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8 . Kapitel
Die Graphen der trigonometrischen Funktionen
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Sinuskurve

Die Zuordnung x sin x für x e R definiert eine Funktion , die Sinusfunktion . Den Gra¬
phen der Sinusfunktion Finden wir, wenn wir auf der x-Achse den Winkel im Bogenmaß
und als y-Wert den zugehörigen Sinuswert abtragen .

I.Quadrant III .Quadrant IV.QuadrantII .Quadrant
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5ji | n

SIN -GRUNDFIGUR

Zuerst zeichnen wir den Graphen im Bereich x6 [0 ; 2tt ] , wir nennen ihn Grundfigur ;
dazu verwenden wir die vertrauten Werte :

Winkel x 0° 30° 45° 60° 90° 120° 135 ° oo 180°

Winkel x 0 1
~
6 n

1 1
J 71 1

Y 71 2
y " 3

T 77
4
y 77 TT

Sinuswert y 0 1
2 i # l j # 1

2 0

315° 330° 360°

Winkel x TT
7

~
6

n
5
J 71 4

J 71 3
Y 71 5

y 77 7
y 71

11
T n 2tt

Sinuswert y 0 1
2

- | V? - i # - l 1
2 0

SINUSKURVE

Periode- - Periode- -
1

-— Periode- --- Periode— -

/ X
K

-- Periode
Jt N —-4

-- Periode— -
ji

Wegen sin (x ± 2tt) = sin x wiederholen sich die Sinuswerte im Abstand 2tt nach links und
rechts, dieser Abstand heißt Periode ; die Grundfigur wiederholt sich immer wieder, wenn
man den Graphen für beliebige x -Werte zeichnet. Den Graphen für beliebige x -Werte nen¬
nen wir Sinuskurve. Die Sinuskurve hat die Periode 2tt . Weil die Sinuswerte des I . Qua-
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dranten alle andern Werte bis aufs Vorzeichen festlegen, kommt das Kurvenstück für Win¬
kel zwischen 0 ° und 90° immer wieder vor.

-4ji

Der Taschenrechner arbeitet mit dem Teil der Sinuskurve, der zwischen —]rn und + 4 - rt
1

2 2
liegt . Als Lösung der Gleichung sin x = —— liefert er deswegen x = - 0,523 . . . (RAD) be¬
ziehungsweise x = - 30° (DEG ) .
Eigenschaften der Sinuskurve
- Periode 2tt
- Punktsymmetrie zum Ursprung [wegen sin ( — x) = - sinx ]
- Nullstellen kn , keZ

1- Hochpunkte ( — n + k • 27t 11 keZ

- Tiefpunkte 7t + k ■2n: | - 1 j , kei
- Wertemenge W = [ - 1 ; + 1 ]

Hochpunkte Hk(jJt+2kn| 1)

Tiefpunkte Tk(fji +2kji|-1)

Die Sinuskurve kann beim Lösen goniometrischer Gleichungen oder Ungleichungen recht
hilfreich sein. Beispiele :

|
~n sinx = - 0,4 xe [0 ; 27r[

Die Lösung von sin x = 0,4 finden wir mit dem Taschenrechner : x = 0,411 . . .
Der Grundfigur entnehmen wir Xj = n + x = 3,553 . . .

x2 = 27i - x = 5,871 . . .
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1
sin x <

2 | sin x | > — x e [0 ; 2jt [

das heißt sin x > -
y oder

Der Grundfigur entneh-
1 5men wir — 7t < x < — 7t
o o

oder
7 11— n < x < —— n6 6

3 1
sin x = — x

sinxl > 0,5

Solche gemischt goniometrischen Gleichungen lassen sich im Allgemeinen nur nähe¬
rungsweise lösen . Wir suchen also eine grafische Näherungslösung : die x -Werte der
Schnittpunkte von Sinuskurve und Ursprungsgerade y = -^- x . Aus der möglichst ge¬
nauen Zeichnung (Schablone verwenden !)
liest man ab
x = 0 (exakt) oder x « ± 1,9 . s *n *

Kosinuskurve

Die Zuordnung x >- » cos x für x e R definiert eine Funktion , die Kosinusfunktion. Den Gra¬
phen der Kosinusfunktion finden wir, wenn wir auf der x -Achse den Winkel im Bogen¬maß und als y-Wert den zugehörigen Kosinuswert abtragen .

COS-GRUNDFIGUR

I .Quadrant II.Quadrant III.Quadrant IV.Quadrant
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Zuerst zeichnen wir den Graphen im Bereich xe [0 ; 27r] , wir nennen ihn Grundfigur ;
dazu verwenden wir die vertrauten Werte :

Winkel x 0° oo 45 ° OOOS OSoo
i 120° 135° OO OO001

Winkel x 0
1
6

" 71
1

J 71
1

y
77

l
T77 2

y 77 3
T77 5

y 77 71

Kosinuswert y 1 y ^ lA
1
2 0

1
2

- fA - 1

Winkel x 180° 210° 225° 240° 270° 300° 315° 330° 360°

Winkel x 71
7

J 71 5
~
4 n

4
y

77
3

y
77

5
y

77
7

T77 11-y 77 27T

Kosinuswert y - 1 - yT
1
2

0
1
2 yT 1

KOSINUSKURVE

-— Periode - - -- Periode — - -— Periode - - -— Periode — -

-4n \ y -2JI V / ^x ^ -1
/ 2ji \ ,

-- Periode — -

/ kn x

Wegen cos (x ± 2rr) = cos x wiederholen sich auch die Kosinuswerte im Abstand von 2rr
nach links und rechts ; deshalb wiederholt sich die Grundfigur immer wieder , wenn man
den Graphen für beliebige x-Werte zeichnet . Den Graphen für beliebige x -Werte nennen
wir Kosinuskurve . Wie die Sinuskurve hat auch die Kosinuskurve die Periode 27t . Weil die
Kosinuswerte des I . Quadranten alle andern Werte bis aufs Vorzeichen festlegen , kommt
das Kurvenstück für Winkel zwischen 0° und 90° immer wieder vor .

Der Taschenrechner arbeitet mit dem Teil der Kosinuskurve , der zwischen 0 und tt liegt .

Als Lösung der Gleichung cos x = — liefert er deswegen x = 2,094 . . . (RAD ) beziehungs¬

weise x = 120° (DEG ).

Eigenschaften der Kosinuskurve
- Periode 2rr
- Symmetrie zur y-Achse [wegen cos ( - x) = cos x] Hochpunkte Hk(2kn | 1 )

- Nullstellen + k ■7i ,
nt yfHo H,k e Z \ \ , -y s rls x ? / 1 \ 5*

- Hochpunkte (k ■2tt 1 ) ,
- Tiefpunkte (tt + k - 2tt j — 1 ) ,
- Wertemenge W = [ - 1 ; + 1 ]

-2n N. j S x
K. fc /L,
keZ

t 2
.

V ^ T0

Tiefpunkte Tk( ji +2kjt |-1)

T,

keZ
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Die Kosinuskurve kann beim Lösen goniometrischer Gleichungen oder Ungleichungenrecht hilfreich sein. Beispiele :

PH cos x = - 0,6 xe [0 ; 2tT [
Die Lösung von cos x = 0,6 finden wir mit dem Taschenrechner : x = 0,927 . . .Der Grundfigur entnehmen wir Xj = n - x = 2,214 . . .

x2 = 7i + x = 4,068 . . .

- 0,6—

das heißt -
y V2 g cos x = y

1 3Der Grundfigur entnehmen wir y7i ^ xgy7i oder
5 7— 7TgXg — 7T4 4

COS X 5

Tt o

3 4 cos x + x — 2 = 0
Bei dieser goniometrischen Gleichung suchen wir eine grafische Näherungslösung :Um zu wissen, womit wir die Kosinuslinie zum Schnitt bringen , formen wir die Glei¬
chung so um , dass auf der einen Seite cos x steht : cos x = -

y x + y . Ins Koordinaten¬

system zeichnen wir die Kosinuskurve und die Gerade y = “
y x + y . Die x -Werte

der Schnittpunkte beider Kurven sind die Näherungslösungen . Aus der möglichst ge¬nauen Zeichnung liest man ab x « - 0,8 oder x « 1,43 oder x « 4,15 .
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4cosx + x - 2 = 0

=1,431=0,14)

Tangenskurve

y*

Die Zuordnung x >-^ tanx für xe R und x 4=— n + kn , keZ definiert eine Funktion , die

Tangensfunktion . Den Gra¬
phen der Tangensfunktion fin¬
den wir, wenn wir auf der x-
Achse den Winkel im Bogen¬
maß und als y -Wert den
zugehörigen Tangenswert ab¬
tragen.

1-

U3 -

- iß -

s
’jt jit I "

§* fr fr fr fr fr 2lt

I.Quadrant II .Quadrant III.Quadrant IV.Quadrant

150° ooo0

Winkel x 0 1
T n 1

T n 1
y 77

1
T77 2

y 77 3
J n 5

y 77 TT

Tangenswert y 0 l - - V3 - 1 -
T ^ 0

Winkel x 180° 210° 225° 240° 270° 300° 315° OO 360°

Winkel x 7t 7 5
J n 4

J n 3
T77 5

y 77
7
y 77

ii-
y 71 271

Tangenswert y 0 jA 1 - - V3 - i - jVF 0
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Die Wertetabelle lässt vermuten , dass die Tangensfunktion die Periode 71 hat . Tatsächlich
gilt tan (x + tt) = tan x
Das beweisen wir mit dem Additionstheorem

tan x + tan tttan (x + tt) = = tan x
1 - tan x • tan tt

TAN -GRUNDFIGUR

Als Grundfigur nehmen wir die Kurve zwischen - — tt und tt (weil sie zusammen¬

hängt) . Mit dieser Grundfigur arbeitet auch der Taschenrechner . Er liefert als Lösung der
Gleichung tanx = a , a e R , immer Werte zwischen 7T und + — tt . Die Grundfigur
wiederholt sich immer wieder, wenn man den Graphen für beliebige x -Werte, die Tangens¬
kurve , zeichnet .

Eigenschaften der Tangenskurve
— Definitionsmenge D = \ x | x e R
— Periode tt
— Punktsymmetrie zum Ursprung
— Nullstellen kn , ke Z
— Wertemenge W = R

TANGENSKURVE

und x =t= -~ tt + kn , k e Z

[wegen tan ( - x) = - tan x]

|Periode |Periode |Periode |Periode jPeriode )Periode |Periode
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Die Tangenskurve kann beim Lösen goniometrischer Gleichungen oder Ungleichungen
recht hilfreich sein. Beispiele:

IT] tan x = — 2,7 xe [0 ; 2n [
Der Taschenrechner liefert : x = - 1,216 . . .
Der Grundfigur entnehmen wir x t = x + n = 1,925 . . .

x2 = x + 27t = 5,067 . . .

2 tan x ^ - 3,14 xej ^
-

y7T ; + y7T ^
Wegen der Definitionsmenge der Ungleichung suchen wir die Lösung nur im Bereich
der Grundfigur .
Der Taschenrechner liefert : x = - 1,262 . . .
Der Grundfigur entnehmen wir x ^ x < -

y rc
Nimmt man aber die größtmögliche Definitionsmenge,
dann ergeben sich die Lösungsintervalle, wenn man zu
den Grenzen ganzzahlige Vielfache von tt (Periode !) ad¬
diert , zum Beispiel :

1 5
x - tt ; - — TT oder x + 2tt ; — 7t

- 3,14
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3 tan x = cos x x e [0 ; 2jc [
Diese rein goniometrische Gleichung lässt sich zwar auch algebraisch lösen, manch¬
mal genügt aber eine grafische Näherungslösung : Lösungen sind die x-Werte der
Schnittpunkte von Tangens- und Kosinuskurve . Aus der möglichst genauen Zeich¬
nung liest man ab x » 0,67 oder x « 2,48 .

tanx = cosx

Zum Vergleich noch die algebraische Lösung :
tan x = cos x | | • cos x
sin x = (cos x)2
sin x = 1 - (sin x)2
(sin x)2 + sin x - 1 = 0 , nach sin x auflösen :

— i ± Vs
"

sin x = - t ■—
2

Der Wert - =» - 1,62 ist kleiner als - 1 , also unbrauchbar .

Die Lösungen von sin x
sin x < x < tan x

und x-

x = tan x



Abwandlungen der Sinuskurve

Bei den Parabeln gibt es eine Grundfigur : Die Normalparabel , sie hat die Gleichung
y = x2

. Aus ihr erzeugt man andere Parabeln , indem man den Funktionsterm verändert .
Die allgemeine Parabelgleichung lautet y = a (x - b)2 + c . Der Faktor a verändert die Form
(breit/schmal ) , bei negativem a ist die Parabel an der x-Achse gespiegelt.

Der Summand b schiebt nach rechts oder links, der Summand c nach oben oder unten .
Wir untersuchen jetzt , was solche Termabwandlungen für die Sinuskurve bedeuten.

Faktor bei sin : y = a • sin x

Alle y-Werte der Sinuskurve werden mit dem Faktor a multipliziert . Dadurch wird die Si¬
nuskurve in y -Richtung gestaucht ( [ a | < 1 ) oder gestreckt ( | a | > 1 ) , bei negativem a ist sie
an der x -Achse gespiegelt.

Faktor bei x : y = sin bx b > 0

Periode n

Periode tu

■x



Die Nullstellen der neuen Kurve ergeben sich aus bx = krr zu x = -
g

- krr, keZ . Alle x-
1 2/uWerte der Sinuskurve werden mit — multipliziert , die neue Periode ist also -

g
- . Für b > 1

ist die Sinuskurve in x-Richtung gestaucht , für 0 < b < 1 ist sie in x -Richtung gestreckt.
Bei negativem b kann man wegen sin ( - x) = - sin x den Faktor ( - 1) ausklammern .

|y sin(x* fH ) sin (x - in)

y '1* / 2n /

Summand bei x :

Die Nullstellen der neuen Kurve ergeben sich aus x + c = kn zu x = kn - c , k € Z . Von al¬
len x-Werten der Sinuskurve wird c subtrahiert , das heißt , die Sinuskurve verschiebt sich
um - c in x-Richtung . Bei positivem c haben wir eine Verschiebung um c nach links , bei
negativem c eine Verschiebung um | c | nach rechts.

Beispiel : y = sin ^x + y jrj
Die Nullstellen der neuen Kurve ergeben sich aus

x + yTT
= kn ZU X = kn -

y 7T = y 7T + Z7T, k, Z 6 Z .

Die Sinuskurve ist um y tt nach links verschoben . Das neue Bild erinnert an die
Kosinuskurve . Tatsächlich gilt (Additionstheorem)

sin (x + yTij = sin x cos ( yTiJ + cos x sin (
y 7rj = cos x

y cosx sinx

x
\ n\ / 3jt\ ^

Allgemein gilt :

sin ^ X + y 71^
=

194
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Summand bei sin x : y = sin x + d

Zu allen y -Werten der Sinuskurve wird d addiert , das heißt , die Sinuskurve verschiebt sich
um d in y-Richtung .

sinx+1

sinx-0,5

Allgemeine Sinuskurve : y = a • sin b (x + c)

Die allgemeine Sinuskurve findet man durch schrittweises Abwandeln der Sinuskurve.
27TDie Periode ist —— .b

Start ist die Nullstelle bei x = - c.
Die y-Werte liegen zwischen - | a | und | a | . Bei negativem a muss an der x-Achse gespiegelt
werden.
Bei der Kurve y = a • sin b (x + c) + d muss noch um d in y-Richtung verschoben werden.

/ 3 1 \
Beispiel : y = - 3 sin I — x + — 7i I

3
Die Periode und die Verschiebung finden wir, wenn wir den Faktor — ausklam¬
mern

Periode -
y

= y7T
~
4

Startstelle : x + yn
= 0 , also Start bei x = -

y tc

y-Schwankung zwischen - 3 und + 3
Spiegelung an der x -Achse wegen des negativen Faktors bei sin x : - 3 < 0

Periode §k
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Überlagerung zweier allgemeiner Sinuskurven
Man überlagert zwei Kurven , indem man bei jeder Stelle x die zugehörigen y-Werte ad¬
diert . Auch bei zwei Sinuskurven geht das so.
Beispiele :

1 . Kurve : y = - sin 2x

2 . Kurve : y = 2 sin ( x + -
j

- tz j

Überlagerungskurve
,2sin (x * jJt) - sin2x,2sin (x »5it )

sin 2x + 2 sin x +

Eine kleine Abwandlung der beiden Kurventerme bewirkt eine große Änderung der neuen
Kurve :

y = - 2 sin 2x + sin - 2sin 2x

Manchmal können wir mit den Summenformeln den Term der Überlagerungskurve zu¬
sammenfassen :

1 . Kurve : y = 2 sin x

2 . Kurve : y = 2 sin
^x - -

^
- rr^

Überlagerungskurve : y = 2 sin x + 2 sin f x - j

Wegen sin q + sin ß = 2 sin q + ß q - ß
ergibt sich2

• cos 2



Ändert man bei der ersten Kurve das Vorzeichen im Term, so ergibt sich für die Überlage¬
rungskurve :

- 2sinx + 2sin ( x -

Die Überlagerungskurve ist wie¬
der eine allgemeine Sinuskurve.

Im vorigen Beispiel haben die beiden Summanden dieselbe Periode und denselben Faktor
vor sin . Eine allgemeine Sinuskurve ergibt sich aber auch schon, wenn die beiden Sum¬
manden bloß dieselbe Periode haben . Wir zeigen das für die Periode 27t.

a sin x + b sin (x + 5) = A sin (x + A)
Die Unbekannten A und A ergeben sich, wenn man auf beiden Seiten das Additions¬
theorem des Sinus anwendet :
a sin x + b sin x sin 5 + b cos x sin 5 = A sin x cos A + A cos x sin A
(a + b cos 5) sin x + b sin S cos x = A cos A sin x + A sin A cos x

Vergleicht man die Koeffizienten von sinx und von cosx , dann ergibt sich

bsinÖ = AsinA (I) und a + bcosö = Acos A (II)

Quadriert und addiert man (I) und (II) , dann bekommt man

b2 [sin ö)2 + (cos ö)2] + a2 + 2ab cos 5 = A2
[ (sin A)2 + (cos A)2]

also A2 = a2 + b2 + 2ab cos 5 (K)

Aus ® fol8' <S)

Aus (K) und ( S) findet man A und A . Deutet man (K) als Kosinussatz und ( S) als Si¬
nussatz für ein Dreieck mit den Seiten a , b und dem Zwischenwinkel (n - 5) , dann
kann man A und A leicht konstruieren .
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Aufgaben zu 8 .

Zeige mit dem Additionstheorem : sin
Was bedeutet das für die Sinuskurve?

• 2. Zeige mit dem Additionstheorem : sin (rr + x) = - sin (rr - x)
Was bedeutet das für die Sinuskurve?

3 . Zeige mit dem Additionstheorem : cos tt + x j = - cos G^- tt - x
Was bedeutet das für die Kosinuskurve ?

4. Zeige mit dem Additionstheorem : cos (tt + x) = cos (tt - x)
Was bedeutet das für die Kosinuskurve ?

5. Zeige mit dem Additionstheorem : tan (tt + x) = - tan (tt - x)
Was bedeutet das für die Tangenskurve ?

6 . Gib alle Symmetrieachsen und -Zentren der Sinus- und Kosinuskurve an.
7 . Gib drei Punkte an , zu denen die Tangenskurve symmetrisch ist .
8 . Zeichne die Graphen im Bereich - 7T g x g 2tt

a) y = 1 - sinx b) y = cos x - 2 c) y = - tan x
d) y = (sin x)2 e) y = (cos x)2 f) y = (sin x)2 + (cos x)2 .

9 . Erläutere an den Graphen die Beziehungen
a) y = 1 - sin x b) cos x = - cos (n - x)

c) sinx d) cos x = sin

10 . Zeichne den Graphen der Funktion im Bereich [ - tt ; 2tt ]
a) y = 3sinx b) y = sin ( - 3x)
c) y = sin x + d) y = sin x tt + 2

cos ( - 2x) + 1e) y = 2cos x - 1

11 . Zeichne den Graphen der Funktion im Bereich [ — tt ; 27t]

a) y = 2 sin

TT - 3xc) y = - 2cos (2x - tt)

12 . Bestimme die Nullstellen , Hoch- und Tiefpunkte und die Wertemenge. Zeichne den
Graphen der Funktion im Bereich [ - tt ; 2tt ]

tt + 1 b) y = 2cos ( x +sin x
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13 . Zeichne die Kurven von y = sin x , y = tan x und y = x im Bereich Ogxg 1 (Längen¬
einheit 10 cm ) . Lege eine Wertetabelle mit Schrittweite 0,1 an . Aus der Zeichnung er¬
kennst du , dass die Näherungen sin x = x , tanx = x und sin x = tan x für kleineWerte
von x ziemlich gut sind . (Siehe Seite 192 unten)
Berechne für die Näherungen jeweils den maximalen x -Wert, sodass der Unter¬
schied der y-Werte kleiner ist als 0,01 (0,001) .

14 . Gib bei den Funktionstermen an :
- die erste positive Nullstelle
- die Periode
- den ersten positiven x-Wert eines Hochpunkts
- die Wertemenge.
a) 5sinx

d) sin -
^
- x

g) sin (5 - x)

j) sin2/x - -
^

-
7Tj

m) sin ( 2x + — tt 1

b) sin 5x

e) - 5sinx

h) sin
^

- ^ -
xj

k) - 2sin ( - 2x)

n ) sin (l x _ iV '1

c) sin (x - 5 )

f) sin ( - 5x)

i) 2sin |
^
x - —

nj
3 . 1 / 3 \

I ) T sin y (
x + y * J

o) sinfyx -
Jjrj

15 . Die Sinuskurve , die Gerade x = a (0 g a g tt) und die x -Achse begrenzen ein Flä¬
chenstück vom Inhalt A (a) = 1 - cosa . Berechne die Inhalte der schraffierten Flä¬
chenstücke.

a)

cosx
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16 . asinb (x + c)
Bestimme a , b und c so , dass der Funktionsterm zum Bild passt . (Jede Nullstelle ist
Vielfaches von tt/6 .)

d)

e)

f)

g)
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17 . asin (bx + c)
Bestimme a , b und c so , dass der Funktionsterm zum Bild passt .

18 . Die Bilder zeigen kongruente Sinuskurven in verschiedenen Koordinatensystemen .
Gib jeweils die Kurvengleichung an.

19 . Kennzeichne in einem Koordinatensystem mit Farbe alle Punkte P (x | y) , für die gilt

a) —Ti g x g tt und sinx — 1 s y g — 1 — cosx
b) 0sxg27i und 2 -l sinx g y g 1 - cosx
c) 0gxg7t und cos x < y g tt - x

d) 0 g x ^ 4 und x - l < y < sinx .
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• •

• 20 . Gib die maximale Definitionsmenge und die Periode an von
a) y = sin x + cos x b) y = sin x + tan x

c) y = 1 + (tan x)2 d) y = —^— .J } sinx
21 . Bestimme x e [0 ; 2tt [

a) sinx = 0,1
c) sin 2x = 0,6

e) sin 0,866

22 . Bestimme x e [0 ; 2tt [
a) cosx = - 0,2
c) cos 2x = 0,96

e) cos 0,995

23 . Bestimme x e [ 0 ; tt [
a) tanx = - 0,5
c) tan2x = 1,158

e) tan = 1,732

24 . Für welche x e [ 0 ; 2tt [ gilt
a) sinx < - 0,2
c) sin 2xg 0,96

e) sin > 0,995

b) 2sinx = - 1,683
d) | sin x | = 0,48
f) 3 siny ^x + y nj = 1,8 ■

b) 2cosx = - 0,832
d ) | cosx | = 0,878

f) 4cosy ( x + yTrj = 0,283 .

b) 2 tan x = 4,37
d) | tanx | = 0,143

f) 4 tan y ^x + ~ ttj
= - 1 .

b) cosx g - 0,832
d) | cosx | > 0,878

f) tany ^x + yTrj > - 1 ?

25 . Für welches x gilt (grafisch lösen !)
a) sin x = 0,25 x b) sin x = x - 1
c) cos2x = - x d) | cosx | = 2x
e) tanx = 2 - x ( 1 Lösung !) f) sin2x + tanx = 0 ?

26 . Bestimme den Term der allgemeinen Sinuskurve , die sich bei der Überlagerung er¬
gibt .

a) sinx + 2sin
^
x + —

rrj b) 3 sinx + 4 sin
^
x + y 7ij

c) ysinx + 2sin + y ttj d) sin (2x) + 2sin2 ( x + y
tA

27 . Zeige : x • sin a + y • cos a = r • sin (a + cp) und es gilt :
r und cp sind die Polarkoordinaten des Punkts P (x | y).
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