fiir die gesuchte
Losung entnehmen: x ~ — 0,4895. Die Zahlen x, lassen sich sehr einfach mit
dem Taschenrechner berechnen; Abbildung 190.1 zeigt eine dafiir geeignete
Tastenfolge. Natiirlich 1Bt sich ein Iterationsverfahren besonders gut mit
einem programmierbaren Rechner durchfiihren.

M

MEEEOOEEEE

1 _ |

Abb.190.1 Zum Lésen der Gleichung 1 + 2* — 37* = () mit dem Taschenrechner

Beispiel 2:
3*—4x* =0

Hier tritt die Unbekannte sowohl als Exponent als auch als Basis einer Potenz
auf, In solchen Fillen ist es im allgemeinen unmoglich, exakte Losungen
anzugeben. Wohl aber lassen sich auch hier die in Beispiel1 beniitzten
Niéherungsverfahren anwenden. Man beginnt am besten mit einer Werte-
tabelle der Funktion x — 3* —4x2, xe R.

_x] -2 —1 0 I 2 3 4 5

S TR e S e S e

Man erkennt — auch ohne graphische Darstellung —, daBl der Graph die
x-Achse mindestens dreimal schneidet, die Gleichung also mindestens drei
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Losungen hat. Sie hegen in den Intervallen |—1;0[, ]0;1[ und ]3;4[ und
seien mit &,, &,, £, bezeichnet. Graphisch oder durch lineare Interpolation
konnte man fiir diese Losungen grobe Niherungswerte bestimmen. Um
genauere Ergebnisse zu erhalten, suchen wir nach einem geeigneten Iterations-
verfahren.

1. Versuch:
¥ _4x2 =0 < x= 4 (x = 0 ist keine Losung!)

X

i

= 4._\,” '
Mit x, = — 0,5, der Mitte des 1. Intervalls, erhalt man nach (I,)
x, =—0,288... xy; =—0,198...
x; =—0,630... xs =—1,01...

Die Werte »laufen auseinander«; (I,) ist fiir die Berechnung von &, ungeeignet.

Damit erhilt man die Iterationsformel x

Mit x, = 0,5, der Mitte des 2. Intervalls, erhdlt man aus (I,)

x, =0,866... x:=0,75844...
x, =0,747... X0 75837 ..

x3 = 0,760... x, = 0,758389...
xy =0,758... %5 = 0758287 ..

Fiir die in ]0; 1[ liegende Losung &, gilt also &, = 0,75838... = 0,7584.
Mit x, = 3,5, der Mitte des 3. Intervalls, erhélt man aus (I,)

x; = 3,340...

X, =2,937...

X3 =2,144...

und erkennt, daB (I,) zur Berechnung von &, unbrauchbar ist.

Zur Bestimmung von ¢, und &, benotigt man also andere Iterationsformeln.

2. Versuch:

; 2 Z 3* L1/ 2x 11/2x
F=dx =0 = xr= Z <= X = -_!l- BTN = _El' =
Das ergibt fiir x > 0 die Iteration x,,, =3}/3™ (I,)
und fiir x < 0 die Iteration Nirry = 1)/3%, (I5)
Mit x, = — 0,5 erhdlt man aus (I,)
x, =—0,379... x, = — 0,40113...
x, = —0,405... ‘ ‘ x,=—0,40112...

Damit hat man bereits £, ~ — 0,4011 gefunden.
Dagegen erweist sich (I,) zur Berechnung von &; wieder als ungeeignet!

THFFTTFTE o
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3. Versuch:

3*—d4x? =0

B = e || 1g

xlg3 = lg(4x?) l|:1g3

3 lg(4x?)

= g3

Die entsprechende Iterationsformel lautet x, ., = Ig:f‘;".’._).' (1)

Mit x, = 3,5 erhdlt man daraus
Xy = 3.9420 ‘ X0 = 3,5872...
Xn = 3,964 gy — 350003 oo

Da die Werte immer noch leicht ansteigen, ist man noch nicht sicher,
ob beim Runden auf 4 Ziffern die 7 erhalten bleibt. Man kann dies priifen,
indem man x = 3,587 und x = 3,5875 in die linke Seite der zu lésenden
Gleichung, also in f(x) = 3* — 4x?, einsetzt. Aus f(3,587) =—0,01... und
f(3,5875) = + 0,003... folgt, daB &, zwischen diesen beiden x-Werten liegt
und somit &5 & 3,587 gilt.

Aufgaben

|. Bestimme Niherungswerte fiir die Ldsungen nach der graphischen
Methode. (Ldngeneinheit 1 cm; eine Stelle nach dem Komma)
a) 2*+8x—7=0 Ly — 2 ) l—x+37F=0

2. Berechne mit Hilfe eines Iterationsverfahrens die auf vier geltende Ziffern
gerundeten Losungen der Gleichung von
a) Aufgabe 1.a) b) Aufgabe 1.b) ¢) Aufgabe 1.¢).

3. a) Bestimme graphisch Naherungswerte fur die beiden Losungen der
Gleichung 0,5x* —1 = lg x.

b) Begriinde, dal} die in a) angegebene Gleichung auf die dquivalente
Form x = [/2(Igx+ 1) gebracht werden kann, und beniitze diese zur
iterativen Berechnung des auf vier geltende Ziffern gerundeten Wertes
der groBeren der beiden Losungen. Kann man mit dieser Iteration
auch die zweite Losung berechnen?

¢) Zeige, daBsich die Gleichung 0,5x* — 1 = Ig x nach Multiplikation mit

2x-lgx

L

auf vier geltende Ziffern gerundeten Wert der zweiten Losung.

2x auf die Form x = bringen 146t, und berechne damit den

. a) Bestimme an Hand einer graphischen Darstellung naherungsweise die
Koordinaten des Schnittpunkts S der beiden Graphen y = x~' und
y=lg(x—2).
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b) Berechne durch Iteration die auf Hundertstel gerundete Abszisse von
S. Wie lautet die ebenso gerundete Ordinate von S?

. Ermittle mit einer Wertetabelle die Lage der Nullstellen der Funktion.

Suche geeignete Iterationsformeln zur Berechnung dieser Nullstellen und
bestimme jeweils die auf vier geltende Ziffern gerundeten Werte.

a) x—> 10*4+2*—9 b) x—=5—x:2%%

¢) x—lg2x—1)+3x—5 d) x—lg(x*+1)+1d(5—x)
Berechne die auf vier Stellen nach dem Komma gerundeten Naherungs-
werte der Losungen.

a) x—cosx=0AxelR

¢) x*(1 +tanx)=1 A xe[0; in[

b) sinx—x*=0AxeR"

Mit den von einer Schallquelle ausgesandten Wellen wird Energie
transportiert. Unter der Schallintensitdt J an einer bestimmten Stelle
versteht man die dort auf eine Fliiche von 1 m? entfallende Schalleistung;
die MaBeinheit fiir J ist also 1 Wm ™2,

Von einer Schallintensitit zu unterscheiden ist die beim Horen empfunde-
ne Lautsiirke L. Eine Verdoppelung der Intensitit J empfindet unser
Gehor keineswegs als Verdoppelung der Lautstdrke L. Auch gibt es einen
Schwellenwert J, der Schallintensitdt, unterhalb dessen der Schall nicht
mehr horbar ist. Aus dem fiir Sinnesreize geltenden Weber-Fechnerschen
Gesetz* folgt fur den Zusammenhang zwischen Schallintensitit und

Lautstirke die Beziehung L = klg 4 , ke R". Fiir den Proportionali-
bt 6 J
titsfaktor k hat man die Zahl 10 festgelegt; also: L = 101g — phon.
Dabei ist phon keine physikalische Benennung: das Him&-‘eiswgrt Phon™*
(Kurzzeichen phon) soll nur an die logarithmische Definition der unbe-
nannten Zahl L und an ihre Verwendung in der Akustik erinnern.
a) Wie grof ist die Schallintensitét J im Abstand r von der Schallquelle,
wenn diese nach allen Seiten gleichmidBig die Leistung P abgibt?
b) Welcher Wert der Lautstdrke L entspricht dem Schwellenwert J; der
Schallintensitdt?
¢) Wie groB ist J, ausgedriickt durch J,, bei der Lautstirke
1) 10 phon (Ticken einer Taschenuhr in 4m Abstand)
2) 40 phon (normales Sprechen bei 2m Abstand)

* Das Weber-Fechnersche Gesetz besagt: Die Empfindungsstarke E eines Reizes ist proportional zum

= . i : R
Logarithmus des Quotienten aus der Reizstarke R und der Schwellenreizstirke Ry: d.h., £= k-lg T
0

Ernst Heinrich WEBER (24.6.1795 Wittenberg — 26.1.1878 Leipzig) war Physiologe und Anatom.
Gustay Theodor FEcHNER (19.4.1801 GroB-Sirchen bei Muskau/Lausitz — 18.11.1887 Leipzig) war Phy-
siker, Psychologe und Philosoph.

*# Das Hinweiswort Phon, vom griechischen @wvr) (phone) = Lawt, wurde 1926 von dem deutschen Physiker

Heinrich Georg BarkHauseN (2.12.1881 Bremen — 20.2.1956 Dresden) eingefiihrt.
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3) 80 phon (starker StraBlenldrm)

4) 130 phon (Schmerzgrenze, bleibende Gehorschadigung!)?

Eine Schallquelle gibt einen bestimmten Ton mit gleichbleibender

Leistung ab. In 1 m Entfernung betrigt die Lautstarke 40 phon. Wie

weit mull man sich von der Schallquelle entfernen, um den Ton nicht

mehr zu horen?

Der Lirm eines Flugzeugmotors wird in 400m Entfernung mit

80 phon gemessen. Wie groBist die Lautstarke fiir einen Flugpassagier,

der sich beim Einsteigen dem Triebwerk auf 10 m nahert?

Die Schwellenintensitit J, fiir die Schallwahrnehmung hangt von der

Tonfrequenz ab. Im Bereich von 1000 Hz bis 2000 Hz ist sie besonders

klein, bei sehr hohen und sehr tiefen Tonen wesentlich grofer. Fiir die

Frequenz 1000 Hz gilt J, = 10712 Wm ™ 2 (mittlerer Wert fiir Jugend-

liche!).

1) Welche Lautstarke entspricht bei einem Ton mit 1000 Hz der
Schallintensitat J=8-10"°> Wm *?

2) Welche Schallintensititen ergeben bei einem Ton von 1000 Hz die
Lautstiarken 1 phon, 20 phon, 100 phon, 130 phon?

3) Ein Lautsprecher strahlt mit der Leistung 5W einen Ton von
1000 Hz gleichmaBig nach allen Seiten ab. Mit welchen Lautstarken
hort man diesen Ton in 5m, 10m und 50 m Entfernung?

Bei einem Ton von 125 Hz ist die Schwellenintensitit J, =10"° Wm™ %

Welche Schallintensitdten gehoren bei diesem Ton zu den Lautstiarken

von Aufgabe f) 2)?

In der Praxis mul} Schall haufig verstiarkt bzw. gedimpft werden. Wird
z.B. eine Intensitit J; auf den kleineren Wert J, geddmpft, so gibt man als

- : J : : :
Mal} der Didmpfung die Zahl f = 10-1g _j_l Dezibel an. Das Hinweiswort

2

Dezibel*, abgekiirzt mit dB, bezeichnet keine physikalische MalBeinheit,
sondern dient nur zur Erinnerung an die logarithmische Definition der
unbenannten Dampfungszahl f.

a)
b)
c)

d)

Wie verhalten sich die Schallintensititen J, und J, bei einer Didmpfung
von 5dB?

Wieviel Dezibel betragt die Verstarkung, wenn die Schallintensitit
1) verdoppelt 2) verzehnfacht 3) verhundertfacht wird?
Ein Tonsignal mit der Leistung 0,05 W wird durch einen Verstarker um
20 dB verstarkt. Welche Leistung hat das verstirkte Signal?

Um wieviel phon verdndert sich die Lautstarke (vgl. Aufgabe 7), wenn
die Schallintensitdt um n dB verstdrkt (geddmpft) wird?

* Die Bezeichnungen Bel (B) und Dezibel (dB) wurden zu Ehren des Ingenieurs Alexander Graham BeLL
(3.3.1847 Edinburg — 1.8. 1922 Baddeck [Kanada]), des Erfinders des elektromagnetischen Telephons, ein-
gefithrt. 1 B = 10 dB. Sein Photophone, das mittels eines codierten Lichtstrahls die menschliche Stimme
(damals bis zu 200 m) iibertragen konnte. hielt er schon 1880 fiir seine grobite Errungenschaft. Damit war
die Photonik geboren.
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Im 16.Jh. nahmen die Anforderungen an die Rechengenauigkeit vor allem von seiten
der Astronomie immer mehr zu, So muliten insbesondere die von dem dédnischen
Astronomen Tycho BRAHE (1546-1601) gelieferten Beobachtungsdaten auf Vertrig-
lichkeit mit den von der Theorie angebotenen Planetenbahnen uberpriift werden. Man
suchte daher nach Moglichkeiten, das fiir groBe Zahlen sehr zeitaufwendige Multipli-
zieren und Dividieren durch das schnellere und auch leichtere Addieren bzw.
Subtrahieren zu ersetzen, so, wie es zwischen 1505 und 1513 in der Trigonometrie* dem
Niirnberger Pfarrer Johannes WERNER (1468-1528) gelungen war.** Diese Prostha-
phairesis (mpoclugaipesic = Zu-Wegnahme) genannte Methode wurde 1580 von
Tycho BrAHE und seinem schlesischen Assistenten Paul WitticH (15557-1587)
wiederentdeckt. Sie beniitzten neben der WERNERschen Formel sing-sinf =
= 4 [cos(x — f§) — cos(x + B)] auch die schon bei IN Yunis (11009 Kairo) vorkom-
mende Formel cosa-cos ff = 3 [cos(x — ) + cos(x + B)]. deren praktisch-rechneri-
sche Bedeutung IBN Yunis aber noch nicht erkannt hatte: Man faf3t die Ziffernfolge der =
zwei zu multiplizierenden Zahlen als Ziffernfolge des Kosinus eines Winkels o bzw.
f auf, sucht in cos-Tabellen & und f und kann damit die rechte Seite recht einfach

berechnen. ***

Das Bestreben, bessere Methoden dieser Art zu finden, fiihrt gegen Ende des 16. Jh.s

zur Entdeckung der Logarithmen, und zwar durch einen Schweizer Uhrmacher und

einen schottischen Baron, die nichts voneinander wuBten und die auf keine Vorar-
beiten zuriickgreifen konnten! Ausgangspunkt der Uberlegungen ist das auf Seite 38
beschriebene Korollar zu Satz11 aus Buch IX der Elemente des EUKLID (um 300
v.Chr.), das ARCHIMEDES (um 287-212 v.Chr.) in seiner Schrift iiber die Sandzah!
wesentlich vertiefen konnte (siche Seite 38). Uber die Araber gelangte seine Erkennt-
nis ebenso wie die von den Indern erfundene Null ins Abendland, so dall Nicolas
CHUQUET 1484 in seinem Triparty geometrischen Folgen der Bauart 1, a, a2, a°, ... die
mit 0 beginnende arithmetische Folge 0, 1, 2, ... gegeniiberstellen kann. Er nennt die
Glieder der arithmetischen Folge die denominacions der Glieder der geometrischen
Folge und zeigt dann die zwischen den Gliedern solcher Doppelfolgen bestehende
interessante Beziehung: Man erhiilt als Produkt zweier Glieder der geometrischen
Folge dasjenige Glied dieser Folge, dessen denominacion in der arithmetischen Folge
die Summe der denominacions der beiden Faktoren ist. Wir illustrieren diese Regel an
Hand der uns auf der altbabylonischen Keilschrifttafel MLC 2078**** {iberlieferten

* Das Wort Trigonometrie scheint der in der Pfalz als Hofprediger wirkende Schlesier Bartholomaeus
Prriscus (1561-1613) mit dem Titel seines 1595 in Heidelberg erschienenen Werks Trigonometria sive de
solutione triangulorum tractatus brevis et perspicuus — »Trigonometrie oder eine kurze und klare
Abhandlung iiber die Lasung von Dreiecken« geprigt zu haben. Es ist zusammengesetzt aus tpiyovov =
(trigonon) = Dreieck und petpeiv (metrein) = messen.

** Das Manuskript seiner Libri quatuor de triangulis sphaericis wurde erst 1902 wiederaufgefunden und 1907
gedruckt.

#+* Auf Grund der Formeln wird der Name Prosthaphairesis verstindlich. Er ist zusammengesetzt aus =
npdodecic (prosthesis) = Hinzufiigung, Addition und aus agoipeoig (aphairesis) = Wegnahme, Subtrak- ;
tion, da o und f einmal addiert und einmal subtrahiert werden. Hierzu ein Beispiel:

2,31456 - 8,00753 = 0,231456 - 0,800753 - 10* =7
cosa = 0,231456 = o = T76°37'02"; cos f = 0,800753 = fi = 36°47'53"
a— f = 39°49'09" = cos (x — f) = 0,768068294; o+ f = 113°24'55" =cos (. + f) = — 0,397390122
! [cos (& — f) + cos(x + )] = 0,185339086, also 2,31456 - 8,00753 = 18,5339086.
Das exakte Ergebnis lautet 18,5339086368.
**#% Morgan Library Collection der Yale University, New Haven (USA)
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zwei Doppelfolgen. Das zweite Beispiel zeigt, daB die arithmetische Folge keineswegs
= die Folge der natiirlichen Zahlen sein muf}; der Anfang 0«1 fehlt natiirlich.

— plus—— l rplus— i
I 2 3 4 5 6 arithmetisch 1 - 3 1
2 4 8 T A geometrisch 2 4 8 16
| : | L mal
L mal e _ mal T.

Wozu die Babylonier diese Doppelfolgen gebraucht haben, wissen wir nicht. Aber die
Erkenntnis CHUQUETs findet sich wieder bei mehreren deutschen Cossisten der
1. Hilfte des 16. Jh.s. 1544 stellt Michael STiFeL (148727-1567) in Buch I (fol. 35r) seiner
Arithmetica integra — »Die ganze Arithmetik« — die vier Rechengesetze zusammen, die
die Beziehung zwischen diesen Doppelfolgen regeln:*

1. Addition in der arithmetischen Folge entspricht der Multiplikation in der geometri-
schen Folge.

2. Subtraktion in der arithmetischen Folge entspricht der Division in der geometri-
schen Folge.

3. Multiplikation in der arithmetischen Folge entspricht einer Potenzierung in der
geometrischen Folge.

oY

. Division in der arithmetischen Folge entspricht dem Radizieren in der geometri-
schen Folge, das Halbieren also dem Quadratwurzelzichen.

Das sind aber genau die Gesetze des logarithmischen Rechnens, die du in den Sétzen
= 160.1 bis 161.1 kennengelernt hast. In Buch III nennt StTiFEL die Glieder der
arithmetischen Folge Exponenten (= Ausgesetzte) der Glieder der geometrischen
Folge. Und dann folgt die iiberaus bedeutsame Idee, die arithmetische Folge ins
Negative fortzusetzen (vgl. auch Seite 41):

31-2/—1] o] 1] 2] 3] 4] 5] 6|
#| 2] % 1| 2] 4| 8|16]32]64]

StiFeL ist sich der Bedeutung dieses Vorgangs auch bewuBt; denn unmittelbar im
= AnschluB an diese Tabelle schreibt er: »Man konnte jetzt ein ganzes Buch iiber die
= wunderbaren Eigenschaften der Zahlen schreiben, aber ich muf3 mich an dieser Stelle
] zuriickhalten und mit geschlossenen Augen weitergehen.« Er weist aber noch darauf
hin, daB die oben aufgestellten Regeln auch fiir negative Exponenten gelten.

Von unten nach oben gelesen, stellt die obige Tafel in unserer Sprechweise eine
Logarithmentafel xr log, x fiir xe {4, 1, ..., 64} dar. Fiir die im 16.Jh. gesuchte
praktische Anwendung war diese Tafel natiirlich nicht umfangreich genug. Und selbst
= wenn man sie nach beiden Seiten fortsetzte, konnten so einfache Rechnungen wie 2 - 5
' oder 33 mit ihr gar nicht bewiltigt werden, da in der unteren Zeile weder 5 noch
3 vorkommen. Man brauchte also Tafeln mit sehr kleiner Schrittweite.

Es war das Verdienst des aus Coburg stammenden Frankfurter Rechenmeisters Simon
JACOR (15107-1564), in seinem Ein New und Wolgegriindet Rechenbuch, auff den Linien
und Ziffern, sampt der Welschen Practic (1565) die Erkenntnisse STIFELs eingedeutscht
und weiterverarbeitet zu haben. Sein Werk kann der des Lateinischen nicht méchtige
Schweizer Uhrmacher und Instrumentenbauer Jost BURGI (1552-1632) lesen, der sich,
vielleicht schon 1588, vielleicht aber erst zwischen 1603 und 1611 an die Arbeit macht,

* Wahrscheinlich erstmals ausgesprochen im Codex Dresden C80™ um 1499,
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eine arithmetisch-geometrische Doppelfolge mit kleiner Schrittweite zu berechnen,
nachdem er 1584 durch den Besuch WitTicHs in Kassel die Prosthaphairesis
kennengelernt und auch verbessert hat. Vergessen wir nicht, daB zu jener Zeit das
Rechnen mit Dezimalbriichen noch in den Kinderschuhen steckte. Kleine Schritt-
weiten erzielt BURGI nun dadurch, daB er den Zahlenbereich von 102 bis 10? verwendet;
dem Einerschritt dort entspricht im Intervall [1; 10] eine Schrittweite von 10 ~ . Seiner
Rechnung legt BURGI die arithmetische Folge 0, 10, 20, ..., allgemein x, = 10x, und die
geometrische F olbfn, 3= 10% (I - 104" zug_rundu , deren Glieder sich wegen
Vo1 = %(14+107%) = 3 + 107y, leicht berechnen lassen: Addiere zu einer Zahl ihren
IU(]U(ltcn Teil, und du hast ihren Nachfolger. BURGI macht dies 23000mal, was ihn
sicher einige Monate Rechenzeit gekostet hat; nach der Einerstelle schneidet er dabei
immer ab.

0 100 000 000 = 108

10 000

] 100 010 000
10 001

20 100 020 001
10 002

30 100 030 003
10 003

40 100 040 006
10 004

230 000 SO A02557

SchlieBlich berechnet er noch

230 270.022 1 000 000 000 = 10°,

Da hier der roten Null nicht die schwarze
Eins, sondern die schwarze 10® zugeord-
net ist, lassen sich die STiFELschen Regeln
nicht unmittelbar anwenden. Nach unse-
rem heutigen Verstindnis sind aber die
rot gedruckten Zahlen die Logarithmen
der schwarz gedruckten Zahlen (siehe
Anhang [.6sungsheft). BURGI hat keinen
Namen fiir sie. Er nennt sie »rote Zahlen«
und 140t sie auch rot drucken, als er
endlich** 1620 seine Progref-Tabulen
(siche Abbildung 198.1) herausbringt. Sie  Abb.197.1 Jost BURGI (28.2.1552 Lich-
sind eine sog. Antilogarithmentafel***; tensteig/Schweiz 31.1.1632 Kassel)
denn zu den ganzzahligen (roten) Log- Stich von Egidius II SADELER (1570-1629)

* Die Zuordnung 10n— ), neld ,, kann auch als Zinseszinsformel gedeutet werden mit dem Anfangskapi-
tal yo = 10, dem Zinsfufl 10~ 2% und dem Endkapital y, nach 10n Monaten, wenn alle 10 Monate der
Zins zum Kapital geschlagen wird.

** Noch 1627 tadelt Johannes KepLer (1571-1630) in seinen Rudolphinischen Tafeln BUrGE »Etsi homo
cunctator et secretorum suorum custos foetum in partu destituit, non ad usus publicos educavit.«
[Allerdings hat der Zauderer und Geheimniskramer das neugeborene Kind verkommen lassen, statt es
zum allgemeinen Nutzen groBzuziehen. ]

*#* Auch Antilogarithmus ist wie Logarithmus eine Wortschépfung John NapiERs (1550-1617); er versteht
jedoch in seiner Descriptio (1614) darunter den Logarithmus des Kosinus eines Winkels. Erst John WaLris
(1616—1703) verwendet es 1693 in seinem Tractatus de Algebra im heutigen Sinn: In y = log x ist y der
Logarithmus von x und x ist der Antilogarithmus von y.
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Abb.198.1 Titelblatt der Logarithmentafel von Jost BURGI von 1620. Die Initialen

Jund B stehen fiir den Verfasser. Die Darstellung enthélt zwei Druckfehler: Die neben

der roten 5000 stehende schwarze Zahl 105 126 407 muB richtig 105 126 847 heilen. Bei

der darunter stehenden schwarzen Zahl 100 000 000 fehlt eine Null; es handelt sich

: ndmlich um »Die gantze Schwartze Zahl« 1000000000. Der kleine rote Kreis {iber
230270022 kennzeichnet die Einerstelle; »Die gantze Rote Zahl« ist also als
230270,022 zu lesen. — Nur zwei Exemplare sind erhalten geblieben, eines in Danzig
und eines in Miinchen.
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arithmen sind die gerundeten (schwarzen) Numeri angegeben. In einer Logarithmen-
tafel werden dagegen zu den ganzzahligen Numeri die gerundeten Logarithmen
angegeben. Der im Titel angekiindigte »griindliche Unterricht« fehlt ginzlich, so daf3
die Tafeln fiir die wenigen Kédufer unverstindlich und wertlos blieben.

Die Zeit war aber schon iiber BURGI hinweggeschritten. Denn bereits 1614 hatte der
schottische Gutsherr und kdmpferische Protestant John NAPIER, auch NEPER,
(1550-1617), der sich in seinen Mullestunden der Mathematik widmete, seine Mirifici
Logarithmorum Canonis Descriptio (siche Abbildung 153) herausgebracht.

1590 hort NAPIER durch John CraIG, der Tycho BRAHE auf der Insel Hven besucht hat,
von dessen »Erfindung« der Prosthaphairesis. Bereits am 27. Mirz 1592 schreibt dann
CRAIG an BrRAHE, dal3 ein Landsmann einen canon mirificus konstruiere. NAPIERs Ziel
ist es, die trigonometrischen Rechnungen zu vereinfachen. Seine Descriptio ist daher

eine Tafel der Logarithmen des Sinus der
Winkel zwischen 0° und 90°. Zu seiner
Zeit war der Sinus noch nicht das Verhilt-
nis aus Gegenkathete und Hypotenuse,
sondern die Lidnge der Gegenkathete

M LOGARITHMORVM

CHILIAS PR1IMA,

Omams antor typis excudendam ¢ srasnit, nop ¢o con-

: S cilsoyvi publici isris fieret 5 (edpartim, vt guorsn= |
selbst, was auch seinen urspriinglichen dam (o sems necefJariorwm defiderio priwatim fatis-
indischen Namen erklart.® faceret:partimyuvt eivs adixmentopon [olum Chilia-
NAPIER erstellt in langjahriger Arbeit eine | das alignot ssfeqmentes ; fed etiam integram Loga- |
komplizierte 7ziffrige arithmetisch-geo- ﬂf-‘:”?f’{fﬂ"{ Canoncm, 'ﬂ;’fi”ﬂ;?—”“{‘iﬂfﬂ?‘“?ﬂ ovtl-
metrische Doppelfolge, indem er zwei |¢#lomféruientem commodius abfelnerer. Habet o-
5 . is . B ey nim Canonem Sinnnma [eipfo,ante D ecemmivim,per
Punkte mit gleicher Anfangsgeschwin- : : : 7 :

: : e P : cqaationes g/fa’g:émwar,cﬁ' d{,ﬁ‘}rmrms,:pﬁ; Sinse-
digkeit starten 1d(t. Der eine bewegt sich b

ins Unendliche so fort, daB in gleichen
Zeiten gleiche Strecken zuriickgelegt wer-
den, der andere auf einer vorgegebenen
endlichen Strecke so, dal} die jeweils noch
zuriickzulegenden Wege eine geometri-
sche Folge bilden. Diese Wege sind dann

die Numeri, deren » Logarithmen« die auf

der Geraden bis zum jeweiligen Zeitpunkt
zuriickgelegten Strecken sind. Da die
Numeri sin-Werte sein sollen, es aber
keine geometrische Folge gibt, die mit
0 =sin0° beginnen kann, konstruiert
NAPIER eine fallende geometrische Folge,
die mit sin 90°, dem sinus totus, wie man
seit GERHARD VON CREMONA (1114-1187)
den Kreisradius nennt, beginnt. Dem gibt
er den Wert 107, um — wie BURGI — zu
kleinen Schrittweiten kommen zu kon-

bws praportionales,pro fingulis Gradibus o grades
centefimisya primis fundamentis accurate extraili:
guens una cum Log arithmis adiuntlis volente Deo,
11 [ucems (o datwrum [perat,quam primsum: commods
licuerit,
Ouodautem bi Logarithmi, dinerfi fint ab is,
wos ClarifSimus insentor gnemorie (erper colende,
w1 [wocdidit Canope Mirifice; fperandunsycivs libric
pofthismans, abunde mobis propedicm fatisfaéta-
rwm, Quiantori. ( cum cum domi ﬁ{se ,Edmégrgi,
bis ingiferet, ¢ apud eum bumaniffime exceptus,
per alignot feptimanas libentifsime manfiflet 5 cigue
borssm partems pracipsars gwams thms abfolweras
oftendiffet ) finderc nom deffitit, vt bunc in
[e laborems fufciperet. Cui ille non,
Enwitss marem geffic,

In tenui 5 fed non tenurs,fru&tufve laborve,

Abb. 199.1 Titelblatt von Henry BRIGGS’
Logarithmorum chilias prima von 1617**

* Babylonier und Griechen legten ihren trigonometrischen Uberlegungen die zu einem Zentriwinkel geh-
rende Sehne zugrunde. Der indische Astronom ArYABATHA I (476 n.Chr. - ?) fiihrte eine Rechnung mit der
Halb-Sehne = ardha-dschyd ein. Aus Bequemlichkeit lieB man die Vorsilbe ardha bald wieder weg, und aus
dschyd wurde allméhlich dschiva, das die Araber wie dschiba aussprachen und, da ihre Schrift keine Vokale
kennt, als dschb schrieben. Dies wiederum wurde spiiter als das echt arabische Wort dschaib gelesen und als
Fachwort verwendet; die eigentliche Bedeutung von dschaib ist aber Halsausschnitt eines Kleides, Busen.
RoperT vON CHESTER (um 1145) fibersetzte dschaib durch das bedeutungsgleiche lateinische Wort sirnus.
Georg Simon KLUGEL (1739-1812) definierte 1770 in seiner Analytische[n] Geometrie den Sinus als das

heute iibliche Verhiltnis.
** Ubersetzung im Losungsheft

i
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nen, und ordnet ihm als Logarithmus den Wert 0 zu. Durch Interpolation gestaltet er
die Tabelle schlieBlich so, daB er von Winkelminute zu Winkelminute fortschreiten
kann (Aufgabe 2 im Anhang des Losungshefts).
Edward WRIGHT (1558-1615), Mathematiker und Kartograph in Cambridge, erkennt
sofort die Bedeutung der Napierschen Tafeln fiir die Navigation und iibersetzt die
Descriptio mit dessen Zustimmung in die »englische Volkssprache«. 1616 gibt sie
WRIGHTs Sohn Samuel postum, auf 6 Stellen gekiirzt und mit einem Vorwort von
Henry BrIGGs (1561-1631)* versehen, heraus.
Voller Begeisterung hat dieser Henry BriGas, Professor fiir Geometrie in London,
noch im Winter 1614/15 seine Studenten den Gebrauch der Logarithmen gelehrt und
NaPIEr brieflich vorgeschlagen, dem sinus totus als Logarithmus die Null und dessen
10. Teil als Logarithmus den Wert 10'® zuzuordnen. Damit waren die Numeri nicht
mehr sin-Werte, sondern natiirliche Zahlen; ein wesentlicher Fortschritt fiir die Praxis!
Als er dann im Sommer 1615 NaPIER in Edinburg besucht und seine neu berechneten
Logarithmen mitbringt, meint dieser, selbst schon an eine Anderung gedacht zu haben,
daB er aber vorzoge, 0 als Logarithmus von 1 und 10'° als Logarithmus des sinus totus
zu nehmen. »Ich muBte erkennen, daB dies das weitaus ZweckmaBigste ist [...] Auf
seinen Rat hin machte ich mir ernsthafte Gedanken iiber die Berechnung [ dieser neuen
Art von Logarithmen] und fuhr im nachsten Sommer wieder nach Edinburg und zeigte
ihm die wichtigsten von denen, die ich hier vorlege« schreibt BRIGGS 1624 im Vorwort
7u seiner Arithmetica logarithmica (siche unten).
Diese neuen Logarithmen — wir nennen sie heute die dekadischen — kiindigt NAPIER
durch eine in WriGHTs Ubersetzung aufgenommene Passage an. Und im Vorwort zu
seinen 1617 postum erschienenen Rabdologiae, seu numerationis per virgulas libri duo
»wZwei Biicher iiber die Rhabdologie oder die Zihlkunst durch Stibchen«**
schreibt er: »Wir haben eine viel bessere Art von Logarithmen gefunden [...], aber
tiberlassen wegen unserer korperlichen Schwiche die tatsdchliche Berechnung [...]
vor allem dem hochgelehrten Henry BRIGGS [. . .], einem mir seit langem sehr teueren
Freund.« Das Erscheinen der Logarithmorum chilias prima, einer 14stelligen Tafel der
dekadischen » Logarithmen des ersten Tausends«, also der Zahlen von 1 bis 1000, erlebt
NaPIER nicht mehr. Das nur 16 Seiten umfassende Werkchen trigt weder den Namen
des Autors noch Erscheinungsort und -jahr. Und dennoch kénnen wir aus einem Brief
vom 6.12.1617 schlieBen, dali es von Henry BriGGs stammt und vor diesem Datum
erschienen sein mul}. Beispielhaft seien einige seiner Logarithmen angegeben:

lg2 = 0,3010 29995 66398 lg3 = 0.4771 21254 71966
lg961 = 29827 23387 66854 lg 999 = 2,9995 65488 22598

Die Welt wuBte aber immer noch nicht, wie Logarithmen {iberhaupt errechnet werden.
NAPIER wiinschte in der Descriptio, »dall zuerst ihr Gebrauch und ihre Vorteile
verstanden wiirden [...]. Ich will das Urteil und die Kritik der Gelehrten abwarten,
che der Rest, vorzeitig ans Licht gebracht, der Ablehnung der Neider ausgesetzt wird.«
Nachdem aber 1618 WriGHTs Ubersetzung eine zweite, ergiinzte Auflage erfahren hat,

* Man findet fiir Henry BriGas die Daten Februar 1560 Worleywood | Yorkshire bis 26.1.1630 Oxford. Nun
warin England seit dem 14. Jh. der Neujahrstag der 25. Mirz. Als man dort 1752 den Julianischen durch den
Gregorianischen Kalender ersetzte, entschloB man sich, das Jahr 1752 mit dem 1. Januar beginnen zu lassen.
Das Jahr 1751 hatte also nur 281 Tage. Inzwischen hatte sich aber die Datumsdifferenz seit der Einfiihrung
des Gregorianischen Kalenders in den katholischen Lindern des Kontinents (1582 bis 1585) von 10 auf
11 Tage erhéht. Diese sparte man dadurch ein, daB auf den 2. September der 14, September 1752 folgte. Die
Lebensdaten von Henry BriGGs sind gregorianisch also Februar 1561 — 5. Februar 1631, da bis zum
28. Februar 1700 die Datumsdifferenz 10 Tage betrug.

** In ihnen erblickt das Dezimalkomma das Licht der Welt.
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entschliefit sich 1619 NAPiERs Sohn Ro-
bert, die mehrere Jahre vor der Descriptio
verfalite Mirifici Logarithmorum Canonis
Constructio herauszugeben, in der es lib-
rigens das erst in der Descriptio geprigte
Kunstwort Logarithmus noch nicht gibt.
Statt seiner heilit es dort numerus artifi-
cialis [kiinstliche Zahl]. In einem noch
von NAPIER verfaliten Anhang wird auch
eine Konstruktion fiir dekadische Log-
arithmen erklért.

Die Entwicklung schreitet nun schnell
voran. BrRIGGS” Kollege Edmund GUNTER
(1581-1626), Professor fiir Astronomie,
bringt 1620 mit seinem Canon triangulo-
rum eme Tstellige Tafel der dekadischen
Logarithmen des Sinus und Tangens* mit
der Schrittweite 1" und erfindet die log- as i e
arithmische Skala (Seite 174). : -
Bereits 1617 kann Johannes KEPLER w
(1571-1630) kurz die Descriptio einsehen, -

lehnt aber die Logarithmen ab. lhren Abb.201.1 Die gottliche Logarithmica
Wert lernt er 1618 durch den Cursus aus den Tabulae Kit’ia‘rfh'rﬁfif!?(f&.’ KEPLERS
Mathematici Practici (1618) des URSINUS

genannten Schlesiers Benjamin BEHR (1587-1633/34), seines fritheren Gehilfen,
kennen. In ihm ist Nariers Werk, um 2 Stellen gekiirzt, nachgedruckt. Noch am
1.12.1618 schreibt er: »Die Logarithmen sind das glickbringende Ungliick [foelix
calamitas] fiir meine Rudolphinischen Tafeln. Es sieht ndmlich so aus, als ob die Ta-
feln neu zu machen und auf Logarithmen umzustellen oder liberhaupt aufzugeben
seien.«** Da er die Werte nicht ungepriift iibernehmen will und er hinter das Ge-
heimnis ihrer Berechnung gekommen ist, rechnet er die Tafeln nach und verbessert
sie.*** KgpLERs Begeisterung fiir das Rechnen mit den neuen Logarithmen wird
keineswegs von den dlteren deutschen Mathematikern geteilt, die vor allem ihre
kinematische Erzeugung als unmathematisch ablehnen. Seinen Brief vom 3.12.1618

* Dabei priagt GunTER das Wort cosinus als Abkiirzung fiir sinus complementi und analog cotangens fur

tangens complementi. Complementum ist die lateinische Ubersetzung des arabischen tamam = Rest,
womit der Winkel bezeichnet wurde, der einen gegebenen Winkel zu 90° ergiinzt.

®

*

1601 hatte KepLEr von Kaiser RupoLr 11. (1552-1612, Kaiser seit 1576) den Auftrag erhalten, Branes
astronomische Tafeln zu vollenden. 1616 glaubte er, die mit prosthaphiretischen Methoden durchge-
fiihrte Berechnung bald abschlieBen zu konnen; da kamen die Logarithmen dazwischen. 1624 war er dann
mit der Neuberechnung fertig, konnte aber erst 1627 auf eigene Kosten (!) 1000 Exemplare der Tabulae
Rudolphinae drucken lassen. Sie 16sten wegen ihrer groBeren Genauigkeit — ihnen liegen ja auch schon die
sog. KErLERschen Gesetze zugrunde (siche Aufgabe 84/10) — die Alfonsinischen Tafeln (siche Seite 123) ab.
*+% Napier hat dies wohl erwartet; denn in einigen Exemplaren endet seine Descriptio mit Nihil in ortu
perfectum — »Nichts ist bei Geburt vollkommen«. Erst im Juli 1619 erhilt KepLer ein Exemplar der
Descriptio. Voller Begeisterung schreibt er am 28.7.1619 an NAPIER — nicht wissend, dald dieser schon seit
zwei Jahren tot ist —, spricht auch hier von der foelix calamitas und berichtet, daB er nur kleinere Fehler
gefunden habe. Als Widmung stellt er diesen Brief seiner Eplemeris motuum coelestium ad annum
incarnationis verbi MDCXX — »Jahrbuch der Himmelsbewegungen auf das Jahr der Fleischwerdung des
Wortes 1620« — voran. KepLER war auf seine Verbesserung des Napierschen Wertes 6931469 auf 6931472
fiir den Logarithmus von 4- 107 so stolz, daB er den das Frontispiz der Tabulae Rudolphinae bildenden
Tempel mit der gottlichen Logarithmica als Akroterion schmiickte, die in ihren Hianden zwei Stibe im
Lingenverhiltnis 1:2 hilt und deren Gloriole den von ihm gefundenen Wert zeigt.

AT
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beantwortet sein alter Lehrer Michael
MAsTLIN (1550-1631) am 2.3.1620: »Ich
halte es eines Mathematikers fiir unwiir-
dig, mit fremden Augen sehen zu wollen
und sich auf Beweise zu stiitzen oder als
solche auszugeben, die er nicht verstehen
kann.« »Das war fiir mich der AnlaB, auf
der Stelle mit einem ordentlichen Beweis
zu beginnen«**, den KEPLER dann bereits
am 19.6.1620 an MAsTLIN schickt. Gegen
Ende 1621 ist KEPLER dann entschlossen,
die neue Theorie der Logarithmen zu-
sammen mit den verbesserten NAPIER-
schen Tafeln drucken zu lassen, deren
Berechnung er im Winter 1621/22 ab-
schlieit. Die Drucklegung verzogert sich
jedoch. Da trifft am 1.12.1623, gewisser-
malfen als Antwort des toten NAPIER aufl
KepLErs Widmungsbrief von 1619, der

Canon triangulorum ein — die Wirren des
30jdhrigen Krieges machen sich wohl
schon bemerkbar —und einige Tage spéter
BrIGGS' Logarithmorum chilias prima.
KEPLER schreibt daraufhin am 4.12.1623
an GUNTER, er Uberlege, den logarithmi-
schen Teil der Tabulae Rudolphinae deka-
disch umzugestalten. Als dann jedoch im
Februar 1624 seine Chilias Logarithmo-
Pl ﬂﬂl f(ﬁffd{"”? RUMEros rth'HH(jUS

»Tausend Logarithmen zu ebensoviel
runden Zahlen«*** — erscheinen, dndert
er nichts mehr, sondern bereitet die
Herausgabe des Supplementum Chiliadis
Logarithmorum, continens praecepta de
eorum usu — »Erginzung zu den tau-
send Logarithmen mit Unterweisungen
fiir ihren Gebrauch« vor, die zur
Frankfurter Buchmesse im Herbst 1625
vorliegen. Enttduscht hat aber schon
am 20.Februar (a.St.) = 2. Marz 1625
(n.St.) Briggs auf das Erscheinen von
KEPLERS Chilias Logarithmorum reagiert,

der an Stelle GUNTERS KEPLER antwortete:

Abb.202.1 Henry BricGs’ Unterschrift
unter seinen Brief an KEPLER vom
20. Februar (alter Stil) = 2. Mirz (neuer
Stil) 1625. — Von BriGas ist kein Bildnis
tiberliefert.
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Abb.202.2 Titelblatt von Henry BRIGGS'
Arithmetica logarithmica, 1624*

»lch erkenne den Scharfsinn an und lobe

den Flei. Hattest Du jedoch auf den Erfinder MERCHISTON [ = NAPIER] gehort und

* Ubersetzung im Losungsheft

** Vorwort zu KEPLERS Supplementum Chiliadis Logarithmorum (1625). Dem Beweis liegt die Proportionen-

lehre EUKLIDS (Elemente, Buch V) zugrunde.

*#*#* 1y diesem Werk erklirt KepLEr »LOGARITHMUS, das ist die Zahl (dpr3poc), die das Verhaltnis (Adyov)
anzeigt, das jene Zahl, der der Logarithmus zugeordnet ist, zu 1000 hat.«
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wirest mir gefolgt, dann hittest Du meiner Meinung nach denen, die am Gebrauch der
Logarithmen ihre Freude haben, einen besseren Dienst erwiesen.«
Beigefiigt hat BRIGGS diesem Brief seine Ende 1624 erschienene Arithmetica logarith-
mica, sive logarithmorum chiliades triginta, pro numeris naturali serie crescentibus ab
unitate ad 20000 et a 90000 ad 100000, einen Folioband von fast 400 Seiten. In ihr sind
als Ergebnis ungebrochenen Fleilles und ungeheuerer Arbeit die neuen dekadischen
Logarithmen von 30000 Zahlen, auf 14 Stellen berechnet, enthalten, und zwar von
I bis 20000 und von 90000 bis 100000.* Da das Werk diesmal unter seinem Namen
erschien, heiBen die dekadischen Logarithmen auch Briggssche Logarithmen. Sie
verdringen in wenigen Jahren wegen ihrer guten Anwendbarkeit die NAPIERschen
bzw. KEPLERschen Logarithmen** und heiBlen im Gegensatz zu diesen und anderen
auch gewdhnliche Logarithmen.
Theoretisch hilt BrIGGS noch an der Vorstellung einer arithmetisch-geometrischen
Doppelfolge fest, aus der heraus er auch glaubt, Nariers Wortschopfung »Logarith-
mus« erkliren zu kénnen. In Anlehnung an NAPIER*** bezeichnet er selbst die
Logarithmen zunéchst als numerorum proportionalium comites aequidifferentes, d.h.
als »gleiche Differenz habende Begleiter von Zahlen, die in konstantem Verhdltnis
zueinander stehen«, und fahrt dann fort:
»wQul ideo videntur a clarissimo Inventore Logarithmi nominati, quia numeros nobis
exhibent eandem inter se servantes rationem.«
»Die deswegen, so scheint es, von ihrem hochberiihmten Erfinder Logarithmen
genannt wurden, weil sie uns Zahlen liefern, die untereinander dasselbe Verhiltnis
bewahren.«
Praktisch hat BriGGs aber vollig neue Wege zur Berechnung der dekadischen
Logarithmen beschritten. Wir begniigen uns damit, den Anfang eines angewandten
Verfahrens zu skizzieren.
Ausgehend von

10 = 10%5 = 3.1622 77660 16837 93319 98893 54

hat er sofort
23,1622 77660 16837 93319 98893 54 = 0.5.

le

Dann errechnet er tiber

4

110 = 12]_ = l’ ]1_0 = 10%2> = 1,7782 79410 03892 28011 97304 13,

gewinnt also

lg1,7782 79410 03892 28011 97304 13 = 0,25.

Nun fiahrt er so fort und erhilt schlieBlich, nachdem er insgesamt 54mal die
Quadratwurzel gezogen hat,

/10 = 102~ = 1,0000 00000 00000 01278 19149 32003 235, also

lg 1,0000 00000 00000 01278 19149 32003 235 =
= (0,00000 00000 00000 05551 11512 31257 82702 11815.

* Man findet in der Literatur eine weitere Ausgabe aus demselben Jahr beschrieben, die auch noch die
Logarithmen der Zahlen von 100000 bis 101000 enthalt.
** Wegen der Bedeutung der Tabulae Rudolphinae blieben sie in der Astronomie noch bisins 18. Jh. am Leben.

**% Degeriptio, Satz 1: Proportionalium numerorum, aut quantitatum, aequi-differentes sunt Logarithmi. [Die
Logarithmen proportionaler Zahlen oder Grofien haben gleiche Differenz.]
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Bei dieser Vorstellung des enormen Rechenaufwands wollen wir es belassen.
Natiirlich muB} die Liicke zwischen 20000 und 90000 schnellstmdglich geschlossen
werden. BrIGGs bietet dazu in seinem Vorwort jedem Interessierten an, das von ithm
»zu diesem Zweck beschaffte und durch gerade Linien in Felder eingeteilte Papier
zuzusenden«. Im Vorwort der in der 1. FuBnote auf Seite 203 erwihnten weiteren
Ausgabe schreibt er iiberdies, daB er ernsthaft vorhabe, selbst die Liicke zu schlieBBen,
wenn er »seine durch anhaltende Anstrengung des Geistes und unausgesetztes Wachen
geschwichten Krifte wieder gestirkt hiitte«.

Der rithrige hollandische Mathematiker und Buchhiindler Adriaan VLACQ (um
1600-1667) wittert in den Tafeln mit Recht ein grofies Geschift. Er gewinnt den
hollandischen Rechenmeister und Landmesser Ezechiel bpE DeckEr (1603/04 bis
1646/47) fiir seinen Plan, den Wettlauf mit der Zeit aufzunehmen, weil er »iiberzeugt
ist«, dafB der 66jdhrige BRIGGS »ob seiner sonstigen amtlichen Verpflichtungen, ganz zu
schweigen von den Beschwerlichkeiten, denen alle Menschen ausgesetzt sind« nicht in
der Lage sein wiirde, die Arbeit bald abschlielen zu kénnen (Vorwort der Arithmetica
logarithmica von 1628, siehe unten). Da VLACQ auBerdem erkennt, daB3 10 Stellen »fiir
den allgemeinen Gebrauch mehr als genug sind«, 1t er DE DECKER, fiir den er NAPIERS
Descriptio iibersetzt, im Oktober 1626 die Nieuwe tel-konst — »Neue Zihlkunst«
herausbringen; sie enthilt die auf 10 Stellen gekiirzten BriGGsschen Logarithmen der
Zahlen von 1 bis 10000 und GuNTERs logarithmische trigonometrische Tafeln und
kiindigt die Fortsetzung an. Der EntschluB3, die Liicke zwischen 20000 und 90000 nur
10stellig zu schlieBen, bringt einen erheblichen Zeitgewinn. Bereits im Oktober 1627
kann daher pe DECKER den Tweede deel van de nieuwe tel-konst — »Zweiter Teil der
neuen Zahlkunst« —herausgeben. Neben einer von ihm verfaB3ten Einleitung enthilt sie
die dekadischen Logarithmen aller Zahlen von 1 bis 100000, die gréBtenteils von
ViacQ berechnet worden waren.®

Da sich VLACQ bewuBt wurde, dall nur eine lateinische Ausgabe Erfolg haben wird,
verbindet er 1628 diese Tafeln mit dem nur wenig verinderten Text von BRIGGS
Arithmetica logarithmica, fiigt die von ihm mit der Schrittweite 1’ neu berechneten
Logarithmen der trigonometrischen Funktionen hinzu und deklariert, ohne jede
Erwidhnung DE DECKERS, das Ganze als 2., vermehrte Auflage von BRIGGS’ Arithmetica
logarithmica. Sie wird ein groBer Erfolg und trdgt zur raschen Verbreitung der
dekadischen Logarithmen bei. BRIGGS ist sicher nicht sehr erfreut. Doch héren wir ihn
hierzu selbst in einem Brief an den jungen Mathematiker John PELL (1611-1685) vom
25.10.1628 (Ubersetzung im Lésungsheft):

»My desire was to have those chiliades that are wantinge betwixt 20 and 90
calculated and printed, and I had done them all almost by my selfe, and by some
frendes whom my rules had sufficiently informed, and by agreement the busines was
conveniently parted amongst us; but I am eased of that charge and care by one
Adrian Vlacque, an Hollander, who hathe done all the whole hundred chiliades and
printed them in Latin, Dutche and Frenche, 1000 bookes in these 3 languages, and
hathe sould them almost all. But he hathe cutt off 4 of my figures throughout; and
hathe left out my dedication, and to the reader, and two chapters the 12 and 13, in the
rest he hath not varied from me at all.«

Die Viacgsche Tafel ist die Mutter aller weiteren Logarithmentafeln. Sie enthélt im

ganzen nur 600 Fehler, davon nur 171 in den ersten 7 Stellen!

Am Ende seiner Arithmetica logarithmica hat BRIGGS angekiindigt, er hoffe, in einem

weiteren Buch »die edelste, mit der Lehre von den sphérischen Dreiecken in innigster

* Das Werk geriet vollig in Vergessenheit. Erst 1920 wurde ein Exemplar gefunden.
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Verbindung stehende Anwendung der Logarithmen« zeigen zu kdnnen. Er greift dazu
auf seine um 1600 berechneten 15stelligen trigonometrischen Tafeln zuriick und
berechnet deren Logarithmen, fiir den Sinus auf 14, fiir den Tangens auf 10 Stellen.
Dabei entscheidet er sich fiir eine dezimale Winkelunterteilung! Als Schrittweite wihlt
er t55°. Auf BriGGs™ Bitten hin it VLAcQ das Tafelwerk samt Konstruktionsan-
leitung auf seine Kosten drucken; withrenddessen stirbt BRIGGS. Die noch fehlende
Anwendung auf die ebene und sphiérische Trigonometrie verfaBt, von BRIGGS noch
gebeten und von VLACQ schlieBlich gedringt, 1632 — das Vorwort trigt das Datum des
30. Oktober BriGGs Freund Henry GELLIBRAND (1597-1637), Professor fur
Astronomie. VLACQ bringt beide Teile 1633 unter dem Titel Trigonometria Britannica
in Gouda heraus. Nun hat VLAcQ selbst aber schon vor drei Jahren eine 10stellige
Logarithmentafel der trigonometrischen Funktionen mit einer Schrittweite von nur
10" berechnet, was bei der Interpolation eine gerade in der Astronomie benotigte
groBere Genauigkeit liefert. Da ViAcQ auBerdem erwartet, dafll die dezimale
Unterteilung des Grades auf Ablehnung stoflen wird, entschlieit er sich, obwohl er
BriGGs' Dezimalteilung begriiBt hat, seine eigenen Tafeln, zusammen mit GELLI-
BRANDS kaum verdndertem Text, noch im selben Jahr, also 1633 — die Widmung tragt
das Datum des 26. April - unter dem Titel Trigonometria artificialis ebenfalls in Gouda
erscheinen zu lassen. Vielleicht hitte sich ohne ViacQs Buch BRIGGS' dezimale
Winkelteilung durchgesetzt!

In den bisher aufgefithrten Werken wird das Rechnen mit den Logarithmen an
Beispielen vorgefiihrt. Es ist das Verdienst von William OUGHTRED (1574-1660), dem
Erfinder des Rechenstabs (1621), in seinem 1647 erschienenen The Key of the
mathematicks, new forged and filed die unseren Sétzen 160.1 bis 161.1 entsprechenden
Rechenregeln kurz und priizise formuliert zu haben.* OUGHTRED wird im iibrigen fiir
den Verfasser des anonymen Appendix gehalten, der der 2. Auflage von WRIGHTS
Ubersetzung der Descriptio 1618 angefiigt wurde und in dem eine neue Methode zur
Berechnung der Logarithmen vorgefihrt wird, die BRIGGS 1624 auch in seiner
Arithmetica logarithmica verwendet.

Erhebliche Fortschritte machte die Berechnung der Logarithmen, als man lernte,
unendliche Reihen hierfiir einzusetzen. Das konnen wir hier aber nicht mehr
darstellen.

Sicher ist dir aufgefallen, daB das Wort Basis in diesem historischen Uberblick
iiberhaupt noch nicht gefallen ist. Es muf3 uns heute wirklich erstaunen, dab das bereits
von Michael Stirer (14877-1567) in seiner Arithmetica integra 1544 behandelte
Problem, zu vorgegebener Basis b und vorgegebenem Potenzwert a den Wert des
Exponenten x zu suchen, der die Gleichung b* = a 16st (Aufgabe 67/8), nicht zur
Einfiihrung des Logarithmus als Losung dieser Gleichung fiihrte. Erst langsam
gewinnt eine solche Vorstellung an Boden. So schreibt zwar David GREGORY
(1661-1710) schon 1684 in seiner Exercitatio geometrica de dimensione figurarum
»Exponentes sunt ut logarithmi« [Exponenten sind wie Logarithmen] und 1742

William GARDINER (7-?) in seinen Tubles of Logarithms »The common Logarithm of

a number is the Index of that power of 10, which is equal to the num ber; That is, The
Logarithm of any number @ = 10/"*, or 10| "%, is +x, or —x.« Es ist aber Leonhard
EULER (1707-1783) vorbehalten, 1748 in seiner Introductio in Analysin Infinitorum

»Einleitung in die Analysis des Unendlichen« — diese grundlegend neue Sicht des

* The Summe of two Logarithmes, is the Logarithme of the Product of their Valors: and their difference is the
Logarithme of the Quotient. The Logarithme of the Side, drawne into the Index or number of Dimensions of
any Potestas, is the Logarithme of the same Posfestas. The Logarithme of any Potestas divided by the number
of its Dimensions, sheweth the Logarithme of its Root.

RIS RfiEn
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Logarithmusbegriffs begriindet zu haben. In Nr. 101 betrachtet er in der Gleichung
y = a® die Werte @ und z als gegeben, behandelt also das ibliche Potenzieren. Dann
heiBt es aber in Nr. 102:

»Ebenso aber, wie bei gegebenem Werte von a zu jedem Wert von z der
entsprechende Wert von y gefunden werden kann, 1406t sich auch umgekehrt zu
Jjedem gegebenen positiven Wert von y der Wert von z angeben, fiirr welchen a* = y
ist. Dieser Wert von z heiBt, insofern er als Funktion von y betrachtet wird, der
Logarithmus von y. Es setzt daher die Lehre von den Logarithmen die Annahme
einer bestimmten konstanten Zahl a voraus, welche deshalb die Basis der
Logarithmen genannt wird.«*

Diese uns heute so einsichtige Definition des Logarithmus als Exponent setzte sich in
Deutschland erst gegen die Mitte des 19. Jh.s durch, da man sie fiir Anféinger fiir viel zu
schwierig erachtete. In Frankreich hielten bedeutende Mathematiker noch zu Beginn
dieses Jahrhunderts an der Definition des Logarithmus durch die arithmetisch-
geometrische Doppelfolge fest.

Heute ist durch die billig gewordenen Taschenrechner die Verwendung der Logarith-
men beim praktischen Rechnen fast vollig verschwunden. Wir sollten aber nicht
ubersehen, daB viele Berechnungen, die der Taschenrechner ausfiihrt, nach einem
Programm auf logarithmischer Grundlage ablaufen. Wenn wir uns auch mit vollem
Recht die Vorteile der modernen Technik zunutze machen, um »die Rechenarbeit zu
verringern, die Krifte des angespannten Verstandes zu schonen und Zeit zu
gewinnen«**, wie KEPLER schon als einen der Zwecke der Tabulae Rudolphinae
erklarte, so sollten wir doch daran denken, dal es nicht nur »fiir einen Professor der
Mathematik schimpflich ist, sich tiber irgendeine Abkiirzung des Rechnens kindisch zu
freuen«***, wenn man deren Grundlage nicht verstanden hat.

* Quemadmodum autem dato numero a ex quovis valoris ipsius z reperiri potest valor ipsius y, ita vicissim
dato valore quocunque affirmativo ipsius y conveniens dabitur valor ipsius z, ut sit a® = y; iste autem valor
ipsius z, quatenus tanguam functio ipsius y spectatur, vocari solet Logarithmus ipsius y. Supponit ergo
doctrina logarithmorum numerum certum constantem loco a substituendum, qui propterea vocatur basis
logarithmorum.

** minuere laborem computandi, parcere viribus intentae mentis, et redimere tempus
*+* wturpe esse Professori Mathematico, super compendio aliquo calculi pueriliter exultare«, lautet der von
KEPLER im Vorwort seines Supplementum Chiliadis Logarithmorum (1625) wiedergegebene Vorwurf der
alteren deutschen Mathematiker, er habe sich fiir das logarithmische Rechnen ohne soliden Beweis
begeistert.




	[Seite]
	7.1 Der Logarithmus
	[Seite]
	Seite 155
	Seite 156
	Zur Geschichte
	Seite 156
	Seite 157
	Seite 158
	Seite 159


	7.2 Rechenregeln für Logarithmenbasen
	Seite 160
	Seite 161
	Seite 162
	Seite 163

	7.3 Verschiedene Logarithmenbasen
	7.3.1 Die Umrechnungsregel
	Seite 163
	Seite 164
	Seite 165

	7.3.2 Zehner- und Zweierlogarithmen
	Seite 165
	Seite 166
	Seite 167
	Seite 168
	Seite 169

	7.3.3 Berechnung von Logarithmen
	Seite 169
	Seite 170


	7.4 Logarithmusfunktionen
	Seite 171
	Seite 172
	Seite 173
	Seite 174
	Seite 175
	Seite 176
	Seite 177
	Seite 178
	Seite 179
	Seite 180
	Seite 181
	Seite 182
	Seite 183

	7.5 Exponentialgleichungen und Logarithmusgleichungen
	7.5.1 Exponentialgleichungen
	Seite 184
	Seite 185
	Seite 186

	7.5.2 Logarithmusgleichungen
	Seite 186
	Seite 187
	Seite 188

	7.5.3 Graphische und numerische Lösungsverfahren
	Seite 188
	Seite 189
	Seite 190
	Seite 191
	Seite 192
	Seite 193
	Seite 194


	7.6 Zur Geschichte der Logarithmen
	Seite 195
	Seite 196
	Seite 197
	Seite 198
	Seite 199
	Seite 200
	Seite 201
	Seite 202
	Seite 203
	Seite 204
	Seite 205
	Seite 206


