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7 Logarithmen

7 . 1 Der Logarithmus
Kann man , wenn in der Gleichung bä = a zwei der drei Zahlen gegeben sind ,die dritte stets berechnen ?
Falls b und q gegeben sind , ist a die Lösung der Gleichung x = b e

; man findet
sie durch Berechnung der Potenz be , also durch Potenzieren . Wenn q und
a gegeben sind , hat man zur Bestimmung von b die Gleichung x s = a zu lösen .Auch hier handelt es sich um einen schon bekannten Aufgabentyp (vgl .
Kapitel 3) . Falls q 4= 0 , erhält man x = äö .
Eine neue Situation ergibt sich aber , wenn die Basis b und der Potenzwert
a gegeben sind . Nun ist die Gleichung bx = a zu lösen . Da hier die Unbekannte
im Exponenten auftritt , spricht man von einer Exponentialgleichung . Wie
steht es um die Lösbarkeit einer solchen Gleichung ? Betrachten wir dazu
einige

Beispiele :
1 ) 5* = 125 2) (f )x = # 3) 6X = 1
4) D = 6 5) 2* = 0 6) 1 , 5* = - 2,25

Wie man leicht erkennt , haben die Beispiele 1 ) bis 3) die Lösungen x = 3 bzw .* = — f bzw . x = 0 . Die Gleichungen 4) , 5) und 6) sind unlösbar , da für jedesxe (R 1 * = 1 bzw . 2X > 0 bzw . 1 , 5* > 0 gilt .
Die Lösbarkeit der Exponentialgleichung bx = a steht offensichtlich in enger

,0 <b <1

Abb . 154 . 1 Zur Lösbarkeit der Exponentialgleichung bx = a für b > 1 bzw. 0 < b < 1
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Beziehung zu den Eigenschaften der Exponentialfunktion x i—> bx
, die im Fall

b > 0 bekanntlich in ganz [R definiert ist , nur positive Funktionswerte
annimmt und für b > 1 echt monoton zunimmt , für 0 < b < 1 echt monoton
abnimmt . Abbildung 154 . 1 läßt vermuten , daß sowohl für b > 1 als auch für
0 < b < 1 zu jeder positiven Zahl a genau eine Zahl x0 existiert , für die bx° = a
gilt.
Wegen der Monotonie der Exponentialfunktionen kann es jedenfalls nur
höchstens eine solche Zahl geben ; denn die Gerade y = a hat mit dem
Graphen y = bx höchstens einen Schnittpunkt S (x0 1a) . In den Beispielen 1)
bis 3) konnten wir x0 tatsächlich angeben . Ob eine solche Lösung immer
existiert , hängt mit der schon früher (Seite 125) erwähnten Frage zusam¬
men , ob im Fall b > 0 und b + 1 die Exponentialfunktion xv-+ bx wirklich
jede positive Zahl als Funktionswert annimmt . Wir betrachten dazu das

Beispiel : 3* = 7
Für eine eventuelle Lösung x0 findet man , da x i—►3X monoton zunimmt ,
folgende Abschätzungen :

1 < x0 < 2
1,7 < x0 < 1,8

1,77 < x0 < 1,78
1,771 < x0 < 1,772

1,7712 < x0 < 1,7713

denn 3 1 < 7 < 32

denn 3 1,7 < 7 < 3 1,8

denn 3 1 ’77 < 7 < 3 1’78

denn 3 1,771 < 7 < 3 1,772

denn 3 1 ' 7712 < 7 < 3 1 ’7713

Denkt man sich dieses Verfahren fortgesetzt , was prinzipiell möglich ist,
so erhält man eine Intervallschachtelung für x0 . Die so dargestellte Zahl
x0 ist der einzige Exponent , für den 3X° in jedem der Intervalle [3 1

; 3 2] ,
[3 1,7

; 3 1,8] , [3 1,77
; 3 1 ’78] , . . . liegt . Diese Intervalle sind so konstruiert ,

daß sie stets die Zahl 7 enthalten und , da sie offensichtlich wieder eine
Intervallschachtelung bilden , nur die Zahl 7 . Daher muß gel¬
ten : 3 Xo = 7 .

So wie in diesem Beispiel kann man bei jeder Gleichung bx = a mit a > 0 , b > 0
und b 4= 1 eine Intervallschachtelung für die Lösung konstruieren (vgl.
Aufgabe 158/3) . Es gilt daher

Satz 155 . 1 : Jede Gleichung bx = a mit a > 0 , h > 0 und b =j= 1 besitzt
genau eine Lösung .

Für die Lösung einer solchen Exponentialgleichung hat man eine besondere
Schreibweise eingeführt :

Definition 155 . 1 : Die Lösung der Gleichung bx = a mit a > 0 , b > 0 und
b 4= 1 bezeichnet man mit log 6 a , gelesen Logarithmus von a zur
Basis b .
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Eigentlich müßte man \ogh (a) schreiben . Wenn aber kein Mißverständnis zu
befürchten ist , kann man die Klammer weglassen .

Beispiele :
log5 125 = 3 , denn 5 3 = 125 (vgl . Beispiel 1))
log| (¥ ) = - f , denn (f )

"f = ^ (vgl . Beispiel 2))
log6 1 = 0 , denn 6° = 1 (vgl . Beispiel 3))

Nach Satz 155 . 1 und Definition 155 . 1 stellt x = logb a die Auflösung der
Gleichung bx = a nach x dar . Also sind beide Gleichungen äquivalent :

bx = a o x = log,, a

Die Bedeutung des neuen Terms logb a prägt man sich zweckmäßig in
folgender Form ein:

logb a ist diejenige Zahl , mit der man b potenzieren muß , um a zu
erhalten .
Das heißt : A logba = a

Die Bestimmung des Logarithmus einer Zahl bezüglich einer Basis b stellt eine
neue Rechenart dar , die man als Logarithmieren bezeichnet .

** Zur Geschichte
Das Fachwort Logarithmus geht auf John Napier * (1550 - 1617 ) zurück , der es in
seiner 1614 erschienenen Mirifici Logarithmorum canonis descriptio (siehe Abbildung153) ohne irgendeine Erklärung prägte . Es ist zusammengesetzt aus Xöyoq (lögos) =
Verhältnis und dpiüpöc; (arithmos ) = Zahl , Anzahl . * * Das Verbum logarithmieren

* gesprochen ’nsipia
** John Wallis greift 1685 in seinem A Treatise of Algebra , both Historical and Practical zur Erklärung des

Wortes Logarithmus auf den Begriff des Verhältnisses zurück , wie wir ihn auf Seite 62 bei Euklid und
Archimedes kennengelernt haben . (In der verbesserten lateinischen Ausgabe von 1693 zitiert Wallis
übrigens explizit Euklid , und zwar Elemente , Buch V, Def . 10 und Buch VI , Def . 5 .) Er betrachtet zunächst
wie Napier arithmetisch -geometrische Doppelfolgen (siehe 7.6) und geht dann zu der schon von Michael
Stifel her bekannten geometrischen Folge der Potenzen und der arithmetischen Folge ihrer Exponentenüber und schreibt :
»then doth this Exponent always give us the Number of Rations [ . . .] in the Term to which it belongs .

1 r . rr . r? rt r? r? etc .
0 . 1 . 2 . 3 . 4 . 5 . 6 . etc .

(as 3 in r3
, 6 in r6

, and so every where, ) or shews How many fold (quam multiplicata ) the Proportion (for
instance ) of r6 to 1, is of r to 1. That is, how many Rations or Proportions of r to 1, are compounded in r6 to
1, to wit 6 . To which the name Logarithmus fitly answers , that is, Abycov apiöjxög , the Number of Proportionsso compounded .«
»Dann gibt uns dieser Exponent immer die Anzahl der Verhältnisse [ . . .] in dem Term an , zu dem er gehört
[ . . .] . Anders ausgedrückt : Er zeigt an , wievielfach (z. B .) das Verhältnis r6 : 1 bezüglich r : 1 ist . Das heißt ,wie viele Verhältnisse r : 1 in r6 : 1 [multiplikativ ] zusammengesetzt sind , nämlich 6 . Genau dies drückt aber
der Name Logarithmus aus , d .h . A,öycov üpiOpcx; oder die Anzahl der so zusammengesetzten Verhältnisse .«
Beachte : Wallis benutzt stillschweigend r6 : 1 = (r : l ) 6. - Weitere Erklärungen des Wortes Logarithmussiehe Seite 202 f.



7 .1 Der Logarithmus 157

erscheint erst 1836 in Carl Koppes
( 1803- 1874 ) Anfangsgründe der reinen
Mathematik für den Schulunterricht
(§ 175) . Die Verwendung des Wortes Basis
stammt von Leonhard Euler (1707 bis
1783) , der 1748 in seiner Introductio in
Analysin infinitorum - »Einleitung in die
Analysis des Unendlichen « - die in der
Gleichung bx = a vorkommende kon¬
stante Zahl b als »Basis der Logarith -
men« bezeichnete . (Siehe auch Seite 205 .)
Napier hat » Logarithmus « noch aus -

geschrieben . Aber bereits 1624 verwendet ■»
Johannes Kepler ( 1571- 1630) in seinen
Chilias Logarithmorum ad totidem nume- V
ros ro tundos - »Tausend Logarithmen zu I SHE _
ebensoviel runden Zahlen « - die Ab - B BBB | |
kürzung »Log .« , woraus 1632 bei dem JRS
Jesuater Fra Bonaventura Cavalieri . j
( 15987- 1647 ) » log .« wird . August Leo-
pold Crelle (1780 - 1855 ) fordert 1821 ,
dem Logarithmussymbol auch die Basis
beizufügen , und schlägt vor , sie darüber

bzu setzen : logx . Bis zur Festsetzung der
Schreibweise log, , x durch den Deutschen
Normenausschuß im Februar 1968 ge¬
mäß DIN 1302 gab es noch die Schreib¬
weisen 6log x , 6logx und loghx , die du
noch in älteren Büchern findest .

Abb . 157 . 1 . John Napier , auch Neper ,
Fear * of Merchiston
( 1550 Merchiston Castle bei Edinburgh
bis 4 .4 . 1617 ebd .)

Aufgaben
1 . Bestimme die Lösung der Exponentialgleichung .

b) 0,5 * = 32 c) (| )* = f
e) 0,25 * = 512 f ) 0,125 * = 0,5

a) 2* = 128
d) 5* = 0,04

2. Die folgenden Gleichungen aus der Arithmetica Integra (1544) von
Michael Stifel ( 14877- 1567 ) haben rationale Lösungen . Schreibe sie als

Logarithmen und berechne sie .

Fear , engl , ßar , bezeichnet den Eigentümer eines ihm voll zustehenden Besitzes .
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3 . a) Bestimme die ersten vier Intervalle einer Intervallschachtelung für die
Lösung der Exponentialgleichung . Beginne dabei mit dem aus auf¬
einanderfolgenden ganzen Zahlen bestehenden Intervall und verwende
die Zehnteilungsmethode .
1 ) 2* = 5 2) 10* = 37 3) 1,5* = 1,1
4) 5* = 0,75 5) 0,4 * = 4 6) (f )* = 0,56

b) Berechne für den folgenden Logarithmus den auf drei geltende Ziffern
gerundeten Näherungswert mit Hilfe einer Intervallschachtelung der
in a) beschriebenen Art .
1) log 3 5 2) log 7 0,7 3) log 0 , 5 (f ) 4) log 15 |/2

Zu den Aufgaben 4 bis 13 : Berechne die Logarithmen .
4 . a) log 5 25

e) log 2 1024

5 . a) log 3 (i )
e) log 2 0,5

6 . a) logi 8

e) log 0j5128
16\7 . a) log| (if )

e) logiCäfe )
8 . a) log 4 8

e) logi 6 (| )

0 logloo 1000

9 . a) log 10 l/lO
5 f7

e) log2

i) logt 1/343

b) log 2 16
f ) log 7 343

b) log 10 (To)
f) log 2 0,125

b) logi81
f) log 0 2 125

b) logi (ff )
f ) log | (^ )

b) log 27 81

f ) logi 16
8

k) log 100 o

b) log 2 L2

f ) log 6

100

k ) log ^

c) log 10 10000
g) log 6 216

c) log^ Ciix)
g) log 5 0,04

c) log _i _121

g) log 0 , i 0,001

c) log | (ff )

g) log 0 , 6 (W )

125

g) log 128 1024

1) log 100 0,1
11

c) log 25

TTTT g) !ogi ;
1

]/225

d) logj o 10"

h) log 4 256

d) logjCsis )
h) log ! o 0,01

d) logi1296
h) log 0 >01 106

d) log | (if )
h) lo gl , 25 0,512

d) log 125 25

h) log 343 49

m) log0 Qi 0,00001
9 /c) logj l/25 d) log 3 l/8T

h) log 8
1

1) log 0 1 l/lÖ m) log 0 , 2

1/512

1

H \ 25

10 . a ) log ^ 3 b) l° gv7 (35) c) log 64

e) log y-jffÄ f) log n r 27 g) log Ls p0ß4

d) log ^ l25
Ls

h) log ^ f/0425
LI

11 . a) log 6 216 — logi 216 + 2 ■log 5 0,2 + log 0 2 (jy ) — log 0 a 1
b) log 8 0,125 + logg 0,008 + log 0 4 2,5 + log 0 0 i 1000 + logi nn 0,001
c) log 2 1/4 - log 3 ^ 27 - logg (Tft-) + log 0 , 6 VW + log ! , 5 :

100 '

1^
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12. a) logfl l b) loga a

e) log. (
l

) f ) log. (
i

zr 5/—-
i) loga Va k) loga l/ a2

c) loga a2

g) log
\ a

1)

d) loga an

h) loga Vä

m) loga (^ ) 5

13. a) logi « 2 b) l° ga2 ^ J

e) log ^ n " 0 logj ^ Va

14. Löse folgende Gleichungen :
a) log2 x = 3 b) log5 x = — 2

e) logx 121 = 2 f) logx (^ ) = -

i) log ^ 16 = 2 k) logx2 49 = |

c) loga3 lfa d) log ! YcP

h) log l^ ( ? )g) log | fl | a6

c) log9 x = 0,5 d) logo . s * = - 3
g) logx (i ) = - 6 h) log^ v7^ = I
1) logx + 4 64 = 2 m) log2x + 5 1 = 0

15. Bestimme den auf vier geltende Zilfern gerundeten Wert von x aus
a) log2 x = l,25 b) log7 x = 2,8118 c) log0 >8 x = — 14,2
d) log 10 x = — 0,35223 e) log100 x = l,5 f) log0 5 x = 3,023 .

16. Nenne alle höchstens dreistelligen natürlichen Zahlen, die bezüglich der
Basis a einen ganzzahligen Logarithmus haben , für
a) a = 10 b) a = 2 c) a = ^ d) a = 0,1 .

• 17. Welche Quadratwurzeln aus natürlichen Zahlen haben bezüglich der Basis
10 einen rationalen Logarithmus , der nicht größer als 3 ist?

• 18 . Beweise, daß die folgenden Logarithmen irrationale Zahlen sind .
a) log 10 2 b) log10 5 c) log10 6 d) log2 3 e) log s 9
f) logq p , falls p und q verschiedene Primzahlen sind .
(.Anleitung: Gehe von der gegenteiligen Annahme aus und leite daraus
einen Widerspruch zur Eindeutigkeit der Primfaktorenzerlegung natürli¬
cher Zahlen ab .)

19. Gib zur Gleichung logx y = x alle ganzzahligen Lösungspaare (x | y) an ,
für welche y kleiner als 106 ist .

20 . Warum kann man die Zahl 1 nicht als Basis von Logarithmen verwenden?

21 . Weshalb haben sowohl die Addition als auch die Multiplikation nur eine
Umkehrung , während das Potenzieren zwei verschiedene Umkehrungen
besitzt ?

O
U)
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