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7 Logarithmen

7.1 Der Logarithmus

Kann man, wenn in der Gleichung 52 = a zwei der drei Zahlen gegeben sind,
die dritte stets berechnen?

Falls b und ¢ gegeben sind, ist a die Lésung der Gleichung x = 4% man findet
sie durch Berechnung der Potenz 4, also durch Potenzieren. Wenn o und
a gegeben sind, hat man zur Bestimmung von b die Gleich ung x? = a zu losen.
Auch hier handelt es sich um einen schon bekannten Aufgabentyp (vgl.
Kapitel 3). Falls g % 0, erhilt man x = c;rilﬂ.

Eine neue Situation ergibt sich aber, wenn die Basis » und der Potenzwert
a gegeben sind. Nunist die Gleichung b* = g zu 16sen. Da hier die Unbekannte
im Exponenten auftritt, spricht man von einer Exponentialgleichung. Wie
steht es um die Losbarkeit einer solchen Gleichung? Betrachten wir dazu
einige

Beispiele:
1) SF =125 2) (3)* =241 Jier =1
4) 1= =i6 85).9% =10 1,5 = —225

Wie man leicht erkennt, haben die Beispiele 1) bis 3) die Lésungen x = 3 bzw.
x = —3bzw. x = 0. Die Gleichungen 4), 5) und 6) sind unlésbar, da flir jedes
xeR 1* =1 bzw. 2*> 0 bzw. 1,5*> 0 gilt.

Die Losbarkeit der Exponentialgleich ung b* = g steht offensichtlich in enger

b>1

" y=b) \y:bx Y4

n = . +— e —
1 1 Xo %

Abb.154.1 Zur Losbarkeit der Exponentialgleichung b* = afiirb > 1bzw. 0 < b < 1
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Beziehung zu den Eigenschaften der Exponentialfunktion x— 5%, die im Fall
h> (0 bekanntlich in ganz R definiert ist, nur positive Funktionswerte
annimmt und fiir » > 1 echt monoton zunimmt, fiir 0 <5 <1 echt monoton
abnimmt. Abbildung 154.1 liBt vermuten, dall sowohl fiir » > 1 als auch fiur
0 < b < 1 zu jeder positiven Zahl a genau eine Zahl x,, existiert, fiir die b = a
gilt.

Wegen der Monotonie der Exponentialfunktionen kann es jedenfalls nur
héchstens eine solche Zahl geben; denn die Gerade y = a hat mit dem
Graphen y = b* hochstens einen Schnittpunkt S(x,|a). In den Beispiclen 1)
bis 3) konnten wir x, tatséichlich angeben. Ob eine solche Losung immer
existiert, hingt mit der schon frither (Seite 125) erwdhnten Frage zusam-
men. ob im Fall >0 und b =1 die Exponentialfunktion x+— b* wirklich
jede positive Zahl als Funktionswert annimmt. Wir betrachten dazu das

Beispiel: 3* =7
Fiir eine eventuelle Losung x, findet man, da x+— 3* monoton zunimmt,
folgende Abschatzungen:

<<t denn 3= s 32
Ll <x,<1b denn 3T < 7< 318
17T <x,< 1,78 denn’ 317 <q <3010

1,771 = 3|_'."72

1,770 =< %= 4,712 Ldenn =3
1.7712'< x5 < 1,703 dedn 31

Denkt man sich dieses Verfahren fortgesetzt, was prinzipiell méglich ist,
so erhélt man eine Intervallschachtelung fiir x,. Die so dargestellte Zahl
x, ist der einzige Exponent, fir den 3% in jedem der Intervalle [3'; 3%],
[31.7:31.8], [31:77;3178], ... liegt. Diese Intervalle sind so konstruiert,
daB sie stets die Zahl 7 enthalten und, da sie offensichtlich wieder eine
Intervallschachtelung bilden, nur die Zahl 7. Daher mul} gel-
ten: 3= 1.

So wie in diesem Beispiel kann man bei jeder Gleichung 6* = amita > 0, b>0
und b =1 eine Intervallschachtelung fiir die Losung konstruieren (vgl.
Aufgabe 158/3). Es gilt daher

Satz 155.1: Jede Gleichung »* = a mit a>0, b>0 und b + 1 besitzt
genau eine Losung.

Fiir die Losung einer solchen Exponentialgleichung hat man eine besondere
Schreibweise eingeflihrt:

Definition 155.1: Die Losung der Gleichung * = g mita > 0, 5 > 0 und
b + 1 bezeichnet man mit log, a, gelesen Logarithmus von @ zur
Basis b.
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Eigentlich mii3te man log, (@) schreiben. Wenn aber kein MiBverstindnis zu
befiirchten ist, kann man die Klammer weglassen.

Beispiele:
log=125 =3, denn 5% =125 (vgl. Beispiel 1))
Iog%(z}f-) = —2 denn (%) P i (vgl. Beispiel 2))
log. 1 =0, denn 6° = 1 (vgl. Beispiel 3))

Nach Satz 155.1 und Definition 155.1 stellt x = log, a die Auflsung der
Gleichung b* = a nach x dar. Also sind beide Gleichungen dquivalent:

Die Bedeutung des neuen Terms log,a prigt man sich zweckmaBig in
folgender Form ein:

log, a ist diejenige Zahl, mit der man b potenzieren muB, um a zu
erhalten.

Das heil3t: hEt = g

Die Bestimmung des Logarithmus einer Zahl beziiglich einer Basis 4 stellt eine
neue Rechenart dar, die man als Logarithmieren bezeichnet.

**7Zur Geschichte

Das Fachwort Logarithmus geht auf John NaPER* (1550-1617) zuriick, der es in
seiner 1614 erschienenen Mirifici Logarithmorum canonis descriptio (siche Abbildung
153) ohne irgendeine Erkldrung prigte. Es ist zusammengesetzt aus Adyog (16gos) =
Verhdltnis und dpiSpog (arithmos) = Zahl; Anzahl.** Das Verbum logarithmieren

* gesprochen 'neipia

** John WALLIS greift 1685 in seinem A Treatise of Algebra, both Historical and Practical zur Erkli rung des
Wortes Logarithmus auf den Begriff des Verhiltnisses zuriick, wie wir ihn auf Seite 62 bei EUKLID und
ARCHIMEDES kennengelernt haben. (In der verbesserten lateinischen Ausgabe von 1693 zitiert WALLIS
ibrigens explizit EUKLID, und zwar Elemente, Buch V, Def. 10 und Buch VI, Def. 5.) Er betrachtet zunichst
wie NAPIER arithmetisch-geometrische Doppelfolgen (siche 7.6) und geht dann zu der schon von Michael
SmiFeL her bekannten geometrischen Folge der Potenzen und der arithmetischen Folge ihrer Exponenten
iiber und schreibt:
»then doth this Exponent always give us the Number of Rations [...] in the Term to which it belongs

B e e e T L
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(as3in r*, 6in r® and so every where,) or shews How many fold {quam multiplicara) the Proportion (for
instance) of r® to 1, is of r to 1. That is, how many Rations or Proportions of r to 1, are compounded in r® to
1, to wit 6. To which the name Logarithmus fitly answers, that is, Adyev apripde, the Number of Proportions
50 compounded.«
»Dann gibt uns dieser Exponent immer die Anzahl der Verhiltnisse [...] in dem Term an, zu dem er gehort
[...]. Anders ausgedruckt: Er zeigt an, wievielfach (z.B.) das Verhiltnis r° - 1 beziiglich r: 1 ist. Das heilBt.
wie viele Verhéltnisse r: 1in ®: 1 [multiplikativ] zusammengesetzt sind, namlich 6. Genau dies driickt aber
der Name Logarithmus aus, d.h. Aoyov apidpoc oder die Anzahl der so zusammengesetzien Verhdlinisse.«
Beachte: WALLIS benutzt stillschweigend r®:1 = (r:1)5. — Weitere Erklirungen des Wortes Logarithmus
siche Seite 202f,
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erscheint erst 1836 in Carl KoOPPEs
(1803—-1874) Anfangsgriinde der reinen
Mathematik fiir den Schulunterricht
(§173). Die Verwendung des Wortes Basis
stammt von Leonhard EuLER (1707 bis
1783), der 1748 in seiner [ntroductio in
Analysin infinitorum — »Einleitung in die
Analysis des Unendlichen« — die in der
Gleichung b* = a vorkommende kon-
stante Zahl b als »Basis der Logarith-
men« bezeichnete. (Siehe auch Seite 205.)
NapiER hat »Logarithmus« noch aus-
geschrieben. Aber bereits 1624 verwendet
Johannes KEPLER (1571-1630) in seinen
Chilias Logarithmorum ad totidem nume-
ros rotundos — »Tausend Logarithmen zu
ebensoviel runden Zahlen« — die Ab-
kiirzung »Log.«, woraus 1632 bei dem
Jesuater Fra Bonaventura CAVALIERI
(15987-1647) »log.« wird. August Leo-
pold CreLLE (1780-1855) fordert 1821,
dem Logarithmussymbol auch die Basis
beizufiigen, und schligt vor, sie dartiber
zu setzen: ]L#g_ x. Bis zur Festsetzung der
Schreibweise log, x durch den Deutschen
Normenausschull im Februar 1968 ge-
milB DIN 1302 gab es noch die Schreib-
weisen "logx, Jogx und log’x, die du
noch in dlteren Biichern findest.

Aufgaben

1616

horo—mopa-
e fRes

Abb.157.1. John NAPIER, auch NEPER,
Fear* of Merchiston

(1550 Merchiston Castle bei Edinburgh
bis 4.4.1617 ebd.)

1. Bestimme die Losung der Exponentialgleichung.

a) 2% =128
d) 5 =004

b) 0,5% = 32
e) 0,25% = 512

OL@F=1
f) 0,125*=0,5

2. Die folgenden Gleichungen aus der Arithmetica integra (1544) von
Michael STIFEL (14872—1567) haben rationale Losungen. Schreibe sie als

Logarithmen und berechne sie.

a)(

b2 | 2

64 8

* Fear, engl. fiar, bezeichnet den Eigentiimer eines ihm voll zustehenden Besitzes.

x 729 2
- B

2187
128
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3. a) Bestimme die ersten vier Intervalle einer Intervallschachtelung fiir die
Losung der Exponentialgleichung. Beginne dabei mit dem aus auf-

einanderfolgenden ganzen Zahlen bestehenden Intervall und verwende
& die Zehnteilungsmethode.
5 1) 25 =5 2) 10* = 37 3) 1,55 =1,1
3 4) 5* =0,75 5 0,4*=4 6) (3)*=0,56
3 b) Berechne fiir den folgenden Logarithmus den auf drei geltende Ziffern
E gerundeten Ndherungswert mit Hilfe einer Intervallschachtelung der
= in a) beschriebenen Art.
1) log,5 2) log,0,7 3) logy s(3) 4) log,s)/2
' Zu den Aufgaben 4 bis 13: Berechne die Logarithmen.
4. a) log, 25 b) log,16 ¢) log,,10000 d) log,,10"
3 e) log,1024 f) log,343 g) log.216 h) log,256
E 5. a) |0§3(%J b) ]0g|0(1]0) c) i(}gn lnlzt} d) log. f:u)
3 e) log, 0,5 f) log,0,125 g) logs 0,04 h) log,,0,01
6. a) log 8 b) log, 81 ¢) logy 121 d) logy 1296
: e) log, 128 f) lr:mﬂ 2125 g) log, 0,001 h) log, ,,10°
7. a) logs (39) b) logs (£3) ¢) logs (33) d) logs (39)
_: e) logz (353 f) logz;,(ﬁﬁ'f,} g) log, - (%) h) Iog,_z_q(].fi'l?,
- 8. a) log, 8 b) log, 81 c¢) log,. 125 d) log,,.25
e) log,. (%) f) Iog_é_m g) log,, 1024 h) log,,.,49
i) 108001000 k) log; ;50100 1) log,,, 0,1 m) log, ,, 0,00001
— 3 — 11— 9 —
9. a) log;, V10  b) log, /2 ¢) logs /25 d) log, /81
_ E S L I
.; O log,[lz D log]l-— g 1og]5(-f-:. ) w log,
@ pale /225 \J/312
j i) logi)/343 k) lo 1 D 1 TE )1 ( 1 )
1V 342 o4 E (o 0gq 1 V¥ m) 10g, 5| 3
: = I 924 i \J/3125
10. a) log -3 b) logi . (3¢) ¢) log;- 64 d) log 4 125
v Vs
1 5 i 3, [ -
e) log,- V64  f) logi. V75 g) log,-1/0,04 h) log , 10,125

V2
log, 216 — Iog1 216+ 2-log; 0,2 + log, 5 (55) — log, ;1
logg 0,125 + 10U 0,008 + log, , 2,5+ logU 01 1000 + log, 5, 0,001

5

A —
log, V4 —log, /27 — Ioch;(,—) 108 6 145> S 4 log, <5i:




13.

16.

19.

20.
21
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2. a) log,1 b) log,a ¢) log,a” d) log, a"

1\_ s 1 5 | i\ 2
C) IOgu(_) f} logu(__‘l) g} 10.%"(_) h} ]OEH '.“
a a a’ 7

: 3 — 5 — /1 ' 4—i
i) log,Va k) log,V a* ) log, l . m) ](}gﬂ(l-"c:")'
[ a
- il a4 =
a) log,a b) ]ogﬂ;( : ¢) log.:la d) log, I'a*
a a- al
3, 1
e) log,-a" f) log, Va g) log, a° h) log, | —
Va “\a
14. Lose folgende Gleichungen:
a) log,x=3 b) logsx=-2 ¢) loggx =0,5 d) logysx=—3
¢) log,121=2 1) log,(f)=—2 g log.=—6 h) log, V0.5 =3
i) log, 16 =2 k) log..49 = A ) log,,,64=2 m)log,, s1=(

. Bestimme den auf vier geltende Ziffern gerundeten Wert von x aus

a) log,x =125 b) log,x = 2,8118 ¢) logygx=—14,2
d) log,ox = —0,35223 e) log;oox=1.5 f) log,sx = 3,023.

Nenne alle hochstens dreistelligen natiirlichen Zahlen, die beziiglich der
Basis a einen ganzzahligen Logarithmus haben, fur
a) a=10 b oa—"7 ¢) @a=3 a3y =01,

. Welche Quadratwurzeln aus natiirlichen Zahlen haben beziiglich der Basis

10 einen rationalen Logarithmus, der nicht groBer als 3 ist?

. Beweise, daB die folgenden Logarithmen irrationale Zahlen sind.

a) log,,2 b) log,, 5 ¢) log,,6 d) log,3 e) log,9
f) log,p, falls p und ¢ verschiedene Primzahlen sind.

(Anleitung: Gehe von der gegenteiligen Annahme aus und leite daraus
einen Widerspruch zur Eindeutigkeit der Primfaktorenzerlegung natirli-
cher Zahlen ab.)

Gib zur Gleichung log, y = x alle ganzzahligen Losungspaare (x|y) an,
fiir welche y kleiner als 10° ist.

Warum kann man die Zahl 1 nicht als Basis von Logarithmen verwenden?

Weshalb haben sowohl die Addition als auch die Multiplikation nur eine
Umkehrung, wihrend das Potenzieren zwei verschiedene Umkehrungen
besitzt?
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