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184 7 Logarithmen

7.5 Exponentialgleichungen und Logarithmusgleichungen

7 .5 . 1 Exponentialgleichungen

Bestimmungsgleichungen , bei denen die Unbekannte nur in den Exponenten
von Potenzen vorkommt , nennt man Exponentialgleichungen . Bei einfachen
Gleichungen dieser Art kann man die Lösungen exakt bestimmen . Grundlage
dafür ist

Satz 184 . 1 : Die Gleichung bx = a mit a > 0 , b > 0 und b =|= 1 hat genau
eine Lösung , nämlich x = logb a.

Daß logb a eine Lösung der Gleichung bx = a ist , beruht auf der Definition des
Logarithmus (Definition 155 . 1 ) , daß es die einzige Lösung ist , wurde schon in
Satz 155 . 1 festgestellt .

Beispiel 1 :
5X = 12 hat die Lösung x — log 5 12 .
Den Übergang von der ersten zur zweiten Gleichung deuten wir so , daß
von beiden Seiten der Gleichung der Logarithmus zur Basis 5 gebildet
wird . Man nennt diesen Schritt Logarithmieren der Gleichung . Wir
schreiben dafür

5 * = 12 | | log5
x = log 5 12

Beim praktischen Rechnen , z . B . mit dem Taschenrechner , bevorzugt
man den dekadischen Logarithmus . Man erhält dann folgenden
Lösungsweg :

II lg
II : lg 5

5X = 12
x - lg5 = lg 12

lg ! 2
lg 5

Daß die so gefundene Lösung mit log 5 12 übereinstimmt , folgt aus
Satz 164 . 1 .

x = 1,544

Beispiel 2:
Bei der Gleichung 16* = 128 kann man beide Seiten als Potenzen mit
gleicher Basis darstellen . Das Logarithmieren der Gleichung läuft dann
einfach auf das Gleichsetzen der Exponenten hinaus :

16* = 128
24x = 27

| | log2
4x = 7
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Beispiel 3:
\ ,5 lx + l = 1 ~ x

Hier steht auf beiden Seiten eine Potenz , deren Exponent die Unbekannte
enthält . Durch Logarithmieren erhält man eine lineare Gleichung für x .

1,52* + 1 = l ~ x
| | lg

(2x + 1 ) • lg 1,5 = - x - lg7
x (2 • lgl,5 + lg7) = — lg 1,5

— lgl,5*
2 • lg 1,5 + lg 7 0,1471

Beispiel 4 :
5 - 3 2x = 3 X+ 3 — 34
Da rechts eine Differenz steht , führt Logarithmieren nicht weiter . Man
kann aber jedes der beiden Glieder , welche die Unbekannte enthalten ,
durch die Potenz 3 X ausdrücken .

5 • 3 2* = 3* + 3 — 34
5 - (3X)2 = 3 3 • 3* - 34

Mit der Substitution z = 3 * erhält man eine quadratische Gleichung für z .

5z 2 - 27z + 34 = 0

Sie hat die Lösungen zx = 2 und z2 = 3,4. Beide Lösungen sind positiv
und kommen somit als Werte der Potenz 3 X in Betracht . Damit gilt

3 * = 2
lg 2

V 3 * = 3,4
lg 3,4

*
lg 3

V x .
lg 3 ’

x x se 0,6309 und x2 « 1,114 , jeweils auf vier geltende Ziffern ge¬
rundet .

Aufgaben
Bestimme die Lösungsmenge . Gib für irrationale Lösungen auch den auf vier
geltende Ziffern gerundeten Näherungswert an .

1 . a) T = 343 b) 3* = 11 c) Gr = io d) 1,2* — 0,6 = 0

2 . a) 4* - s = 6 b) 8 2* “ 3 = 32 c) d) 0,4 3 ~ * = 0,5

3 . a) 2* = 8* “ 2 b) 3,l 2x = 2 • 31 * c) )—*O 1k = 22* + 1

4. a) 3 X • 5x _ l = 1 b) 42* - 3 . 32 l - = 8

c)
25jc

JX + 2
= 10 d) (lri ) ' + 3 =

3 • 134 _*

(l/sT
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5 . a) 4 - 2^ = 0,5 - "

6 . a) 7 2* + 1 — 40 • 7* = 63

7 . a) 25* = 15 - 5* - 50
8 . a) 4X+ 2 — 5 • 2* + 3 — 24 = 0

b) 5*2 + 3 = 25 • 0,2* _ 1

b) 9 • (f )2* + 1 + 54 • ( 3 )* - 1 — 42 = 0

b) 3* + 9* = l/3 (l/3 + 1 )
b) (i )* 1 • (8 * + 1 — 4 5) = 16 (4* — 8 )

2 \ 2x + l

9 . Im Jahre 1990 lebten auf der Erde 5,3 Milliarden Menschen . Die jährliche
Wachstumsrate betrug etwa 1,5 % .
a) In welchem Jahr würde bei gleichbleibender Wachstumsrate die

Weltbevölkerung
1 ) auf 6,0 Milliarden anwachsen
2) doppelt so groß wie 1990 werden ?

b) In welcher Zeit nimmt bei der Wachstumsrate1,5 % die Bevölkerungs¬
zahl von 1990
1 ) um 1 Million zu (Einwohnerzahl einer Großstadt )
2) um 77 Millionen zu (Bevölkerungszahl Deutschlands )?

7 .5 .2 Logarithmusgleichungen
Eine Bestimmungsgleichung , bei der die Unbekannte nur im Argument von
Logarithmen auftritt , bezeichnet man als Logarithmusgleichung . Auch solche
Gleichungen lassen sich in einfachen Fällen exakt lösen . Grundlage dafür ist

Satz 186 . 1 : Die Gleichung logb x = q mit b > 0 , 6 + 1 und £>e [R hat
genau eine Lösung , nämlich x = ba .

Dies folgt aus der echten Monotonie der Funktion xi—> log6 x und der
Tatsache , daß diese Funktion die Wertemenge fR hat .

Beispiel 1 :
log4 x = 5 hat die Lösung x = 4 5 .
Den Übergang zur zweiten Gleichung kann man so deuten , daß man jede
Seite der Ausgangsgleichung zum Exponenten einer Potenz mit der Basis
4 , also der Basis des Logarithmus , macht . Wir schreiben
log4 x = 5 | | 4 " '

X __ 45

x = 1024
Diese Umformung , bei der der Logarithmus »beseitigt wird« , bezeichnet
man als Delogarithmieren der Gleichung .
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Beispiel 2:
lg (2x + 3) + lg ( l - x) - lg ( l - 4x ) = 0
Hier muß man zuerst die linke Seite zu einem einzigen Logarithmusterm
zusammenfassen :

lg
(2x + 3) (1 — x)

1 - 4x
= 0 II10

” ’

(2x + 3) (1 - x)
1 - 4x | | • (1 — 4x )

2x 2 — 3x — 2 = 0
x ± = 2 ; x2 = — 0,5
Da die Zusammenfassung von Logarithmen keine Äquivalenzumfor¬
mung zu sein braucht , wenn man jeweils die maximale Definitionsmenge
zugrundelegt , muß man die Probe machen . Sie zeigt , daß nur x 2 eine
Lösung der Ausgangsgleichung ist .

Beispiel 3:
log 9 0 2 + 1 ) = log 3 (2x — 1 )
Hier muß man zuerst Logarithmen mit gleicher Basis hersteilen :

log 3 (x 2 + 1)
log 3 9

= log 3 (2x - 1 )

log 3 (x 2 + 1 ) = 2 • log 3 (2x — 1 )
X " + 1 = (2x - l )2

3x 2 — 4x = 0

II 3
"

x 1 = 0 ; x2 = f
Die Probe zeigt , daß nur x 2 eine Lösung der Ausgangsgleichung ist .

Aufgaben
Bestimme die Lösungsmenge . Gib für irrationale Lösungen auch den auf vier

geltende Ziffern gerundeten Näherungswert an .

1 . a) log 3 x = l,5 b) logix = 8 c) lgx = 0,l

2 . Alle Gleichungen sollen auf der jeweils maximalen Definitionsmenge
betrachtet werden .
a) Zeige an Hand der Lösungsmengen , daß die Gleichungen

lg [ (x + 4) (x + 1 )] = 1 und lg (x + 4) + lg (x + 1 ) = 1

nicht äquivalent sind .
b) Sind die Gleichungen log 3 (x — 8 ) — log 3 (1 — 2x ) + 1 = 0 und

X _ g
log 3

-— — + 1 = 0 äquivalent ?
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c) Begründe, daß für die Lösungsmengen L x und L2 der Gleichungen
(1 ) logb \_(rx + s) (ux + r)] = c und
(2) logb (rx + s) + logb (ux + v) = c
gilt: L2 ist (echte oder unechte ) Teilmenge von L x .

3 . a) lg (7x + 2) = 1 + lg (x — 4)
b) ld (x 2 - 1 ) - ld (4x - 1 ) + ld 3 = 0

4 . a) log6 (5x — 4) — log6 (3 + x) + log6 (2x + 1 ) = 1
b) lg 2 + lg(x + 2) + lg (3x + 5) = lg (5x 2 - 1 )
c) lg2 + lg [(x + 2) (3x + 5)] = lg (5x 2 — 1 )

5 . a) log 5 (3x + 4) — log25 (4x — 3) = 1
b) lg (x 2 + 4) - log^ (3x + 2) = 0

6 . a) log5 (x 2 — 5x + 1 ) = 1 + log 5 (3x — 10)
b) lg (2x 2 + x - 5) + log0 >1 (x 2 + 1 ) = lg 2

7 .5 .3 Graphische und numerische Lösungsverfahren

Die in den bisherigen Beispielen betrachteten Exponential - und Logarith¬
musgleichungen ließen sich durch Logarithmieren bzw . Delogarithmieren
oder mit Hilfe einer Substitution auf einfachere Gleichungstypen zurückfüh¬
ren , für die uns exakte Lösungsverfahren bekannt sind . Es gibt aber auch
Gleichungen , bei denen eine solche Vereinfachung nicht möglich ist . Dann
muß man sich damit begnügen , für die Lösungen hinreichend gute Nähe¬
rungswerte zu bestimmen . Das kann durch graphische Lösungsmethoden ,durch lineare Interpolation oder durch ein geeignetes Iterationsverfahren
geschehen , wie die folgenden Beispiele zeigen.

Beispiel 1 :
1 + 2* - 3 ~ * = 0
a) Graphische Lösung : Man bringt die Gleichung z . B . auf die Form
1 + 2X = 3 _ x und sucht die x-Werte , für welche die Funktionen x i- > 1 + 2X
und xi —>- 3 _ x

, xelR , gleichen Funktionswert haben . Zeichnet man die
Graphen y = 1 + 2* und y = 3 ~ x

, so ergeben sich diese x-Werte als die
Abszissen der gemeinsamen Punkte beider Kurven . Abbildung 189 . 1 zeigt,daß in diesem Fall genau ein solcher Punkt existiert ; für seine Abszisse liest
man x « — 0,5 ab .
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■
y = 1 + 2*

-1

Abb . 189 . 1 Graphische Lösung der Gleichung 1 + 2* — 3 x = 0

b) Lineare Interpolation : Man berechnet für die Funktion f : x \—> 1 + 2* — 3 ~ x
eine Wertetabelle , etwa

X - 2 - 1 0 1 2

y - 7,75 - 1,5 1 2i 4§

Offensichtlich liegt zwischen — 1 und 0 eine Nullstelle der Funktion , also eine
Lösung der gegebenen Gleichung . Wir ersetzen den Graphen zwischen den
Punkten ( — 11 — 1,5) und (011 ) durch die Strecke und berechnen deren
Schnittpunkt mit der x -Achse .

Hat man allgemein zwei Punkte P (x L \ y\ < 0) und Q (x 2 1y2 > 0) und ist S (x 10j
der Schnittpunkt der Geraden PQ mit der x -Achse , so kann man die Steigung
dieser Geraden sowohl aus dem Steigungsdreieck A STQ als auch aus A PRQ
bestimmen (Abbildung 189 .2) und erhält die Gleichung

y2 ~ o = y2 - yi
x 2 - x x 2 - x 1 Q(x2 Iy 2 )

Deren Auflösung nach x ergibt

In unserem Beispiel erhält man so
für die Lösung der Gleichung den
Näherungswert

x = 0
1 + 1,5

p(x,lyi )

S( x | 0X

R

Abb . 189 .2 Zur linearen Interpolation
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Die Probe zeigt , daß / ( — 0,4) » 0,206 gilt ; also liegt , da die Funktion in
diesem Bereich zunimmt , — 0,4 rechts von der Nullstelle . / ( — 0,5) » — 0,025
zeigt weiter , daß die Nullstelle zwischen — 0,5 und — 0,4 liegt . Führt man mit
den Punkten P ' ( — 0,5 (0,025) und Q ' ( — 0,410,206) noch einmal die lineare

0,206
Interpolation durch , so erhält man x = — 0,4 — ———-— —— • 0,1 » — 0,49
als genaueren Wert für die gesuchte Lösung .

u^ d6 + 0,025

c) Iterationsverfahren : Um aus 1 + 2* — 3 x = 0 eine Gleichung der Form
x = g (x) zu gewinnen , kann man z . B . so Vorgehen:
1 + 2* - 3 ~ * = 0
1 + 2* = 3 “ *

lg (1 + 2*) = — xlg3
lg ( l + 2*)

lg
: ( lg 3 )

x = ■
lg 3

Mit der Iterationsformel x„ , , = —lg (l + 2*")
lg 3

und x0 = — 0,5 erhält man :

x t = — 0,486 . . .
x2 = - 0,490 . . .

x 3 = - 0,4893 . . .
x4 = - 0,48958 . . . 7+ =

- 0,48952 . . .
- 0,489539 . . .

Daraus kann man bereits einen sehr genauen Näherungswert für die gesuchte
Lösung entnehmen : x » — 0,4895 . Die Zahlen x„ lassen sich sehr einfach mit
dem Taschenrechner berechnen ; Abbildung 190 . 1 zeigt eine dafür geeignete
Tastenfolge . Natürlich läßt sich ein Iterationsverfahren besonders gut mit
einem programmierbaren Rechner durchführen .

x0 M 2 MR + 1 = lg 3 lg = + / -

t
Abb . 190 . 1 Zum Lösen der Gleichung 1 + 2* — 3 * = 0 mit dem Taschenrechner

Beispiel 2:
3* - 4x 2 = 0
Hier tritt die Unbekannte sowohl als Exponent als auch als Basis einer Potenz
auf . In solchen Fällen ist es im allgemeinen unmöglich , exakte Lösungen
anzugeben . Wohl aber lassen sich auch hier die in Beispiel 1 benützten
Näherungsverfahren anwenden . Man beginnt am besten mit einer Werte¬
tabelle der Funktion x i- » 3 * — 4x 2

, xelR .
X - 2 - 1 0 2 3 4 5

y — 15f — 3f 1 - - 7 - 9 17 25
Man erkennt - auch ohne graphische Darstellung daß der Graph die
x-Achse mindestens dreimal schneidet , die Gleichung also mindestens drei
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Lösungen hat . Sie liegen in den Intervallen ] — 1 ; 0 [ , ] 0 ; 1 [ und ] 3 ; 4 [ und
seien mit £, 1 , £ 2 , C 3 bezeichnet . Graphisch oder durch lineare Interpolation
könnte man für diese Lösungen grobe Näherungswerte bestimmen . Um
genauere Ergebnisse zu erhalten , suchen wir nach einem geeigneten Iterations¬
verfahren .

1 . Versuch:

3 * — 4x 2 = 0 <=> x = — (x = 0 ist keine Lösung !)4x
3*"

Damit erhält man die Iterationsformel x„ + 1 = -— .4x„
Mit x0 = — 0,5 , der Mitte des 1 . Intervalls , erhält man nach ( IJ

fli )

= — 0,288 . . .
x2 — — 0,630 . . .

x 3 = — 0,198 . .
x4 = — 1,01 . . .

Die Werte »laufen auseinander « ; (I , ) ist für die Berechnung von ungeeignet .
Mit x0 — 0,5 , der Mitte des 2 . Intervalls , erhält man aus (I x)

Xj = 0,866 . . .
x2 = 0,747 . . .
x 3 = 0,760 . . .
x4 = 0,758 . . .

x 5 = 0,75844 . . .
x6 = 0,75837 . . .
x 7 = 0,758389 . . .
Xo = 0,758387 . . .

0,7584.Für die in ] 0 ; 1 [ liegende Lösung £ 2 gilt also <J 2 = 0,75838 . . .
Mit x0 = 3,5 , der Mitte des 3 . Intervalls , erhält man aus (1 ^
Xj = 3,340 . . .
x2 = 2,937 . . .
x 3 = 2,144 . . .
und erkennt , daß (I t ) zur Berechnung von C 3 unbrauchbar ist .

Zur Bestimmung von ^ und c 3 benötigt man also andere Iterationsformeln .

2 . Versuch:

3 X — 4x 2 = 0 <s> x2 = “ <> x = 41/3 * v x = — 4l/3 * .

Das ergibt für x > 0 die Iteration * » + 1 = 2 l/3 *"

und für x < 0 die Iteration
Mit Xq — — 0,5 erhält man aus
x x = — 0,379 . . .
x2 = — 0,405 . . .

( I3 )

x6 = - 0,40113 . . .
x 7 = - 0,40112 . . .

(1 2)

(1 3)

Damit hat man bereits ^ « — 0,4011 gefunden .
Dagegen erweist sich (I 2) zur Berechnung von C 3 wieder als ungeeignet !
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3 . Versuch:
3 * - 4x 2 = 0
3 * = 4x 2

xlg3 = lg (4x 2)
lg (Ax 2)

X
lg 3

II lg
II ; lg3

Die entsprechende Iterationsformel lautet xn Vl = CU)
Mit x 0 = 3,5 erhält man daraus

x 1 = 3,542 . . .
x2 = 3,564 . . .

x 10 = 3,5872 . . .
x tl = 3,5873 . . .

Da die Werte immer noch leicht ansteigen , ist man noch nicht sicher ,
ob beim Runden auf 4 Ziffern die 7 erhalten bleibt . Man kann dies prüfen ,
indem man x = 3,587 und x = 3,5875 in die linke Seite der zu lösenden
Gleichung , also in / (x ) = 3 X — 4x 2

, einsetzt . Aus / (3,587 ) = — 0,01 . . . und
/ (3,5875 ) = + 0,003 . . . folgt , daß zwischen diesen beiden x -Werten liegt
und somit £ 3 « 3,587 gilt .

Aufgaben
1 . Bestimme Näherungswerte für die Lösungen nach der graphischen

Methode . (Längeneinheit 1 cm ; eine Stelle nach dem Komma )
a) 2* + 8x — 7 = 0 b) 1,5* + x 2 = 2 c) 1 - x + (£)* = 0

2 . Berechne mit Hilfe eines Iterationsverfahrens die auf vier geltende Ziffern
gerundeten Lösungen der Gleichung von

c) Aufgabe l . c) .a) Aufgabe l . a) b) Aufgabe l . b)

3 . a) Bestimme graphisch Näherungswerte für die beiden Lösungen der
Gleichung 0,5x 2 — 1 = lgx .

b) Begründe , daß die in a) angegebene Gleichung auf die äquivalente
Form x = l/2 (lgx + 1 ) gebracht werden kann , und benütze diese zur
iterativen Berechnung des auf vier geltende Ziffern gerundeten Wertes
der größeren der beiden Lösungen . Kann man mit dieser Iteration
auch die zweite Lösung berechnen ?

c) Zeige , daß sich die Gleichung 0,5x 2 — 1 = lg x nach Multiplikation mit
2x - lgx

bringen läßt , und berechne damit den2x auf die Form x

auf vier geltende Ziffern gerundeten Wert der zweiten Lösung .

4 . a) Bestimme an Hand einer graphischen Darstellung näherungsweise die
Koordinaten des Schnittpunkts S der beiden Graphen y = x “ 1 und
y = lg (x — 2) .
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b) Berechne durch Iteration die auf Hundertstel gerundete Abszisse von
S . Wie lautet die ebenso gerundete Ordinate von S ?

5 . Ermittle mit einer Wertetabelle die Lage der Nullstellen der Funktion .
Suche geeignete Iterationsformeln zur Berechnung dieser Nullstellen und
bestimme jeweils die auf vier geltende Ziffern gerundeten Werte.
a) xi -^ 10x + 2x - 9 b) x i—> 5 — x • 24 ~ x

c) x i—> lg (2x — 1 ) + 3x — 5 d) x i—> lg (x2 + 1 ) + ld (5 — x)
6 . Berechne die auf vier Stellen nach dem Komma gerundeten Näherungs¬

werte der Lösungen .
a) x — cos x = 0 a x e fR b) sin x — x2 = 0 a x e [R +

c) x 2 (1 + tan x) = 1 a x e [0 ; j n [
7 . Mit den von einer Schallquelle ausgesandten Wellen wird Energie

transportiert . Unter der Schallintensität J an einer bestimmten Stelle
versteht man die dort auf eine Fläche von 1 m2 entfallende Schalleistung ;
die Maßeinheit für J ist also lWm - 2 .
Von einer Schallintensität zu unterscheiden ist die beim Hören empfunde¬
ne Lautstärke L . Eine Verdoppelung der Intensität J empfindet unser
Gehör keineswegs als Verdoppelung der Lautstärke L . Auch gibt es einen
Schwellenwert J0 der Schallintensität , unterhalb dessen der Schall nicht
mehr hörbar ist . Aus dem für Sinnesreize geltenden Weber-Fechnerschen
Gesetz * folgt für den Zusammenhang zwischen Schallintensität und

Lautstärke die Beziehung L = k \g ~ , k e [R +
. Für den Proportionali -

Jn
J

tätsfaktor k hat man die Zahl 10 festgelegt ; also : L = 10 lg — phon .
■' o

Dabei ist phon keine physikalische Benennung : das Hinweiswort Phon * *
(Kurzzeichen phon ) soll nur an die logarithmische Definition der unbe¬
nannten Zahl L und an ihre Verwendung in der Akustik erinnern .
a) Wie groß ist die Schallintensität J im Abstand r von der Schallquelle,

wenn diese nach allen Seiten gleichmäßig die Leistung P abgibt ?
b) Welcher Wert der Lautstärke L entspricht dem Schwellenwert J0 der

Schallintensität ?
c) Wie groß ist J, ausgedrückt durch J0 , bei der Lautstärke

1) 10 phon (Ticken einer Taschenuhr in 4 m Abstand )
2) 40 phon (normales Sprechen bei 2 m Abstand )

* Das Weber -Fechnersche Gesetz besagt : Die Empfindungsstärke E eines Reizes ist proportional zum
R

Logarithmus des Quotienten aus der Reizstärke R und der Schwellenreizstärke R0; d .h ., E — k - lg — .
r ' o

Ernst Heinrich Weber (24 . 6. 1795 Wittenberg - 26 . 1. 1878 Leipzig ) war Physiologe und Anatom .
Gustav Theodor Fechner ( 19 .4 . 1801 Groß -Särchen bei Muskau/Lausitz - 18 . 11 . 1887 Leipzig ) war Phy¬
siker , Psychologe und Philosoph .

* Das Hinweiswort Phon , vom griechischen <p<avr | (phone ) = Laut , wurde 1926 von dem deutschen Physiker
Heinrich Georg Barkhausen (2 . 12 . 1881 Bremen 20 .2 . 1956 Dresden ) eingeführt .
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3) 80 phon (starker Straßenlärm )
4) 130 phon (Schmerzgrenze, bleibende Gehörschädigung !)?

d) Eine Schallquelle gibt einen bestimmten Ton mit gleichbleibender
Leistung ab . In 1 m Entfernung beträgt die Lautstärke 40 phon . Wie
weit muß man sich von der Schallquelle entfernen , um den Ton nicht
mehr zu hören ?

e) Der Lärm eines Llugzeugmotors wird in 400 m Entfernung mit
80 phon gemessen . Wie groß ist die Lautstärke für einen Llugpassagier ,
der sich beim Einsteigen dem Triebwerk auf 10 m nähert ?

f) Die Schwellenintensität J0 für die Schallwahrnehmung hängt von der
Tonfrequenz ab . Im Bereich von 1000 Hz bis 2000 Hz ist sie besonders
klein , bei sehr hohen und sehr tiefen Tönen wesentlich größer . Eür die
Frequenz 1000 Hz gilt / o = 10 “ 12 Wm - 2 (mittlerer Wert für Jugend¬
liche !) .
1) Welche Lautstärke entspricht bei einem Ton mit 1000 Hz der

Schallintensität / = 8 - 10 _ 5 Wm - 2 ?
2) Welche Schallintensitäten ergeben bei einem Ton von 1000 Hz die

Lautstärken 1 phon , 20 phon , lOOphon , 130 phon ?
3) Ein Lautsprecher strahlt mit der Leistung 5W einen Ton von

1000 Hz gleichmäßig nach allen Seiten ab . Mit welchen Lautstärken
hört man diesen Ton in 5 m , 10 m und 50 m Entfernung ?

g) Bei einem Tonvonl25Hzistdie Schwellenintensität J0 = 10 ~ 9 W m 2.
Welche Schallintensitäten gehören bei diesem Ton zu den Lautstärken
von Aufgabe f) 2) ?

18 . In der Praxis muß Schall häufig verstärkt bzw . gedämpft werden . Wird

z . B . eine Intensität J , auf den kleineren Wert J2 gedämpft , so gibt man als

Maß der Dämpfung die Zahl ß = 10 • lg y Dezibel an . Das Hinweiswort

Dezibel* , abgekürzt mit dB , bezeichnet keine physikalische Maßeinheit,
sondern dient nur zur Erinnerung an die logarithmische Definition der
unbenannten Dämpfungszahl ß.
a) Wie verhalten sich die SchallintensitätenJy und J2 bei einer Dämpfung

von 5 dB?
b) Wieviel Dezibel beträgt die Verstärkung , wenn die Schallintensität

1 ) verdoppelt 2) verzehnfacht 3) verhundertfacht wird ?
c) Ein Tonsignal mit der Leistung 0,05 W wird durch einen Verstärker um

20 dB verstärkt . Welche Leistung hat das verstärkte Signal?
d) Um wieviel phon verändertsich die Lautstärke (vgl . Aufgabe 7) , wenn

die Schallintensität um n dB verstärkt (gedämpft ) wird ?
* Die Bezeichnungen Bel (B) und Dezibel (dB ) wurden zu Ehren des Ingenieurs Alexander Graham Bell

(3 . 3 . 1847 Edinburg - 1. 8 . 1922 Baddeck [Kanada ] ) , des Erfinders des elektromagnetischen Telephons , ein¬
geführt . 1 B = 10 dB . Sein Photophone , das mittels eines codierten Lichtstrahls die menschliche Stimme
(damals bis zu 200 m) übertragen konnte , hielt er schon 1880 für seine größte Errungenschaft . Damit war
die Photonik geboren .
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