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9 . Kapitel
Kegelschnitte



Vorbemerkung

Schneidet man einen geraden Kreiskegel mit einer Ebene, so ergibt sich eine ebene Schnitt¬
kurve. Je nach Schnittrichtung entsteht
- eine geschlossene Kurve
- eine offene Kurve , die sich ins Unendliche erstreckt
- eine Kurve aus zwei Teilen, die sich ins Unendliche erstrecken.
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Geschlossene Kurven sind Ellipsen, im Sonderfall Kreise . Offene Kurven sind Parabeln
(einteilig) oder Hyperbeln (zweiteilig ) . Von alters her heißen solche Kurven Kegelschnitte.

Schon vor gut 2000 Jahren haben sich die griechischen Mathematiker mit diesen Kurven
beschäftigt . Appolonios (262 bis 190 ) war der erste , der sie als Schnitte von Kegeln und
Ebenen erkannte . Die Faszination der Kegelschnitte hat sich bis heute erhalten . Keines¬
wegs nur Mathematiker müssen über sie Bescheid wissen - auch Astronomen , Techniker,
Baumeister, ja sogar Maler .
In unserer Umwelt begegnen wir ständig Kegelschnitten:
- Schattengrenze eines Lichtkegels auf einer ebenen Wand
- Bild eines Kreises, den man schräg anschaut
- täglicher Weg der Schattenspitze des Zeigers einer Sonnenuhr
- Bahn eines schräg geworfenen Balls (Springbrunnen )
- Bahnen von Himmelskörpern und Satelliten
- Grundrisse von Barockkirchen und Barockgärten
- gewölbte Spiegel in optischen Geräten.
Von Kegelschnitten ist neben dem Kreis die Ellipse die wichtigste Kurve . Deshalb nehmen
wir sie uns als erste vor.
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I . Die Ellipse
1 . Die Ellipse als Zylinderschnitt

Kreis und Ellipse entstehen auch , wenn eine
Ebene einen geraden Kreiszylinder schneidet.
Steht die Schnittebene senkrecht auf der Zylin¬
derachse und damit auf jeder Mantellinie , so
entsteht ein Kreis ; bei einem endlichen Zylin¬
der ist die Schnittebene dann parallel zur
Standebene . Ein schräger Schnitt liefert eine
Ellipse. Auch der Schattenbereich einer Kugelim Parallellicht ist ein Kreiszylinder . Trifft der
Schatten auf eine ebene Wand , so entsteht jenach Auftreffwinkel ein Kreis oder eine El¬
lipse.

Gerader Kreiszylinder
im Normalbild

Stand¬
ebene

Gerader Kreiszylinder
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•Kreis

Normalbild
Kugelschatten

in wahrer Größe

Die Symmetrie des Zylinders überträgt sich auf die Ellipse . Sie hat zwei zueinander senk¬rechte Symmetrieachsen, diese schneiden sich im Mittelpunkt M der Ellipse . Die Ellipseist punktsymmetrisch zu M . Jede Sehne durch M heißt Durchmesser der Ellipse.Der längste Durchmesser [Aj A2] heißt große Achse oder auch Hauptachse , der kürzesteDurchmesser [BjB2] heißt kleine Achse oder auch Nebenachse. Traditionell bezeichnet mandie Länge der großen Achse mit 2a, die Länge der kleinen Achse mit 2b . Deswegen heißt a
große Halbachse und b kleine Halbachse . Die Endpunkte Aj und A2 der Hauptachse nenntman Hauptscheitel , die Endpunkte B ! und B2 der Nebenachse Nebenscheitel.

Symmetrieachsen

Haupt¬
scheitel Ai

B2 Nebenscheitel

2b | kleine Achse
Nebenachsegroße Achse

Hauptachse

kleine Halb
achse b große Halbachse a

Bi Nebenscheitel

A2 Haupt¬
scheitel
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Die kleine Halbachse b ist gleich dem Zylinderradius
r , die große Halbachse a hängt ab vom Winkel zwi¬
schen der Schnittebene und der Zylinderachse . Aus
der Zeichnung lesen wir ab :

r r
b = r und sin a = — also a = —-

a sin a

Kreisstreckung - Hauptkreis -Konstruktion
Eine der klassischen Grundaufgaben ist es , bei gege¬
benen Halbachsen a und b einzelne Ellipsenpunkte
zu konstruieren . Dafür gibt es mehrere Möglichkei¬
ten . Eine beruht darauf , dass man die Ellipse als axial
gestauchten oder gestreckten Kreis deutet . Dieser
Kreis heißt Hauptkreis der Ellipse. Jede Ellipse hat
zwei Hauptkreise : einen mit Radius a und einen mit
Radius b.

ImBildist a =30"
unddeshalba =2b.

ImBildist
a =30*

unddeshalb
a =2b
und

K.=2xu

b

$

ß

)
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Im Bild: Streckung aufs Doppelte

X

Der Kreis mit Radius b wird in x-Richtung aufs -^ -fache gestreckt - der Kreispunkt
K (xk | yk) wird auf den Ellipsenpunkt E (s e | ye) abgebildet . Diese Abbildung heißt axiale
Streckung (in x -Richtung ) : Alle x -Werte sind mit dem Faktor ~ multipliziert , die y -Werte
ändern sich nicht . Die axiale Streckung ist von der zentrischen Streckung zu unterschei¬den.
Die Streckung des Kreises mit Radius b zu einer Ellipse mit den Halbachsen a und b lässtsich auch mit Zirkel und Lineal einfach konstruieren . Sind a und b gegeben, so zeichnetman zwei konzentrische Kreise mit den Radien a und b . Einen Ellipsenpunkt E (xe | ye) fin¬det man so : Man zeichnet einen Radius , der den großen Kreis in P (Xk | Yk) und den klei¬nen Kreis in Q (xk | yk) schneidet . Die Parallele zur x -Achse durch Q und die Parallele zur
y-Achse durch P schneiden sich im Ellipsenpunkt E . Die Begründung lesen wir aus demBild ab.

y e = yk

= * X ,
a

k Xe
Diese Gleichungen beschreiben die Streckung des kleinen Kreises in x-Richtung aufs
~ - fache .

Andere Deutung : Stauchung des großen Kreises in y-Richtung aufs — -fache :a
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■yjeis mit ft.

feismif

Hauptkreis -
Stauchung
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Streckung
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aufs f -fache

Die Hauptkreis-Konstruktion
erlaubtauchEllipsenmit
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Hauptkreis - N
Streckung

in y-Richtung
aufs f -fache t

Hauptkreis -
Stauchung

in x-Richtung
aufs | -fache

Die Streckung eines Kreises zur Ellipse beobachtet man am Schatten einer Kugel ; die
Stauchung eines Kreises zur Ellipse sieht man , wenn man aus verschiedenen Richtungen
auf einen Kreis schaut .

Blick auf ein zylindrisches Gefäß
unter verschiedenen Höhenwinkeln



* Papierstreifen -Konstruktion
Aus der Hauptkreis -Konstruktion lässt sich eine besonders einfache Methode zum mecha¬
nischen Zeichnen einer Ellipse ableiten , die Papierstreifen -Konstruktion : Man ergänzt das
rechtwinklige Dreieck in der Ausgangsfigur zu einem Rechteck und verlängert dessen an¬
dere Diagonale bis zum Schnitt mit der x - und y-Achse. Symmetrieüberlegungen zeigen,dass der Ellipsenpunkt E diese verlängerte Diagonale in Strecken der Längen a und b un¬
terteilt.

Verschiebt man also einen Stab der Länge a + b in einem rechten Winkel so , dass seine
Endpunkte auf den Schenkeln gleiten, so beschreibt der Teilpunkt E den Bogen einer El¬
lipse mit den Halbachsen a und b .

Ellipsenbahnen der Sprossen
einer rutschenden Leiter
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* Schnitt von Gerade und Ellipse
Wir wenden die Hauptkreis -Konstruktion an und konstruieren die Schnittpunkte einer
Gerade g = PQ und einer Ellipse mit bekannten Halbachsen . P liege auf der x -Achse.

Lösungsidee
Wir strecken die Ellipse und die Gerade in

y-Richtung mit dem Faktor -
g

- : Die Ellipse
wird zum großen Hauptkreis und die Ge¬
rade g zur Gerade g

'
. Die Schnittpunkte S '

und T' von g
' und großem Hauptkreis stau-

chen wir mit dem Faktor — in y-Richtung
und bekommen die gesuchten Schnitt¬
punkte S und T.

Konstruktion
Der Schnittpunkt P von Gerade und x -Achse bleibt liegen : P = P'

. Der Geradenpunkt

Q (xq | yq) wird abgebildet auf Q ' (xq | -g
- yq) . (Achte auf die gestrichelte V-Figur !)

W ist Schnittpunkt von Hauptkreis © mit
Radius a und y -Achse.

V ist Schnittpunkt von x -Achse und Ge¬
rade @ durch Q und den Nebenscheitel
B 2.

Q ' ist Schnittpunkt von Gerade VW © und
Parallele @ zur y-Achse durch Q .

S ' ist Schnittpunkt von Gerade g' = PQ ©
und Hauptkreis © .

S ist Schnittpunkt von Gerade g = PQ und
Parallele © zur y -Achse durch S ' .
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Aufgaben

1 . Eine Ebene schneidet einen Zylinder mit Radius r = 6 so , dass sie mit der Zylinder¬achse den Winkel a bildet .
Berechne die beiden Halbachsen der Schnittellipse für
a) oc = 45° b) ex = 60° c) oc = 90°

2 . Wie groß muss der Zylinderradius r und der Winkel a zwischen Zylinderachse und
Schnittebene sein, damit eine Schnittellipse entsteht mit
a) a = 5 , b = 3 b) a = 5 , b = 4 c) a = 10 , b = 4

3 . Ein Zylinder mit Radius r und Höhe h und eine Ebene schneiden sich so , dass eine
Ellipse mit maximaler großer Halbachse a entsteht .
Gib die Halbachsen der Ellipsen an , falls
a) r = 5 , h = 24 b) e = h c) 2r = h

4 . Ein Kreis mit Radius r = 6 wird in y-Richtung aufs %-fache gestaucht . Zeichne die
Bildellipse und gib die beiden Halbachsen an.

5 . Ein Kreis mit Radius r = 5 wird in y -Richtung aufs %-fache gedehnt . Zeichne die
Bildellipse und gib die beiden Halbachsen an.

6 . Konstruiere mit Hilfe der Hauptkreise einige Punkte der Ellipsen mit den Halbach¬
sen a und b
a) a = 5 , b = 3 b) a = 6 , b = 3 c) a = 6 , b = 2

• 7 . Von einer Ellipse kennt man eine Halbachse und einen Punkt E . Ermittle die andere
Halbachse durch Konstruktion .
a) a = 13 , E ( 5 | 4) b) b = 5 , E (6 | 4) c) a = 10 , E (6 | 6)

8 . Markiere auf einem 10 cm langen Kartonstreifen einen Punkt , der 4 cm vom Rand
weg liegt . Zeichne damit eine Ellipse und gib ihre Halbachsen an.

9 . Wie lässt sich die Papierstreifen -Konstruktion mit Zirkel und Lineal ausführen ?
Konstruiere damit einige Punkte einer Ellipse mit den Halbachsen 5 und 3 .

10 . Eine 4 m lange Leiter rutscht an einer Hauswand ab.
Welche Punkte beschreiben eine Kreisbahn ? Begründung !
Wie groß ist der Kreisradius ?

• 11 . Die Gerade PQ schneide die Ellipse mit den Scheiteln A2 und B 2 in den Punkten Sund T. Konstruiere diese Schnittpunkte und gib ihre Koordinaten an.
a) P ( 1,515 ) , Q (8,510) , A2 (6,5 | 0) , B2 (0 | 3,25)
b) P(10 | - l ) , Q (5 j - 7) , A2 ( 12,510) , B2 (0 | 5)

• 12 . Konstruiere die Tangenten vom Punkt P an die Ellipse mit den Scheiteln A2 und B2und gib die Koordinaten der Berührpunkte S und T an.
a) P ( - 12,510) , A2 ( - 7,5 | 0) , B2 (0 | - 5) b) P ( - l,5 | - 7) , A2 ( - 7,5 | 0) , B2 (0 | - 5)

214



2 . Die Mittelpunkt -Gleichung einer Ellipse

So wie man die Punkte einer Gerade durch die Gleichung ay + bx + c = 0 beschreiben
kann , so lassen sich auch die Punkte einer Ellipse mit einer Gleichung festlegen. Beginnen
wir mit der einfachsten Ellipse, dem Kreis, k sei ein Kreis um M (0 | 0) mit Radius r . Nach
Pythagoras gilt für jeden Kreispunkt P (x | y) :

X

Damit ist die Gleichung schon gefunden . Nach y aufgelöst ergibt sich:

| y | = Vr2 - x2 das heißt y = + V1"2 - x2 (oberer Halbkreis)

oder y = - Vr2 - x2 (unterer Halbkreis)
Die Gleichung der Ellipse mit den Halbachsen a und b und Mittelpunkt M (0 | 0) ergibt

sich, wenn man einen Kreis mit Radius r = a in y-Richtung mit dem Faktor — staucht .
2L

Aus der Kreisgleichung | y | = Va2 - x2 bekommen wir die

Ellipsengleichung | y | = — Ĵa2 - x2
3.

Quadrieren und Sortieren liefert die Mittelpunkt -Gleichung der Ellipse mit den Halb¬
achsen a (in x-Richtung) und b (in y -Richtung) .

Querformat

Liegt die große Halbachse in y-Richtung,
dann heißt die Gleichung :

Hochformat
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Ein anderer Weg von der Kreisgleichung zur Ellipsengleichung folgt aus den uns schon
bekannten Koordinaten -Beziehungen zwischen einem Punkt (xk | yk) des Hauptkreises mit
Radius a und Ellipsenpunkt (xe | ye) :

(siehe Seite 210)

Ye ’ Yk
a

yk =
¥ ye

Kreisgleichung : x2 + yk = a2 eingesetzt ergibt

a2
Ellipsengleichung : x2 + — y2 = a2 in üblicher Form :

Die Gleichung der Ellipse im Querformat mit
den Halbachsen 3 und 5 um M (010) lautet also

— + -^ - = 1
52 32

Diese Gleichung lässt sich umformen zu :
9x2 + 25y2 - 225 = 0

Xe Ye— + — = 1a2 b2
y*

Allgemein beschreibt jede Gleichung der Form px2 + qy2 - r = 0 mit p, q, r > 0 eine
Ellipse . Die Halbachsen finden wir durch geeignete Umformung :

16x 2 + 9y2 - 9 = 0
16x 2 + 9y2 = 9
16x 2 - 2

-v - = 1

' “TT — 1 a = 1 , b = 3/4
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* Fläche und Umfang der Ellipse

Die Idee von der Ellipse als gestauchtem Kreis führt auch zu einer einfachen Formel für
die Fläche einer Ellipse . Man denkt sich den Kreis in sehr schmale , annähernd rechteckige
Streifen zerlegt . Beim Stauchen bleibt jeder Streifen gleich breit , seine Höhe und damit

seine Fläche nehmen ab aufs — -fache . Also gilt AEllipse
= —AKreis .

cL ä

A -Ellipse
—

Wer nun nach dieser einfachen Flächenformel erwartet ,
dass es auch für den Umfang der Ellipse eine einfache For¬
mel gibt , der irrt . Nur mit Hilfe höherer Mathematik findet
man Ausdrücke , mit denen man den Umfang näherungs¬
weise berechnen kann . Eine kleine Auswahl :

Ellipsen !!

äche a nKreisfl

© UEllipse - TT y (a + b) - VätT

© UEmpse
=

y [a + b + V2 (a2 + b2) ]

® UEnipse
« Ti ^a + b + -

^ yyy j

Für a = b = r wird aus diesen drei Formeln erwartungsgemäß der Term tt • 2r . Wer ’s exakt
haben will , muss eine Summe mit unendlich vielen Summanden »berechnen « , zum Bei¬
spiel

@ f2Ellipse
~ 2 a7I

1 • 3 V e4
2 - 4 / 3

1 • 3 - 5 y e6

2 - 4 - 6 / 5

mit e2 = a2 - b2 .
Für eine Ellipse mit a = 1 und b = 0,5 ergibt sich F = ab7i = 0,5 tt . Das ist die halbe Fläche
des großen Halbkreises mit r = 1 . Dieser Kreis hat den Umfang 2tt . Die Näherungsfor¬
meln für den Ellipsenumfang liefern ( 10 gültige Dezimalen )

©

©

©

©

^ Ellipse TT l . A - Ji
2 2 V 2

TT 3 / 5
^ Ellipse ^ T + f ' 4

"
3 1/41

fl Ellipse
Ä 71 2

+ 4 • 3/2

^ Ellipse TT* 1,541 964425 1

= tt • 1,5428932188 . . .

= tt - 1,5405694150 . . .

= tt - 1,541 6666666 . . .
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* Ellipsenzirkel
Zum Zeichnen von Kreisen hat man als Werkzeug den Zirkel erfunden . Verblüffender¬weise gibt es auch ein mechanisches Gerät zum Zeichnen von Ellipsen , den Ellipsenzirkel .Seine Funktionsweise beruht auf der Papierstreifen -Konstruktion .
Zwei feste Punkte R und S eines Stabs mit ER = a und ES = b gleiten in zueinander senk¬rechten Schienen . Ein Stift im Endpunkt E zeichnet eine Ellipse mit den Halbachsen aund b .

das heißt , die Koordinaten von E erfüllen
die Ellipsengleichung .

Begründung : sin p = —
, cos p = ~

a b

(sin p)2 + (cos p)2 = 1

B

E (x | y)

X

y

Der bewegliche
Arm wird von /
der Hand / /
geführt . / /Der Fuß

ruht auf der
Unterlage.

Rgmfj«»



* Die Scheitel -Kriimmungskreise
Normalerweise hat man keinen Ellipsenzirkel zur Hand . Aber auch ein Kreiszirkel eignet
sich zum näherungsweisen Zeichnen von Ellipsen . Dazu dienen vier Kreisbögen , die die
Ellipse in der ETmgebung der Scheitel am besten annähern . Sie heißen Scheitel -Krüm¬
mungskreise . Ihre Mittelpunkte liegen aus Symmetriegründen auf den Achsen . Das Bild
erklärt die Konstruktion dieser Mittelpunkte M a und Mb.

Zeichnet man die vier Kreisbögen (die sich nicht schneiden !) , dann hat man schon einen
verblüffend guten Eindruck von Ellipse . Diese lässt sich jetzt gut skizzieren - aber Obacht :
immer innerhalb der großen und außerhalb der kleinen Näherungskreise bleiben , denn
nur die vier Scheitel sind Ellipsenpunkte ! Die Kreisradien liest man aus der Konstruk¬

tionsfigur ab :

Aus ACAM a ~ ABCA folgt

r a b IE
-r - = — also r a

= —
b a a

Aus ABCM b ~ ACAB folgt

£ b

a
a
b also
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Wer’s genauer wissen will , erfährt jetzt den mathematischen Hintergrund .Im Allgemeinen schneiden sich Kreis und Ellipse in vier Punkten .
Haben sie eine gemeinsame Tangente , dann berühren sie sich : Zwei Schnittpunkte fallen ineinem Berührpunkt zusammen . Als Berührpunkt wählen wir den rechten Hauptscheitel ,halten ihn fest und verkleinern den Radius . Dabei wandern die beiden andern Schnitt¬
punkte auf der Ellipse in Richtung Berührpunkt .

gemeinsame Tangente

Schnitt¬
punkt

4 Schnittpunkte Berührpunkr
(2 Schnittpunkte ),

Schnitt¬
punkt

Bei einem bestimmten Radius treffen sich alle vier Schnittpunkte im Berührpunkt und bil¬den einen vierfachen Schnittpunkt . Grafisch äußert sich das darin , dass sich der Kreis jetztbesonders innig an die Ellipse anschmiegt.
Für die Koordinaten der beiden beweglichen Schnittpunkte gelten zwei Gleichungen

I y2 = (2r - a + x) (a - x)
(Höhensatz im Dreieck CAP )

II y2 = —■(a2 - x2)ä
( Ellipsengleichung )

Gleichsetzen liefert :
b2

(2r - a + x) (a - x) = — (a + x) (a - x)

das ergibt eine quadratische Gleichung für x

(a - x) b2
(2r - a + x) - j (a + x) = 0

•zr - (a - x)

Eine Lösung ist x t = a (gehört zum Scheitel A) .
r soll nun so bestimmt werden, dass auch die zweite Lösung x2, für die die zweite Klammer
[ . . . ] gleich null ist, den Wert a hat . Setzen wir in [ . . . ] a für x ein, so ergibt sich für r

(2r - b2
a + a) - TT (a + a) = 0

2r = 2 JE
a r JE

a das ist der Radius ra des kleinen Scheitel-Krümmungskreises .
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Für den Radius rb des großen Scheitel -Krümmungskreises gelten entsprechende Überle¬
gungen . Die Scheitel-Krümmungskreise sind deshalb so besonders gute Schmiegekreise,
weil in jedem Scheitel vier Schnittpunkte zusammenfallen . Dieselbe Überlegung für an¬
dere Ellipsenpunkte zeigt , dass nur drei Schnittpunkte zusammenfallen : Jetzt durchdrin¬
gen die Schmiegekreise die Ellipse. Ihre Konstruktion ist schwieriger.

Aufgaben

Wenn nichts anderes vermerkt ist, liegt die Ellipse im Querformat . Ihr Mittelpunkt ist im¬
mer der Ursprung .

1 . Wie lautet die Mittelpunkt -Gleichung einer Ellipse E , für die gilt

a) a = 2 , b = 1 b) a = 2 , b = 1 , Hochformat c) a = -JlÖ , b = ^5

2 . Bestimme die Halbachsen a und b der Ellipse.
Hat die Ellipse Quer- oder Hochformat ?

a) 7 ^" + "
8

~" = 1 b) 0,5x2 + 2y2 = 2

c) 4x2 + y2 = 1 d) -^ x2 + ^ - y2 = j

3 . Von einer Ellipse kennt man eine Halbachse und einen Punkt .
Bestimme die andere Halbachse .
a) a = 5V? , P ( 10 | 1 ) b) b = 5V2 , P ( - 14 | l )

c) a = 5jiÖ , P ( 15 | — 3) d) b = 4Vl3
"

, P ( - 15 | - 8)

4 . Von einer Ellipse kennt man die Punkte P und Q .
Bestimme die Mittelpunkt -Gleichung . (Tip : Substitution von & und l/bi)
a) P (9 | - 1) , Q ( — 713) b) P (— 119) , Q( - 9 | 6)
c) P ( 1714 ) , Q (23 | — 1) d) P ( 1914) , Q ( 16 | ll )
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5 . Der Ellipse mit der Gleichung 16x 2 + 9y2 = 144 ist ein Quadrat einbeschrieben . Be¬
rechne seine Seitenlänge s .

6 . Die Ellipse mit der Gleichung x2 + 4y2 = 500 und die Gerade mit der Gleichung
3y = 2x - 25 schneiden sich zweimal. Berechne die Schnittpunkte .

7 . Bestimme den Flächeninhalt und näherungsweise den Umfang der Ellipse mit der
Gleichung
a) 9x2 = 25y2 = 225 b) x2 + 100y2 = 100

— h ._ .— b- -

9 . Von einer Ellipse kennt man den Punkt P (4,5 | 2) und die kleine Halbachse b = 2,5 .Konstruiere die Länge der großen Halbachse a mit Hilfe der Idee des Ellipsenzirkels .
10 . Konstruiere die Scheitelkrümmungs -Kreise und skizziere die Ellipse mit den Halb¬achsen

a) a = 5,b = 4 b) a = 5 , b = 3 c) a = 5,b = 2
11 . Eine Ellipse , bei der die Mittelpunkte der großen Scheitelkrümmungs -Kreise die Ne¬benscheitel sind , heißt Fagnano-Ellipse.

Der italienische Mathematiker Giulio Carlo Fagnano , Marquis von Toschi und
S . Onorio ( 1682 bis 1766) hat sich einen Namen gemacht wegen seiner Bogenlängen-
Berechnungen bei Ellipse , Hyperbel , Parabel und Lemniskate.
a) Die kleine Halbachse einer Fagnano -Ellipse sei b . Berechne- die große Halbachse a

- den Radius des kleinen Scheitelkrümmungs-Kreises.
b) Zeichne eine Fagnano -Ellipse mit Hilfe ihrer Scheitelkrümmungs -Kreise für b = 3 .
c) Zeige : Wenn eine Ellipse mit den Halbachsen a und b eine Fagnano -Ellipse ist,dann ist auch die Ellipse mit den Halbachsen b und a/2 eine Fagnano -Ellipse.
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3 . Die Brennpunkte der Ellipse

Der belgische Mathematiker und Baumeister Pierre Germinal Dandelin ( 1794 bis
1847) hatte bei der Untersuchung von Kegelschnitten eine schöne Idee aus der Raumgeo¬
metrie, die uns eine sehr wichtige Eigenschaft der Ellipse vor Augen führt . Dazu betrach¬
ten wir die Ellipse wieder als Schnitt einer Ebene E und eines Zylinders . Auf beiden Seiten
der Ebene schiebt man eine genau passende Kugel (Kugelradius = Zylinderradius ) in den
Zylinder , bis sie die Ebene berührt . Die beiden Kugeln berühren außerdem den Zylinder
in den Kreisen k , und k2. Aus Symmetriegründen liegen die beiden Berührpunkte Fj und
F2 auf der Hauptachse gleich weit vom Mittelpunkt M der Ellipse weg . F) und F2 heißen
Brennpunkte der Ellipse . Zu Ehren von Dandelin nennt man die beiden Kugeln
Dandelin -Kugeln .

Dandelin -Kugel

Tangentenbüschel einer Kugel

die Tangentenabschnitte
sind gleich lang

(Kegel -Mantellinien )

P sei ein beliebiger Punkt der Schnittellipse. Weil die Schnittebene auch Tangentialebene
der beiden Dandelin -Kugeln ist, sind PF) und PF2 Tangenten dieser Kugeln. Die Mantel¬
linie durch P schneidet die beiden Berührkreise k , und k2 in Qi und Q2. PQ , und PQ 2 sind
also auch Tangenten der Dandelin -Kugeln. Alle Kugel-Tangentenabschnitte durch einen
Punkt sind gleich lang . Deshalb gilt :

PCh = PF\ und PQ^ = PF) also PF) + PF , = PQ ^ + PQ2 = QiQ2 = const.
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Für jeden Ellipsenpunkt ist die Summe seiner Entfernungen von den beiden Brennpunk¬
ten die Konstante QiQ 2 , der Abstand der beiden Berührkreise . Der Wert dieser Konstante
ergibt sich , wenn wir P in einen Hauptscheitel , zum Beispiel A2, legen , wenn also P = A2
ist :

Q 1Q2 A2F 1 + A2F2 — A2F [ + F [Aj — 2a

Zusammenfassung
Für jeden Ellipsenpunkt P gilt

PF\ + PF^ = 2a

Die beiden Brennstrecken [ PF t ] und [ PF 2] sind zusammen so
lang wie die Hauptachse 2a .

Legt man P in einen Nebenscheitel B , dann gilt aus Symmetrie¬
gründen F,B = F2B = a . Mit dieser Beziehung lassen sich die
Brennpunkte einfach konstruieren .

* Exzentrizitäten

Die Entfernung e der Brennpunkte vom Mittelpunkt heißt lineare Exzentrizität . Die
Zeichnung (Pythagoras !) zeigt :

e2 = a2 - b2
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Für einen Kreis gilt a = b , also e = 0 . e ist aber noch kein Maß dafür , wie die Ellipse vom
Kreis abweicht . Denn bei einer Ähnlichkeitsabbildung , zum Beispiel zentrische Streckung,
ändert sich zwar e , nicht aber die Form . Umgekehrt gibt es zu ein und demselben Wert für
e verschieden geformte Ellipsen . Bezieht man jedoch e auf die große Halbachse , dann ent¬
steht eine Zahl , in der die Gestalt der Ellipse zum Ausdruck kommt, sie heißt numerische
Exzentrizität e : _

Konfokale Ellipsen mit KF2 = 2e = const .

Wegen e : Va2 - b2
= Jl -

b2
ist 0 < e < 1

Für die Grenzfälle gilt
e = 0 , das heißt a = b : Kreis
e = 1 , das heißt b = 0 : Strecke

Konfokale Ellipsen mit F^ = 2e = const.

e = 0,5
e = 0,9

e = 0,95

e = 0,99

£ = 1
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Die Ellipse in der Astronomie
Bis ins 16 . Jahrhundert glaubte man , dass sich alle Gestirne auf Kreisbahnen oder auf
Überlagerungen von Kreisbahnen bewegen. Als Johannes Kepler (Weil der Stadt 1571
bis 1630 Regensburg) auf der Grundlage der Beobachtungen von Tycho Brahe die Pla¬
netenbewegung mathematisch beschreiben wollte, musste er dieses Ideal der Kreisbahn
aufgeben . Er stellte fest , dass die Planeten auf Ellipsenbahnen laufen , bei denen die Sonne
in einem Brennpunkt steht.
Die Entfernung von Planet und Sonne ändert sich also während des Umlaufs . Der Punkt,bei dem die Entfernung am größten ist (rmax) , heißt Aphel ; der Punkt , bei dem die Entfer¬
nung am kleinsten ist (rmin) , heißt Perihel . Die Ellipsenbahnen weichen nur sehr wenig von
der Kreisform ab . Ihre numerischen Exzentrizitäten reichen von 0,007 (Venus) bis 0,25
(Pluto) . Für die Erde gilt
a = 148,65 - 106 km ,
b = 148,63 • 106 km , daraus errechnet sich
e = 2,44 - IO6 km ,
e = 0,016
rmin = a - e = 146,2 • 106 km
rmax = a + e = 151,1 • 106 km .
Am 3 . Juli ( !) durchläuft die Erde das Aphel und am 2 . Januar das Periphel .

Planet

Perihel '
Erdbahn

maßstäblich
e = 0,016

Plutobahn
maßstäblich

e = 0,25

Die Gärtner-Konstruktion der Ellipse
Die Beziehung PF ! + PF2 = 2a erlaubt ein einfa¬
ches mechanisches Verfahren zum Erzeugen von
Ellipsen . In den Brennpunkten befestigt man zwei
Pflöcke und an ihnen eine Schnur der Länge 2a.
Ein Stift, der so geführt wird , dass die Schnur ge¬
spannt ist, beschreibt eine Ellipse . Der Name die¬
ser Konstruktion geht zurück auf die Art , mit der
Gärtner im Barock die Ränder der damals so be¬
liebten elliptischen Blumenbeete markiert haben .
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Die Ellipseneigenschaft , die der Gärtner - Konstruktion zugrunde liegt , führt auch zu einer
Konstruktion einzelner Ellipsenpunkte : Man zeichnet um die Brennpunkte Kreise , deren
Radien zusammen 2a ergeben ; die Schnittpunkte sind Ellipsenpunkte .

Herleitung der Ellipsen-Gleichung aus der Beziehung PF ! + PF2 = 2a

r i
= y2 + (e +

r , + r2 = 2a

r t = 2a - r2 || quadrieren

r 2 = 4a 2 - 4ar 2 + r2

yi (e + x)2 = 4a 2 - 4ar 2 + X + (e ~ x)2

ß * + 2ex + X = 4a 2 _ 4ar 2 + X - 2ex + X

ar 2 = a2 - ex | | quadrieren

a 2 [y2 + (e - x)2
] = a4 - 2a 2ex + e2x2

a 2y2 + a 2e2 - 2a %x + a2x2 = a4 - ga %x + e2x2

a2y2 + a2x2 - e2x2 = a4 - a 2e2

a 2y2 + x2 (a 2 - e2) = a 2 (a 2 - e2)

b 2

a 2y2 + x2b 2 = a 2b 2

X + yl = i
a 2 b 2

: (a 2b 2)
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Ein Punkt P liegt also genau dann auf der Ellipse , wenn die Summe der beiden Brenn¬
strecken r , und r2 gleich der Elauptachse 2a ist . Für einen Punkt Q , der außerhalb der El¬
lipse liegt , ist die Summe der Brennstrecken größer als 2a ; für einen Punkt R, der inner¬
halb liegt , ist sie kleiner als 2a . Zur Begründung verwenden wir die Dreieck-Ungleichung.

Im Dreieck QPF2 gilt : PQ + QF2 > PF2

QF ! + QF2 = PF ! + QP + QF2 > PFi + PF2 = 2a

QF; + QF2 > 2a

Im Dreieck RPF2 gilt : RP + PF2 > RF2

RFi + RF2 < RF , + RP + RF2 = PF , + PF2 = 2a

RF , + RF2 < 2a

* Brennpunkt und Tangente
oder : Wie der Brennpunkt zu seinem Namen kommt. Ist wa Tangente

der Ellipse in P ?

Das Bild zeigt einen Ellipsenpunkt P und eine Winkelhalbierende wf/ der Brennstrahlen
[ F [P und [ F2P . Dem Augenschein nach ist wK Tangente der Ellipse in P . Aber nicht nur
dem Augenschein nach ! Mit einem kleinen Trick lässt sich das beweisen : Man spiegelt
einen der beiden Brennpunkte an wc (Spiegelpunkt Ff ) . Wegen Achsensymmetrie ist
PF2 = PF * .
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Für jeden von P verschiedenen Punkt Q auf w(/ gilt dann (Dreieck-Ungleichung !) :

QFi + QF2 = QF ] + QF* > FjF * = 2a

Also gilt QF , + QF2 > 2a => Q liegt außerhalb der Ellipse => wa ist Tangente im Punkt
P . Weil die beiden Winkelhalbierenden einer Geradenkreuzung aufeinander senkrecht ste¬
hen , ist die andere Winkelhalbierende Normale der Ellipse im Punkt P .

W

Damit haben wir den Satz :

Die beiden Winkelhalbierenden der Brennstrahlen eines Ellipsenpunkts P sind Tan¬
gente und Normale der Ellipse in P .

Wir haben so eine einfache Möglichkeit gefunden , die Tangenten in einem beliebigen El¬
lipsenpunkt zu konstruieren : Man halbiert den Winkel der Brennstrahlen , durch den die
Ellipse geht.
Nach dem Reflexionsgesetz der Physik sind Einfalls- und Ausfallswinkel gleich groß . Alle
von einem Brennpunkt ausgehenden (Licht-)Strahlen werden an der Ellipse so reflektiert,
dass sie sich im andern Brennpunkt treffen . Weil die Wege aller Strahlen gleich lang ( = 2a)
sind , treffen sich die reflektierten Strahlen auch alle zum selben Zeitpunkt . (Anwendung
dieses Effekts im Kapitel 9 . II , 5)
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Aufgaben

1 . Berechne die fehlenden Größen

a b e e

a) 4 2

b) 4 2

c) 7 0,5

d) 4 0,8

2 . Zeichne eine Ellipse mit e = b = 4 . Welchen Winkel bilden die Brennstrahlen , die
durch einen Nebenscheitel gehen?

3 . Bestimme das Achsenverhältnis b/a bei Ellipsen mit
a) e = 0,5 b) e = 0,75 c) s = 0,9 d) e = 0,95 e) e = 0,99

4 . Zeichne (mit Hilfe der Scheitelkrümmungs-Kreise) die Ellipse E , mit den Halbach¬
sen a = 4 und b = 3,5 sowie die beiden Brennpunkte . Zeichne dann die Ellipse E2 mit
der gleichen linearen Exzentrizität wie Ej , deren große Halbachse die Länge 2,5 hat .
Berechne für beide Ellipsen die numerische Exzentrizität .

5 . Zeichne (mit Hilfe der Scheitelkrümmungs-Kreise) die Ellipse E] mit den Halbach¬
sen a = 3 und b = 1,5 sowie die beiden Brennpunkte . Zeichne dann die Ellipse E2 mit
der gleichen numerischen Exzentrizität wie E, , deren große Halbachse die Länge 4
hat . Berechne für beide Ellipsen die lineare Exzentrizität .

6 . Der Komet Halley läuft auf einer Ellipsenbahn um die Sonne. Ein Umlauf dauert
etwa 76 Jahre . Seine kleinste Entfernung bis zur Sonne ist 87,8 • 106 km, seine größte
5232,5 • 106 km . Berechne die Werte a, b, e und e seiner Ellipsenbahn .

7 . Berechne allgemein a, b , e und e aus rmin und rmax einer Planetenbahn .
8 . Von einer Ellipse mit a = 5 kennt man F, ( - 3 | 0) und F2 (3 | 0) . Konstruiere die Ellip¬

senpunkte , die von Ft die Entfernungen 3 , 5 , 6 und 7 haben und zeichne damit nähe¬
rungsweise die Ellipse.

9 . Zeichne zwei Punkte F , und F2 mit 8 cm Entfernung und um jeden dieser Punkte
Kreise mit den Radien 1cm , 2 cm , . . . , 10 cm . Suche alle Schnittpunkte P mit
PF1 + PF2 = 12cm und verbinde sie zu einer Ellipse . Welche weiteren Ellipsen
(a = ?) kannst du in dem Kreisgewirr entdecken ? Zeichne sie !

Ellipsentangenten
Wenn nichts vermerkt ist , liegen Haupt - und Nebenachse in den Koordinatenachsen .

10 . Gegeben : Fj ( - 410) , Ellipsenpunkt P (31 - 2,5)
Konstruiere die Tangente in P und die vier Scheitel der Ellipse.

11 . Gegeben : Fj ( - 310) , Tangente y = 0,5x + 4
Konstruiere den Berührpunkt P und die vier Scheitel der Ellipse.

230



12 . Gegeben : Halbachse a = 5 , Tangente y = - 0,5x + x 4
Konstruiere die Brennpunkte und die Nebenscheitel der Ellipse.

13 . Gegeben : F2 (4 | 0) , a = 5 , Tangente y = - } x + 3,5 mit Berührpunkt P (312,5 )
Konstruiere den zweiten Brennpunkt und die vier Scheitel der Ellipse. (Die Ellipse
liegt nicht symmetrisch zum Koordinatensystem !)

14 . Gegeben : F 1( - 4 | 0) , a = 5 , Tangentensteigung m = - 0,5
Konstruiere die Tangenten und die Berührpunkte .

15 . Gegeben : Fi ( - 4 | 0) , a = 5 , Punkt Q ( 114) außerhalb der Ellipse
Konstruiere die Tangenten durch Q .

Leitkreis und Hüllgeraden
• 16 . Leitkreis

a) Zeige : Spiegelt man den Brennpunkt F2 an irgendeiner Ellipsentangente (Spie¬
gelpunkt FJ ) , dann liegen alle so erzeugten Spiegelpunkte auf dem Kreis
um F [ mit Radius 2a.

Dieser Kreis heißt Leitkreis der Ellipse zum Brennpunkt

b) Zeige : Der Mittelpunkt H der Strecke [ F2F* ] liegt auf dem Hauptkreis mit
Radius a (siehe Aufgabe a» .
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• 17 . 1 . Hüllkonstruktion mit Leitkreis
Man zeichnet einen Kreis ; er ist der Leitkreis, sein Mittelpunkt F [ ist ein Brennpunkt
der Ellipse . Den andern Brennpunkt F2 zeichnet man in den Leitkreis.
Zeige : Verbindet man F2 mit irgendeinem Kreispunkt L , dann ist die Mittelsenk¬

rechte von [ F2L ] Tangente der Ellipse mit den Brennpunkten F , und F2 .
Diese Konstruktion lässt sich auch eindrucksvoll durch Falten einer Kreis¬
scheibe aus Papier vorführen .

• 18 . 2 . Hüllkonstruktion mit Hauptkreis
Man zeichnet einen Kreis ; er ist der Hauptkreis , sein Mittelpunkt M ist Mittelpunkt
der Ellipse . Den Brennpunkt F2 zeichnet man in den Hauptkreis .
Zeige : Bewegt man einen rechten Winkel (Geodreieck !) so , dass sein Scheitel auf

dem Hauptkreis wandert und ein Schenkel durch F2 geht, dann ist der andere
Schenkel Tangente der Ellipse.
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II . Kegelschnitte
1 . Überblick

In der Vorbemerkung haben wir schon erwähnt , dass beim Schnitt von Kegel und Ebene
drei Typen von Kurven entstehen können . Welcher entsteht , hängt ab
vom halben Öffnungswinkel cp des Kegels und
vom Winkel oc, den Kegelachse und Schnittebene bilden :
für a > cp entsteht eine Ellipse,
für oc = cp eine Parabel und
für a < cp eine Hyperbel.

Parabel : Hyperbel:
a < (pEllipse: a > ip
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Wenn die Schnittebene die Kegelspitze enthält , dann entarten die Schnittkurven :
die Ellipse zu einem Punkt (Kegelspitze) ,
die Parabel zu einer Gerade (Mantellinie) und
die Hyperbel zu einer Geradenkreuzung (zwei Mantellinien ) .

Auf den ersten Blick glaubt man nicht recht , dass der geschlossene Kegelschnitt tatsächlich
eine Ellipse (mit zwei Symmetrieachsen also) sein soll . Eher erwartet man eine eiförmigeKurve, die oben - wo der Kegel enger ist - stärker gekrümmt ist als unten - wo der Kegelweiter ist. Auch ein so scharfer Beobachter wie Albrecht Dürer (Nürnberg 1471 bis 1528
Nürnberg ) ist dieser Täuschung erlegen. In seiner Underweysung von 1525 beschreibt er
die Ellipse als Eierlini = darumb daß sie schier einem Ei gleich ist. Erst 1640 wagte der
schweizer Mathematiker Paul Guldin (St . Gallen 1577 bis 1643 Graz) , an der Autorität
Dürers zu rütteln , indem er die wirkliche Gestalt der Ellipse mit zwei Symmetrieachsen
aufzeigte.
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Berührkreis

Ellipse: a > (p

Berührkreis

Für uns ist der Nachweis nicht schwer, weil wir auf die Idee Dandelins zurückgreifen kön¬
nen . Analog zum Zylinder stecken wir in den Kegel zwei Kugeln, die Kegel und Schnitt¬
ebene berühren . Jede der beiden Kugeln berührt den Kegel in einem Kreis und die Schnitt¬
ebene in einem Punkt (Brennpunkte F , und F2) . Die Mantellinie durch P trifft die
Berührkreise in B [ und B2, sie ist Tangente beider Kugeln . Es gilt

PF) = PB^ und PF^ = PB^

(Tangentenabschnitte von einem Punkt aus an eine Kugel sind gleich lang .)

PF\ + PF^ = PB^ + PB^ = B^ ( = const.)

Das ist genau die Eigenschaft der Ellipse , die zur Gärtnerkonstruktion führt . (Siehe Kapi¬
tel 9 . I , 3)
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2 . Die Hyperbel

Wieder stecken wir in den Kegel zwei Dandelin -Kugeln , jetzt aber so , dass die Kegelspitzedazwischen liegt . Jede der beiden Kugeln berührt den Kegel in einem Kreis und die
Schnittebene in einem Punkt : F , und F2. F , und F2 heißen Brennpunkte der Hyperbel . F,F2ist eine Symmetrieachse der Hyperbel . Die Mantellinie durch P trifft die Berührkreise in
B , und B 2, sie ist Tangente beider Kugeln . Es gilt

PF , = PB , und PF2 = PB2
(Tangentenabschnitte von einem Punkt aus an eine Kugel
sind gleich lang .)

B,B 2 ist konstant ( = k)
BjB^ = PB^ - PBi = PF , - PF) = k ©

Die Hyperbel besteht aus zwei Teilen, man nennt sie auch
Äste der Hyperbel . Liegt P auf dem bei F2 liegenden Ast ,dann ergibt eine entsprechende Überlegung

PF) - PF) = k ©
Die Gleichungen © und © lassen sich zur kennzeichnen¬
den Eigenschaft der Hyperbel zusammenfassen :

| PF) - PF) | = k .
Für jeden Hyperbelpunkt P ist der Betrag der Differenz sei¬
ner Entfernungen von F , und F2 eine Konstante . Diese De¬
finition unterscheidet sich von der der Ellipse nur im Re¬
chenzeichen ! Wie bei der Ellipse bezeichnet man die
Konstante k mit 2a

Hyperbel-Eigenschaft Hyperbel:
a < (p -

Aufgrund dieser Eigenschaft können wir jetzt Punkte der
Hyperbel konstruieren , wenn F, , F2 und a bekannt sind.

Berührkreis

Hyperbel-Ast

Berührkreis

Hyperbel:
a < (p /
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Der Betrag in der Bedingung | r t - r2 | = 2a erlaubt eine Vertauschung von r , und r2 und er¬
möglicht so den 2 . Hyperbel -Ast . Dieser ist symmetrisch zum l . Ast , Symmetrieachse ist die
Mittelsenkrechte von F , und F2.

Bezeichnungen
Das Symmetriezentrum M heißt Mittelpunkt der Hyperbel .
Die Schnittpunkte A, , A2 von Hyperbel und einer Symmetrieachse heißen Scheitel . Dabei

gilt

A,F 2
- AiF ; = 2a oder wegen A^ , = A2F2

A^ ~ A2F2 = 2a

A 1A2 = 2ä

A,M - MA 2 = a , a heißt reelle Halbachse .
F [M = F2M = e , e heißt lineare Exzentrizität .

a
7T = G e heißt numerische Exzentrizität .

Ähnlich wie bei der Ellipse definiert man eine zweite Halbachse b durch

b2 = e2 - a2

Trägt man b von M aus auf der 2 . Symmetrie¬
achse ab , so ergeben sich zwei Punkte B , und B 2,
die aber nicht auf der Hyperbel liegen . Deshalb
nennt man b imaginäre Halbachse . Im Gegensatz
zur Ellipse muss hier a nicht größer sein als b .
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Ähnlich wie bei der Ellipse lassen sich auch die Punkte der Hyperbel mit einer Gleichung
festlegen . Wir verwenden dafür nur die Beziehung | PF !

- PF 2 1= 2a .

Die Mittelpunkt -Gleichung der Hyperbel

: y2 + (x + e)2 b2 r2 = y2 + (x - e)2

| r , + r2 1 = 2a
r , = ±2a - r2 || quadrieren
v\ = 4a 2 ± 4ar 2 + r\

X (x + e)2 = 4a 2 + 4ar 2 + ^ + (x - e)2

+ 2xe +X .
== 4a2 ± 4ar 2 + y? - 2xe +X .

xe - a2 = ±ar , quadrieren
e2x2 - 2a 2ex + a4 = a2

[y2 + (x - e)2 ]
e2x2 - 2ßß€x + a4 = a2y2 + a2x2 - 2a%x + a2e2

x2 (e^ - a2) - y2a2 = a2 (e^ - a2)
b2 b2

b2x2 - a2y2 = a2b2
|| : (a2b2)

Das ist die Mittelpunkt -Gleichung der Hyperbel mit der reellen Halbachse a und den
Brennpunkten auf der x-Achse sowie der imaginären Halbachse b auf der y-Achse .
Vertauscht man x und y, so spiegelt man die Hyperbel an der Winkelhalbierenden des
1 . Quadranten . Die Gleichung der so gespiegelten Hyperbel ist

yi _ ^L = 1
a2 b2

Die reelle Halbachse a und die Brennpunkte lie¬
gen jetzt auf der y-Achse , die imaginäre Halb¬
achse b liegt auf der x-Achse .

9 7
= 1

238



Die Asymptoten der Hyperbel

Die Gleichung
y2 b

~rr = 1 lässt sich umformen zu | y | = — | x |
tr 3

. Speziell im

I . Quadranten (x > 0 , y > 0) ergibt sich y = — x
3

Für sehr große Werte von x ist a2
x2 fast null , das heißt , die Hyperbel unterscheidet sich fast

nicht mehr von der Gerade mit der Gleichung y = — x . Aus Symmetriegründen gilt das
3

Entsprechende in den anderen Quadranten . Die beiden Geraden mit den Gleichungen
b b

y = — x und y = - x heißen Asymptoten der Hyperbel . Es gilt : Für große | x |-Werte
3 3

(also auch für große | y |-Werte) unterscheidet sich die Hyperbel kaum noch von ihren
Asymptoten .

b / a2 b
Wegen — x -i/l - r- < — x (für x > 0) verläuft die Hyperbel im E Quadranten immer

a V x2 a
unterhalb ihrer Asymptote . In größerer Entfernung von den Scheiteln geben die Asympto¬
ten den Verlauf der Hyperbel im Groben wieder. Man zeichnet die Asymptoten als Verlän¬

gerungen der Diagonalen des Bestimmungsrechtecksmit Mittelpunkt M und den Seiten 2a
und 2b .

Hyperbel
= 1

Bestimmungs-
rechteck

Hyperbel :
x2 y2
a2 b2

Asymptoten : , b
y = -1- xa
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Zu einem Bestimmungsdreieck gibt es zwei Hyperbeln mit denselben Asymptoten .
x2 y2

Die eine hat die Gleichung —r - — = 1
a2 b2

ihre reelle Halbachse ist a , ihre Brennpunkte liegen auf der x-Achse.
y2 x2

Die andre hat die Gleichung -ry - - = 1
Dz B.

ihre reelle Halbachse ist b , ihre Brennpunkte liegen auf der y -Achse.

^ = 1

* Die Scheitel -Krümmungskreise
Wie bei der Ellipse gibt es auch bei der Hyperbel Kreise, die die Hyperbel in der Umge¬
bung ihrer Scheitel recht gut annähern . Die Mittelpunkte liegen aus Symmetriegründenauf der reellen Achse. Das Bild erklärt die Konstruktion des Mittelpunkts und die Herlei¬
tung der Formel für den Radius der Krümmungskreise .

Diebeiden rechtwinkligenDreieckesind ähnlich: /
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Die mathematische Begründung ist ähnlich wie bei der Ellipse .
Ein Kreis mit Mittelpunkt auf der x -Achse , der durch einen Hyperbelscheitel geht , schnei¬
det die Hyperbel im Allgemeinen in zwei weiteren Punkten P und Q.

2r - (x - a)

Für die Koordinaten von P und Q gelten zwei Gleichungen :

I . y2 = (x - a) (2r - x + a) (Höhensatz im Dreieck ACP )
b2

II . y2 = — (x2 - a2) (Hyperbelgleichung )
3.

Gleichsetzen liefert : (x - a) (2r - x + a) = — (x - a) (x + a)
SL

das ergibt eine quadratische Gleichung für x : (x - a)
b2

(2r - x + a) - (x + a) = 0 .

Eine Lösung ist Xj = a , sie gehört zum Scheitel , r soll nun so bestimmt werden , dass auch

die 2 . Lösung x2 , für die die Klammer [ . . . ] gleich null ist , den Wert a hat . Geometrisch be¬
deutet das , dass die Punkte A , P und Q zusammenfallen .
Setzen wir in [ . . . ] a für x ein , so ergibt sich für r

(2r — a + a)
b2

-
^

- ( a + a ) = 0 o o b2
2r = 2 —

a
r = IE

a

* Tangenten der Hyperbel
Bei der Ellipse ist die Winkelhalbierende des Außenwinkels bei P im Dreieck F,F 2P Tan¬

gente im Punkt P .

241



Ähnliches gilt bei der Hyperbel : Die Halbierende des Innenwinkels bei P im Dreieck
F,F 2P ist Tangente im Punkt P.

Zum Beweis spiegelt man einen der beiden Brennpunkte an der Winkelhalbierenden wH
(Spiegelpunkt F£ ) . Wegen Achsensymmetrie ist PF2 = PFJ .
Für jeden von P verschiedenen Punkt Q auf wa gilt dann (Dreieck-Ungleichung !) :

QF; - QF^
= QF; - QF * < QF * + FJF* - QF * = FfFf = 2a

Also gilt QF ]
- QF2 < 2a = > Q liegt nicht auf der Hyperbel =^> wK ist Tangente im Punkt

P.

Folgerungen
a) Licht , das von einem Brennpunkt ausgeht , wird an der Hyperbel so reflektiert, als ob es

vom andern Brennpunkt käme.
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b) Zeichnet man zu zwei gegebenen Brennpunkten eine zugehörige Ellipse und Hyperbel ,
so schneiden sich diese in vier Punkten . In jedem Schnittpunkt sind die Tangenten von
Hyperbel beziehungsweise Ellipse die Winkelhalbierenden des Innen - , beziehungs¬
weise Außenwinkels der Brennstrahlen , das heißt , sie stehen aufeinander senkrecht.
Man sagt auch : Konfokale Ellipsen und Hyperbeln schneiden sich rechtwinklig.

Hyperbel-Aufgaben

Bis auf Aufgabe 12 . liegen alle erwähnten Hyperbeln symmetrisch zum Ursprung und ha¬
ben die Brennpunkte auf der x -Achse.

1 . Zeichne die zwei Hyperbeln mit a = 2 , b = 1 und a = 4 , b = 3 in ein und dasselbe

Koordinatensystem und berechne die Schnittpunkte .

2 . Wie lautet die Gleichung einer Hyperbel h mit A2 (410 ) durch P (5 | 3) ?

3 . Bestimme die Gleichung der Hyperbel ; zeichne die Scheitel , die Brennpunkte und

die Asymptoten ; skizziere die Hyperbel.

a) a = 3 , b = 4 b) a = 2 , e = c) b = l , e = V2

4 . Zeichne ein Rechteck mit den Seitenlangen 4 und 6 (waagrecht) .
Skizziere die Hyperbeln , für die das Rechteck Bestimmungsrechteck ist.

5 . Eine Hyperbel hat den Scheitel A2 (2 | 0) und den Brennpunkt F2 (2 |o ) .
Bestimme a , b und e . Zeichne die Asymptoten und skizziere die Hyperbel.

6 . Eine Hyperbel hat die Brennpunkte F2j 1( + 3,75 | 0) und geht durch P (5 | 3 ) .
Konstruiere die Scheitel , die Asymptoten und skizziere die Hyperbel.
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7 . Eine Hyperbel hat die Asymptoten y = ±2,4x und einen Scheitel A, ( — 2,5 | 0) .
Bestimme a, b und e . Skizziere die Hyperbel.

8 . Die Gerade durch P ( 110) und Q ( — 21 — 3) berührt eine Hyperbel mit den Brennpunk¬
ten F2j i ( ± 3 | 0) . Konstruiere den Berührpunkt B , die Scheitel und die Asymptoten ;
skizziere die Hyperbel.

9 . Die Mittelpunkte zweier Kreise mit Radius 2 haben die Entfernung 5 .
Zeichne die Ellipse und die Hyperbel , für die die beiden Kreise Krümmungskreise
sind . Anleitung : Berechne jeweils a und b , zeichne die Asymptoten der Hyperbel
und die andern beiden Krümmungskreise der Ellipse . (Für die Ellipse : Mittelpunkt
M (0 | 0) , Querformat)

10 . Die Mittelpunkte zweier Kreise mit Radius 2,25 haben die Entfernung 12,5 . Zeichne
die Kreise und konstruiere die Asymptoten der Hyperbel , für die die beiden Kreise
Krümmungskreise sind . Skizziere dann auch die Hyperbel .

11 . Eine Hyperbel heißt gleichseitig, wenn a = b gilt.
a) Zeichne eine gleichseitige Hyperbel mit M (010) und a = 2 . Berechne e und den

Krümmungskreis -Radius r und gib die Gleichungen der Asymptoten an.
b) Begründe folgende Konstruktion für die Punkte (x0 | y0) einer gleichseitigen Hy¬

perbel.

12 . Zeichne die Halbachsen und die Lage der Brennpunkte einer Hyperbel mit der Glei¬

chung y = y (siehe auch Aufgabe 19 .) .

13 . Zeige :
Für den Punkt P (e | p) über dem Brennpunkt von Ellipse (Mittelpunkt M (0 | 0) , Quer¬
format) oder Hyperbel gilt

b2
P = T

p heißt Formparameter , p ist auch der Radius der Krümmungskreise .
14 . Gegeben sind die Hyperbel h : 4x2 - 9y2 = 162 und die Gerade g : y = 2x - 24 .

a) Berechne die Schnittpunkte A und B der Gerade und der Hyperbel .
b) Berechne die Schnittpunkte P und Q der Gerade und der Hyperbel -Asympto¬

ten.
• c) Berechne den Mittelpunkt MAB von [AB ] und M PQ von [PQ ] , Folgerung ?
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15 . Gegeben sind die Hyperbel h : b2x2 - a2y2 = a2b2 und die Gerade g : y = mx + t . A
und B seien die Schnittpunkte von g und h, P und Q seien die Schnittpunkte von g
und den Hyperbel-Asymptoten . Berechne die x -Werte der Mittelpunkte von [AB]
und [ PQ] - VIETA erspart viel Rechnerei ! - und begründe damit den Satz : Bei je¬
der Hyperbel -Sekante sind die beiden Abschnitte zwischen Hyperbel und Asymptote
gleich lang.

16 . A und B seien Punkte der Hyperbel h : b2x2 - a2y2 = a2b2 .
Zeige mit Hilfe des Satzes der vorigen Aufgabe : Die Parallelogramme OVAR und
OSBU sind flächengleich.
Folgere dazu zunächst aus dem Satz der vorigen Aufgabe , dass die Strecken [AB ],
[ BQ ] und [ UV ] gleich lang und parallel sind.

; 17 . 1 . Flächensatz
Zeige :
Zeichnet man durch einen Hyperbelpunkt A die Parallelen zu
den Asymptoten , so entsteht ein Parallelogramm mit den Ge¬

genecken A und M (Mittelpunkt der Hyperbel) . Dieses Paralle¬

logramm hat für jeden Hyperbelpunkt den Flächeninhalt — ab .

yi Parallelogramme
mit gleichem
Flächeninhalt z '
F = | ab / ^
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• 18 . Umkehrung des 1 . Flächensatzes
Zeige :
Vom 1 . Flächensatz gilt auch die Umkehrung :
Zeichnet man in einen Winkel flächengleiche Parallelogramme , bei denen eine Ecke
im Scheitel liegt und die Seiten parallel zu den Schenkeln sind , dann liegen die
freien Ecken auf einem Hyperbelast .

19 . Zeige : Der Graph der Funktion f mit f (x) = — ist eine Hyperbel . Was sind ihre

Asymptoten ?
(Tip : 17 . und 18 .)

Hyperbel

• 20 . 2 . Flächensatz
Zeige :
Jede Hyperbel-Tangente und die Asymptoten schließen ein Dreieck vom Flächenin¬
halt a ■b ein.



3 . Die Parabel

Brennpunkt und Leitgerade
Eine Ebene , die mit einem Kegel genau eine Mantellinie gemeinsam hat , heißt Tangential¬
ebene . Schneidet eine Ebene E einen Kegel parallel zu einer Tangentialebene T, so ergibt
sich als Kegelschnitt eine Parabel . In diesem Fall gibt es nur eine Dandelin -Kugel. Sie be¬
rührt den Kegel in einem Kreis und die Schnittebene in einem Punkt , dem Brennpunkt F .
Der Dandelin -Berührkreis legt die Ebene H fest. Schnittebene E und Berührkreisebene H
schneiden sich in der Leitgerade 1 . Um einen Zusammenhang zwischen den Parabelpunk¬
ten , der Leitgerade und dem Brennpunkt herzuleiten, müssen wir uns über die Lage dieser
drei Ebenen und der Zeichenebene Z im Klaren sein :

Berührkreis-
ebeneH

Leitgerade

Parabel :

Zeichenebene Z
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Die Tangentialebene T berührt den Kegel in der Mantellinie m ' .
m ' und die Kegelachse bestimmen die Zeichenebene Z.
Schnittebene E , Tangentialebene T und Berührkreisebene H stehen senkrecht auf Z ; man
sieht E , T und H deshalb als Geraden , wenn man senkrecht auf die Zeichenebene Z
schaut .

Berührkreis-
Ebene H

Leitgerade

EbeneW

Weil 1 die Schnittgerade von H und E ist, steht sie auch senkrecht auf Z ; sie erscheint als
Punkt , wenn man senkrecht auf Z schaut .
E und Z schneiden sich in der Symmetrieachse f der Parabel ; deshalb steht f senkrecht auf
der Leitgerade 1.
Wir wählen einen beliebigen Parabelpunkt P . Die Mantellinie durch P trifft den Berühr¬
kreis in B . Es gilt PF = PB (gleich lange Tangentenabschnitte ) . Die Ebene W , die parallel
ist zu H und durch P geht, schneidet die Mantellinie m ' in B '

. Es gilt PB = P ' B ' .
Das Lot von P auf die Leitgerade 1 erzeugt den Lotfußpunkt L . Es gilt PL | | f (beide sind
Lote auf 1) und f | | m ' (Z schneidet E in f und T in m ') , also ist PL | | m '.
Die Ebenen W und H schneiden aus den Parallelen m ' und PL die gleich langen Strecken
[PL] und [P'B '

] aus . Also gilt PL = PT5 7 = PB = PF .
Für jeden Parabelpunkt ist die Entfernung vom Brennpunkt so groß wie sein Abstand von
der Leitgerade. Anders formuliert : Eine Parabel ist der geometrische Ort der Punkte , deren
Entfernung von einem gegebenen Punkt gleich ist ihrem Abstand von einer gegebenen Ge¬
rade .

Leitgerade der Parabel

DerAbstandvon Brennpunkt

L ^ Parameter p y H

und Leitgeradeheißt Parameter p.
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Diese Eigenschaft gibt uns eine einfache Möglichkeit, Parabelpunkte zu konstruieren ,
wenn die Leitgerade 1 und der Brennpunkt F gegeben sind : Man schneidet eine Parallele
zur Leitgerade im Abstand r mit einem Kreis um F mit Radius r.

s\ Tf

S ist derjenige Parabelpunkt , der von der Leitgerade den kleinsten Abstand hat . Er hal¬
biert die Abstandstrecke zwischen F und 1 und heißt Scheitel der Parabel . Scheitel S und

Brennpunkt F haben die Entfernung 0,5 p.

Die Scheitelgleichung der Parabel

Im Algebra -Unterricht haben wir die Kurve mit der Gleichung y = ax2 als Parabel kennen

gelernt . Wir müssen jetzt zeigen, dass der Kegelschnitt, den wir Parabel genannt haben ,
auch einer solchen Gleichung genügt. Wir legen den Ursprung des Koordinatensystems in

den Scheitel und die y-Achse durch den Brennpunkt . Aus der Eigenschaft PF = PL leiten
wir die Parabelgleichung her.

Leitgerade
PF = PL

x2 + y quadrieren

x2 + - yp + f + yp + - fr
/ 4

2py

Scheitelgleichung der Parabel
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* Tangenten der Parabel

Wie bei Ellipse und Hyperbel ist auch die Parabeltan¬
gente die Winkelhalbierende geeigneter Geraden : Im Pa¬
rabelpunkt P halbiert sie den Winkel der Brennstrecke
[PF] und des Lots [PL] auf die Leitgerade.
Beweis
Für jeden von P verschiedenen Punkt Q auf w(/ gilt :
QL* < QL = QF .

Also liegt Q nicht auf der Parabel und w„ ist Tangente.

Folgerungen
a) Licht , das vom Brennpunkt ausgeht , wird an der Parabel so reflektiert, dass es die Para¬

bel senkrecht zur Leitgerade, also parallel zur Achse verlässt . (Scheinwerfer)
Umgekehrt : Strahlung , die parallel zur Achse einfällt , wird im Brennpunkt gebündelt .
(Parabol -Antenne)

b) Die Tangente im Parabelpunkt P schneidet die Parabelachse im Punkt T. Weil PL = PF
und PL parallel zur Achse ist und PT den Winkel bei P halbiert , ist PLTF eine Raute .
Der Mittelpunkt M der Raute liegt auf der Scheiteltangente, weil diese Mittelparallele
im Dreieck FLL' ist.

ScheiteltangenteLeitgerade

Subtangente Subnormale
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Auf dieser Eigenschaft beruht die Konstruktion der Parabel als Hüllkurve ihrer Tan¬
gentenschar : Man zeichnet die Scheiteltangente und den Brennpunkt . Gleitet der Schei¬
tel eines rechten Winkels auf der Scheiteltangente und geht ein Schenkel durch den
Brennpunkt , dann ist der andere Schenkel Tangente der Parabel .

Die Eigenschaft , dass die Parabeltangente den Winkel zwischen Brennstrecke und Lot auf

die Leitgerade halbiert , liegt auch der folgenden Faltkonstruktion zu Grunde : Auf einem

Blatt markiert man einen Punkt als Brennpunkt . Die Blattkante ist dann die Leitgerade.
Faltet man das Blatt so , dass die Kante auf dem Brennpunkt zu liegen kommt, dann ist die

Knicklinie eine Parabeltangente .

Aus dem Bild mit der Raute liest man auch ab :

TF = LP = SQ +

TF = TS + -
y

Scheitel¬
tangente

Leitgerade

also ist TS = SQ , das heißt , S halbiert die Subtangente (senkrechte Projektion der Tangen¬
tenstrecke [PT] auf die Parabelachse) .
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Diese Eigenschaft erlaubt eine einfache Konstruktion der Tangente in einem Parabel¬
punkt : Man projiziert den Berührpunkt P senkrecht auf die Achse, das ist Q . Q an S ge¬
spiegelt ergibt T. PT ist die gesuchte Tangente.
Die Normale in P (Lot auf die Tangente) schneidet die Achse in N.
Dann gilt TF = FN , weil FF Mittelparallele im Dreieck TPN ist.
Damit gilt auch QN = F'F = p , und wir haben den Satz :
Die Subnormale [QN ] (senkrechte Projektion der Normalstrecke [PN] auf die Parabel¬
achse) hat für alle Parabelpunkte die Fänge p.

Konstruktion der Parabeltangente mit der Subtangente
© Fot auf P auf Achse : Q
© Kreis um S mit r = SQ schneidet Achse in T
© PT ist Tangente

Aufgaben

1 . Von einer Parabel ist der Brennpunkt F und die Feitgerade 1 bekannt .
Konstruiere einige Parabelpunkte und skizziere die Parabel .
Gib zur Kontrolle die fehlende Koordinate des Parabelpunkts P an.
a) 1 : y = - 1 F (0 | 0) P (2 | ?)
b ) 1 : x = - 1 F ( 110) P (4 | ?)
c) 1 : y = x F (21 - 2) P (4 | ?)

2 . Parabelkonstruktion von Werner
Der Nürnberger Geistliche Johannes Werner veröffentlichte in seinem Todesjahr
1522 eine einfache Konstruktion von Parabelpunkten . Beschreibe und begründe sie
und führe sie für B (01 — 3) aus.

B(0 | - 2p )
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3 . Zeige : Die Sehne, die im Brennpunkt senkrecht auf der Parabelachse steht, hat die
Länge 2p.

4 . Zeige : Für jeden Parabelpunkt P ist das Dreieck gleichschenklig , dessen Seiten auf
Brennstrahl , Normale und Achse liegen .

5 . Eine Parabel mit Scheitel S ( 110) geht durch P (4 ]2) ; ihre Achse ist die x -Achse. Kon¬
struiere die Tangente der Parabel P und bestimme aus der Zeichnung den Wert von p.

6 . Eine Parabel mit Brennpunkt F (510) hat die Tangente mit der Gleichung 2y = x ; ihre
Achse ist die x -Achse. Konstruiere den Scheitel , die Leitgerade und einige Parabel¬
punkte , darunter auch den Berührpunkt B .

7 . Gegeben sind zwei konfokale entgegengesetzt geöffnete Parabeln mit
gemeinsamer Achse.
Zeige : Die Tangenten in den Schnittpunkten stehen aufeinander
senkrecht . (Dazu sagt man : Konfokale Gegenparabeln schneiden
sich senkrecht .)

S8. Eine Parabel mit Brennpunkt F (2 | 0) hat die y-Achse als Leitgerade
Konstruiere diejenigen Parabelpunkte , die auf der Gerade mit der Gleichung
y = - x + 6 liegen .

FnVÄ *’
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* 4 . Die Leitgerade

Auch bei Ellipse und Hyperbel gibt es Leitgeraden , die eine ähnliche Rolle spielen wie die
Leitgerade der Parabel . Sie ergeben sich auch dort als Schnitt von Berührkreisebene und
Schnittebene . Deshalb haben Ellipse und Hyperbel zwei Leitgeraden , für jeden Brenn¬
punkt eine . Bezeichnen wir mit d den Abstand eines Kurvenpunkts P von der Leitgerade
und mit f seine Entfernung vom Brennpunkt L , dann gilt für alle drei Kegelschnitt-Typen

ist konstant

Diese Konstante ist bei Ellipse und Hyperbel
ezität e = — . (Nachweis siehe unten)

Je nach der Größe von e bekommt man

- eine Ellipse e =■
d < 1 ' also f < d

- eine Parabel e = also f = d

- eine Hyperbel e =4 » . also f > d

nichts anderes als die numerische Exzentri-

Allerdings lässt sich der Kreis als
Sonderfall der Ellipse (e = 0)
nicht mit Leitgerade und Brenn¬
punkt erzeugen, weil dann Be¬
rührkreisebene und Schnittebene
parallel sind.

Leitgeraden 1
(senkrechtzurPapierebene)

Berührkreisebene

Kreis
Der Kreis
hat keine

Leitgerade .

Ellipse Parabel , Hyperbel



Zum Beweis der Konstanz von f/d bei der Ellipse projiziert man die Strecken [PL ] und
[PE] senkrecht auf die Kegelachse.

®/\

PL-cosa PE-cos (p
PL = d

PE = PFa = f

PL -cosa = PE -cos (p

(konstant )cos (p

Für die Hyperbel läuft der Beweis entsprechend , bloß ist hier a — cp , also cos a > cos cp ,
also 8 > 1 .

Nachweis für die Gleichheit — = ed

Für den Nebenscheitel B gilt —
j
- =

f
Für den Hauptscheitel A gilt = a - e

s - a

im Bild ist
a —5
e = 4
s = 0,8
s = 6,25

Also ist — =
s

a - e
s - a

as - a2 = as - es

_ e_
s a
I I
f
T = 5

Für die Hyperbel geht der Beweis entsprechend .
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Leitgerade
Leitgerade

Parabel
e = 1

Ellipse

Hyperbel

e = -
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5 . Anwendungen

Auf Kegelschnitte trifft man in Natur , Technik und Architektur .

Bahnkurven

Galileo Galilei (1564 bis 1642) hat Anfang des 17 . Jahrhunderts erkannt , dass ein geworfe¬
ner Körper eine Parabelbahn beschreibt . Dank Kepler ( 1571 bis 1630) und Newton

( 1643 bis 1727) wissen wir heute, dass die Bahnkurven eigentlich Ellipsen sind , die aber in
der Gegend des Scheitels, des Abwurfpunkts also, sehr gut durch Parabeln angenähert
werden . Es lassen sich sogar alle drei Kegelschnitt-Typen beim Werfen erzeugen. Ihre
Form hängt allein von der Abwurfgeschwindigkeit ab.

Kegelschnitte als Satelliten -Bahnen

Ellipsen : e < l Kreis : e=0
v <7,9km/s

Kegelschnitte als Satelliten -Bahnen

Hyperbeln : £ > 1 Parabel : e = l

Fluchtgeschwindigkeit
vF = 11,2 km/s

Ellipsen : e < l
v<vP

Im Makrokosmos der Astronomie findet man Kegelschnitte als Flugbahnen von Raketen,
Planeten , Kometen . . .
Im Mikrokosmos der Atomphysik treten die Kegelschnitte als Flugbahnen geladener Teil¬

chen auf.

Reflexionen

Die Reflexionseigenschaften von Spiegeln, deren Querschnitte Ellipsen , Hyperbeln oder

Parabeln sind , nutzt vor allem die Technik.
Mit Parabolspiegeln erzeugt man Parallelstrahl -Bündel, zum Beispiel in Sendeantennen

(Richtfunk ) oder Autoscheinwerfern (Fernlicht) .
Mit Parabolspiegeln empfängt man Parallelstrahl -Bündel, zum Beispiel in Empfangsan¬
tennen für kosmische Strahlung und Satelliten-Fernsehen oder in astronomischen Spiegel -
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Ellipse

Parabel

Hyperbel

fernrohren . Im Cassegrain- Teleskop ist ein Parabolspiegel mit einem hyperbolisch ge¬
krümmten Spiegel gekoppelt . Mit dieser Spiegelkombination erzielt man eine Brennweite,
die größer ist als die des Parabolspiegels allein . (Ein Fernrohr vergrößert um so stärker , je
länger seine Brennweite ist .) Man könnte sogar ein Teleskop mit Spiegeln bauen , in denen
alle drei Kegelschnitt-Typen Vorkommen .
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Cassegrain -Fernrohr

vom Stern ausgehendes
Parallelstrahl -Bündel

Fotoplatte

Hauptspiegel
(parabolisch)

Seit es den Nierenlithotripter gibt, das ist ein Nierenstein-Zerbrösler, lassen sich Nieren¬
steine ohne blutige Operation entfernen . Sein Funktionsprinzip ist recht einfach : In einem

Brennpunkt eines Ellipsenspiegels sendet ein starker Funke einen Knall aus - das ist eine
Stoßwelle. Der Patient ist so justiert , dass im andern Brennpunkt sein Nierenstein sitzt. Die

am Ellipsenspiegel reflektierte Stoßwelle konzentriert sich auf den Nierenstein und be¬
wirkt , dass eine dünne Außenschicht abplatzt . Einige hundert Funkenknalle zerbröseln so

den Stein zu Grieß .
Nierenstein -Zerbrösler

Stein
Niere

Zündkerze
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Flüstergalerien sind raffinierte Einrichtungen in Schlössern und Residenzen : Eine ellip¬
tisch gewölbte Decke überspannt zwei Räume so , dass in jedem Raum ein Brennpunkt
liegt . Findet ein (geflüstertes) Gespräch im Brennpunkt des einen Raums statt , dann kann
man es im Brennpunkt des andern Raums abhören . Lauschangriffe sind also schon seit
der Renaissance durch trickreiche Nutzung einer Ellipsen -Eigenschaft in der Architektur
möglich!
Flüstergewölbe finden sich zum Beispiel
- in der Vorhalle der Residenz in Würzburg
- im Karyatiden -Saal des Louvre in Paris
- in einem Raum des Castello Sforzesco in Mailand
- in St . Paul ’s in London .

Kegel-Schnitte

Mit einem Lichtkegel, der auf eine
ebene Wand trifft , lassen sich alle
drei Kegelschnitt-Typen als Ränder
von Schatten erzeugen.

Beim Anspitzen eines sechskantigen Bleistifts entstehen Hyperbeln als Schnitte eines Ke¬
gels (im Spitzer) mit Ebenen (Bleistift) , die parallel sind zur Kreisachse . Ähnlich kommen
auch die Hyperbeln auf Gewindemuttern zustande .
Bei der Sonnenuhr wirft ein fester Stab einen Schatten , der die wahre Sonnenzeit angibt .
Die Schattenspitze beschreibt jeden Tag eine andere Kurve ( Datumslinie) . Diese Kurve
entsteht als Schnitt der Bildebene und des Kegels , den die Verbindungsgeraden Stab¬
spitze- Sonne bilden . Sie ist deshalb ein Kegelschnitt , und zwar meistens eine Hyperbel .

260



Modebewusste Messingmutter beim
Mustern ihrer hyperbolischen
Konturen vorm Spiegel

Navigation

Hyperbeln spielen eine große Rolle in der
Ortung von Schiffen. Das LORAN -Sy-
stem (LOng RAnge Navigation) ist ein
Funkortungsverfahren für die Langstrek-
kenpeilung (von den Amerikanern wäh¬
rend des Zweiten Weltkriegs entwickelt).
Drei verschiedene ortsfeste Stationen sen¬
den gleichzeitig Signale aus , die ein Schiff
oder Flugzeug empfängt . Der Laufzeitun¬
terschied der empfangenen Signale zweier
Sender legt eine Hyperbel als Standlinie
fest (die Sender stehen in den Brennpunk¬
ten) . Der Standort ergibt sich als Schnitt¬
punkt von zwei oder drei Hyperbeln . Die
Genauigkeit bei Auswertung der Boden¬
wellenimpulse liegt bei 5 km , bei Auswer¬
tung der Raumwellenimpulse bei 15 km.
Die Reichweite der Sender beträgt tags¬
über 1400 km und nachts etwa das Dop¬
pelte. Das LORAN -System überdeckt fast
vollständig den Nordatlantik sowie große
Teile des Indischen Ozeans.

LORAN -System
Standlinie

Standlmie

Standort

Die Sender A, B und C
strahlen synchrone Signale ab.

6 . Geschichtliches

Etwa um 350 v . Chr . erfindet Menaichmos , der Lehrer Alexanders des Großen , die Ke¬

gelschnitte als Kegel -Schnitte zur Lösung geometrischer Probleme, bei denen man mit der
klassischen Methode (Zirkel, Lineal) nicht weiterkommt. Er löst zum Beispiel das Delische
Problem der Würfelverdopplung über den Schnitt von Parabeln : Aus x2 = ay und y2 = 2ax

folgt nämlich x = a .
Mit den Kegelschnitten ist es auch möglich, einen Winkel in drei gleich große Winkel zu

zerlegen.
Nur das dritte der drei klassischen Probleme, die Quadratur des Kreises, kann Menaich¬

mos nicht lösen .
261



Apollonios von Perge (262 bis 190 ) untersucht die Kegelschnitte eingehend und schreibt
seine Konika, acht Bücher über Kegelschnitte : I bis IV sind griechisch überliefert , V bis
VII liegen arabisch vor und VIII ist verloren gegangen . Im Gegensatz zu Menaichmos , der
für jeden Kegelschnitt-Typ einen neuen Kegel braucht , weil er immer senkrecht zu einer
Mantellinie schneidet , bekommt Apollonios alle Kegelschnitte an einem Kegel durch
Schnitte unter verschiedenen Winkeln . Er treibt geometrische Algebra, indem er versucht,
quadratische Gleichungen über Flächengleichheiten zu lösen :
Die Gleichung ax = b2 ist gelöst, wenn es gelingt, zu einer gegebenen Rechteckseite a die
andere Rechteckseite x so zu finden , dass dieses Rechteck flächengleich ist einem Quadrat
mit gegebener Seitenlänge b . (paraballein = vergleichen, gleich sein)

^p : ax = b

a-x . . = i t fl .

a
b

Zur Lösung der Gleichung ax + x2 = b2 braucht man die Rechteckseite x so , dass Recht¬
eck - und Quadratfläche (Seite x) zusammen so groß sind wie das Quadrat mit Seitenlänge
b . Apollonios bezeichnet das kleine Quadrat mit der Seite x als überschießendes Quadrat .
(hyperballein = über ein Ziel hinauswerfen , übers Ziel hinausschießen )

Typ : ax + x2 = b2
X

2 . il2 !
X i a*x X — . 1. b . j.

a
b

Weil negative Zahlen damals noch nicht bekannt sind , schafft die Gleichung ax - x2 = b2
ein neues Problem . Jetzt braucht man die Rechteckseite x so , dass der Flächenunterschied
von Rechteck und kleinem Quadrat so groß ist wie das Quadrat mit Seitenlänge b . Apol¬
lonios bezeichnet das kleine Quadrat mit der Seite x als unterschießendes Quadrat , (ellei-
pein = mangeln , fehlen)

Typ : ax - x = b

Schreibt man die drei Gleichungen in der Form

y2 = ax
y2 = ax + x2
y2 = ax - x2

so ergeben sich Gleichungen von Parabeln , Hyperbeln und Ellipsen . Die Mittelpunkte die¬
ser Hyperbeln und Ellipsen liegen nicht im Koordinatenursprung .
Nach den Griechen kümmert man sich kaum noch um die Kegelschnitte. Erst Johannes
Werner ( 1468 bis 1522) erweckt sie zu neuem Leben in seiner Schrift Elemente der Ke¬
gelschnitte. Darin steht zum Beispiel eine einfache Parabelkonstruktion mittels einer Schar
von Kreisen mit gemeinsamem Berührpunkt (siehe Kapitel 9 . II , 3) .
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