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7 Logarithmen

7 . 1 Der Logarithmus
Kann man , wenn in der Gleichung bä = a zwei der drei Zahlen gegeben sind ,die dritte stets berechnen ?
Falls b und q gegeben sind , ist a die Lösung der Gleichung x = b e

; man findet
sie durch Berechnung der Potenz be , also durch Potenzieren . Wenn q und
a gegeben sind , hat man zur Bestimmung von b die Gleichung x s = a zu lösen .Auch hier handelt es sich um einen schon bekannten Aufgabentyp (vgl .
Kapitel 3) . Falls q 4= 0 , erhält man x = äö .
Eine neue Situation ergibt sich aber , wenn die Basis b und der Potenzwert
a gegeben sind . Nun ist die Gleichung bx = a zu lösen . Da hier die Unbekannte
im Exponenten auftritt , spricht man von einer Exponentialgleichung . Wie
steht es um die Lösbarkeit einer solchen Gleichung ? Betrachten wir dazu
einige

Beispiele :
1 ) 5* = 125 2) (f )x = # 3) 6X = 1
4) D = 6 5) 2* = 0 6) 1 , 5* = - 2,25

Wie man leicht erkennt , haben die Beispiele 1 ) bis 3) die Lösungen x = 3 bzw .* = — f bzw . x = 0 . Die Gleichungen 4) , 5) und 6) sind unlösbar , da für jedesxe (R 1 * = 1 bzw . 2X > 0 bzw . 1 , 5* > 0 gilt .
Die Lösbarkeit der Exponentialgleichung bx = a steht offensichtlich in enger

,0 <b <1

Abb . 154 . 1 Zur Lösbarkeit der Exponentialgleichung bx = a für b > 1 bzw. 0 < b < 1
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Beziehung zu den Eigenschaften der Exponentialfunktion x i—> bx
, die im Fall

b > 0 bekanntlich in ganz [R definiert ist , nur positive Funktionswerte
annimmt und für b > 1 echt monoton zunimmt , für 0 < b < 1 echt monoton
abnimmt . Abbildung 154 . 1 läßt vermuten , daß sowohl für b > 1 als auch für
0 < b < 1 zu jeder positiven Zahl a genau eine Zahl x0 existiert , für die bx° = a
gilt.
Wegen der Monotonie der Exponentialfunktionen kann es jedenfalls nur
höchstens eine solche Zahl geben ; denn die Gerade y = a hat mit dem
Graphen y = bx höchstens einen Schnittpunkt S (x0 1a) . In den Beispielen 1)
bis 3) konnten wir x0 tatsächlich angeben . Ob eine solche Lösung immer
existiert , hängt mit der schon früher (Seite 125) erwähnten Frage zusam¬
men , ob im Fall b > 0 und b + 1 die Exponentialfunktion xv-+ bx wirklich
jede positive Zahl als Funktionswert annimmt . Wir betrachten dazu das

Beispiel : 3* = 7
Für eine eventuelle Lösung x0 findet man , da x i—►3X monoton zunimmt ,
folgende Abschätzungen :

1 < x0 < 2
1,7 < x0 < 1,8

1,77 < x0 < 1,78
1,771 < x0 < 1,772

1,7712 < x0 < 1,7713

denn 3 1 < 7 < 32

denn 3 1,7 < 7 < 3 1,8

denn 3 1 ’77 < 7 < 3 1’78

denn 3 1,771 < 7 < 3 1,772

denn 3 1 ' 7712 < 7 < 3 1 ’7713

Denkt man sich dieses Verfahren fortgesetzt , was prinzipiell möglich ist,
so erhält man eine Intervallschachtelung für x0 . Die so dargestellte Zahl
x0 ist der einzige Exponent , für den 3X° in jedem der Intervalle [3 1

; 3 2] ,
[3 1,7

; 3 1,8] , [3 1,77
; 3 1 ’78] , . . . liegt . Diese Intervalle sind so konstruiert ,

daß sie stets die Zahl 7 enthalten und , da sie offensichtlich wieder eine
Intervallschachtelung bilden , nur die Zahl 7 . Daher muß gel¬
ten : 3 Xo = 7 .

So wie in diesem Beispiel kann man bei jeder Gleichung bx = a mit a > 0 , b > 0
und b 4= 1 eine Intervallschachtelung für die Lösung konstruieren (vgl.
Aufgabe 158/3) . Es gilt daher

Satz 155 . 1 : Jede Gleichung bx = a mit a > 0 , h > 0 und b =j= 1 besitzt
genau eine Lösung .

Für die Lösung einer solchen Exponentialgleichung hat man eine besondere
Schreibweise eingeführt :

Definition 155 . 1 : Die Lösung der Gleichung bx = a mit a > 0 , b > 0 und
b 4= 1 bezeichnet man mit log 6 a , gelesen Logarithmus von a zur
Basis b .
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Eigentlich müßte man \ogh (a) schreiben . Wenn aber kein Mißverständnis zu
befürchten ist , kann man die Klammer weglassen .

Beispiele :
log5 125 = 3 , denn 5 3 = 125 (vgl . Beispiel 1))
log| (¥ ) = - f , denn (f )

"f = ^ (vgl . Beispiel 2))
log6 1 = 0 , denn 6° = 1 (vgl . Beispiel 3))

Nach Satz 155 . 1 und Definition 155 . 1 stellt x = logb a die Auflösung der
Gleichung bx = a nach x dar . Also sind beide Gleichungen äquivalent :

bx = a o x = log,, a

Die Bedeutung des neuen Terms logb a prägt man sich zweckmäßig in
folgender Form ein:

logb a ist diejenige Zahl , mit der man b potenzieren muß , um a zu
erhalten .
Das heißt : A logba = a

Die Bestimmung des Logarithmus einer Zahl bezüglich einer Basis b stellt eine
neue Rechenart dar , die man als Logarithmieren bezeichnet .

** Zur Geschichte
Das Fachwort Logarithmus geht auf John Napier * (1550 - 1617 ) zurück , der es in
seiner 1614 erschienenen Mirifici Logarithmorum canonis descriptio (siehe Abbildung153) ohne irgendeine Erklärung prägte . Es ist zusammengesetzt aus Xöyoq (lögos) =
Verhältnis und dpiüpöc; (arithmos ) = Zahl , Anzahl . * * Das Verbum logarithmieren

* gesprochen ’nsipia
** John Wallis greift 1685 in seinem A Treatise of Algebra , both Historical and Practical zur Erklärung des

Wortes Logarithmus auf den Begriff des Verhältnisses zurück , wie wir ihn auf Seite 62 bei Euklid und
Archimedes kennengelernt haben . (In der verbesserten lateinischen Ausgabe von 1693 zitiert Wallis
übrigens explizit Euklid , und zwar Elemente , Buch V, Def . 10 und Buch VI , Def . 5 .) Er betrachtet zunächst
wie Napier arithmetisch -geometrische Doppelfolgen (siehe 7.6) und geht dann zu der schon von Michael
Stifel her bekannten geometrischen Folge der Potenzen und der arithmetischen Folge ihrer Exponentenüber und schreibt :
»then doth this Exponent always give us the Number of Rations [ . . .] in the Term to which it belongs .

1 r . rr . r? rt r? r? etc .
0 . 1 . 2 . 3 . 4 . 5 . 6 . etc .

(as 3 in r3
, 6 in r6

, and so every where, ) or shews How many fold (quam multiplicata ) the Proportion (for
instance ) of r6 to 1, is of r to 1. That is, how many Rations or Proportions of r to 1, are compounded in r6 to
1, to wit 6 . To which the name Logarithmus fitly answers , that is, Abycov apiöjxög , the Number of Proportionsso compounded .«
»Dann gibt uns dieser Exponent immer die Anzahl der Verhältnisse [ . . .] in dem Term an , zu dem er gehört
[ . . .] . Anders ausgedrückt : Er zeigt an , wievielfach (z. B .) das Verhältnis r6 : 1 bezüglich r : 1 ist . Das heißt ,wie viele Verhältnisse r : 1 in r6 : 1 [multiplikativ ] zusammengesetzt sind , nämlich 6 . Genau dies drückt aber
der Name Logarithmus aus , d .h . A,öycov üpiOpcx; oder die Anzahl der so zusammengesetzten Verhältnisse .«
Beachte : Wallis benutzt stillschweigend r6 : 1 = (r : l ) 6. - Weitere Erklärungen des Wortes Logarithmussiehe Seite 202 f.
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erscheint erst 1836 in Carl Koppes
( 1803- 1874 ) Anfangsgründe der reinen
Mathematik für den Schulunterricht
(§ 175) . Die Verwendung des Wortes Basis
stammt von Leonhard Euler (1707 bis
1783) , der 1748 in seiner Introductio in
Analysin infinitorum - »Einleitung in die
Analysis des Unendlichen « - die in der
Gleichung bx = a vorkommende kon¬
stante Zahl b als »Basis der Logarith -
men« bezeichnete . (Siehe auch Seite 205 .)
Napier hat » Logarithmus « noch aus -

geschrieben . Aber bereits 1624 verwendet ■»
Johannes Kepler ( 1571- 1630) in seinen
Chilias Logarithmorum ad totidem nume- V
ros ro tundos - »Tausend Logarithmen zu I SHE _
ebensoviel runden Zahlen « - die Ab - B BBB | |
kürzung »Log .« , woraus 1632 bei dem JRS
Jesuater Fra Bonaventura Cavalieri . j
( 15987- 1647 ) » log .« wird . August Leo-
pold Crelle (1780 - 1855 ) fordert 1821 ,
dem Logarithmussymbol auch die Basis
beizufügen , und schlägt vor , sie darüber

bzu setzen : logx . Bis zur Festsetzung der
Schreibweise log, , x durch den Deutschen
Normenausschuß im Februar 1968 ge¬
mäß DIN 1302 gab es noch die Schreib¬
weisen 6log x , 6logx und loghx , die du
noch in älteren Büchern findest .

Abb . 157 . 1 . John Napier , auch Neper ,
Fear * of Merchiston
( 1550 Merchiston Castle bei Edinburgh
bis 4 .4 . 1617 ebd .)

Aufgaben
1 . Bestimme die Lösung der Exponentialgleichung .

b) 0,5 * = 32 c) (| )* = f
e) 0,25 * = 512 f ) 0,125 * = 0,5

a) 2* = 128
d) 5* = 0,04

2. Die folgenden Gleichungen aus der Arithmetica Integra (1544) von
Michael Stifel ( 14877- 1567 ) haben rationale Lösungen . Schreibe sie als

Logarithmen und berechne sie .

Fear , engl , ßar , bezeichnet den Eigentümer eines ihm voll zustehenden Besitzes .
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3 . a) Bestimme die ersten vier Intervalle einer Intervallschachtelung für die
Lösung der Exponentialgleichung . Beginne dabei mit dem aus auf¬
einanderfolgenden ganzen Zahlen bestehenden Intervall und verwende
die Zehnteilungsmethode .
1 ) 2* = 5 2) 10* = 37 3) 1,5* = 1,1
4) 5* = 0,75 5) 0,4 * = 4 6) (f )* = 0,56

b) Berechne für den folgenden Logarithmus den auf drei geltende Ziffern
gerundeten Näherungswert mit Hilfe einer Intervallschachtelung der
in a) beschriebenen Art .
1) log 3 5 2) log 7 0,7 3) log 0 , 5 (f ) 4) log 15 |/2

Zu den Aufgaben 4 bis 13 : Berechne die Logarithmen .
4 . a) log 5 25

e) log 2 1024

5 . a) log 3 (i )
e) log 2 0,5

6 . a) logi 8

e) log 0j5128
16\7 . a) log| (if )

e) logiCäfe )
8 . a) log 4 8

e) logi 6 (| )

0 logloo 1000

9 . a) log 10 l/lO
5 f7

e) log2

i) logt 1/343

b) log 2 16
f ) log 7 343

b) log 10 (To)
f) log 2 0,125

b) logi81
f) log 0 2 125

b) logi (ff )
f ) log | (^ )

b) log 27 81

f ) logi 16
8

k) log 100 o

b) log 2 L2

f ) log 6

100

k ) log ^

c) log 10 10000
g) log 6 216

c) log^ Ciix)
g) log 5 0,04

c) log _i _121

g) log 0 , i 0,001

c) log | (ff )

g) log 0 , 6 (W )

125

g) log 128 1024

1) log 100 0,1
11

c) log 25

TTTT g) !ogi ;
1

]/225

d) logj o 10"

h) log 4 256

d) logjCsis )
h) log ! o 0,01

d) logi1296
h) log 0 >01 106

d) log | (if )
h) lo gl , 25 0,512

d) log 125 25

h) log 343 49

m) log0 Qi 0,00001
9 /c) logj l/25 d) log 3 l/8T

h) log 8
1

1) log 0 1 l/lÖ m) log 0 , 2

1/512

1

H \ 25

10 . a ) log ^ 3 b) l° gv7 (35) c) log 64

e) log y-jffÄ f) log n r 27 g) log Ls p0ß4

d) log ^ l25
Ls

h) log ^ f/0425
LI

11 . a) log 6 216 — logi 216 + 2 ■log 5 0,2 + log 0 2 (jy ) — log 0 a 1
b) log 8 0,125 + logg 0,008 + log 0 4 2,5 + log 0 0 i 1000 + logi nn 0,001
c) log 2 1/4 - log 3 ^ 27 - logg (Tft-) + log 0 , 6 VW + log ! , 5 :

100 '

1^
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12. a) logfl l b) loga a

e) log. (
l

) f ) log. (
i

zr 5/—-
i) loga Va k) loga l/ a2

c) loga a2

g) log
\ a

1)

d) loga an

h) loga Vä

m) loga (^ ) 5

13. a) logi « 2 b) l° ga2 ^ J

e) log ^ n " 0 logj ^ Va

14. Löse folgende Gleichungen :
a) log2 x = 3 b) log5 x = — 2

e) logx 121 = 2 f) logx (^ ) = -

i) log ^ 16 = 2 k) logx2 49 = |

c) loga3 lfa d) log ! YcP

h) log l^ ( ? )g) log | fl | a6

c) log9 x = 0,5 d) logo . s * = - 3
g) logx (i ) = - 6 h) log^ v7^ = I
1) logx + 4 64 = 2 m) log2x + 5 1 = 0

15. Bestimme den auf vier geltende Zilfern gerundeten Wert von x aus
a) log2 x = l,25 b) log7 x = 2,8118 c) log0 >8 x = — 14,2
d) log 10 x = — 0,35223 e) log100 x = l,5 f) log0 5 x = 3,023 .

16. Nenne alle höchstens dreistelligen natürlichen Zahlen, die bezüglich der
Basis a einen ganzzahligen Logarithmus haben , für
a) a = 10 b) a = 2 c) a = ^ d) a = 0,1 .

• 17. Welche Quadratwurzeln aus natürlichen Zahlen haben bezüglich der Basis
10 einen rationalen Logarithmus , der nicht größer als 3 ist?

• 18 . Beweise, daß die folgenden Logarithmen irrationale Zahlen sind .
a) log 10 2 b) log10 5 c) log10 6 d) log2 3 e) log s 9
f) logq p , falls p und q verschiedene Primzahlen sind .
(.Anleitung: Gehe von der gegenteiligen Annahme aus und leite daraus
einen Widerspruch zur Eindeutigkeit der Primfaktorenzerlegung natürli¬
cher Zahlen ab .)

19. Gib zur Gleichung logx y = x alle ganzzahligen Lösungspaare (x | y) an ,
für welche y kleiner als 106 ist .

20 . Warum kann man die Zahl 1 nicht als Basis von Logarithmen verwenden?

21 . Weshalb haben sowohl die Addition als auch die Multiplikation nur eine
Umkehrung , während das Potenzieren zwei verschiedene Umkehrungen
besitzt ?

O
U)

|to
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7 .2 Rechenregeln für Logarithmen

Da das Logarithmieren eine Umkehrung des Potenzierens darstellt , ergeben
sich aus den bekannten Rechenregeln für Potenzen entsprechende Regeln für
das Rechnen mit Logarithmen .

Beispiel 1 :
1) log2 4 = log 2 (22) = 2 ; 2) log 2 8 = log 2 (2 3 ) = 3 ;
3) log2 (4 • 8) = log2 (2 2 • 2 3) = log2 (22 + 3) = 2 + 3 .
Aus 1) , 2) und 3) erhält man : log 2 (4 • 8 ) = log2 4 + log 2 8 .

Das Ergebnis dieses Beispiels läßt sich verallgemeinern zu

Satz 160 . 1 : Der Logarithmus eines Produkts ist gleich der Summe aus
den Logarithmen der Faktoren .
Für u > 0 , v > 0 , b > 0 und b 4= 1 gilt also :

log,, !« ' r) = logb « + log6 t>

Beweis : Mit x — logh u und y == logfcv gilt bx = u und by = v .
Also ist u ■v = bx • by = bx + y und damit
logb (u - v) = \ogb (bx + y) = x + y , d . h . logb (u - v) = logb u + logb v .

Satz 160 . 1 gilt natürlich auch für Produkte mit mehr als zwei Faktoren ; z . B . ist

logb (u - vw ) = logb (u • (v ■w)) =
= logh u + logfc(v ■w) =
= logb u + logb v + logb w .

Ganz analog zu Satz 160 . 1 läßt sich auch eine Rechenregel für den
Logarithmus eines Quotienten aufstellen :

Satz 160 .2 : Der Logarithmus eines Quotienten ist gleich der Differenz
aus den Logarithmen von Dividend und Divisor .
Für u > 0 , v > 0 , b > 0 und b 4= 1 gilt also :

log* u — logft v

Den Beweis kannst du leicht selbst durchführen (Aufgabe 161/1) .
Bemerkung : In den Formeln von Satz 160 . 1 und 160 .2 ist die linke Seite auch
noch definiert , wenn u und v beide negativ sind , die rechte dagegen nicht mehr .
Die folgende Form dieser Formeln erfaßt jedoch auch diesen Fall :

logb (« • ») = logb | u I + logh \ v \ bzw . log6 = logJw | — log6 | n | .



7 .2 Rechenregeln für Logarithmen 161

Zu einem Satz über den Logarithmus einer Potenz führt uns

Beispiel 2:
1) log 3 9 = log 3 (3 2) = 2;
2) log 3 (9 5 ) = log 3 [(3 2) 5] = log3 (3 2 ' 5) = 2 - 5 = 5 - 2
Aus 1) und 2) erhält man : log 3 (9 5) = 5 • log 3 9 .

Auch dieses Ergebnis läßt sich verallgemeinern zu

Satz 161 . 1 : Der Logarithmus einer Potenz ist gleich dem Produkt aus
dem Exponenten und dem Logarithmus der Basis.
Für « > 0 , b > 0 , 6 4= 1 und q e IR gilt also :

logtX = 0 ’ log b u

Beweis : Mit x — logb u gilt bx = u und damit ue = (bx 'f = bax .
Daher ist logb ue = logb (bax) = q • x , also log;, «® = q ■logb u .

Die drei in den vorausgehenden Sätzen enthaltenen Rechenregeln besagen ,
daß das Logarithmieren ein Produkt zu einer Summe , einen Quotienten zu
einer Differenz und eine Potenz zu einem Produkt macht . Auf dieser
Vereinfachung der Rechenarten beruhte bis in die jüngste Zeit , d . h . bis zur
Einführung von elektronischen Rechnern , die große Bedeutung der Logarith¬
men für das praktische Rechnen . Historisch gesehen führte gerade das
Bedürfnis , schwierige numerische Rechnungen zu vereinfachen , zur Ent¬
deckung der Logarithmen (vgl . 7 .6) .

Aufgaben

1 . Beweise die Rechenregel : loga = l° ga u ~ loga v

2 . Zerlege in ein Aggregat von einfacheren Logarithmen unter der Voraus¬
setzung , daß alle Variablen positive Zahlen vertreten :

b) loga (2m« a)a) loga (3wt>)

ejlogJ - r 5- ) f) loga [(15c </) - (3ce)] g) log„ [(16M ) : {\ 2qr )
~
]

3 . Drücke die folgenden Logarithmen durch Logarithmen von Primzahlen
aus .
a) loga 6
e) loga 1000

i) logfl 0,04

b) log„ 24

0 loga (f )
k) logfl 8,45

c) loga 75

g) loga (rr )
1) loga l/3

d) loga 81
h) loga (j§)
m) loga l/24
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4 . Fasse zu einem einzigen Logarithmus zusammen:
a) loga 2 + loga 3 b) loga 5 - loga 7 c) loga 1 - loga 11 + loga 2

d) 2 loga 16 — loga 8 e) 31og a 2 + loga 4 f ) loga ^243 - loga 6 + loga 2

5 . Alle Variablen vertreten positive Zahlen . Vereinfache :

a) loga w 3 b) loga 2c4 c) logY —
) d) loga

VW

e) loga l4 f) loga
6 l~ 5'u— g) loga . 3v \ ]/r 2st

1

u 2 v
(2tv)3

3/ — 4,- \ 2
h) \ogatyp - Vlq )

6 . Sind die folgenden Terme äquivalent ?
a) logfcx + 2 und logfc(x + 2) b) logfca 2 und (logb a)2
c) log6 (a 2) 3

, (logt a 2) 3 und [(log6 a)2] 3

7 . Fasse zusammen :

a) 2log a m + 3 loga n b) 0,51oga p 3 -

c) 21oga (c2 l/cc?) - 41oga ^ ^
d) loga c + l

e) 2 — loga (w
2 r) f) i (loga m 2 «

8 . Berechne :
a) log10 5 + log 10 2 b) log6 4 + log 6 9
d) 31og 10 5 + log10 8 e) 21og6 12 + log 6 l,5

l° ga
V

~
q

3 ) ~ f 0,5 — loga —
\ m

c) log 15 5 — log 15 75
f) 21og16 3 — log 16 72

9 . Vereinfache :
a) log3 (5 + 4) + log 3 (5 — 4)
c) log s (25 — 5) — log 5 (125 — 25)
e) log4 (2 + 4 + 8) — log4 (30 — 2)

b) log2 (6 + 2) — log2 (6 — 2)
d) log7 (48 — 17 - 2) + log 7 (3 + 5 2)
f) log9 (9 2 + 9 • 2) + log9 (27 + 270)

10 . Berechne :
a) logfl3 a + logfl3 a2 b) loga2 a 3 + loga2 a

3^ 3 ,—
c) loga l/a 5 - loga Va2

d) \ogv- Va + \og v- Ya Ino - \fn — 71r >cr ]/n4 - ] ncr \fn

11 * Löse mit Hilfe der Rechengesetze für Logarithmen:
a) log2 (2x + 6) — log2 (x — 2) = 2
b) log 7 (x + 4) + log7 (x — 2) = 1
c) log3 (x + 8) + log3 (x + 9) = log 3 (13x + 93)
d) log2 (x — 1 ) — log2 (3x — 5) — 1 — log2 x
e) log 3 (x — 1 ) + log 3 (5x — 2) = 2 + log 3 ( — 2x)
f) loga (x 2 - 2x ) - loga (x - 2) = loga (2x - 3)

* Die Bearbeitung
dieser Aufgabe
kann auch erst im
Abschnitt 7.5.2
erfolgen .

i
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12. Vereinfache:
a) log4 ( — 2)6 b) log 3 ( — 9)2 c) logi ( - 49)

~ 2

d) logo ,2 ( _ 5)
_ 4 e) log3 fvf + log3 (10 — 4)

f) l° g0 , 5 1/ (120 — ll 2) • (12 — 3,5 2) g) log^ ((12 - 13 - 4 - 47) : log2 0,25)

13 ,
*Löse mit Hilfe der Rechengesetze für Logarithmen :
a) loga x = loga 5 - 2 • log„ 3 b) logfl x = 1 + loga 5

c) log* l/x + 3 • logb 2 = 2 - logb 3 d) logb ( - 2x) = 4 logb 2 + log6 4 - 2

e) logc x 2 - logc x + 1 = 0 f) logc x 3 + logc x 2 — logc x = 0

g) log2 1/x - 2 • log 2 x = 0,5 - 3 • log2 ]/x

h) logioCO^ l ^ + iogioCl00^)2 = log10 0,0001 - 2 - log 10 ]/x

14 . * Löse mit Hilfe der Rechengesetze für Logarithmen:

a ) logi 0 Vx 2 = — 4 b) 21 og 10 |/x = - 4 c) 21og 10 |/ | x | = - 4

d) log5 = 2 e) 5 log3 ]/ | 2x — 11 + 0,5 = 0 f ) log2 l/5x - 3 = 3

7 .3 Verschiedene Logarithmenbasen

7 .3 . 1 Die Umrechnungsregel

Bei den in 7 .2 behandelten Rechenregeln war wesentlich , daß die darin
vorkommenden Logarithmen jeweils dieselbe Basis hatten . Natürlich ändert
sich der Logarithmus einer (von 1 verschiedenen ) Zahl , wenn man die Basis
wechselt . Welcher Zusammenhang besteht zwischen den auf verschiedene
Basen bezogenen Logarithmen einer bestimmten Zahl ?

Beispiel 1 :
Es ist log2 8 = 3 ; log4 8 = f ; log 16 8 = | .
Da außerdem log2 4 = 2 und log 2 16 = 4 gilt , kann man log4 8 und
log16 8 in folgender Form darstellen :

log4 8 = log2 8 .
log2 4 ’ log16 8 logi 8

log 2 16 '

Aus dem Logarithmus der Zahl 8 zur Basis 2 erhält man also ihren
Logarithmus bezüglich der neuen Basis 4 bzw . 16, indem man log2 8
durch log2 4 bzw . log2 16 dividiert .

* Die Bearbeitung dieser Aufgabe kann auch erst im Abschnitt 7.5.2 erfolgen .
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Allgemein gilt

Satz 164 . 1 : Umrechnungsregel
Aus den Logarithmen bezüglich einer Basis a erhält man die
Logarithmen bezüglich einer neuen Basis b mit Hilfe der Formel :

log„ H = lOgq «
l0ga b

Dabei ist u > 0 , a > 0 , a 4= 1 , b > 0 , b =1= 1 .

Beweis : Wir setzen logh u = ■■x ; dann gilt
bx = u
loga bx = loga u
x ■loga b = loga u

loga u
x = -- - , also logh u

loga b
logg »

lOgg b
q .e .d.

Aufgaben
1 . Verwandle in Logarithmen zur Basis 8 :

a) log2 2 b) log2 3 c) log4 l/5
d) log4 u e) log 16 v f) log32 w

2 . a) Drücke log 7 5 durch Logarithmen zur Basis 2 aus .
b) Drücke log 3 l,7 durch Logarithmen zur Basis 5 aus .
c) Drücke log 5 64 durch Logarithmen zur Basis 4 aus .
d) Drücke logj ^ (49) durch Logarithmen zur Basis 7 aus .
e) Drücke log9 2 durch Logarithmen zur Basis 3 aus .
f) Drücke log5 l,63 durch Logarithmen zur Basis 25 aus .

3 . Drücke durch Logarithmen zur Basis 10 aus :
a) log2 10 b) log5 100 c) log 100 5 d) log 10002 e) log2 1000
f) log2Q 1000 g) log01 7 h) log3 1/04 i) log^ ö k) log ^ l/ 0,001
1) log3 2 m) logs 0,5 n) logi (f ) o) log 1 :L523 p) log016 49

4 . Beweise: Für a > 0 , a 4= 1 und b > 0 , b 4= 1 gilt log6 a ■\oga b — 1 .
5 . a) Beweise: loga x = loga„ x " (falls a > 0 , a =|= l,x > 0) .

• b) Kann man stets loga„ x n durch logfl x ersetzen ?
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• 6 . Löse folgende Gleichungen :
a) log2 x = log4 9 b) log2 x = logi 5 c) log0 >2 x - log25 3 = 0

d) log 5 l/x = logj/^ 7 e) loga x 2 = 2 + logi2

0 logy-
a {x - 3 ) = loga (x + 3) g) log9 (1 + log2 x) = log 3 2

h) log 3 ( l + log2 x) = logi2

7.3.2 Zehner- und Zweierlogarithmen

Die große Bedeutung der Umrechnungsregel liegt offensichtlich darin , daß es
genügt , die Logarithmen bezüglich einer einzigen Basis a zur Verfügung zu
haben , um daraus dann die Logarithmen für jede andere Basis recht einfach
berechnen zu können . Welche Zahl man als Basis a wählt , ist grundsätzlich
gleichgültig . In der Praxis hat man sich vor allem für die Basis 10 , die
Grundzahl unseres Zahlensystems , entschieden .

Definition 165 . 1 : Die Logarithmen zur Basis 10 nennt man Zehnerlog¬
arithmen oder dekadische Logarithmen .
Für log 10 x ist die kürzere Bezeichnung lgx üblich . *

Jahrhundertelang benützte man zum praktischen Rechnen sogenannte Log¬
arithmentafeln , in denen für sehr viele Zahlen die Zehnerlogarithmen
aufgelistet waren . Solche Tafeln mußten ursprünglich in sehr mühsamer und
langwieriger Arbeit berechnet werden ; mehr darüber erfährst du im Abschnitt
7 .6 . Heute verwenden wir elektronische Rechner , die den dekadischen
Logarithmus einer Zahl an Hand eines einprogrammierten Rechenverfahrens
in kürzester Zeit mit hoher Genauigkeit berechnen . Überprüfe mit einem
Taschenrechner die folgenden

Beispiele * * :
1 ) lg 2 = 0,30103 2) lg 876 = 2,94250
3) lg 0,2 = - 0,69897 4) lg 0,01 = - 2

Mit Hilfe der uns somit zur Verfügung stehenden Zehnerlogarithmen lassen
sich nun die Logarithmen bezüglich einer beliebigen Basis b nach Satz 164 . 1

lg u
mit der Formel log,, u = -—- berechnen .

* öeicaSeug (dekadeus ) = zu zehn gehörend . Das Symbol »lg« wurde 1968 durch den Deutschen Normenaus¬
schuß gemäß DIN 1302 festgelegt .

** Die angegebenen Dezimalbrüche sind jeweils auf 5 Stellen nach dem Komma gerundet .
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Beispiele *:

, ) log, 10 = 1 ^ = ^ ^ 1,43068

2) log,, « -

'»S». 8,5 = | g = 3 ^ = - 2,33558

4> lo^ = g ^ ^ = <>,30103

Oft spielt in der Mathematik und Physik auch der Logarithmus zur Basis
2 eine wichtige Rolle . Daher gibt es auch für ihn eigene Bezeichnungen :

Definition 166 . 1 : Die Logarithmen zur Basis 2 nennt man Zweierlog -
arithmen .
Für log2 x schreibt man Idx , gelesen logarithmus dualis von x , und
auch lbx , gelesen binärer Logarithmus von x . * *

Beispiele :
1) ld 64 = 6 2) ld 0,125 = — 3
3) ld 10 = 3,32193 4) ld 0,64 = - 0,64386

Aufgaben
1 . Welche dekadischen Logarithmen haben die folgenden Zahlen ?

a) 1 ; 10; 100 ; 1000 ; 10000 ; 100000 ; 1000000
b) 0,1 ; 0,01 ; 0,001 ; 0,0001 ; 0,00001 ; 0,000001
c) 103

; 10 “ 5
; l/lÖ ; 100 - 104

; 1000 3

2 . Bestimme mit dem Taschenrechner die auf 4 Stellen nach dem Komma
gerundeten Zehnerlogarithmen der folgenden Zahlen :
a) 3478 347,8 3,478 0,03478
b) 6002 600200 6,002 0,6002
c) 591 0,00591 59100 0,591
d) 21 210000 0,00021 2,100
e) 201 2010 0,201 20,1

* Die angegebenen Dezimalbrüche sind jeweils auf 5 Stellen nach dem Komma gerundet .
* * dualis (lat .) = zwei enthaltend - bini (lat .) = je zwei ; binär = aus zwei Einheiten bestehend .
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3 . Jede positive Zahl z läßt sich bekanntlich eindeutig in der Form z = a ■ 10k

mit 1 ^ a < 10 und keZ schreiben (Gleitkommadarstellung !) . Für lgz
ergibt sich damit

lgz = lg (a - 10fc) = lga + lg (10't) = 1ga + k

Beispiele:
lg 300 = lg (3 ■ 10 2) = lg 3 + 2 = 0,47712 + 2 = 2,47712
lg0,03 = lg (3 • 10 - 2) = lg3 + ( — 2) = 0,47712 - 2 = - 1,52288

Zurückgehend auf Johannes Kepler (1571- 1630) heißt die Zahl z in
diesem Zusammenhang Numerus . Die ganze Zahl k nannte 1624 Henry
Briggs ( 1561 - 1631 ) in seiner Arithmetica logarithmica characteristica .
Das auch im Deutschen verwendete »Charakteristik « wurde 1758 durch
Abraham Gotthelf Kästner (1719 - 1800) in seinem Werk Anfangsgründe
mit Kennzifferübersetzt . Ernst Gottfried Fischer (1754 - 1831 ) führte 1824
in seinem Lehrbuch der Elementarmathematik zum Gebrauch in den oberen
Klassen gelehrter Schulen (Bd . 3) das heute übliche Wort Kennzahl ein.
Damit wird im Gegensatz zu »Kennziffer« richtig wiedergegeben , daß k
sowohl mehrstellig wie auch negativ sein kann . Das von John Wallis
(1616 - 1703 ) stammende Wort mantissa verwendete Leonhard Euler
(1707- 1783 ) ausschließlich für die in lga nach dem Komma auftretende
Dezimalziffernfolge (Introductio in Analysin infinitorum, 1748) , das Käst¬
ner 1764 zu Mantisse eindeutschte . Wir merken uns also

lg^ Oß = lg (3 ■102) = 0All 12 . . .. + 2

Numerus Mantisse Kennzahl

Die so als Ziffernfolge definierte Mantisse darf nicht verwechselt werden
mit der Mantisse a in der Gleitkommadarstellung a ■10\ die als Faktor
vor der Zehnerpotenz definiert , also eine Zahl ist . (Siehe auch die Fußnote
auf Seite 8 .)
a) Begründe , daß aus z = a - 10k mit 1 ^ a < 10 und k e Z die Ungleichung

kflgz < k + 1 folgt , d . h . , daß die Kennzahl k die größte Ganze von
lgz ist , wofür man auch [lgz ] schreibt . *

b) Wie lautet die Kennzahl des dekadischen Logarithmus von
1 ) 7 2) 28,4 3) 1429,35 4) 365000 ?
Nach welcher Regel erhält man also sehr einfach die Kennzahl des
dekadischen Logarithmus einer Zahl z > 1 ?

c) Wie lautet die Kennzahl des dekadischen Logarithmus von
1) 0,5 2) 0,064 3) 0,00001 4) ph ?
Nach welcher Regel erhält man also die Kennzahl des dekadischen
Logarithmus einer Zahl zwischen 0 und 1 ?

1808 hat Carl Friedrich Gauss (1777- 1855) für die größte Ganze einer Zahl x das Zeichen [x] eingeführt . Es

heißt gelegentlich Gaußklammer .
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4 . Beweise:
a) Wenn zwei Zahlen sich lediglich durch die Stellung des Kommas

unterscheiden , dann unterscheiden sich ihre dekadischen Logarithmen
um eine ganze Zahl .

b) Auch die Umkehrung des Satzes von a) ist richtig .
5 . Bestimme mit Hilfe des Taschenrechners zu den folgenden dekadischen

Logarithmen die auf vier geltende Ziffern gerundeten Zahlen :
a) 0,3414
b) 3,7777
c) 1,7553
d) 0,2416

2,3414 5,3414 0,3414 - 1
0,7777 - 2 4,7777 0,7777 - 5
0,7553 0,7553 - 4 3,7553
6,2416 0,2416 - 3 2,2416

6 . Bestimme die auf vier geltende Ziffern gerundeten Werte der zu den
folgenden Zehnerlogarithmen gehörenden Zahlen :
a) 2,3515 b) 0,3796 - 1 c) 1,4303 d) 0,4617 - 13
e) 0,0128 f) 0,1280 g) 1,28 h) 12,8
i) - 0,5913 k) - 0,0346 1) - 2,8511 m) - 5,6347

7 . Berechne mit Hilfe der dekadischen Logarithmen den auf drei geltende
Ziffern gerundeten Wert von
a) log2 7 b) log7 5 c) log 3 0,3 d) log0 5 64
e) logl l 1000 f) log4 l,35 6

g) logal/73 h) log^ lO .
8 . Berechne mit einer Genauigkeit von vier geltenden Ziffern :

b)
3 - log ^a) 1 + log 5 8 - log6 7
2 + logiö

d) (log2 (log 3 (log 5 1000 )))c) log7 (lg V1560 - log 2 5 3,48 )

• 9 . Bestimme mit Hilfe der Zehnerlogarithmen die Stellenzahl folgender
Zahlen :
a) 2 100 b) 2 1000 c) 5 150

e) 5757 f) 99 "
g) 444

i) 3 45 k) 543 1) (9 10 + 11 12 )13

d) 50150

h) V 7

m ) (9io . ni2 )
i3

: 10. a) Wie heißt die Endziffer ( = Einerziffer ) von 5 150
; welche Ziffer steht am

Anfang ? (Hinweis : Betrachte den Zehnerlogarithmus dieser Zahl .)
b) Wieviel Endnullen hat die Zahl 50150 ? Mit welcher Ziffer beginnt sie?
c) Wie heißt die erste und wie die letzte Ziffer von 2 1000? Kann man auch

die zweite Ziffer angeben ?
{Hinweis: Betrachte die Folge der Endziffern der Potenzen von 2 .)

d) Wie heißt die erste und wie die letzte Ziffer von
1) 444 2) l 11 3) 3 45 ?
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11 . a) Bestimme 1) ld 2 2) ldl 28 3) ldl 024 .
b) Bestimme 1 ) ld0,5 2) Idg^ 3) ldj/2 .
c) Berechne die auf vier Stellen gerundeten Werte von

1 ) ld 10 2) ld 20 3) ld0,8 4) ld ]/5 .

• 12 . Wenn man eine natürliche Zahl n im Zweiersystem darstellt, erhält man
eine Dualzahl mit [ld «] + 1 Stellen.
a) Prüfe diese Behauptung für

1) n — 1 2) n — 5 3) n = 32 4) n = 100
b) Beweise die Gültigkeit des Satzes .

S13 . a) Otto erkundigt sich bei seiner Schwester Ute , einer Schülerin der
Kollegstufe , welche Punktezahl sie bei ihrer letzten Mathematikarbeit
erreicht habe . »Viermal darfst du fragen « , sagt Ute . Otto weiß , daß in
der Kollegstufe die Punktezahlen 0 , 1 , 2 , . . . , 15 vergeben werden . Er
meint , es sei doch ziemlich aussichtslos , mit nur vier Fragen unter 16
Zahlen die richtige zu finden . »Doch « , sagt Ute , »das ist möglich .« Wie
geht das ?

b) Aus einer Menge von n Gegenständen soll ein bestimmter herausge¬
funden werden . Zeige , daß dies mit höchstens [ld ri] + 1 Fragen
möglich ist , wenn diese jeweils nur mit »ja « oder »nein« wahrheitsge¬
mäß beantwortet werden . In welchen Fällen genügen sogar [ld n\
Fragen ?

* *7 .3 .3 Berechnung von Logarithmen

Die Logarithmen zur Basis 10 liefert uns der Taschenrechner . Nach Eingabe
des Numerus wird durch Drücken der Ig -Taste ein Rechenprogramm
gestartet , das in kürzester Zeit den gesuchten Logarithmus mit hoher
Genauigkeit ermittelt . Die hierzu benützten Programme beruhen auf Metho¬
den der höheren Mathematik , so daß wir hier nicht näher darauf eingehen
können . Grundsätzlich geht es darum , die Berechnung der Logarithmen mit
Hilfe von schon bekannten Rechenverfahren durchzuführen . Eine einfache
Methode , die wir schon in Aufgabe 158/3 angewandt haben , ist die
Berechnung einer Intervallschachtelung für den gesuchten Logarithmus . Ihre
Beschreibung und die Durchführung mit dem Taschenrechner oder einem
Computer vereinfacht sich, wenn man statt des Zehnteilungsverfahrens die
Halbierungsmethode benützt und die Rechenregeln für Logarithmen ge¬
schickt anwendet :
Zu berechnen sei logb a , wobei wir b > 1 voraussetzen .
Man bestimmt zunächst ein Intervall [m 1 ; r, ] so , daß bUl < a < b Vl und damit
Mi < l° gb a < v i gHk MH der Intervallmitte — (u 1 + 1^ ) : 2 berechnet man
sodann bmi . Wäre b'" 1 = a , so hätte man bereits logb a = m 1 gefunden . Von
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diesem in der Praxis kaum auftretenden Fall wollen wir im folgenden absehen .
Falls bmi < a , setzt man u2

--= ml und v2 ~ i± ;
falls bmi > a , setzt man u 2 ■■= u y und v2 := m l .
Damit hat man ein kleineres Intervall [u2 ; i±] gefunden , in dem logfca liegt .
Das neue Intervall wird nun durch m2

■■= (u 2 + v 2) : 2 wieder halbiert , bmz
berechnet , usw . Man wiederholt diesen Schritt so lange , bis logb a auf ein
hinreichend kleines Intervall eingeschränkt ist .
Der wesentliche Rechenschritt beim Übergang von einem Intervall [«„ ; rjzum nächsten ist dabei die Berechnung von bmn

, also von b (Un+ Vn>: 2
. Diese Zahl

läßt sich aber aus den zuvor schon berechneten Werten bUn und bVn ermitteln .
Es gilt nämlich // “" r ,>n} : 2 = (6 “" + ""F = 1/ bUn • bVn. Man braucht also lediglichdie Quadratwurzel aus dem Produkt der beiden Potenzen zu berechnen .
Bricht man die Rechnung mit dem Intervall [ iin ; ab , so ist mn = (un + v„) : 2
ein Näherungswert für log,, a , dessen Fehler kleiner als die halbe Intervallänge ,also kleiner als %(vn

— un) ist .

Beispiel: Zu berechnen sei log 4 7 .
Man wählt etwa , da 41 < 7 < 42 gilt , u 1 = 1 und üj = 2 .
Wegen j/4 1 - 42 = 8 > 7 wird u2 = 1 und v2 = 1,5 .
Wegen V4 1 ■4 1,5 = 2,82 . . . < 7 wird u3 = 1,25 und v3 = 1,5 .
Wegen j/4 1 ’25 • 4 1,5 = 4,75 . . . < 7 wird u4 = 1,375 und v4 = 1,5 .
Wegen l/4 1,375 • 4 1,5 = 6,16 . . . < 7 wird u5 = 1,4375 und v 5 = 1,5 .
Wegen ]/4 1A375 • 4 1 ’5 = 7,02 . . . > 7 wird u6 = 1,4375 undr 6 = 1,46875.
Wir brechen hier ab . Mit m6 = (u6 + v6) : 2 = 1,453125 und
i (v6 — u6) = 0,015625 gilt also :
log4 7 = 1,453125 ±0,015625 .

Aufgaben
1 . Berechne , beginnend mit dem ganzzahligen Intervall der Länge 1 , nach

dem Halbierungsverfahren die ersten fünf Intervalle für
a) log5 3 b) log3 0,5 c) ld 10
d) ld 4,7 e) lg 0,75 f) lg 83,5

2 . Berechne für die folgenden Logarithmen Näherungswerte, deren Fehler
kleiner als ein Hundertstel ist .
a) log6 9 b) ld 0,8 c) lg 123
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7.4 Logarithmusfunktionen

Nach Wahl einer von 1 verschiedenen positiven Zahl b kann man jeder
positiven Zahl x eindeutig ihren Logarithmus zur Basis b zuordnen . Man
erhält damit eine Funktion .

Definition 171 . 1 : Die Funktion / : ih logh x mit der Definitionsmenge
[R + heißt Logarithmusfunktion zur Basis b .

Abbildung 171 . 1 zeigt die Graphen der Logarithmusfunktionen mit den
Basen b = 2 und b = 10 .

Abb. 171 . 1 Graphen der Logarithmusfunktionenfür b = 2 und b = 10

Die Funktionsgleichung y = logAx ist , wie wir wissen , äquivalent zur
Gleichung x = by (vgl . 7 . 1 ) . Das bedeutet , daß man die Gleichung y = log6 x
eindeutig nach x auflösen kann ; jeder Funktionswert y wird an genau einer
Stelle xefR + angenommen . Somit besitzt die Logarithmusfunktion eine
Umkehrfunktion , und diese hat , mit y als unabhängiger Variabler geschrie¬
ben , die Gleichung x = by . Um ihre Darstellung mit x als unabhängiger
Variabler zu erhalten , vertauschen wir x und y . Das ergibt y = bx

, also die
Gleichung der Exponentialfunktion mit der Basis b . Es gilt also

Satz 171 . 1 : Die Logarithmusfunktion xi—> log6 x , xe [R + hat die Expo¬
nentialfunktion x i—> bx

, x e [R als Umkehrfunktion und umge¬
kehrt .

Da das Vertauschen der Variablen x und y eine Spiegelung des Graphen an der
Winkelhalbierenden y = x bewirkt , liegen die Graphen y = logb x und y = bx

symmetrisch zu dieser Geraden (Abbildung 172 . 1 ) .
Mit dem in Satz 171 . 1 beschriebenen Zusammenhang kann man aus den
bekannten Eigenschaften der Exponentialfunktionen die entsprechenden
Eigenschaften der Logarithmusfunktionen erschließen . Es gilt
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b > 1 0 < b < 1

Abb . 172 . 1 Graphen der Logarithmus - und Exponentialfunktion bei gleicher Basis
b > 1 bzw . 0 < b < 1

Satz 172 . 1 : Jede Logarithmusfunktion hat die Definitionsmenge [R + und
die Wertemenge IR .
Die Logarithmusfunktion zur Basis b ist

für b > 1 echt monoton zunehmend ,
für 0 < b < 1 echt monoton abnehmend .

Die Graphen der Logarithmusfunktionen enthalten den Punkt
(1 | 0) .

Da die Graphen y = bx und y = bezüglich der p-Achse zueinander
symmetrisch verlaufen , liegen die Graphen y = logh x und y = logi x symme-

b

Abb . 172 .2 Symmetrie der Graphen y = log,,x und y = logi xb
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Abb . 173 . 1 Graphen von Logarithmusfunktionenx i—> log,, x

trisch zur x-Achse , wie Abbildung 172 .2 zeigt . Abbildung 173 . 1 vermittelt
eine Vorstellung vom »Büschel« der Graphen y = log,, x mit b > 0 und b =|= 1 .

Mit Hilfe einer Logarithmusfunktion kann man die Menge der positiven
Zahlen umkehrbar eindeutig auf die Punkte einer Geraden abbilden . Man
wählt dazu auf der Geraden einen Anfangspunkt O und einen Punkt E , der
zusammen mit O die Längeneinheit und die Orientierung festlegt . Damit
ordnet man nun jeder Zahl x > 0 denjenigen Punkt der Geraden zu , der sich

ergibt , wenn man von O aus den Pfeil logh x ■OE abträgt . Mit anderen Worten :
man bestimmt auf der Zahlengeraden mit dem Nullpunkt O und dem
Einheitspunkt E den zur Zahl logb x gehörenden Punkt , bezeichnet ihn aber
mit x (Abbildung 173 . 2) . Eine so erzeugte Skala heißt logarithmische Skala . *

(

log b X • OB

X) E iog b
- 1- T- T 1 1 ^

, 1 , 0 - 1 , 2
b b b x b
Abb . 173 .2 Erzeugung einer logarithmischen Skala

Bei dieser Zuordnung entspricht , wie man leicht erkennt , dem Punkt O
die Zahl 1 und dem Punkt E die Zahl b , die Basis der Logarithmusfunktion .
Zwei Potenzen von b , deren Exponenten sich um 1 unte rscheiden , haben
in dieser Skala stets den gleichen Abstand OE ; denn es gilt
logb bk + l — logb bk = (k + 1 ) — k = 1 .
* scalae (lat .) , scala (ital .) = Treppe , Leiter
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Eine logarithmische Skala ist vor allem durch die zu ihrer Herstellungverwendete Logarithmusfunktion bestimmt ; bei gleicher Wahl der Punkte
O und E ergeben verschiedene Funktionen auch verschiedene Skalen . Man
kann aber zeigen , daß zwei logarithmische Skalen stets zueinander ähnlich
sind (Aufgabe 181/22) . Meist benützt man zur Herstellung logarithmischerSkalen den dekadischen Logarithmus . Ein Beispiel zeigt Abbildung 174 . 1 .

Abb . 174 . 1 Logarithmische Skala

\- 1- I I I I I I lf1 0,2 0,5 '
■H I + - \ I l+ lf
2 5 '

Für logarithmische Skalen gibt es einige sehr sinnvolle und nützliche
Anwendungsmöglichkeiten :

a) Der Rechenstab oder Rechenschieber
Edmund Gunter (1581 - 1626) benützte die von ihm 1620 erfundene logarith¬mische Skala - sie hieß bald Gunter ’s line - auf einem 6 Fuß langen Stab zur
Multiplikation und Division zweier Zahlen , indem er auf ihm mit dem Zirkel
Strecken addierte bzw . subtrahierte . * William Oughtred (1574- 1660) verein¬
fachte 1621 diesen Vorgang erheblich , indem er zwei Exemplare einer loga -
rithmischen Skala gegeneinander legte : Der Rechenstab war erfunden ! Das
erste Modell mit festem und beweglichem Körper ließ er 1633 konstruieren ,das älteste erhaltene fertigte 1654 ein gewisser Robert Bissacker .
Abbildung 174 .2 zeigt die Multiplikation zweier Zahlen als Streckenaddition .Addiert werden die beiden Strecken mit den Längen lg a und lg b . Wegen
lga + lg 6 = lg(a - b) liest man unter der Marke b der oberen Skala das
Produkt a ■b auf der unteren Skala ab . Mit derselben Einstellung löst man
auch die Divisionsaufgabe c : b .

iL 73a-
c = ab)lg a

lg ab

Abb . 174 .2 Multiplikation bzw. Divi¬
sion mit dem Rechenstab

lg a 2 a2 101 b1
l

7 t_
1 lg a a

1
Vb Jo c

Abb . 174 . 3 Quadrieren und Wurzelzie¬
hen mit dem Rechenstab

Mit zwei logarithmischen Skalen , deren Längeneinheiten sich wie 2 : 1
verhalten , kann man quadrieren bzw . die Quadratwurzel ziehen (Abbildung174 . 3) . Wenn die Marken 1 der beiden Skalen übereinandergestellt sind , liest
man über der Zahl a der unteren Skala ihr Quadrat a2 auf der oberen Skala ab .
Umgekehrt steht unter einer Zahl b der oberen Skala ihre Quadratwurzel auf
* gesprochen 'gAnta. Bei den englischen Seeleuten war lange Zeit ein zwei Fuß langer flacher Stab in Gebrauch ,der neben der logarithmischen Skala auch logarithmische Skalen trigonometrischer Funktionen enthielt . Erhieß The Gunter . According to Gunter sagen übrigens die Amerikaner für unser »nach Adam Riese « . (Bei den

Engländern heißt es dagegen according to Cocker nach dem englischen Mathematiker Edward Cocker
[ 1631 - 1675] , dessen Arithmetick von 1678 insgesamt 112 Auflagen erfuhr .)



7 .4 Logarithmusfunktionen 175

der unteren Skala . Edmund Wingate (1596 - 1656 ) hat 1645 die »Quadrat¬
skala « erfunden und auf dem GuNTERschen Stab anbringen lassen .
Mit Hilfe geeigneter Paare von logarithmischen Skalen lassen sich noch viele
weitere Aufgaben recht einfach lösen (Aufgabe 181/23 und 182/24) .
Rechenstäbe wurden vor der Einführung elektronischer Taschenrechner auch
im Elnterricht verwendet . Abbildung 175 . 1 zeigt einen Rechenstab mit »Läu¬
fer« , der erstmals 1837 von Mouzin erwähnt wurde .

Abb . 175 . 1 Rechenstab

b) Das einfach -logarithmische Papier
Abbildung 175 .2 zeigt ein Koordinatensystem , dessen v-Achse eine logarith -
mische Skala trägt , während die x-Achse die gewohnte äquidistante Teilung
aufweist . Es handelt sich um ein sog . einfach -logarithmisches Koordinaten¬
system ; ein Papier , auf dem eine solche Einteilung vorgedruckt ist , heißt
einfach -logarithmisches Papier .

MO

3

1
— - 5— — -1- 5

- 0.1

Abb . 175 .2 Einfach -logarithmisches
Koordinatensystem

Abb . 175 .3 Graph von x
x > — 2 auf einfach-logarithmischem
Papier

Natürlich hat in einem solchen Koordinatensystem der Graph einer Funktion
eine andere Form als in den uns geläufigen Systemen mit jeweils äquidistant
geteilten Achsen . Zum Beispiel ist der Graph einer linearen Funktion auf
einfach -logarithmischem Papier keine Gerade , sondern eine gekrümmte
Kurve (Abbildung 175 .3) . Es gibt aber auch Funktionen , deren Graphen sich
bei Verwendung von logarithmischem Papier vereinfachen . Von besonderem
Interesse ist die Frage , welche Funktionen in einem solchen Koordinaten¬
system als Graphen eine Gerade haben .
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Um dies zu untersuchen , führen wir
eine mit der y -Achse zusammenfal¬
lende , äquidistant geteilte z-Achse
ein , und zwar so , daß der Punkt z = 0
mit dem Punkt y = 1 und der Punkt
z = 1 mit dem Punkt y = 10 zusam¬
menfallen (Abbildung 176 . 1 ) . Jedem
Punkt dieser Achse ist dann sowohl
ein y- als auch ein z-Wert zugeordnet ;
dabei gilt z = lg y . Eine nicht zu
dieser Achse parallele Gerade hat im
(x , z) -System eine Gleichung der
Form z = ax + b . In den Koordi¬
naten x und y hat diese Gerade die
Gleichung lgy = ax + b . Die Um¬
formung lgy = ax + b o y — I0 ax + b
um eine Gleichung der Form y = C B

100 - - 2

z = ax + b

Abb . 176 . 1 Einfach - logarithmisches
(x , >’)-System und ein (x , z)-System mit
äquidistant geteilten Achsen

y = (10“)* • 10 b zeigt , daß es sich
handelt (mit B — 10“ und C -= t ()h) ,

also um die Gleichung einer Exponentialfunktion . Dabei sind die Basis B
und der Faktor C positiv . Damit haben wir folgendes Ergebnis :

In einem einfach -logarithmischen Koordinatensystem mit logarithmi -
scher y-Skala ist eine Gerade , die nicht zur y-Achse parallel ist , der
Graph einer Exponentialfunktion x i—> C • Bx mit C > 0 und B > 0 .

Daß auch jede derartige Funktion in einem solchen Koordinatensystem durch
eine Gerade dargestellt wird , folgt aus der Tatsache , daß jede positive Zahl in
der Form 10“ bzw . 10b dargestellt werden kann . Aus diesem Grunde heißt das
einfach -logarithmische Papier auch
zeigt einige Beispiele.

c) Das doppelt-logarithmische Papier
Ein aus zwei logarithmischen Skalen
gebildetes Koordinatensystem heißt
doppelt -logarithmisch ; Papiere , auf
denen eine entsprechende Einteilung
vorgedruckt ist , bezeichnet man als
doppelt -logarithmische Papiere (Ab¬
bildung 176 .2) .
Welche Funktionen werden auf dop -
pelt -logarithmischem Papier durch
Geraden graphisch dargestellt ? Wir
denken uns an Stelle der x-Achse eine
äquidistant geteilte /-Achse so , daß

Exponentialpapier . Abbildung 177 . 1

Abb . 176 .2 Doppelt -logarithmisches
Koordinatensystem
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Abb . 177 . 1 Graphen von Exponentialfunktionen auf einfach-logarithmischem
Papier

t = 0 mit x = 1 und t = 1 mit x = 10 übereinstimmt , ebenso an Stelle der
y-Achse eine äquidistant geteilte z-Achse so , daß sich z = 0 und y = 1 sowie
z = 1 und v = 10 entsprechen . Es gilt dann t = lgx und z = lgp . Im
( t , z)-System hat jede Gerade , die nicht zur z-Achse parallel ist , eine Gleichung
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der Form z = at + b . In den Koordinaten x und y heißt die Gleichung dieser
Geraden \gy = a - lgx + Z>; sie läßt sich folgendermaßen umformen :

lg y = a - \gx + b
lgy = lgCO + lg ( lo b)
\gy = lg (xa - 10b)
y = C - x a

, mit C — IO6
, also C > 0 .

Das ist die Gleichung einer Potenzfunktion . Es gilt also :

In einem doppelt -logarithmischen Koordinatensystem ist eine Gerade ,
die nicht zur y-Achse parallel ist , der Graph einer Potenzfunktion
xi—> C • x “ mit C > 0 .

Da jede positive Zahl C in der Form 10b dargestellt werden kann , hat jede
Potenzfunktion x i—>• C • x“ mit C > 0 auf doppelt -logarithmischem Papier
einen geradlinigen Graphen . Aus diesem Grunde heißt das doppelt -logarith -
mische Papier auch Potenzpapier . Abbildung 178 . 1 zeigt einige Beispiele.

Abb . 178 . 1 Graphen von Potenzfunktionen auf doppelt -logarithmischem Papier
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Aufgaben
1 . Bestimme die maximale Definitionsmenge :

a) xi—> log 3 x b) xi—> log 5 | x | c) xb-> log 2 ]/x
d) xi > log—(2x 5) e) xi—> log4 (2x + 5) f) x i—►log 7 12x — 31

2 . Welche maximale Definitionsmenge hat folgende Funktion?
a) xi- > lg (x 2 + 11) b) xi—> lg (x 2 — 1 )
c) xi- >- log0il (x 2 + 2x + 2) d) xi- Uog 5 (x 2 + 2x + 1 )
e) xi—►log i ^j (x 2 — 4x — 5) f) xi—> logi | 2x 2 + 7x — 4 |

3 . Gib zu den folgenden Funktionsgleichungen y = f (x) jeweils eine Glei¬
chung x = f ~ 1 ( der Umkehrfunktion an .
a) y = 2X b) y = (5)* c) y = 5 2x d) y = 0,1 2 ~ *

e) y = ldx f) y = logzx g) y = lg ( - 2x) h) ^ = logo >1 Vx

4 . Zeichne den Graphen der Funktion .
a) x 1—►log 3 x b) x 1—>■logLx c) xi—> log0 6 x d) xi-^- log^ x

5 . Bestimme diejenige Funktion xi—> logb x , deren Graph den angegebenen
Punkt enthält , und skizziere den Graphen .
a) A (813 ) b) B (811,5) c) C (81 — 6)
d) D (0,25 [2) e) E (5 | i ) f) F (^ | - J)

6 . Kann man zu jedem Punkt der rechten Halbebene (x > 0) eine Funktion
xi-Uog b x angeben , deren Graph den Punkt enthält ? Gibt es Punkte ,
durch welche mehr als eine derartige Logarithmuskurve geht ?

7 . Zeichne die Graphen y = ld 5x und y = ld - und vergleiche sie mit dem

Bild von y = ld x . Welche Zusammenhänge vermutest du ? Begründe deine
Vermutung mit Hilfe der Rechengesetze .

8 . Stelle folgende Funktionen graphisch dar :
a) x 1—> ld (x — 1 ) b) xh-Udx — 1
c) xi—> logi (x + 2) d) xi—Uogix + 2

9 . Zeichne die Graphen der Funktionen/und g auf der jeweiligen maximalen
Definitionsmenge .
a) / (x) = 21dx , g (x) = ldx 2

b) / (x) = 21ogi (2x — 5) , g (x) = logi (2x — 5)2

C) / (x) = 21og3 | x - 3 | , g (x) = log 3 (x - 3 )2

10 . Werden durch die folgenden Paare von Zuordnungsvorschriftenverschie¬
dene Funktionen definiert ? (Es soll jeweils die größtmögliche Definitions¬
menge genommen werden .)
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a) x i—►2 loga x und x i—> loga x 2

c) xi—> 31og5 x und xi—> log 5 x 3

e) x i—►x und x i—>■ld 2X

g) xi—> x 2 und xi—>- log3 3 *2

b) x i—►\ loga x und x i—> logfl |/x
d) xi—Ug (x 4- 1 ) 2 und xi—> 41g ]/x + l
1) xi—Ud2 * und xi—>- 2 ld*
h) xkx 2 und x i—►3 21083 x

11 . Stelle die Funktionen x i—►log2 x , x i- > log4 x und xi—> log 8 x graphisch
dar . Welche geometrische Beziehung besteht zwischen den Graphen ?

12 . Zeichne das Bild der Funktion xi- Ugx und konstruiere daraus den
Graphen einer neuen Funktion , indem du alle Ordinaten
a) verdoppelst b) verdreifachst c) halbierst.
Handelt es sich bei den neuen Kurven ebenfalls um die Graphen von
Logarithmusfunktionen , und wenn ja , von welchen ?

13. a) Gegeben sei der Graph y = ld x und ein beliebiger Punkt P (x 1 \ y\ ) mit
x 1 > 1 und y\ > 0 . Zeichne den durch P verlaufenden Graphen einer
Funktion xi- Gog^ x . (Hinweis : Nach der Umrechnungsregel von Satz
164 . 1 ist das Verhältnis der zu einer bestimmten Abszisse gehörenden
Ordinaten der beiden Graphen konstant .)

b) Verwende anstatt des Punktes P einen Punkt Q (x 2 1y2) mit x 2 > 1 ,
y2 < o .

14 . Für welche Werte von x sind die folgenden Funktionen definiert ?
a) / (x) = ld (ldx ) b) / (x) = logi (logix ) c) / (x) = lg(log01 x)
d) f (x) = log3 [log4 (log 5 x)] e) / (x) = log 2 [log0 >4 (log 3 x)]

15 . Löse folgende Gleichungen:
a) ld (ldx ) = l b) log 5 (log 3 x) = 1
c) logi (log4 x 2) = — 1 d) logi [log 2 (x 2 — 2x + 8)] = — 2
e) log2 [log 3 (log5 x)] = 0 f) log2 [logi (log 0 2 x)] = 1

16 . Welche Ungleichung besteht zwischen
a) Id5undld7 b) logi5 und logi7
c) log7 f und log7 f d) log0 2 0,7 und logi 0,699
e) logj _ 15 und logiy - 0,15 f ) logn 1 und logrtjf ?

1/9. 2 K^

17 . Zwischen welchen aufeinanderfolgendenganzen Zahlen liegen die folgen¬
den Logarithmen ?
a) log 5 100 b) log3 39 c) lgl,67 d) lgl6,7 e) lgl670
f) log5 0,3 g) ld0,01 h) lg 0,0011 i) log0 3 2 k) logi 7
1) log0 5 50 m) logi (! ) n) logi (^ ) o) log0 5 0,3 p) logQ

3

2 0,05
18 . Löse folgende Ungleichungen :

a) log5 x < log 5 ]/5 b) log0 3 x ^ log0 >3 U
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1
c) 0 < log 3 x < 3 d) logi 3 ld - — 3

2 X

e) ld (2x + 5) > log4 (4x + 1 ) f) log0 5 (2x + 1 ) < logi (x + 2)’ 4
19. a) Zeichne unter Verwendung des dekadischen Logarithmus und der

Längeneinheit 5 cm eine logarithmische Skala für das Intervall
[ 1 ; 1000 ] . Gib auf dieser Skala die den Zahlen 6 ; 350 ; j/l000 und L lOO
entsprechenden Punkte an .

b) Fertige für das Intervall [xg ; 1024] eine auf der Funktion xi- Gdx
beruhende logarithmische Skala mit der Längeneinheit 1 cm an . Trage
darauf die Punkte V2 , 5 , f , 100 und 800 ein.

20 . Auf der in Aufgabe 19 .a) beschriebenen logarithmischen Skala liege
a) der Punkt A 4 cm rechts von der Marke 1 ,
b) der Punkt B in der Mitte zwischen den Marken 100 und 1000 ,
c) der Punkt C 32 mm links von der Marke 100 .
Bestimme die auf zwei Stellen nach dem Komma gerundeten Werte der
diesen Punkten zugeordneten Zahlen a , b und c .

21 . a) Wieviel Längeneinheiten beträgt auf einer dekadisch -logarithmischen
Skala der Abstand zwischen den Punkten
1) 2 und 20 2) 0,46 und 460 3) VÖÄ und l/lÖÖÖ?

b) Begründefür eine beliebige logarithmische Skala (mit Basis b) , daß auf
ihr der Abstand zweier Punkte x 1 und x2 mit x t > x2 dem dekadischen
Logarithmus des Quotienten x x : x2 proportional ist .

22 . a) In Abbildung 181 . 1 sind die mit derselben Längeneinheit OE kon¬
struierten logarithmischen Skalen mit Basis 10 und Basis 2 einander
gegenübergestellt . Mit welchem Faktor muß man die erste Skala
strecken (z . B . vom Punkt 1 aus ) , um den Abstand der Punkte 1 und
2 auf den gleichen Wert wie in der zweiten Skala zu bringen ?

b) Zeige, daß das bei dieser Streckung entstehende Bild der ersten Skala
zur zweiten Skala kongruent ist . (Hinweis : Betrachte die einer beliebi¬
gen Zahl x > 0 auf den beiden Skalen zugeordneten Punkte .)

O E
*- 1

Abb . 181 . 1 j _ |_ !_ ^Zu Aufgabe 22 i 2 io 100 1000
— i- 1- 1- \* -

12 4 8

23 . Konstruiere analog zu Abbildung 174 . 3 über dem Intervall [ 1 ; 10] einer
logarithmischen Skala eine »Kubikskala « so , daß man mit diesem
Skalenpaar 3 . Potenzen und 3 . Wurzeln bestimmen kann . *

* Auf den meisten Rechenstäben ist eine solche Skala tatsächlich vorhanden , 1645 von Edmund Wingate
(1596- 1656) eingeführt .
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24. Stelle einer logarithmischen Skala des Intervalls [ 1 ; 10] eine »Kehrwert¬
skala « gegenüber , auf der man unter dem Punkt x der ersten Skala die

Zahl - abliest . Zeige , daß es sich bei ihr wieder um eine logarithmischex
Skala handelt . *

25 . a) Begründe , daß man die beiden Skalen von Abbildung 174 .3 so
einander gegenüberstellen kann , daß über der Marke x der unteren
Skala der Flächeninhalt eines Kreises mit Radius x abgelesen werden
kann .

b) Welche Anordnung der Skalen liefert zum Durchmesser x den
Flächeninhalt des Kreises ?

26. Zeige , daß man mit zwei gleichen logarithmischen Skalen zu drei positiven
Zahlen a , b , c die 4 . Proportionale , d . h . die Lösung der Gleichung
a : b = c : x , bestimmen kann . (Hinweis : Vgl . Abbildung 174 .2 .)

27 . Stelle in einem einfach -logarithmischen Koordinatensystem mit logarith -
misch geteilter y-Achse folgende Funktionen graphisch dar :
a) x i- »- 3 * b) xn 0,2* c) x i—> 20 ■ 1,5*
d) xi —> 50 • ((])* e) xi —> 10 - 2 “ * f) x i—> 0,2 • 0,5 “ *

28 . Welche Funktion hat in einem einfach -logarithmischen Koordinaten¬
system mit logarithmischer y-Skala als Graphen die Verbindungsgerade
der Punkte
a) P (0 | 100) und Q (2 | l ) b) R (0 | 1 ) und S (41100)
c) T (0180) und U ( — 3110) d) V ( l | 2) und W ( — 5 | 128) ?

29. Angeblich soll in einem frisch eingeschenkten Glas Bier die Höhe des
Schaums exponentiell mit der Zeit abnehmen . Hans will dies nachprüfen .
Er schenkt ein Glas Bier ein und mißt in Abständen von einer halben
Minute die Schaumhöhe . Dabei erhält er folgende Meßreihe :
t [in min] 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

h [in mm] 80 56 39 27 19 13 9 7 5 3 2

Prüfe graphisch auf einfach -logarithmischem Papier , ob diese Meßreihe
die behauptete exponentielle Abnahme der Schaumhöhe bestätigt . Wie
könnte gegebenenfalls die Gleichung der Zerfallsfunktion 1 i—> h { t) lau¬
ten ? (Konstanten auf zwei geltende Ziffern runden .)

30 . Vom Luftdruck ist bekannt , daß er exponentiell mit der Höhe abnimmt ,
d . h . , daß er durch eine Funktion mit der Gleichung p {h) = p 0

- b ~ h
, mit

b > 1 , beschrieben werden kann . Bei einem Ballonaufstieg wird in 1 km
Höhe der Druck p x = 879 hPa und in 5 km Höhe der Druck p 2 = 533 hPa
gemessen . Wie groß ist an diesem Tag der Luftdruck p 0 am Boden ? Mit

* Auf den meisten Rechenstäben ist eine solche Skala tatsächlich vorhanden .
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welchem Druck ist in 10 km Höhe zu rechnen ? Löse die Aufgabe auf
einfach -logarithmischem Papier .

31 . a) Zeichne den Graphen der Funktion x i—►ld x in einem einfach-logarith-
mischen Koordinatensystem , dessen x-Achse logarithmisch geteilt ist .
Welche Vermutung legt das Ergebnis nahe ?

• b) Beweise, daß der Graph einer Logarithmusfunktion mit der Gleichung
y = log, , x in einem Koordinatensystem mit logarithmischer x-Skala
und äquidistant geteilter y-Skala stets eine Gerade ist .

32 . Die Höhe über dem Erdboden kann aus dem Luftdrucknach der Formel

h = 18,4 km • lg bestimmt werden ; dabei ist p 0 der Luftdruck am

Boden . In welcher Höhe befindet sich an einem Tag mit p 0 = 1010 hPa ein
Meßballon , wenn ein mitgeführtes Barometer folgenden Druck anzeigt :
a) 900 hPa b) 800 hPa c) 400 hPa d) 200 hPa . e) 150 hPa?
Löse die Aufgabe graphisch auf einfach -logarithmischem Papier .

33 . Zeichne auf doppelt -logarithmischem Papier die Graphen folgender
Funktionen :

c) x i—>b) x i—*■2 ]/x ^a ) xhx

34 . a) Eine Potenzfunktion x i- > Cxe hat für x = 0,2 den Wert y — 0,4 und
für x = 20 den Wert y = 10 . Bestimme mit Hilfe von doppelt -logarith¬
mischem Papier näherungsweise den Funktionswert für
1 ) x = 1 2) x = 2 3) x = 10 4) x = 40 .

• b) Bestimme für die in a) definierte Funktion die Konstanten C und
q durch Rechnung .

35 . Prüfe graphisch , ob die folgende Tabelle von Meßwerten einer Potenz¬
funktion entspricht .

X 2 5 10 20 30 50

y 3,8 6,6 10,0 15,1 19,2 26,1
X 0,5 1 2 4 6 10

y 0,42 0,53 0,85 2,2 5,7 37
b)
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7.5 Exponentialgleichungen und Logarithmusgleichungen

7 .5 . 1 Exponentialgleichungen

Bestimmungsgleichungen , bei denen die Unbekannte nur in den Exponenten
von Potenzen vorkommt , nennt man Exponentialgleichungen . Bei einfachen
Gleichungen dieser Art kann man die Lösungen exakt bestimmen . Grundlage
dafür ist

Satz 184 . 1 : Die Gleichung bx = a mit a > 0 , b > 0 und b =|= 1 hat genau
eine Lösung , nämlich x = logb a.

Daß logb a eine Lösung der Gleichung bx = a ist , beruht auf der Definition des
Logarithmus (Definition 155 . 1 ) , daß es die einzige Lösung ist , wurde schon in
Satz 155 . 1 festgestellt .

Beispiel 1 :
5X = 12 hat die Lösung x — log 5 12 .
Den Übergang von der ersten zur zweiten Gleichung deuten wir so , daß
von beiden Seiten der Gleichung der Logarithmus zur Basis 5 gebildet
wird . Man nennt diesen Schritt Logarithmieren der Gleichung . Wir
schreiben dafür

5 * = 12 | | log5
x = log 5 12

Beim praktischen Rechnen , z . B . mit dem Taschenrechner , bevorzugt
man den dekadischen Logarithmus . Man erhält dann folgenden
Lösungsweg :

II lg
II : lg 5

5X = 12
x - lg5 = lg 12

lg ! 2
lg 5

Daß die so gefundene Lösung mit log 5 12 übereinstimmt , folgt aus
Satz 164 . 1 .

x = 1,544

Beispiel 2:
Bei der Gleichung 16* = 128 kann man beide Seiten als Potenzen mit
gleicher Basis darstellen . Das Logarithmieren der Gleichung läuft dann
einfach auf das Gleichsetzen der Exponenten hinaus :

16* = 128
24x = 27

| | log2
4x = 7
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Beispiel 3:
\ ,5 lx + l = 1 ~ x

Hier steht auf beiden Seiten eine Potenz , deren Exponent die Unbekannte
enthält . Durch Logarithmieren erhält man eine lineare Gleichung für x .

1,52* + 1 = l ~ x
| | lg

(2x + 1 ) • lg 1,5 = - x - lg7
x (2 • lgl,5 + lg7) = — lg 1,5

— lgl,5*
2 • lg 1,5 + lg 7 0,1471

Beispiel 4 :
5 - 3 2x = 3 X+ 3 — 34
Da rechts eine Differenz steht , führt Logarithmieren nicht weiter . Man
kann aber jedes der beiden Glieder , welche die Unbekannte enthalten ,
durch die Potenz 3 X ausdrücken .

5 • 3 2* = 3* + 3 — 34
5 - (3X)2 = 3 3 • 3* - 34

Mit der Substitution z = 3 * erhält man eine quadratische Gleichung für z .

5z 2 - 27z + 34 = 0

Sie hat die Lösungen zx = 2 und z2 = 3,4. Beide Lösungen sind positiv
und kommen somit als Werte der Potenz 3 X in Betracht . Damit gilt

3 * = 2
lg 2

V 3 * = 3,4
lg 3,4

*
lg 3

V x .
lg 3 ’

x x se 0,6309 und x2 « 1,114 , jeweils auf vier geltende Ziffern ge¬
rundet .

Aufgaben
Bestimme die Lösungsmenge . Gib für irrationale Lösungen auch den auf vier
geltende Ziffern gerundeten Näherungswert an .

1 . a) T = 343 b) 3* = 11 c) Gr = io d) 1,2* — 0,6 = 0

2 . a) 4* - s = 6 b) 8 2* “ 3 = 32 c) d) 0,4 3 ~ * = 0,5

3 . a) 2* = 8* “ 2 b) 3,l 2x = 2 • 31 * c) )—*O 1k = 22* + 1

4. a) 3 X • 5x _ l = 1 b) 42* - 3 . 32 l - = 8

c)
25jc

JX + 2
= 10 d) (lri ) ' + 3 =

3 • 134 _*

(l/sT
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5 . a) 4 - 2^ = 0,5 - "

6 . a) 7 2* + 1 — 40 • 7* = 63

7 . a) 25* = 15 - 5* - 50
8 . a) 4X+ 2 — 5 • 2* + 3 — 24 = 0

b) 5*2 + 3 = 25 • 0,2* _ 1

b) 9 • (f )2* + 1 + 54 • ( 3 )* - 1 — 42 = 0

b) 3* + 9* = l/3 (l/3 + 1 )
b) (i )* 1 • (8 * + 1 — 4 5) = 16 (4* — 8 )

2 \ 2x + l

9 . Im Jahre 1990 lebten auf der Erde 5,3 Milliarden Menschen . Die jährliche
Wachstumsrate betrug etwa 1,5 % .
a) In welchem Jahr würde bei gleichbleibender Wachstumsrate die

Weltbevölkerung
1 ) auf 6,0 Milliarden anwachsen
2) doppelt so groß wie 1990 werden ?

b) In welcher Zeit nimmt bei der Wachstumsrate1,5 % die Bevölkerungs¬
zahl von 1990
1 ) um 1 Million zu (Einwohnerzahl einer Großstadt )
2) um 77 Millionen zu (Bevölkerungszahl Deutschlands )?

7 .5 .2 Logarithmusgleichungen
Eine Bestimmungsgleichung , bei der die Unbekannte nur im Argument von
Logarithmen auftritt , bezeichnet man als Logarithmusgleichung . Auch solche
Gleichungen lassen sich in einfachen Fällen exakt lösen . Grundlage dafür ist

Satz 186 . 1 : Die Gleichung logb x = q mit b > 0 , 6 + 1 und £>e [R hat
genau eine Lösung , nämlich x = ba .

Dies folgt aus der echten Monotonie der Funktion xi—> log6 x und der
Tatsache , daß diese Funktion die Wertemenge fR hat .

Beispiel 1 :
log4 x = 5 hat die Lösung x = 4 5 .
Den Übergang zur zweiten Gleichung kann man so deuten , daß man jede
Seite der Ausgangsgleichung zum Exponenten einer Potenz mit der Basis
4 , also der Basis des Logarithmus , macht . Wir schreiben
log4 x = 5 | | 4 " '

X __ 45

x = 1024
Diese Umformung , bei der der Logarithmus »beseitigt wird« , bezeichnet
man als Delogarithmieren der Gleichung .
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Beispiel 2:
lg (2x + 3) + lg ( l - x) - lg ( l - 4x ) = 0
Hier muß man zuerst die linke Seite zu einem einzigen Logarithmusterm
zusammenfassen :

lg
(2x + 3) (1 — x)

1 - 4x
= 0 II10

” ’

(2x + 3) (1 - x)
1 - 4x | | • (1 — 4x )

2x 2 — 3x — 2 = 0
x ± = 2 ; x2 = — 0,5
Da die Zusammenfassung von Logarithmen keine Äquivalenzumfor¬
mung zu sein braucht , wenn man jeweils die maximale Definitionsmenge
zugrundelegt , muß man die Probe machen . Sie zeigt , daß nur x 2 eine
Lösung der Ausgangsgleichung ist .

Beispiel 3:
log 9 0 2 + 1 ) = log 3 (2x — 1 )
Hier muß man zuerst Logarithmen mit gleicher Basis hersteilen :

log 3 (x 2 + 1)
log 3 9

= log 3 (2x - 1 )

log 3 (x 2 + 1 ) = 2 • log 3 (2x — 1 )
X " + 1 = (2x - l )2

3x 2 — 4x = 0

II 3
"

x 1 = 0 ; x2 = f
Die Probe zeigt , daß nur x 2 eine Lösung der Ausgangsgleichung ist .

Aufgaben
Bestimme die Lösungsmenge . Gib für irrationale Lösungen auch den auf vier

geltende Ziffern gerundeten Näherungswert an .

1 . a) log 3 x = l,5 b) logix = 8 c) lgx = 0,l

2 . Alle Gleichungen sollen auf der jeweils maximalen Definitionsmenge
betrachtet werden .
a) Zeige an Hand der Lösungsmengen , daß die Gleichungen

lg [ (x + 4) (x + 1 )] = 1 und lg (x + 4) + lg (x + 1 ) = 1

nicht äquivalent sind .
b) Sind die Gleichungen log 3 (x — 8 ) — log 3 (1 — 2x ) + 1 = 0 und

X _ g
log 3

-— — + 1 = 0 äquivalent ?
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c) Begründe, daß für die Lösungsmengen L x und L2 der Gleichungen
(1 ) logb \_(rx + s) (ux + r)] = c und
(2) logb (rx + s) + logb (ux + v) = c
gilt: L2 ist (echte oder unechte ) Teilmenge von L x .

3 . a) lg (7x + 2) = 1 + lg (x — 4)
b) ld (x 2 - 1 ) - ld (4x - 1 ) + ld 3 = 0

4 . a) log6 (5x — 4) — log6 (3 + x) + log6 (2x + 1 ) = 1
b) lg 2 + lg(x + 2) + lg (3x + 5) = lg (5x 2 - 1 )
c) lg2 + lg [(x + 2) (3x + 5)] = lg (5x 2 — 1 )

5 . a) log 5 (3x + 4) — log25 (4x — 3) = 1
b) lg (x 2 + 4) - log^ (3x + 2) = 0

6 . a) log5 (x 2 — 5x + 1 ) = 1 + log 5 (3x — 10)
b) lg (2x 2 + x - 5) + log0 >1 (x 2 + 1 ) = lg 2

7 .5 .3 Graphische und numerische Lösungsverfahren

Die in den bisherigen Beispielen betrachteten Exponential - und Logarith¬
musgleichungen ließen sich durch Logarithmieren bzw . Delogarithmieren
oder mit Hilfe einer Substitution auf einfachere Gleichungstypen zurückfüh¬
ren , für die uns exakte Lösungsverfahren bekannt sind . Es gibt aber auch
Gleichungen , bei denen eine solche Vereinfachung nicht möglich ist . Dann
muß man sich damit begnügen , für die Lösungen hinreichend gute Nähe¬
rungswerte zu bestimmen . Das kann durch graphische Lösungsmethoden ,durch lineare Interpolation oder durch ein geeignetes Iterationsverfahren
geschehen , wie die folgenden Beispiele zeigen.

Beispiel 1 :
1 + 2* - 3 ~ * = 0
a) Graphische Lösung : Man bringt die Gleichung z . B . auf die Form
1 + 2X = 3 _ x und sucht die x-Werte , für welche die Funktionen x i- > 1 + 2X
und xi —>- 3 _ x

, xelR , gleichen Funktionswert haben . Zeichnet man die
Graphen y = 1 + 2* und y = 3 ~ x

, so ergeben sich diese x-Werte als die
Abszissen der gemeinsamen Punkte beider Kurven . Abbildung 189 . 1 zeigt,daß in diesem Fall genau ein solcher Punkt existiert ; für seine Abszisse liest
man x « — 0,5 ab .
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■
y = 1 + 2*

-1

Abb . 189 . 1 Graphische Lösung der Gleichung 1 + 2* — 3 x = 0

b) Lineare Interpolation : Man berechnet für die Funktion f : x \—> 1 + 2* — 3 ~ x
eine Wertetabelle , etwa

X - 2 - 1 0 1 2

y - 7,75 - 1,5 1 2i 4§

Offensichtlich liegt zwischen — 1 und 0 eine Nullstelle der Funktion , also eine
Lösung der gegebenen Gleichung . Wir ersetzen den Graphen zwischen den
Punkten ( — 11 — 1,5) und (011 ) durch die Strecke und berechnen deren
Schnittpunkt mit der x -Achse .

Hat man allgemein zwei Punkte P (x L \ y\ < 0) und Q (x 2 1y2 > 0) und ist S (x 10j
der Schnittpunkt der Geraden PQ mit der x -Achse , so kann man die Steigung
dieser Geraden sowohl aus dem Steigungsdreieck A STQ als auch aus A PRQ
bestimmen (Abbildung 189 .2) und erhält die Gleichung

y2 ~ o = y2 - yi
x 2 - x x 2 - x 1 Q(x2 Iy 2 )

Deren Auflösung nach x ergibt

In unserem Beispiel erhält man so
für die Lösung der Gleichung den
Näherungswert

x = 0
1 + 1,5

p(x,lyi )

S( x | 0X

R

Abb . 189 .2 Zur linearen Interpolation
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Die Probe zeigt , daß / ( — 0,4) » 0,206 gilt ; also liegt , da die Funktion in
diesem Bereich zunimmt , — 0,4 rechts von der Nullstelle . / ( — 0,5) » — 0,025
zeigt weiter , daß die Nullstelle zwischen — 0,5 und — 0,4 liegt . Führt man mit
den Punkten P ' ( — 0,5 (0,025) und Q ' ( — 0,410,206) noch einmal die lineare

0,206
Interpolation durch , so erhält man x = — 0,4 — ———-— —— • 0,1 » — 0,49
als genaueren Wert für die gesuchte Lösung .

u^ d6 + 0,025

c) Iterationsverfahren : Um aus 1 + 2* — 3 x = 0 eine Gleichung der Form
x = g (x) zu gewinnen , kann man z . B . so Vorgehen:
1 + 2* - 3 ~ * = 0
1 + 2* = 3 “ *

lg (1 + 2*) = — xlg3
lg ( l + 2*)

lg
: ( lg 3 )

x = ■
lg 3

Mit der Iterationsformel x„ , , = —lg (l + 2*")
lg 3

und x0 = — 0,5 erhält man :

x t = — 0,486 . . .
x2 = - 0,490 . . .

x 3 = - 0,4893 . . .
x4 = - 0,48958 . . . 7+ =

- 0,48952 . . .
- 0,489539 . . .

Daraus kann man bereits einen sehr genauen Näherungswert für die gesuchte
Lösung entnehmen : x » — 0,4895 . Die Zahlen x„ lassen sich sehr einfach mit
dem Taschenrechner berechnen ; Abbildung 190 . 1 zeigt eine dafür geeignete
Tastenfolge . Natürlich läßt sich ein Iterationsverfahren besonders gut mit
einem programmierbaren Rechner durchführen .

x0 M 2 MR + 1 = lg 3 lg = + / -

t
Abb . 190 . 1 Zum Lösen der Gleichung 1 + 2* — 3 * = 0 mit dem Taschenrechner

Beispiel 2:
3* - 4x 2 = 0
Hier tritt die Unbekannte sowohl als Exponent als auch als Basis einer Potenz
auf . In solchen Fällen ist es im allgemeinen unmöglich , exakte Lösungen
anzugeben . Wohl aber lassen sich auch hier die in Beispiel 1 benützten
Näherungsverfahren anwenden . Man beginnt am besten mit einer Werte¬
tabelle der Funktion x i- » 3 * — 4x 2

, xelR .
X - 2 - 1 0 2 3 4 5

y — 15f — 3f 1 - - 7 - 9 17 25
Man erkennt - auch ohne graphische Darstellung daß der Graph die
x-Achse mindestens dreimal schneidet , die Gleichung also mindestens drei
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Lösungen hat . Sie liegen in den Intervallen ] — 1 ; 0 [ , ] 0 ; 1 [ und ] 3 ; 4 [ und
seien mit £, 1 , £ 2 , C 3 bezeichnet . Graphisch oder durch lineare Interpolation
könnte man für diese Lösungen grobe Näherungswerte bestimmen . Um
genauere Ergebnisse zu erhalten , suchen wir nach einem geeigneten Iterations¬
verfahren .

1 . Versuch:

3 * — 4x 2 = 0 <=> x = — (x = 0 ist keine Lösung !)4x
3*"

Damit erhält man die Iterationsformel x„ + 1 = -— .4x„
Mit x0 = — 0,5 , der Mitte des 1 . Intervalls , erhält man nach ( IJ

fli )

= — 0,288 . . .
x2 — — 0,630 . . .

x 3 = — 0,198 . .
x4 = — 1,01 . . .

Die Werte »laufen auseinander « ; (I , ) ist für die Berechnung von ungeeignet .
Mit x0 — 0,5 , der Mitte des 2 . Intervalls , erhält man aus (I x)

Xj = 0,866 . . .
x2 = 0,747 . . .
x 3 = 0,760 . . .
x4 = 0,758 . . .

x 5 = 0,75844 . . .
x6 = 0,75837 . . .
x 7 = 0,758389 . . .
Xo = 0,758387 . . .

0,7584.Für die in ] 0 ; 1 [ liegende Lösung £ 2 gilt also <J 2 = 0,75838 . . .
Mit x0 = 3,5 , der Mitte des 3 . Intervalls , erhält man aus (1 ^
Xj = 3,340 . . .
x2 = 2,937 . . .
x 3 = 2,144 . . .
und erkennt , daß (I t ) zur Berechnung von C 3 unbrauchbar ist .

Zur Bestimmung von ^ und c 3 benötigt man also andere Iterationsformeln .

2 . Versuch:

3 X — 4x 2 = 0 <s> x2 = “ <> x = 41/3 * v x = — 4l/3 * .

Das ergibt für x > 0 die Iteration * » + 1 = 2 l/3 *"

und für x < 0 die Iteration
Mit Xq — — 0,5 erhält man aus
x x = — 0,379 . . .
x2 = — 0,405 . . .

( I3 )

x6 = - 0,40113 . . .
x 7 = - 0,40112 . . .

(1 2)

(1 3)

Damit hat man bereits ^ « — 0,4011 gefunden .
Dagegen erweist sich (I 2) zur Berechnung von C 3 wieder als ungeeignet !
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3 . Versuch:
3 * - 4x 2 = 0
3 * = 4x 2

xlg3 = lg (4x 2)
lg (Ax 2)

X
lg 3

II lg
II ; lg3

Die entsprechende Iterationsformel lautet xn Vl = CU)
Mit x 0 = 3,5 erhält man daraus

x 1 = 3,542 . . .
x2 = 3,564 . . .

x 10 = 3,5872 . . .
x tl = 3,5873 . . .

Da die Werte immer noch leicht ansteigen , ist man noch nicht sicher ,
ob beim Runden auf 4 Ziffern die 7 erhalten bleibt . Man kann dies prüfen ,
indem man x = 3,587 und x = 3,5875 in die linke Seite der zu lösenden
Gleichung , also in / (x ) = 3 X — 4x 2

, einsetzt . Aus / (3,587 ) = — 0,01 . . . und
/ (3,5875 ) = + 0,003 . . . folgt , daß zwischen diesen beiden x -Werten liegt
und somit £ 3 « 3,587 gilt .

Aufgaben
1 . Bestimme Näherungswerte für die Lösungen nach der graphischen

Methode . (Längeneinheit 1 cm ; eine Stelle nach dem Komma )
a) 2* + 8x — 7 = 0 b) 1,5* + x 2 = 2 c) 1 - x + (£)* = 0

2 . Berechne mit Hilfe eines Iterationsverfahrens die auf vier geltende Ziffern
gerundeten Lösungen der Gleichung von

c) Aufgabe l . c) .a) Aufgabe l . a) b) Aufgabe l . b)

3 . a) Bestimme graphisch Näherungswerte für die beiden Lösungen der
Gleichung 0,5x 2 — 1 = lgx .

b) Begründe , daß die in a) angegebene Gleichung auf die äquivalente
Form x = l/2 (lgx + 1 ) gebracht werden kann , und benütze diese zur
iterativen Berechnung des auf vier geltende Ziffern gerundeten Wertes
der größeren der beiden Lösungen . Kann man mit dieser Iteration
auch die zweite Lösung berechnen ?

c) Zeige , daß sich die Gleichung 0,5x 2 — 1 = lg x nach Multiplikation mit
2x - lgx

bringen läßt , und berechne damit den2x auf die Form x

auf vier geltende Ziffern gerundeten Wert der zweiten Lösung .

4 . a) Bestimme an Hand einer graphischen Darstellung näherungsweise die
Koordinaten des Schnittpunkts S der beiden Graphen y = x “ 1 und
y = lg (x — 2) .
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b) Berechne durch Iteration die auf Hundertstel gerundete Abszisse von
S . Wie lautet die ebenso gerundete Ordinate von S ?

5 . Ermittle mit einer Wertetabelle die Lage der Nullstellen der Funktion .
Suche geeignete Iterationsformeln zur Berechnung dieser Nullstellen und
bestimme jeweils die auf vier geltende Ziffern gerundeten Werte.
a) xi -^ 10x + 2x - 9 b) x i—> 5 — x • 24 ~ x

c) x i—> lg (2x — 1 ) + 3x — 5 d) x i—> lg (x2 + 1 ) + ld (5 — x)
6 . Berechne die auf vier Stellen nach dem Komma gerundeten Näherungs¬

werte der Lösungen .
a) x — cos x = 0 a x e fR b) sin x — x2 = 0 a x e [R +

c) x 2 (1 + tan x) = 1 a x e [0 ; j n [
7 . Mit den von einer Schallquelle ausgesandten Wellen wird Energie

transportiert . Unter der Schallintensität J an einer bestimmten Stelle
versteht man die dort auf eine Fläche von 1 m2 entfallende Schalleistung ;
die Maßeinheit für J ist also lWm - 2 .
Von einer Schallintensität zu unterscheiden ist die beim Hören empfunde¬
ne Lautstärke L . Eine Verdoppelung der Intensität J empfindet unser
Gehör keineswegs als Verdoppelung der Lautstärke L . Auch gibt es einen
Schwellenwert J0 der Schallintensität , unterhalb dessen der Schall nicht
mehr hörbar ist . Aus dem für Sinnesreize geltenden Weber-Fechnerschen
Gesetz * folgt für den Zusammenhang zwischen Schallintensität und

Lautstärke die Beziehung L = k \g ~ , k e [R +
. Für den Proportionali -

Jn
J

tätsfaktor k hat man die Zahl 10 festgelegt ; also : L = 10 lg — phon .
■' o

Dabei ist phon keine physikalische Benennung : das Hinweiswort Phon * *
(Kurzzeichen phon ) soll nur an die logarithmische Definition der unbe¬
nannten Zahl L und an ihre Verwendung in der Akustik erinnern .
a) Wie groß ist die Schallintensität J im Abstand r von der Schallquelle,

wenn diese nach allen Seiten gleichmäßig die Leistung P abgibt ?
b) Welcher Wert der Lautstärke L entspricht dem Schwellenwert J0 der

Schallintensität ?
c) Wie groß ist J, ausgedrückt durch J0 , bei der Lautstärke

1) 10 phon (Ticken einer Taschenuhr in 4 m Abstand )
2) 40 phon (normales Sprechen bei 2 m Abstand )

* Das Weber -Fechnersche Gesetz besagt : Die Empfindungsstärke E eines Reizes ist proportional zum
R

Logarithmus des Quotienten aus der Reizstärke R und der Schwellenreizstärke R0; d .h ., E — k - lg — .
r ' o

Ernst Heinrich Weber (24 . 6. 1795 Wittenberg - 26 . 1. 1878 Leipzig ) war Physiologe und Anatom .
Gustav Theodor Fechner ( 19 .4 . 1801 Groß -Särchen bei Muskau/Lausitz - 18 . 11 . 1887 Leipzig ) war Phy¬
siker , Psychologe und Philosoph .

* Das Hinweiswort Phon , vom griechischen <p<avr | (phone ) = Laut , wurde 1926 von dem deutschen Physiker
Heinrich Georg Barkhausen (2 . 12 . 1881 Bremen 20 .2 . 1956 Dresden ) eingeführt .
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3) 80 phon (starker Straßenlärm )
4) 130 phon (Schmerzgrenze, bleibende Gehörschädigung !)?

d) Eine Schallquelle gibt einen bestimmten Ton mit gleichbleibender
Leistung ab . In 1 m Entfernung beträgt die Lautstärke 40 phon . Wie
weit muß man sich von der Schallquelle entfernen , um den Ton nicht
mehr zu hören ?

e) Der Lärm eines Llugzeugmotors wird in 400 m Entfernung mit
80 phon gemessen . Wie groß ist die Lautstärke für einen Llugpassagier ,
der sich beim Einsteigen dem Triebwerk auf 10 m nähert ?

f) Die Schwellenintensität J0 für die Schallwahrnehmung hängt von der
Tonfrequenz ab . Im Bereich von 1000 Hz bis 2000 Hz ist sie besonders
klein , bei sehr hohen und sehr tiefen Tönen wesentlich größer . Eür die
Frequenz 1000 Hz gilt / o = 10 “ 12 Wm - 2 (mittlerer Wert für Jugend¬
liche !) .
1) Welche Lautstärke entspricht bei einem Ton mit 1000 Hz der

Schallintensität / = 8 - 10 _ 5 Wm - 2 ?
2) Welche Schallintensitäten ergeben bei einem Ton von 1000 Hz die

Lautstärken 1 phon , 20 phon , lOOphon , 130 phon ?
3) Ein Lautsprecher strahlt mit der Leistung 5W einen Ton von

1000 Hz gleichmäßig nach allen Seiten ab . Mit welchen Lautstärken
hört man diesen Ton in 5 m , 10 m und 50 m Entfernung ?

g) Bei einem Tonvonl25Hzistdie Schwellenintensität J0 = 10 ~ 9 W m 2.
Welche Schallintensitäten gehören bei diesem Ton zu den Lautstärken
von Aufgabe f) 2) ?

18 . In der Praxis muß Schall häufig verstärkt bzw . gedämpft werden . Wird

z . B . eine Intensität J , auf den kleineren Wert J2 gedämpft , so gibt man als

Maß der Dämpfung die Zahl ß = 10 • lg y Dezibel an . Das Hinweiswort

Dezibel* , abgekürzt mit dB , bezeichnet keine physikalische Maßeinheit,
sondern dient nur zur Erinnerung an die logarithmische Definition der
unbenannten Dämpfungszahl ß.
a) Wie verhalten sich die SchallintensitätenJy und J2 bei einer Dämpfung

von 5 dB?
b) Wieviel Dezibel beträgt die Verstärkung , wenn die Schallintensität

1 ) verdoppelt 2) verzehnfacht 3) verhundertfacht wird ?
c) Ein Tonsignal mit der Leistung 0,05 W wird durch einen Verstärker um

20 dB verstärkt . Welche Leistung hat das verstärkte Signal?
d) Um wieviel phon verändertsich die Lautstärke (vgl . Aufgabe 7) , wenn

die Schallintensität um n dB verstärkt (gedämpft ) wird ?
* Die Bezeichnungen Bel (B) und Dezibel (dB ) wurden zu Ehren des Ingenieurs Alexander Graham Bell

(3 . 3 . 1847 Edinburg - 1. 8 . 1922 Baddeck [Kanada ] ) , des Erfinders des elektromagnetischen Telephons , ein¬
geführt . 1 B = 10 dB . Sein Photophone , das mittels eines codierten Lichtstrahls die menschliche Stimme
(damals bis zu 200 m) übertragen konnte , hielt er schon 1880 für seine größte Errungenschaft . Damit war
die Photonik geboren .



7 .6 Zur Geschichte der Logarithmen 195

* * 7.6 Zur Geschichte der Logarithmen
Im 16 . Jh . nahmen die Anforderungen an die Rechengenauigkeit vor allem von seiten
der Astronomie immer mehr zu . So mußten insbesondere die von dem dänischen
Astronomen Tycho Brahe (1546 - 1601 ) gelieferten Beobachtungsdaten auf Verträg¬
lichkeit mit den von der Theorie angebotenen Planetenbahnen überprüft werden . Man
suchte daher nach Möglichkeiten , das für große Zahlen sehr zeitaufwendige Multipli¬
zieren und Dividieren durch das schnellere und auch leichtere Addieren bzw.
Subtrahieren zu ersetzen , so , wie es zwischen 1505 und 1513 in der Trigonometrie * dem
Nürnberger Pfarrer Johannes Werner (1468 - 1528 ) gelungen war . * * Diese Prostha -
phairesis (npoaüutpaipcCTic ; = Zu -Wegnahme) genannte Methode wurde 1580 von
Tycho Brahe und seinem schlesischen Assistenten Paul Wittich (15557- 1587)
wiederentdeckt . Sie benützten neben der WERNERschen Formel sin a • sin ß =
= 2 [ cos (a — ß ) — cos ( a + /! )] auch die schon bei Ibn Yunis ( fl009 Kairo ) vorkom¬

mende Formel cosa • cosß = 2 [cos (a — /I ) + cos (a + /?)] , deren praktisch -rechneri¬
sche Bedeutung Ibn Yunis aber noch nicht erkannt hatte : Man faßt die Ziffernfolge der
zwei zu multiplizierenden Zahlen als Zilfernfolge des Kosinus eines Winkels a bzw.
ß auf , sucht in cos-Tabellen a und ß und kann damit die rechte Seite recht einfach
berechnen . * * *
Das Bestreben , bessere Methoden dieser Art zu finden , führt gegen Ende des 16 . Jh .s
zur Entdeckung der Logarithmen , und zwar durch einen Schweizer Uhrmacher und
einen schottischen Baron , die nichts voneinander wußten und die auf keine Vorar¬
beiten zurückgreifen konnten ! Ausgangspunkt der Überlegungen ist das auf Seite 38
beschriebene Korollar zu Satz 11 aus Buch IX der Elemente des Euklid (um 300
v . Chr .) , das Archimedes (um 287- 212 v . Chr .) in seiner Schrift über die Sandzahl
wesentlich vertiefen konnte (siehe Seite 38) . Über die Araber gelangte seine Erkennt¬
nis ebenso wie die von den Indern erfundene Null ins Abendland , so daß Nicolas
Chuquet 1484 in seinem Triparty geometrischen Folgen der Bauart 1 , a , a 2

, a 3
, . . . die

mit 0 beginnende arithmetische Folge 0,1 , 2, . . . gegenüberstellen kann . Er nennt die
Glieder der arithmetischen Folge die denominacions der Glieder der geometrischen
Folge und zeigt dann die zwischen den Gliedern solcher Doppelfolgen bestehende
interessante Beziehung : Man erhält als Produkt zweier Glieder der geometrischen
Folge dasjenige Glied dieser Folge , dessen denominacion in der arithmetischen Folge
die Summe der denominacions der beiden Faktoren ist . Wir illustrieren diese Regel an
Fland der uns auf der altbabylonischen Keilschrifttafel MLC 2078 * * * * überlieferten

* Das Wort Trigonometrie scheint der in der Pfalz als Hofprediger wirkende Schlesier Bartholomaeus
Pitiscus (1561 - 1613) mit dem Titel seines 1595 in Heidelberg erschienenen Werks Trigonometria sive de
solutione triangulorum tractatus brevis et perspicuus - »Trigonometrie oder eine kurze und klare
Abhandlung über die Lösung von Dreiecken « geprägt zu haben . Es ist zusammengesetzt aus xpiycovov
(trigonon ) = Dreieck und pexpEiv (metreln ) = messen .

* * Das Manuskript seiner Libri quatuor de triangulis sphaericis wurde erst 1902 wiederaufgefunden und 1907
gedruckt .

** * Auf Grund der Formeln wird der Name Prosthaphairesis verständlich . Er ist zusammengesetzt aus
npötTSeoig (prösthesis ) = Hinzufügung , Addition und aus ücpaipeon ; (aphairesis ) = Wegnahme , Subtrak¬
tion , da a und ß einmal addiert und einmal subtrahiert werden . Hierzu ein Beispiel :

2,31456 • 8,00753 = 0,231456 ■0,800753 • 10 2 = ?
cos a = 0,231456 => a = 76° 37'02" ; cos ß = 0,800753 => ß = 36°47' 53"

a - ß = 39°49'09" => cos (ot - ß) = 0,768068294 ; a + ß = 113°24' 55" => cos (a + ß) = - 0,397390122

) [cos (a —ß) + cos (a + ßj ] = 0,185339086 , also 2,31456 - 8,00753 = 18,5339086 .
Das exakte Ergebnis lautet 18,5339086368 .

* * * * Morgan Library Collection der Yale University , New Haven (USA )
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zwei Doppelfolgen . Das zweite Beispiel zeigt, daß die arithmetische Folge keineswegs
die Folge der natürlichen Zahlen sein muß ; der Anfang 0 <-> l fehlt natürlich .

1
1— plus —= ; 1 r plus —| u

1 2 3 4 5 6 arithmetisch I 1
4 2 3

4 1
2 4 8 16 32 64 geometrisch 2 4 8 16

1— mal —1 d_ I Lmal -I
1

Wozu die Babylonier diese Doppelfolgen gebraucht haben , wissen wir nicht . Aber die
Erkenntnis Chuquets findet sich wieder bei mehreren deutschen Cossisten der
1 . Hälfte des 16 . Jh .s . 1544 stellt Michael Stifel (14877- 1567) in Buch I (fol . 35r) seiner
Arithmetica Integra - »Die ganze Arithmetik « - die vier Rechengesetze zusammen , die
die Beziehung zwischen diesen Doppelfolgen regeln :*

1 . Addition in der arithmetischen Folge entspricht der Multiplikation in der geometri¬
schen Folge .

2 . Subtraktion in der arithmetischen Folge entspricht der Division in der geometri¬
schen Folge .

3 . Multiplikation in der arithmetischen Folge entspricht einer Potenzierung in der
geometrischen Folge .

4 . Division in der arithmetischen Folge entspricht dem Radizieren in der geometri¬
schen Folge , das Halbieren also dem Quadratwurzelziehen .

Das sind aber genau die Gesetze des logarithmischen Rechnens , die du in den Sätzen
160 . 1 bis 161 . 1 kennengelernt hast . In Buch III nennt Stifel die Glieder der
arithmetischen Folge Exponenten ( = Ausgesetzte) der Glieder der geometrischen
Folge . Und dann folgt die überaus bedeutsame Idee , die arithmetische Folge ins
Negative fortzusetzen (vgl . auch Seite 41) :

1- 3 1- 2- 1— M
i \

1 1 * 1 31 4l r i 6 |
* 1 41 8 [ i6l3 * l *4l

Stifel ist sich der Bedeutung dieses Vorgangs auch bewußt ; denn unmittelbar im

Anschluß an diese Tabelle schreibt er : »Man könnte jetzt ein ganzes Buch über die
wunderbaren Eigenschaften der Zahlen schreiben , aber ich muß mich an dieser Stelle
zurückhalten und mit geschlossenen Augen weitergehen .« Er weist aber noch darauf
hin , daß die oben aufgestellten Regeln auch für negative Exponenten gelten.
Von unten nach oben gelesen, stellt die obige Tafel in unserer Sprechweise eine
Logarithmentafel xi—> log2 x für xejg , . . . , 64 } dar . Für die im 16 . Jh . gesuchte
praktische Anwendung war diese Tafel natürlich nicht umfangreich genug . Und selbst
wenn man sie nach beiden Seiten fortsetzte , könnten so einfache Rechnungen wie 2 • 5
oder 3 • 3 mit ihr gar nicht bewältigt werden , da in der unteren Zeile weder 5 noch
3 Vorkommen . Man brauchte also Tafeln mit sehr kleiner Schrittweite .
Es war das Verdienst des aus Coburg stammenden Frankfurter Rechenmeisters Simon
Jacob ( 15107 - 1564 ) , in seinem Ein New und Wolgegründet Rechenbuch , auff den Linien

und Ziffern , sampt der Welschen Practic (1565) die Erkenntnisse Stifels eingedeutscht
und weiterverarbeitet zu haben . Sein Werk kann der des Lateinischen nicht mächtige
Schweizer Uhrmacher und Instrumentenbauer Jost BÜrgi (1552- 1632) lesen, der sich,
vielleicht schon 1588 , vielleicht aber erst zwischen 1603 und 1611 an die Arbeit macht ,
* Wahrscheinlich erstmals ausgesprochen im Codex Dresden C80 m um 1499.
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eine arithmetisch -geometrische Doppelfolge mit kleiner Schrittweite zu berechnen ,
nachdem er 1584 durch den Besuch Wittichs in Kassel die Prosthaphairesis
kennengelernt und auch verbessert hat . Vergessen wir nicht , daß zu jener Zeit das
Rechnen mit Dezimalbrüchen noch in den Kinderschuhen steckte . Kleine Schritt¬
weiten erzielt Bürgi nun dadurch , daß er den Zahlenbereich von 108 bis 109 verwendet ;
dem Einerschritt dort entspricht im Intervall [ 1 ; 10] eine Schrittweite von 10 " 8

. Seiner
Rechnung legt Bürgi die arithmetische Folge 0,10,20, . . . , allgemein xn = 10« , und die
geometrische Folge yn = 108 ( 1 + KD 4)" zugrunde *

, deren Glieder sich wegen
yn + i = yn ( 1 + 10 - 4) = y„ + 10 _ 4y„ leicht berechnen lassen : Addiere zu einer Zahl ihren
lOOOOten Teil , und du hast ihren Nachfolger . Bürgi macht dies 23000mal , was ihn
sicher einige Monate Rechenzeit gekostet hat ; nach der Einerstelle schneidet er dabei
immer ab .

0 100 000 000 = 108
10 000

10 100 010 000
10 001

20 100 020 001
10 002

30 100 030 003
10 003

40 100 040 006
10 004

230 000 997 303 557
Schließlich berechnet er noch
230 270,022 1 000 000 000 = 10 9 .
Da hier der roten Null nicht die schwarze
Eins , sondern die schwarze 108 zugeord¬
net ist , lassen sich die STiFELschen Regeln
nicht unmittelbar anwenden . Nach unse¬
rem heutigen Verständnis sind aber die
rot gedruckten Zahlen die Logarithmen
der schwarz gedruckten Zahlen (siehe
Anhang Lösungsheft ) . Bürgi hat keinen
Namen für sie . Er nennt sie »rote Zahlen «
und läßt sie auch rot drucken , als er
endlich * * 1620 seine Progreß - Tabulen
(siehe Abbildung 198 . 1 ) herausbringt . Sie
sind eine sog. Antilogarithmentafel * * * ;
denn zu den ganzzahligen (roten ) Log-

Abb . 197 . 1 Jost Bürgi (28 . 2 . 1552 Lich¬
tensteig/Schweiz - 31 . 1 . 1632 Kassel)
Stich von Egidius II Sadeler (1570- 1629)

* Die Zuordnung lOnt -^ y,, neM 0, kann auch als Zinseszinsformel gedeutet werden mit dem Anfangskapi¬
tal y0 - 10 8

, dem Zinsfuß 1CT 2% und dem Endkapital yn nach 10« Monaten , wenn alle 10 Monate der
Zins zum Kapital geschlagen wird .

** Noch 1627 tadelt Johannes Kepler (1571- 1630) in seinen Rudolphinischen Tafeln Bürgi : »Etsi homo
cunctator et secretorum suorum custos foetum in partu destituit , non ad usus publicos educavit .«
[Allerdings hat der Zauderer und Geheimniskrämer das neugeborene Kind verkommen lassen , statt es
zum allgemeinen Nutzen großzuziehen .]

*** Auch Antilogarithmus ist wie Logarithmus eine Wortschöpfung John Napiers (1550- 1617) ; er versteht
jedoch in seiner Descriptio (1614) darunter den Logarithmus des Kosinus eines Winkels . Erst John Wallis
(1616- 1703) verwendet es 1693 in seinem Tractatus de Algebra im heutigen Sinn : ln y = log x ist y der
Logarithmus von x und x ist der Antilogarithmus von y.
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Abb . 198 . 1 Titelblatt der Logarithmentafel von Jost Bürgi von 1620 . Die Initialen
J und B stehen für den Verfasser. Die Darstellung enthält zwei Druckfehler : Die neben
der roten 5000 stehende schwarze Zahl 105 126 407 muß richtig 105 126 847 heißen . Bei
der darunter stehenden schwarzen Zahl 100 000 000 fehlt eine Null ; es handelt sich
nämlich um »Die gantze Schwartze Zahl « 1000000000 . Der kleine rote Kreis über
230270022 kennzeichnet die Einerstelle ; »Die gantze Rote Zahl « ist also als
230270,022 zu lesen. - Nur zwei Exemplare sind erhalten geblieben , eines in Danzig
und eines in München .
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anthmen smd die gerundeten (schwarzen ) Numeri angegeben . In einer Logarithmen¬
tafel werden dagegen zu den ganzzahligen Numeri die gerundeten Logarithmen
angegeben . Der im Titel angekündigte »gründliche Unterricht « fehlt gänzlich , so daß
die Tafeln für die wenigen Käufer unverständlich und wertlos blieben .
Die Zeit war aber schon über Bürgi hinweggeschritten . Denn bereits 1614 hatte der
schottische Gutsherr und kämpferische Protestant John Napier , auch Neper ,
(1550 - 1617 ) , der sich in seinen Mußestunden der Mathematik widmete , seine Mirifici
Logarithmorum Canonis Descriptio (siehe Abbildung 153) herausgebracht .
1590 hört Napier durch John Craig , der Tycho Brahe auf der Insel Hven besucht hat ,
von dessen »Erfindung « der Prosthaphairesis . Bereits am 27 . März 1592 schreibt dann
Craig an Brahe , daß ein Landsmann einen canon mirificus konstruiere . Napiers Ziel
ist es , die trigonometrischen Rechnungen
eine Tafel der Logarithmen des Sinus der
Winkel zwischen 0 ° und 90 °

. Zu seiner
Zeit war der Sinus noch nicht das Verhält¬
nis aus Gegenkathete und Hypotenuse ,
sondern die Länge der Gegenkathete
selbst, was auch seinen ursprünglichen
indischen Namen erklärt .*
Napier erstellt in langjähriger Arbeit eine

komplizierte 7ziffrige arithmetisch -geo¬
metrische Doppelfolge , indem er zwei
Punkte mit gleicher Anfangsgeschwin¬
digkeit starten läßt . Der eine bewegt sich
ins Unendliche so fort , daß in gleichen
Zeiten gleiche Strecken zurückgelegt wer¬
den , der andere auf einer vorgegebenen
endlichen Strecke so , daß die jeweils noch
zurückzulegenden Wege eine geometri¬
sche Folge bilden . Diese Wege sind dann
die Numeri , deren »Logarithmen « die auf
der Geraden bis zum jeweiligen Zeitpunkt
zurückgelegten Strecken sind . Da die
Numeri sin-Werte sein sollen , es aber
keine geometrische Folge gibt , die mit
0 = sinO 0 beginnen kann , konstruiert
Napier eine fallende geometrische Folge ,
die mit sin 90 °

, dem sinus totus , wie man
seit Gerhard von Cremona (1114 - 1187)
den Kreisradius nennt , beginnt . Dem gibt
er den Wert 107

, um - wie Bürgi - zu
kleinen Schrittweiten kommen zu kön -

zu vereinfachen . Seine Descriptio ist daher

LOGARITHMORVM
Chiiias Prima ,

fittam autor typis excudendam citrauit , non et con-
alwiVt publwi iurisfieret ; fedpartim, vt qttorur. -
damfuorum necejjdriorum deßderio prtuatim fatis -
faceret-.partimyut eitu adiumentoysonfölum Cbtlta-
das aliquot tnfequentet ;fed etiani integrum Loga¬
rithmorum Cantncm , tmnittm Triangulorttm cal-
cttlo inßruientem commodius abfölueret , Habet e-
nim Cemonem Smuumyifiipfoytnte Decenniumyyer
aquationes tA/gebraicas,(jr dtjferentias , ipfis Smu-
bttsproportionales,profingttlis Gradibtu drgraduit
centefimis,aprimis fttndament isaccurate extruüü :
quem vna cum Logartthmis adiunüis,-vt/ente Deo,
in lucemfe daturumßperat,qtMmprimum commode
licuerit,

fiuodautem hi Logartthmi , ditterß fint ab ijS,
quos ClarifsimusinuentorjnemorUftmper colendtc ,
tnfttoediditCanonsAdiriflco -,fperandum,cimItbrü
poßhtemstm, abttndt nobis propediem fätisfacla-
rmn . ßßß attteri . ( cum ettm dtmißta , Edmburgi,
bit inntforet , & apttd cum hxmanißmcexceptus ,
per aliquot feptimanas libentifsimc manßßet ; eiqtte

horumpartem prsctpuamquamtumabfoluerat ■
oßendijfet )fitaderenondefinit, vt httnc in

je laboremfufiiperct . Cuiilleiten,
inuittumoremgcjßt .

Io tcnui } fed non tenufs,fru <üufve laborve ,

Abb . 199 . 1 Titelblatt von Henry Briggs ’

Logarithmorum chiiiasprima von 1617 * *
* Babylonier und Griechen legten ihren trigonometrischen Überlegungen die zu einem Zentriwinkel gehö¬

rende Sehne zugrunde . Der indische Astronom Äryabatha I (476 n .Chr . - ?) führte eine Rechnung mit der
Halb -Sehne = ardha -dschyä ein . Aus Bequemlichkeit ließ man die Vorsilbe ardha bald wieder weg , und aus
dschyä wurde allmählich dschiva , das die Araber wie dschiba aussprachen und , da ihre Schrift keine Vokale
kennt , als dschb schrieben . Dies wiederum wurde später als das echt arabische Wort dschaib gelesen und als
Fachwort verwendet ; die eigentliche Bedeutung von dschaib ist aber Halsausschnitt eines Kleides , Busen .
Robert von Chester (um 1145) übersetzte dschaib durch das bedeutungsgleiche lateinische Wort sinus . -
Georg Simon KlüGel (1739- 1812) definierte 1770 in seiner Analytische [ii] Geometrie den Sinus als das
heute übliche Verhältnis .

** Übersetzung im Lösungsheft
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nen , und ordnet ihm als Logarithmus den Wert 0 zu . Durch Interpolation gestaltet er
die Tabelle schließlich so , daß er von Winkelminute zu Winkelminute fortschreiten
kann (Aufgabe 2 im Anhang des Lösungshefts ) .
Edward Wright (1558 - 1615 ) , Mathematiker und Kartograph in Cambridge , erkennt
sofort die Bedeutung der NAPiERSchen Tafeln für die Navigation und übersetzt die
Descriptio mit dessen Zustimmung in die »englische Volkssprache « . 1616 gibt sie
Wrights Sohn Samuel postum , auf 6 Stellen gekürzt und mit einem Vorwort von
Henry Briggs (1561- 1631)* versehen , heraus .
Voller Begeisterung hat dieser Henry Briggs , Professor für Geometrie in London ,
noch im Winter 1614/15 seine Studenten den Gebrauch der Logarithmen gelehrt und
Napier brieflich vorgeschlagen , dem sinus totus als Logarithmus die Null und dessen
10 . Teil als Logarithmus den Wert IO 10 zuzuordnen . Damit waren die Numeri nicht
mehr sin -Werte , sondern natürliche Zahlen ; ein wesentlicher Fortschritt für die Praxis !
Als er dann im Sommer 1615 Napier in Edinburg besucht und seine neu berechneten
Logarithmen mitbringt , meint dieser , selbst schon an eine Änderung gedacht zu haben ,
daß er aber vorzöge , 0 als Logarithmus von 1 und IO 10 als Logarithmus des sinus totus
zu nehmen . »Ich mußte erkennen , daß dies das weitaus Zweckmäßigste ist [ . . .] Auf
seinen Rat hin machte ich mir ernsthafte Gedanken über die Berechnung [dieser neuen
Art von Logarithmen ] und fuhr im nächsten Sommer wieder nach Edinburg und zeigte
ihm die wichtigsten von denen , die ich hier vorlege« schreibt Briggs 1624 im Vorwort
zu seiner Arithmetica logarithmica (siehe unten ) .
Diese neuen Logarithmen - wir nennen sie heute die dekadischen - kündigt Napier
durch eine in Wrights Übersetzung aufgenommene Passage an . Und im Vorwort zu
seinen 1617 postum erschienenen Rabdologiae , seu numerationis per virgulas libri duo
- »Zwei Bücher über die Rhabdologie oder die Zählkunst durch Stäbchen « * * -
schreibt er : »Wir haben eine viel bessere Art von Logarithmen gefunden [ . . .] , aber
überlassen wegen unserer körperlichen Schwäche die tatsächliche Berechnung [ . . .]
vor allem dem hochgelehrten Henry Briggs [ . . .] , einem mir seit langem sehr teueren
Freund .« Das Erscheinen der Logarithmorum chilias prima , einer 14stelligen Tafel der
dekadischen »Logarithmen des ersten Tausends « , also der Zahlen von 1 bis 1000 , erlebt
Napier nicht mehr . Das nur 16 Seiten umfassende Werkchen trägt weder den Namen
des Autors noch Erscheinungsort und -jahr . Und dennoch können wir aus einem Brief
vom 6 . 12 . 1617 schließen , daß es von Henry Briggs stammt und vor diesem Datum
erschienen sein muß . Beispielhaft seien einige seiner Logarithmen angegeben :

lg 3 = 0,4771 21254 71966
lg 999 = 2,9995 65488 22598

lg 2 = 0,3010 29995 66398
lg 961 = 2,9827 23387 66854

Die Welt wußte aber immer noch nicht , wie Logarithmen überhaupt errechnet werden .
Napier wünschte in der Descriptio , »daß zuerst ihr Gebrauch und ihre Vorteile
verstanden würden [ . . .] . Ich will das Urteil und die Kritik der Gelehrten abwarten ,
ehe der Rest , vorzeitig ans Licht gebracht , der Ablehnung der Neider ausgesetzt wird .«
Nachdem aber 1618 Wrights Übersetzung eine zweite, ergänzte Auflage erfahren hat ,

* Man findet für Henry Briggs die Daten Februar 1560 Worleywood/Yorkshire bis 26 .1.1630 Oxford . Nun
war in England seit dem 14. Jh . der Neujahrstag der 25 . März . Als man dort 1752 den Julianischen durch den
Gregorianischen Kalender ersetzte , entschloß man sich , das Jahr 1752 mit dem 1. Januar beginnen zu lassen .
Das Jahr 1751 hatte also nur 281 Tage . Inzwischen hatte sich aber die Datumsdifferenz seit der Einführung
des Gregorianischen Kalenders in den katholischen Ländern des Kontinents (1582 bis 1585) von 10 auf
11 Tage erhöht . Diese sparte man dadurch ein , daß auf den 2 . September der 14. September 1752 folgte . Die
Lebensdaten von Henry Briggs sind gregorianisch also Februar 1561 - 5. Februar 1631 , da bis zum
28 . Februar 1700 die Datumsdifferenz 10 Tage betrug .

** In ihnen erblickt das Dezimalkomma das Licht der Welt .
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entschließt sich 1619 Napiers Sohn Ro¬
bert , die mehrere Jahre vor der Descriptio
verfaßte Mirifici Logarithmorum Canonis
Constructio herauszugeben , in der es üb¬
rigens das erst in der Descriptio geprägte
Kunstwort Logarithmus noch nicht gibt .
Statt seiner heißt es dort numerus artifi-
cialis [künstliche Zahl ] . In einem noch
von Napier verfaßten Anhang wird auch
eine Konstruktion für dekadische Log¬
arithmen erklärt .
Die Entwicklung schreitet nun schnell
voran . Briggs ’ Kollege Edmund Gunter
(1581- 1626) , Professor für Astronomie ,
bringt 1620 mit seinem Canon triangulo-
rum eine 7stellige Tafel der dekadischen
Logarithmen des Sinus und Tangens * mit
der Schrittweite V und erfindet die log-
arithmische Skala (Seite 174) .
Bereits 1617 kann Johannes Kepler
( 1571- 1630 ) kurz die Descriptio einsehen,
lehnt aber die Logarithmen ab . Ihren Abb . 201 . 1 Die göttliche Logarithmica
Wert lernt er 1618 durch den Cursus aus den Tabulae Rudolphinae Keplers
Mathematici Practici (1618 ) des Ursinus
genannten Schlesiers Benjamin Behr (1587- 1633/34) , seines früheren Gehilfen ,
kennen . In ihm ist Napiers Werk , um 2 Stellen gekürzt , nachgedruckt . Noch am
1 . 12 . 1618 schreibt er : »Die Logarithmen sind das glückbringende Unglück [foelix
calamitas ] für meine Rudolphinischen Tafeln . Es sieht nämlich so aus , als ob die Ta¬
feln neu zu machen und auf Logarithmen umzustellen oder überhaupt aufzugeben
seien.« * * Da er die Werte nicht ungeprüft übernehmen will und er hinter das Ge¬
heimnis ihrer Berechnung gekommen ist , rechnet er die Tafeln nach und verbessert
sie . * * * Keplers Begeisterung für das Rechnen mit den neuen Logarithmen wird
keineswegs von den älteren deutschen Mathematikern geteilt , die vor allem ihre
kinematische Erzeugung als unmathematisch ablehnen . Seinen Brief vom 3 . 12 . 1618

* Dabei prägt Gunter das Wort cosinus als Abkürzung für sinus complementi und analog cotangens für
tangens complementi . Complementum ist die lateinische Übersetzung des arabischen tamäm ~ Rest ,
womit der Winkel bezeichnet wurde , der einen gegebenen Winkel zu 90 ° ergänzt .

** 1601 hatte Kepler von Kaiser Rudolf II . (1552- 1612 , Kaiser seit 1576) den Auftrag erhalten , Brahes
astronomische Tafeln zu vollenden . 1616 glaubte er , die mit prosthaphäretischen Methoden durchge¬
führte Berechnung bald abschließen zu können ; da kamen die Logarithmen dazwischen . 1624 war er dann
mit der Neuberechnung fertig , konnte aber erst 1627 auf eigene Kosten ( !) 1000 Exemplare der Tabulae
Rudolphinae drucken lassen . Sie lösten wegen ihrer größeren Genauigkeit - ihnen liegen ja auch schon die
sog . KEPLERschenGesetze zugrunde (siehe Aufgabe 84/10 ) - die Alfonsinischen Tafeln (siehe Seite 123) ab .

** * Napier hat dies wohl erwartet ; denn in einigen Exemplaren endet seine Descriptio mit Nihil in ortu
perfectum - »Nichts ist bei Geburt vollkommen « . Erst im Juli 1619 erhält Kepler ein Exemplar der
Descriptio . Voller Begeisterung schreibt er am 28 .7 . 1619 an Napier - nicht wissend , daß dieser schon seit
zwei Jahren tot ist - , spricht auch hier von der foelix calamitas und berichtet , daß er nur kleinere Fehler
gefunden habe . Als Widmung stellt er diesen Brief seiner Ephemeris motuum coelestium ad annum
incarnationis verbi MDCXX - »Jahrbuch der Himmelsbewegungen auf das Jahr der Fleischwerdung des
Wortes 1620« - voran . Kepler war auf seine Verbesserung des NAPiERschen Wertes 6931469 auf 6931472
für den Logarithmus von \ - 10 7 so stolz , daß er den das Frontispiz der Tabulae Rudolphinae bildenden
Tempel mit der göttlichen Logarithmica als Akroterion schmückte , die in ihren Händen zwei Stäbe im
Längenverhältnis 1 : 2 hält und deren Gloriole den von ihm gefundenen Wert zeigt .
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Abb . 202 . 1 Henry Briggs ’ Unterschrift
unter seinen Brief an Kepler vom
20 . Februar (alter Stil) = 2 . März (neuer
Stil) 1625 . - Von Briggs ist kein Bildnis
überliefert .

ARITHMETICA

beantwortet sein alter Lehrer Michael
Mastlin (1550 - 1631 ) am 2 . 3 . 1620 : »Ich
halte es eines Mathematikers für unwür¬
dig, mit fremden Augen sehen zu wollen
und sich auf Beweise zu stützen oder als
solche auszugeben , die er nicht verstehen
kann .« »Das war für mich der Anlaß , auf
der Stelle mit einem ordentlichen Beweis
zu beginnen « * *

, den Kepler dann bereits
am 19 . 6 . 1620 an Mästlin schickt . Gegen
Ende 1621 ist Kepler dann entschlossen ,
die neue Theorie der Logarithmen zu¬
sammen mit den verbesserten Napier -
schen Tafeln drucken zu lassen , deren
Berechnung er im Winter 1621/22 ab¬
schließt . Die Drucklegung verzögert sich
jedoch . Da trifft am 1 . 12 . 1623 , gewisser¬
maßen als Antwort des toten Napier auf
Keplers Widmungsbrief von 1619 , der
von Gunter am 22 . 2 . 1622 abgesandte
Canon triangulorum ein - die Wirren des
30jährigen Krieges machen sich wohl
schon bemerkbar - und einige Tage später
Briggs ’ Logarithmorum chilias prima .
Kepler schreibt daraufhin am 4 .12 . 1623
an Gunter , er überlege , den logarithmi -
schen Teil der Tabulae Rudolphinae deka¬
disch umzugestalten . Als dann jedoch im
Februar 1624 seine Chilias Logarithmo¬
rum ad totidem numeros rotundos —
»Tausend Logarithmen zu ebensoviel
runden Zahlen « * * * - erscheinen , ändert
er nichts mehr , sondern bereitet die
Herausgabe des Supplementum Chiliadis
Logarithmorum , continens praecepta de
eorum usu - »Ergänzung zu den tau¬
send Logarithmen mit Unterweisungen
für ihren Gebrauch « - vor , die zur
Frankfurter Buchmesse im Herbst 1625
vorliegen . Enttäuscht hat aber schon
am 20 . Februar (a . St .) = 2 . März 1625
(n . St .) Briggs auf das Erscheinen von
Keplers Chilias Logarithmorum reagiert ,
der an Stelle Gunters Kepler antwortete : »Ich erkenne den Scharfsinn an und lobe
den Fleiß . Hättest Du jedoch auf den Erfinder Merchiston [ = Napier ] gehört und

LOGARITHMICA
SlVE

LOGARITHMORVM
CHILIADES TRIGINTA , PRO

numeris naturali ferie crefcentibus ab vnitate ad
zojooo: et a po,oooadioo,ooo. Quorumopc multa
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Abb . 202 .2 Titelblatt von Henry Briggs ’
Arithmetica logarithmica , 1624 *

* Übersetzung im Lösungsheft
* * Vorwort zu Keplers Supplementum Chiliadis Logarithmorum (1625) . Dem Beweis liegt die Proportionen¬

lehre Euklids (Elemente , Buch V) zugrunde .
** * In diesem Werk erklärt Kepler »LOGARITHMUS , das ist die Zahl (dspiSpÖQ), die das Verhältnis (Xöyov)

anzeigt , das jene Zahl , der der Logarithmus zugeordnet ist , zu 1000 hat .«
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wärest mir gefolgt , dann hättest Du meiner Meinung nach denen , die am Gebrauch der
Logarithmen ihre Freude haben , einen besseren Dienst erwiesen .«
Beigefügt hat Briggs diesem Brief seine Ende 1624 erschienene Arithmetica logarith -
mica, sive logarithmorum chiliades triginta , pro numeris naturali Serie crescentibus ab
unitate ad20000 et a 90000 ad 100000, einen Folioband von fast 400 Seiten . In ihr sind
als Ergebnis ungebrochenen Fleißes und ungeheuerer Arbeit die neuen dekadischen
Logarithmen von 30000 Zahlen , auf 14 Stellen berechnet , enthalten , und zwar von
1 bis 20000 und von 90000 bis 100000. * Da das Werk diesmal unter seinem Namen
erschien , heißen die dekadischen Logarithmen auch Briggssche Logarithmen . Sie
verdrängen in wenigen Jahren wegen ihrer guten Anwendbarkeit die NAPEERschen
bzw. KEPLERschen Logarithmen * * und heißen im Gegensatz zu diesen und anderen
auch gewöhnliche Logarithmen .
Theoretisch hält Briggs noch an der Vorstellung einer arithmetisch -geometrischen
Doppelfolge fest , aus der heraus er auch glaubt , Napiers Wortschöpfung »Logarith¬
mus« erklären zu können . In Anlehnung an Napier * * * bezeichnet er selbst die
Logarithmen zunächst als numerorum proportionalium comites aequidijferentes , d . h .
als »gleiche Differenz habende Begleiter von Zahlen , die in konstantem Verhältnis
zueinander stehen« , und fährt dann fort :

»Qui ideo videntur a clarissimo Inventore Logarithmi nominati , quia numeros nobis
exhibent eandem inter se servantes rationem .«
»Die deswegen , so scheint es , von ihrem hochberühmten Erfinder Logarithmen
genannt wurden , weil sie uns Zahlen liefern , die untereinander dasselbe Verhältnis
bewahren .«

Praktisch hat Briggs aber völlig neue Wege zur Berechnung der dekadischen
Logarithmen beschritten . Wir begnügen uns damit , den Anfang eines angewandten
Verfahrens zu skizzieren.
Ausgehend von
l/lö = IO 0 ' 5 = 3,1622 77660 16837 93319 98893 54
hat er sofort
lg 3,1622 77660 16837 93319 98893 54 = 0,5 .
Dann errechnet er über

V
'TÖ = ]/lÖ = V7 m = IO 0 ’25 = 1,7782 79410 03892 28011 97304 13 ,

gewinnt also
lg 1,7782 79410 03892 28011 97304 13 = 0,25 .
Nun fährt er so fort und erhält schließlich, nachdem er insgesamt 54mal die
Quadratwurzel gezogen hat ,
2 54
l/lÖ = 102 “ 54 = 1,0000 00000 00000 01278 19149 32003 235 , also

lg 1,0000 00000 00000 01278 19149 32003 235 =
= 0,00000 00000 00000 05551 11512 31257 82702 11815 .

* Man findet in der Literatur eine weitere Ausgabe aus demselben Jahr beschrieben , die auch noch die
Logarithmen der Zahlen von 100000 bis 101000 enthält .

* * Wegen der Bedeutung der Tabulae Rudolphinae blieben sie in der Astronomie noch bis ins 18 . Jh . am Leben .
*** Descriptio , Satz 1: Proportionalium numerorum , aut quantitatum , aequi -differentes sunt Logarithmi . [Die

Logarithmen proportionaler Zahlen oder Größen haben gleiche Differenz .]
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Bei dieser Vorstellung des enormen Rechenaufwands wollen wir es belassen .
Natürlich muß die Lücke zwischen 20000 und 90000 schnellstmöglich geschlossen
werden . Briggs bietet dazu in seinem Vorwort jedem Interessierten an , das von ihm
»zu diesem Zweck beschaffte und durch gerade Linien in Felder eingeteilte Papier
zuzusenden « . Im Vorwort der in der 1 . Fußnote auf Seite 203 erwähnten weiteren
Ausgabe schreibt er überdies , daß er ernsthaft vorhabe , selbst die Lücke zu schließen,
wenn er »seine durch anhaltende Anstrengung des Geistes und unausgesetztes Wachen
geschwächten Kräfte wieder gestärkt hätte « .
Der rührige holländische Mathematiker und Buchhändler Adriaan Vlacq (um
1600 - 1667 ) wittert in den Tafeln mit Recht ein großes Geschäft . Er gewinnt den
holländischen Rechenmeister und Landmesser Ezechiel de Decker (1603/04 bis
1646/47) für seinen Plan , den Wettlauf mit der Zeit aufzunehmen , weil er »überzeugt
ist« , daß der 66jährige Briggs »ob seiner sonstigen amtlichen Verpflichtungen , ganz zu
schweigen von den Beschwerlichkeiten , denen alle Menschen ausgesetzt sind« nicht in
der Lage sein würde , die Arbeit bald abschließen zu können (Vorwort der Arithmetica
logarithmica von 1628 , siehe unten ) . Da Vlacq außerdem erkennt , daß 10 Stellen »für
den allgemeinen Gebrauch mehr als genug sind« , läßt er de Decker , für den er Napiers
Descriptio übersetzt , im Oktober 1626 die Nieuwe tel-konst - »Neue Zählkunst « -
herausbringen ; sie enthält die auf 10 Stellen gekürzten BRiGGSschen Logarithmen der
Zahlen von 1 bis 10000 und Gunters logarithmische trigonometrische Tafeln und
kündigt die Fortsetzung an . Der Entschluß , die Lücke zwischen 20000 und 90000 nur
lOstellig zu schließen , bringt einen erheblichen Zeitgewinn . Bereits im Oktober 1627
kann daher de Decker den Tweede deel van de nieuwe tel-konst - »Zweiter Teil der
neuen Zählkunst « - herausgeben . Neben einer von ihm verfaßten Einleitung enthält sie
die dekadischen Logarithmen aller Zahlen von 1 bis 100000, die größtenteils von
Vlacq berechnet worden waren .*
Da sich Vlacq bewußt wurde , daß nur eine lateinische Ausgabe Erfolg haben wird ,
verbindet er 1628 diese Tafeln mit dem nur wenig veränderten Text von Briggs ’
Arithmetica logarithmica , fügt die von ihm mit der Schrittweite V neu berechneten
Logarithmen der trigonometrischen Funktionen hinzu und deklariert , ohne jede
Erwähnung de Deckers , das Ganze als 2 . , vermehrte Auflage von Briggs ’ Arithmetica
logarithmica . Sie wird ein großer Erfolg und trägt zur raschen Verbreitung der
dekadischen Logarithmen bei . Briggs ist sicher nicht sehr erfreut . Doch hören wir ihn
hierzu selbst in einem Brief an den jungen Mathematiker John Pell (1611- 1685 ) vom
25 .10 . 1628 (Übersetzung im Lösungsheft ) :

»My desire was to have those chiliades that are wantinge betwixt 20 and 90
calculated and printed , and I had done them all almost by my seife , and by some
frendes whom my rules had sufliciently informed , and by agreement the busines was
conveniently parted amongst us ; but I am eased of that Charge and care by one
Adrian Vlacque , an Holländer , who hathe done all the whole hundred chiliades and
printed them in Latin , Dutche and Frenche , 1000 bookes in these 3 languages , and
hathe sould them almost all . But he hathe cutt off 4 of my figures throughout ; and
hathe left out my dedication , and to the reader , and two chapters the 12 and 13 , in the
rest he hath not varied from me at all .«

Die VLACQsehe Tafel ist die Mutter aller weiteren Logarithmentafeln . Sie enthält im
ganzen nur 600 Fehler , davon nur 171 in den ersten 7 Stellen!
Am Ende seiner Arithmetica logarithmica hat Briggs angekündigt , er hoffe, in einem
weiteren Buch »die edelste , mit der Lehre von den sphärischen Dreiecken in innigster
* Das Werk geriet völlig in Vergessenheit . Erst 1920 wurde ein Exemplar gefunden .
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Verbindung stehende Anwendung der Logarithmen « zeigen zu können . Er greift dazu
auf seine um 1600 berechneten 15stelligen trigonometrischen Tafeln zurück und
berechnet deren Logarithmen , für den Sinus auf 14 , für den Tangens auf 10 Stellen.
Dabei entscheidet er sich für eine dezimale Winkelunterteilung ! Als Schrittweite wählt
er tüo

°
- Auf Briggs ’ Bitten hin läßt Vlacq das Tafelwerk samt Konstruktionsan¬

leitung auf seine Kosten drucken ; währenddessen stirbt Briggs . Die noch fehlende
Anwendung auf die ebene und sphärische Trigonometrie verfaßt , von Briggs noch
gebeten und von Vlacq schließlich gedrängt , 1632 - das Vorwort trägt das Datum des
30 . Oktober - Briggs ’ Freund Henry Gellibrand (1597- 1637 ) , Professor für
Astronomie . Vlacq bringt beide Teile 1633 unter dem Titel Trigonometria Britannica
in Gouda heraus . Nun hat Vlacq selbst aber schon vor drei Jahren eine lOstellige
Logarithmentafel der trigonometrischen Funktionen mit einer Schrittweite von nur
10" berechnet , was bei der Interpolation eine gerade in der Astronomie benötigte
größere Genauigkeit liefert . Da Vlacq außerdem erwartet , daß die dezimale
Unterteilung des Grades auf Ablehnung stoßen wird , entschließt er sich, obwohl er
Briggs ’ Dezimalteilung begrüßt hat , seine eigenen Tafeln , zusammen mit Gelli -

brands kaum verändertem Text , noch im selben Jahr , also 1633 - die Widmung trägt
das Datum des 26 . April - unter dem Titel Trigonometria artificialis ebenfalls in Gouda
erscheinen zu lassen . Vielleicht hätte sich ohne Vlacqs Buch Briggs ’ dezimale
Winkelteilung durchgesetzt !
In den bisher aufgeführten Werken wird das Rechnen mit den Logarithmen an
Beispielen vorgeführt . Es ist das Verdienst von William Oughtred (1574 - 1660 ) , dem
Erfinder des Rechenstabs ( 1621) , in seinem 1647 erschienenen The Key of the
mathematicks , new forged andfiled die unseren Sätzen 160 . 1 bis 161 . 1 entsprechenden
Rechenregeln kurz und präzise formuliert zu haben . * Oughtred wird im übrigen für
den Verfasser des anonymen Appendix gehalten , der der 2 . Auflage von Wrights
Übersetzung der Descriptio 1618 angefügt wurde und in dem eine neue Methode zur
Berechnung der Logarithmen vorgeführt wird , die Briggs 1624 auch in seiner
Arithmetica logarithmica verwendet .
Erhebliche Fortschritte machte die Berechnung der Logarithmen , als man lernte ,
unendliche Reihen hierfür einzusetzen . Das können wir hier aber nicht mehr
darstellen .
Sicher ist dir aufgefallen , daß das Wort Basis in diesem historischen Überblick
überhaupt noch nicht gefallen ist . Es muß uns heute wirklich erstaunen , daß das bereits
von Michael Stifel (14877- 1567 ) in seiner Arithmetica Integra 1544 behandelte
Problem , zu vorgegebener Basis b und vorgegebenem Potenzwert a den Wert des
Exponenten x zu suchen , der die Gleichung bx = a löst (Aufgabe 67/8) , nicht zur
Einführung des Logarithmus als Lösung dieser Gleichung führte . Erst langsam
gewinnt eine solche Vorstellung an Boden . So schreibt zwar David Gregory
( 1661- 1710 ) schon 1684 in seiner Exercitatio geometrica de dimensione figurarum
»Exponentes sunt ut logarithmi « [Exponenten sind wie Logarithmen ] und 1742
William Gardiner (?- ?) in seinen Tables of Logarithms »The common Logarithm of
a number is the Index of that power of 10, which is equal to the number : That is , The
Logarithm of any number a = 10l + x

, or 10 |
- *

, is + x , or — x .« Es ist aber Leonhard
Euler (1707 - 1783 ) Vorbehalten , 1748 in seiner Introductio in Analysin Infinitorum -

»Einleitung in die Analysis des Unendlichen « - diese grundlegend neue Sicht des

* The Summe of two Logarithmes, is the Logarithme of the Product of their Valors : and their difference is the
Logarithme of the Quotient . The Logarithme of the Side , drawne into the Index or number of Dimensions of
any Potestas , is the Logarithme of the same Postestas. The Logarithme of any Potestas dividedby the number
of its Dimensions, sheweth the Logarithme of its Root .
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Logarithmusbegriffs begründet zu haben . In Nr . 101 betrachtet er in der Gleichung
y = a z die Werte a und z als gegeben , behandelt also das übliche Potenzieren . Dann
heißt es aber in Nr . 102 :

»Ebenso aber , wie bei gegebenem Werte von a zu jedem Wert von z der
entsprechende Wert von y gefunden werden kann , läßt sich auch umgekehrt zu
jedem gegebenen positiven Wert von y der Wert von z angeben , für welchen az = y
ist . Dieser Wert von z heißt , insofern er als Funktion von y betrachtet wird , der
Logarithmus von y . Es setzt daher die Lehre von den Logarithmen die Annahme
einer bestimmten konstanten Zahl a voraus , welche deshalb die Basis der
Logarithmen genannt wird .« *

Diese uns heute so einsichtige Definition des Logarithmus als Exponent setzte sich in
Deutschland erst gegen die Mitte des 19 . Jh .s durch , da man sie für Anfänger für viel zu
schwierig erachtete . In Frankreich hielten bedeutende Mathematiker noch zu Beginn
dieses Jahrhunderts an der Definition des Logarithmus durch die arithmetisch¬
geometrische Doppelfolge fest.
Heute ist durch die billig gewordenen Taschenrechner die Verwendung der Logarith¬
men beim praktischen Rechnen fast völlig verschwunden . Wir sollten aber nicht
übersehen , daß viele Berechnungen , die der Taschenrechner ausführt , nach einem
Programm auf logarithmischer Grundlage ablaufen . Wenn wir uns auch mit vollem
Recht die Vorteile der modernen Technik zunutze machen , um »die Rechenarbeit zu
verringern , die Kräfte des angespannten Verstandes zu schonen und Zeit zu
gewinnen« * *

, wie Kepler schon als einen der Zwecke der Tabulae Rudolphinae
erklärte , so sollten wir doch daran denken , daß es nicht nur »für einen Professor der
Mathematik schimpflich ist , sich über irgendeine Abkürzung des Rechnens kindisch zu
freuen« * * *

, wenn man deren Grundlage nicht verstanden hat .

* Quemadmodum autem dato numero a ex quovis valoris ipsius z reperiri potest valor ipsius y , ita vicissim
dato valore quocunque affirmativo ipsius y conveniens dabitur valor ipsius z, ut sit a * = y ; iste autem valor
ipsius z, quatenus tanquam functio ipsius y spectatur , vocari solet Logarithmus ipsius y . Supponit ergo
doctrina logarithmorum numerum certum constantem loco a substituendum , qui propterea vocatur basis
logarithmorum .

** minuere laborem computandi , parcere viribus intentae mentis , et redimere tempus
* ** »turpe esse Professori Mathematico , super compendio aliquo calculi pueriliter exultare «, lautet der von

Kepler im Vorwort seines Supplementum Chiliadis Logarithmorum (1625) wiedergegebene Vorwurf der
älteren deutschen Mathematiker , er habe sich für das logarithmische Rechnen ohne soliden Beweis
begeistert .
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