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Vorbemerkung

Schneidet man einen geraden Kreiskegel mit einer Ebene, so ergibt sich eine ebene Schnitt-
kurve. Je nach Schnittrichtung entsteht

— eine geschlossene Kurve

— eine offene Kurve, die sich ins Unendliche erstreckt

— eine Kurve aus zwei Teilen, die sich ins Unendliche erstrecken.
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Geschlossene Kurven sind Ellipsen, im Sonderfall Kreise. Offene Kurven sind Parabeln
(einteilig) oder Hyperbeln (zweiteilig). Von alters her heillen solche Kurven Kegelschnitte.

Schon vor gut 2000 Jahren haben sich die griechischen Mathematiker mit diesen Kurven
beschiftigt. APPOLONIOS (262 bis 190) war der erste, der sie als Schnitte von Kegeln und
Ebenen erkannte. Die Faszination der Kegelschnitte hat sich bis heute erhalten. Keines-
wegs nur Mathematiker miissen iiber sie Bescheid wissen — auch Astronomen, Techniker,
Baumeister, ja sogar Maler.

In unserer Umwelt begegnen wir stindig Kegelschnitten:

— Schattengrenze eines Lichtkegels auf einer ebenen Wand

— Bild eines Kreises, den man schrig anschaut

— tdglicher Weg der Schattenspitze des Zeigers einer Sonnenuhr

Bahn eines schrig geworfenen Balls (Springbrunnen)

Bahnen von Himmelskorpern und Satelliten

Grundrisse von Barockkirchen und Barockgirten

gewdlbte Spiegel in optischen Geriten.

Von Kegelschnitten ist neben dem Kreis die Ellipse die wichtigste Kurve. Deshalb nehmen
wir sie uns als erste vor.
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I. Die Ellipse

1. Die Ellipse als Zylinderschnitt : _
e Gerader Kreiszylinder
Kreis und Ellipse entstehen auch, wenn eine {1 im Normalbild
Ebene einen geraden Kreiszylinder schneidet.
Steht die Schnittebene senkrecht auf der Zylin-
derachse und damit auf jeder Mantellinie, so R
entsteht ein Kreis; bei einem endlichen Zylin- im Auft
der ist die Schnittebene dann parallel zur
Standebene. Ein schriger Schnitt liefert eine
Ellipse. Auch der Schattenbereich einer Kugel
im Parallellicht ist ein Kreiszylinder. Trifft der
Schatten auf eine ebene Wand, so entsteht je
nach Auftreffwinkel ein Kreis oder eine El-
lipse.

¢ Sehnittebene
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Die Symmetrie des Zylinders iibertrigt sich auf die Ellipse. Sie hat zwei zueinander senk-
rechte Symmetrieachsen, diese schneiden sich im Mittelpunkt M der Ellipse. Die Ellipse
ist punktsymmetrisch zu M. Jede Sehne durch M heif3t Durchmesser der Ellipse.

Der lingste Durchmesser [A A,] heilit groBe Achse oder auch Hauptachse, der kiirzeste
Durchmesser [B,B,] heif3t kleine Achse oder auch Nebenachse. Traditionell bezeichnet man
die Linge der grolen Achse mit 2a, die Linge der kleinen Achse mit 2b. Deswegen heilit a
groBe Halbachse und b kleine Halbachse. Die Endpunkte A; und A, der Hauptachse nennt
man Hauptscheitel, die Endpunkte B, und B, der Nebenachse Nebenscheitel,

Symmetrieachsen - B, Nebersdiaital

2b | kleine Achse,
Nebenachse

grolie Achse,
Hauptachse

2a

Haupt
scheitel A,

A, Haupt-
acheitel

kleine Halb- srofe Halbachss a
achse h —

B; Nebenscheitel
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Die kleine Halbachse b ist gleich dem Zylinderradius
r, die groBe Halbachse a hdngt ab vom Winkel zwi-
schen der Schnittebene und der Zylinderachse. Aus
der Zeichnung lesen wir ab:

2 r
b=r und sing=— 3also a=—
a sin o

Kreisstreckung — Hauptkreis-Konstruktion

Eine der klassischen Grundaufgaben ist es, bei gege-
benen Halbachsen a und b einzelne Ellipsenpunkte
zu konstruieren. Dafiir gibt es mehrere Moglichkei-
ten. Eine beruht darauf, dass man die Ellipse als axial
gestauchten oder gestreckten Kreis deutet. Dieser
Kreis heilt Hauptkreis der Ellipse. Jede Ellipse hat
zwei Hauptkreise: einen mit Radius a und einen mit
Radius b.
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Im Bild: Streckung aufz Doppelte

a
=
K (Xy|yx) wird auf den Ellipsenpunkt E(s.|y.) abgebildet. Diese Abbildung heif3t axiale

Der Kreis mit Radius b wird in x-Richtung aufs fache gestreckt — der Kreispunkt

Streckung (in x-Richtung): Alle x-Werte sind mit dem Faktor % multipliziert, die y-Werte

dndern sich nicht. Die axiale Streckung ist von der zentrischen Streckung zu unterschei-
den.

Die Streckung des Kreises mit Radius b zu einer Ellipse mit den Halbachsen a und b lisst
sich auch mit Zirkel und Lineal einfach konstruieren. Sind a und b gegeben, so zeichnet
man zwei konzentrische Kreise mit den Radien a und b. Einen Ellipsenpunkt E(x.|y,) fin-
det man so: Man zeichnet einen Radius, der den groflen Kreis in P(X,|Y,) und den klei-
nen Kreis in Q(x;|y,) schneidet. Die Parallele zur x-Achse durch Q und die Parallele zur
y-Achse durch P schneiden sich im Ellipsenpunkt E. Die Begriindung lesen wir aus dem
Bild ab.

Y= W
X d a
——aee e x’ -
Xy, b b ¥

M

Diese Gleichungen beschreiben die Streckung des kleinen Kreises in x-Richtung aufs

a
—-fache.
b b
Andere Deutung: Stauchung des groBen Kreises in y-Richtung aufs _;—I‘achc:
Xe X:\
Y. b b
=
= 4 > a
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Die Streckung eines Kreises zur Ellipse beobachtet man am Schatten einer Kugel; die
Stauchung eines Kreises zur Ellipse sieht man, wenn man aus verschiedenen Richtungen
auf einen Kreis schaut.

Blick auf ein zylindrisches Gefal
unter verschiedenen Hohenwinkeln
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* Papierstreifen-Konstruktion

Aus der Hauptkreis-Konstruktion lisst sich eine besonders einfache Methode zum mecha-
nischen Zeichnen einer Ellipse ableiten, die Papierstreifen-Konstruktion: Man erganzt das
rechtwinklige Dreieck in der Ausgangsfigur zu einem Rechteck und verldngert dessen an-
dere Diagonale bis zum Schnitt mit der x- und y-Achse. Symmetrieliberlegungen zeigen,
dass der Ellipsenpunkt E diese verlingerte Diagonale in Strecken der Lingen a und b un-
terteilt.

& 4

: /) R a . b

Verschiebt man also einen Stab der Linge a + b in einem rechten Winkel s0, dass seine
Endpunkte auf den Schenkeln gleiten, so beschreibt der Teilpunkt E den Bogen einer El-
lipse mit den Halbachsen a und b.

Ellipsenbahnen der Sprossen
einer rutschenden Leiter
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*Schnitt von Gerade und Ellipse

Wir wenden die Hauptkreis-Konstruktion an und konstruieren die Schnittpunkte einer
Gerade g = PQ und einer Ellipse mit bekannten Halbachsen. P liege auf der x-Achse.

Lisungsidee : -
Wir strecken die Ellipse und die Gerade in :

y-Richtung mit dem Faktor %: Die Ellipse :

wird zum groBen Hauptkreis und die Ge- b 1Q i E
rade g zur Gerade g'. Die Schnittpunkte §' ot S
und T' von g’ und groBem Hauptkreis stau-

e a

il s b . :
chen wir mit dem Faktor o in y-Richtung

und bekommen die gesuchten Schnitt-
punkte S und T. T

Konstruktion
Der Schnittpunkt P von Gerade und x-Achse bleibt liegen: P = P". Der Geradenpunkt

Q(x,]y,) wird abgebildet auf Q’(xq|%yq}, (Achte auf die gestrichelte V-Figur!)

W ist Schnittpunkt von Hauptkreis (1) mit 'w.
Radius a und y-Achse. 2.

V ist Schnittpunkt von x-Achse und Ge- 5. g®
rade (2) durch Q und den Nebenscheitel : G
B.. _

Q' ist Schnittpunkt von Gerade VW (3) und Loy
Parallele () zur y-Achse durch Q. N

S’ ist Schnittpunkt von Gerade g' = PQ (& ——
und Hauptkreis (1). [ -P' - -

S ist Schnittpunkt von Gerade g = PQ und M
Parallele (6) zur y-Achse durch S". o\

|
e




Aufgaben

10.

e]1l.

s]2.

Eine Ebene schneidet einen Zylinder mit Radius r = 6 so, dass sie mit der Zylinder-
achse den Winkel ¢ bildet.

Berechne die beiden Halbachsen der Schnittellipse fiir

a) o =45° b) o = 60° ¢) o =90°

- Wie groll muss der Zylinderradius r und der Winkel o« zwischen Zylinderachse und

Schnittebene sein, damit eine Schnittellipse entsteht mit
a) a=5, b=3 b) a=5, b=4 ¢)a=10, b=4

. Ein Zylinder mit Radius r und Héhe h und eine Ebene schneiden sich so, dass eine

Ellipse mit maximaler groBer Halbachse a entsteht.
Gib die Halbachsen der Ellipsen an, falls

a)r=35, h=24 b) e=h ¢) 2r=h

. Ein Kreis mit Radius r = 6 wird in y-Richtung aufs %-fache gestaucht. Zeichne die

Bildellipse und gib die beiden Halbachsen an.

- Ein Kreis mit Radius r =35 wird in y-Richtung aufs %-fache gedehnt. Zeichne die

Bildellipse und gib die beiden Halbachsen an.

- Konstruiere mit Hilfe der Hauptkreise einige Punkte der Ellipsen mit den Halbach-

sen a und b
a)a=5, b=3 b) a=6, b=3 c)a=6, b=2

- Von einer Ellipse kennt man eine Halbachse und einen Punkt E. Ermittle die andere

Halbachse durch Konstruktion.
a) a=13, E(5|4) b) b=35, E(6|4) ¢c) a=10, E(6|6)

Markiere auf einem 10 cm langen Kartonstreifen einen Punkt, der 4 cm vom Rand
weg liegt. Zeichne damit eine Ellipse und gib ihre Halbachsen an.

. Wie lasst sich die Papierstreifen-Konstruktion mit Zirkel und Lineal ausfiihren?
I

Konstruiere damit einige Punkte einer Ellipse mit den Halbachsen 5 und 3.

Eine 4 m lange Leiter rutscht an einer Hauswand ab.

Welche Punkte beschreiben eine Kreisbahn? Begriindung!

Wie grol3 ist der Kreisradius?

Die Gerade PQ schneide die Ellipse mit den Scheiteln A, und B, in den Punkten S
und T. Konstruiere diese Schnittpunkte und gib ihre Koordinaten an.

a) P(—1,55), Q(8,5/0), A,(6,5/0), B,(0]325)
b) P(10|-1), Q(5[-7), A,(12,5(0), B,(0]3)

Konstruiere die Tangenten vom Punkt P an die Ellipse mit den Scheiteln A, und B,
und gib die Koordinaten der Beriihrpunkte S und T an.

a) P(—12,5(0), A,(-=7,5]0), B,(0|—5) b) P(—1,5|-7), A,(—7,5|0), B,(0]|—5)
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2. Die Mittelpunkt-Gleichung einer Ellipse

So wie man die Punkte einer Gerade durch die Gleichung ay + bx + ¢ =0 beschreiben
kann, so lassen sich auch die Punkte einer Ellipse mit einer Gleichung festlegen. Beginnen
wir mit der einfachsten Ellipse, dem Kreis. k sei ein Kreis um M (0|0) mit Radius r. Nach
Pythagoras gilt fiir jeden Kreispunkt P(x|y):

Plx|v)

XX+y*=r

by

Damit ist die Gleichung schon gefunden. Nach y aufgeldst ergibt sich:

ly| = n,frr-’ —x2  das heiBt y = +4r2—x?> (oberer Halbkreis)

oder Y= — y’_r"- — x? (unterer Halbkreis)
Die Gleichung der Ellipse mit den Halbachsen a und b und Mittelpunkt M(0|0) ergibt
: : : b
sich. wenn man einen Kreis mit Radius r = a in y-Richtung mit dem Faktor & staucht.

Aus der Kreisgleichung |y|= ya’ — x* bekommen wir die

bl
Ellipsengleichung |y| = 2 yas —x

Quadrieren und Sortieren liefert die Mittelpunkt-Gleichung der Ellipse mit den Halb-
achsen a (in x-Richtung) und b (in y-Richtung).

YA
Xy i b —
— =1 a \\
2 2z {
4 b ; %
N s
~. —
T Querformat
Liegt die groBe Halbachse in y-Richtung, _/,’-'5-...‘\
dann heilit die Gleichung: v
/! \
1 II.-' A
2 2 ( 1
N T = i' b |
b? 5 g2 =] 1 |:
\ / Hochformat
\\ : s
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Ein anderer Weg von der Kreisgleichung zur Ellipsengleichung folgt aus den uns schon
bekannten Koordinaten-Beziehungen zwischen einem Punkt (x, yi) des Hauptkreises mit
Radius a und Ellipsenpunkt (x.|y,):

X, = X, (siehe Seite 210)
T L a
Y a ¥x ¥k h ¥e

Kreisgleichung: x{ +yi =a’ eingesetzt ergibt

A
gl

Ellipsengleichung: x? +Fﬁ--yﬁ =a’ in iblicher Form: : i =1
Die Gleichung der Ellipse im Querformat mit T
den Halbachsen 3 und 5 um M (0|0) lautet also "

-_ } / 3

L

St 92

nYy

o

Diese Gleichung lasst sich umformen zu:
9x% + 25y2 — 225 = ()

Allgemein beschreibt jede Gleichung der Form px’+qy?—r=0 mit p, g,.r>0 eine
Ellipse. Die Halbachsen finden wir durch geeignete Umformung:

16X+ 9y —9 =0 s 2
16x2 + 9y2 = 9 “ N
7 \
1652 1
9 | III II' T
7 7 3 |’
2 2 | .
SR (S e i
(}4) F B I'\-,_ f
\\ y
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*Fliiche und Umfang der Ellipse

Die Idee von der Ellipse als gestauchtem Kreis fiihrt auch zu einer einfachen Formel fiir
die Fliche einer Ellipse. Man denkt sich den Kreis in sehr schmale, annihernd rechteckige
Streifen zerlegt. Beim Stauchen bleibt jeder Streifen gleich breit, seine Hohe und damit

: Y il : b
seine Fliche nehmen ab aufs ;-i’ache. Also gilt Agpipse = ;Ak,m.

AI-.]Iip.w = abrr

Wer nun nach dieser einfachen Flichenformel erwartet,
dass es auch fiir den Umfang der Ellipse eine einfache For- ;
mel gibt, der irrt. Nur mit Hilfe hoherer Mathematik findet N | [reisfliche a'n
man Ausdriicke, mit denen man den Umfang néherungs- | '
weise berechnen kann. Eine kleine Auswahl:

Elli:psenflﬁé::l:é’l.é ah L

‘:D UEEIIip.\r =T I:%(u 2 h} e \'Il’i_lb :l

@  Ugpipse =7 (d b= a

Fiir a = b = r wird aus diesen drei Formeln erwartungsgemif der Term 7 - 2r. Wer’s exakt
haben will, muss eine Summe mit unendlich vielen Summanden »berechnen«, zum Bei-
spiel

1V, [(1:3\2e*  [1:3:-5)\2 ¢
S8 e 2“{'_(3) ‘:'_(2-—4) ?_(2-4-6) 5 _]

mit e*=a>— b*.

Fiir eine Ellipse mit a =1 und b = 0,5 ergibt sich F = abm = 0,57. Das ist die halbe Flache
des groBen Halbkreises mit r = 1. Dieser Kreis hat den Umfang 2m. Die Niherungsfor-
meln fiir den Ellipsenumfang liefern (10 giiltige Dezimalen)

303 |
3 3 Ll isanesannss.
2.3 \/J 71,5428

3 5

i \/; 4
3 1/4

( | B — _—

\.3 Ll-.]l]p-:c T |: 2 2 4 - 3212 }

'@' UI'ZII'ipsc =T 1,54' 9(’!4 4251...

[:J_j [-]I-.lllpc-.c =T

- 1,5405694150...

i
o —
@ Ugipe =75

- 1,541 666 6666...
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* Ellipsenzirkel

Zum Zeichnen von Kreisen hat man als Werkzeug den Zirkel erfunden. Verbliiffender-
weise gibt es auch ein mechanisches Geriit zum Zeichnen von Ellipsen, den Ellipsenzirkel.
Seine Funktionsweise beruht auf der Papierstreifen-Konstruktion.

Zwei feste Punkte R und S eines Stabs mit ER = a und ES = b gleiten in zueinander senk-
rechten Schienen. Ein Stift im Endpunkt E zeichnet eine Ellipse mit den Halbachsen a
und b,

= 7 ) v 4x I":fxl}"J
Begriindung: sinu=-—, cospu F 4
g Ju
F
(sin p)? + (cos p)* = 1 /b |y
#
=) 2 F 4
SRR ; 4 L,
a? b? /S

das heil3t, die Koordinaten von E erfiillen

die Ellipsengleichung, A RO R

‘x“u. Stift
Der bewegliche
Arm wird von
der Hand
sefiihrt

Der Fuly 2
ruht auf der s
Unterlage. k -«
e . ORONORE aT .
o .
A
|I ..
“ A
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*Die Scheitel-Kriimmungskreise

Normalerweise hat man keinen Ellipsenzirkel zur Hand. Aber auch ein Kreiszirkel eignet
sich zum niherungsweisen Zeichnen von Ellipsen. Dazu dienen vier Kreisbogen, die die
Ellipse in der Umgebung der Scheitel am besten anniihern. Sie heillen Scheitel-Kriim-
mungskreise. IThre Mittelpunkte liegen aus Symmetriegriinden auf den Achsen. Das Bild
erkliirt die Konstruktion dieser Mittelpunkte M, und M,.

T

: '-\'11.1

Zeichnet man die vier Kreisbogen (die sich nicht schneiden!), dann hat man schon einen
verbliiffend guten Eindruck von Ellipse. Diese ldsst sich jetzt gut skizzieren — aber Obacht:
immer innerhalb der grofien und auBerhalb der kleinen Néherungskreise bleiben, denn
nur die vier Scheitel sind Ellipsenpunkte! Die Kreisradien liest man aus der Konstruk-
tionsfigur ab:

Aus ACAM, —~ ABCA folgt C
Ly = l ¥ D
b a 280 k=g El 5
L | 4
Aus ABCM, ~ ACAB folgt o
s N,
, 4 S o _H_ rh
T also b = z

Mj,
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Wer’s genauer wissen will, erfihrt jetzt den mathematischen Hintergrund.

Im Allgemeinen schneiden sich Kreis und Ellipse in vier Punkten.

Haben sie eine gemeinsame Tangente, dann beriihren sie sich: Zwei Schnittpunkte fallen in
einem Beriihrpunkt zusammen. Als Berithrpunkt wiihlen wir den rechten Hauptscheitel,
halten ihn fest und verkleinern den Radius. Dabei wandern die beiden andern Schnitt-
punkte auf der Ellipse in Richtung Beriihrpunkt.

gemeinsame Tangente
_,-——__—)- A
= T Schnitt-
.\ punkt
-
-
) .
1 4 Schnittpunkte __ Beriihrpunkt ]
F (2 Schnittpunkte) |
P = 1
= Schnitt-* |
/ purnlkt |
.-~ o
e e

Bei einem bestimmten Radius treffen sich alle vier Schnittpunkte im Berithrpunkt und bil-
den einen vierfachen Schnittpunkt. Grafisch duBert sich das darin, dass sich der Kreis jetzt
besonders innig an die Ellipse anschmiegt.
Fiir die Koordinaten der beiden beweglichen Schnittpunkte gelten zwei Gleichungen
I y¥=Qr—a+x)(a—x)
(Hohensatz im Dreieck CAP)

B
2 (a* — x?)

Ay

Pix|y)

II y*=
(Ellipsengleichung) e

Gleichsetzen liefert: c 2r JA

LES

-

(2r—a+ X)(a—x)= 2,

(a-+x)(a—x) ¥

das ergibt eine quadratische Gleichung fiir x

>

b G x)] =0

da

(a—x) [(2r—a+x]—

Eine Losung ist x; = a (gehort zum Scheitel A).

r soll nun so bestimmt werden, dass auch die zweite Losung x,, fiir die die zweite Klammer
[--.] gleich null ist, den Wert a hat. Setzen wir in [...] a fiir x ein, so ergibt sich fiir r

2 (a+a}] =0

a.’.

[{2r--a+a}—

-

b’ : : : - .
2r=2 T = r —:— , das ist der Radius r, des kleinen Scheitel-Kriimmungskreises.
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Fiir den Radius r, des groBen Scheitel-Kriimmungskreises gelten entsprechende Uberle-
gungen. Die Scheitel-Kriimmungskreise sind deshalb so besonders gute Schmiegekreise,
weil in jedem Scheitel vier Schnittpunkte zusammenfallen. Dieselbe Uberlegung fiir an-
dere Ellipsenpunkte zeigt, dass nur drei Schnittpunkte zusammenfallen: Jetzt durchdrin-
gen die Schmiegekreise die Ellipse. IThre Konstruktion ist schwieriger.

Aufgaben

Wenn nichts anderes vermerkt ist, liegt die Ellipse im Querformat. Thr Mittelpunkt ist im-
mer der Ursprung.

1. Wie lautet die Mittelpunkt-Gleichung einer Ellipse E, fiir die gilt
a) a=2, b=1 b) a=2, b=1, Hochformat c) a=+10, b=45

2. Bestimme die Halbachsen a und b der Ellipse.
Hat die Ellipse Quer- oder Hochformat?

X b 5 5
i — -— B (] S.'-\- -4 2 Jis == ?_
a) T g 1 b) 0,5x y

Th e e
¢) dx* Ty = 1 d) HK‘ —i—E‘y“:I

. Von einer Ellipse kennt man eine Halbachse und einen Punkt.
Bestimme die andere Halbachse.
a) a=545, P(10[1) b) b=5+2, P(—14|1)
¢) a=5410, P(15|-3) d) b=4413 , P(-15|-8)

4. Von einer Ellipse kennt man die Punkte P und Q.
Bestimme die Mittelpunkt-Gleichung. (Tip: Substitution von /: und %)
a) PO|—1), Q(-7|3) b) P(—1/9), Q(—9(6)
¢) P(17|4), Q(23|-1) d) P(—19(4), Q(l6]|11)

Lad
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5. Der Ellipse mit der Gleichung 16x> + 9y = 144 ist ein Quadrat einbeschrieben. Be-
rechne seine Seitenlidnge s.

6. Die Ellipse mit der Gleichung x?+ 4y?> =500 und die Gerade mit der Gleichung
3y = 2x—25 schneiden sich zweimal. Berechne die Schnittpunkte.

7. Bestimme den Flacheninhalt und niherungsweise den Umfang der Ellipse mit der
Gleichung
a) 9x? =25y =225 b) x*+ 100y? = 100

9. Von einer Ellipse kennt man den Punkt P(4.5|2) und die kleine Halbachse b =2.5.
Konstruiere die Linge der groBen Halbachse a mit Hilfe der Idee des Ellipsenzirkels.

10. Konstruiere die Scheitelkriimmungs-Kreise und skizziere die Ellipse mit den Halb-
achsen
a) a=35, b=4 b) a=5. b=3 ¢) a=5 b=2

11. Eine Ellipse, bei der die Mittelpunkte der grofen Scheitelkrimmungs-Kreise die Ne-
benscheitel sind, heilt Fagnano-Ellipse.
Der italienische Mathematiker Giulio Carlo FAGNANO, Marquis von Toschi und
S.Onorio (1682 bis 1766) hat sich einen Namen gemacht wegen seiner Bogenlingen-
Berechnungen bei Ellipse, Hyperbel, Parabel und Lemniskate.
a) Die kleine Halbachse einer Fagnano-Ellipse sei b. Berechne
— die grol3e Halbachse a
— den Radius des kleinen Scheitelkrimmungs-Kreises.
b) Zeichne eine Fagnano-Ellipse mit Hilfe ihrer Scheitelkriimm ungs-Kreise fiir b = 3.
¢) Zeige: Wenn eine Ellipse mit den Halbachsen a und b eine Fagnano-Ellipse ist,
dann ist auch die Ellipse mit den Halbachsen b und a/2 eine Fagnano-Ellipse.
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3. Die Brennpunkte der Ellipse

Der belgische Mathematiker und Baumeister Pierre Germinal DANDELIN (1794 bis
1847) hatte bei der Untersuchung von Kegelschnitten eine schone Idee aus der Raumgeo-
metrie, die uns eine sehr wichtige Eigenschaft der Ellipse vor Augen fiihrt. Dazu betrach-
ten wir die Ellipse wieder als Schnitt einer Ebene E und eines Zylinders. Auf beiden Seiten
der Ebene schiebt man eine genau passende Kugel (Kugelradius = Zylinderradius) in den
Zylinder, bis sie die Ebene beriihrt. Die beiden Kugeln beriihren auBBerdem den Zylinder
in den Kreisen k, und k,. Aus Symmetriegriinden liegen die beiden Beriihrpunkte F, und
F, auf der Hauptachse gleich weit vom Mittelpunkt M der Ellipse weg. F, und F, heillen
Brennpunkte der Ellipse. Zu Ehren von DANDELIN nennt man die beiden Kugeln
Dandelin-Kugeln.

Dandelin-Kugel
e

/',._.

£
y

8
iy

Tangentenbiischel einer Kugel
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| Dandelin-Kugel

P sei ein beliebiger Punkt der Schnittellipse. Weil die Schnittebene auch Tangentialebene
der beiden Dandelin-Kugeln ist, sind PF, und PF, Tangenten dieser Kugeln. Die Mantel-
linie durch P schneidet die beiden Beriihrkreise k, und k; in Q, und Q,. PQ, und PQ, sind
also auch Tangenten der Dandelin-Kugeln. Alle Kugel-Tangentenabschnitte durch einen
Punkt sind gleich lang. Deshalb gilt:

PQ, = PF, und PQ, = PE, also PF, + PF, = PQ, + PQ;- Q,Q, = const.




Fir jeden Ellipsenpunkt ist die Summe seiner Entfernungen von den beiden Brennpunk-
ten die Konstante Q,Q,, der Abstand der beiden Beriihrkreise. Der Wert dieser Konstante
ergibt sich, wenn wir P in einen Hauptscheitel, zum Beispiel A,, legen, wenn also P = A,
ist:

Q,Q; = AF, + _A:r: =AF, +FlA =2a

Zusammenfassung
Fiir jeden Ellipsenpunkt P gilt

P—F|-| = P["J = 2::1

Die beiden Brennstrecken [PF,] und [PF,] sind zusammen so

lang wie die Hauptachse 2a.

Legt man P in einen Nebenscheitel B, dann gilt aus Symmetrie-
grinden F\B=F,B=a. Mit dieser Bezichung lassen sich die
Brennpunkte einfach konstruieren.

* Exzentrizititen

Y=

Die Entfernung e der Brennpunkte vom Mittelpunkt heiBt lineare Exzentrizitiit. Die
Zeichnung (Pythagoras!) zeigt:

[elzﬁﬁ_b?
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Fiir einen Kreis gilt a=b, also e = (. e ist aber noch kein Mal3 dafiir, wie die Ellipse vom
Kreis abweicht. Denn bei einer Ahnlichkeitsabbildung, zum Beispiel zentrische Streckung,
dndert sich zwar e, nicht aber die Form. Umgekehrt gibt es zu ein und demselben Wert fiir
e verschieden geformte Ellipsen. Bezieht man jedoch e auf die groBe Halbachse, dann ent-
steht eine Zahl, in der die Gestalt der Ellipse zum Ausdruck kommt, sie heil3t numerische
Exzentrizitit €:

Konfokale Ellipsen mit F,F, = 2e = const.

([ ( & : |
| \‘_\.. - f-’ ;
\\\-\\ - l/, /,,
= -
22 —p? b? _
Wegen €= X = Al —— ist O0=eg=1
' a a’
Fiir die Grenzfille gilt
g =0, das heiBt a=b: Kreis
g=1, das heiit b=0: Strecke
Konfokale Ellipsen mit F,F, = 2e = const.
~ =10
; g=08
3 _
Y = A b
ke e =05 | L)) _
" ;
) LA £=0,95 =~ =
£=099
i: ==
g=11




Die Ellipse in der Astronomie

Bis ins 16. Jahrhundert glaubte man, dass sich alle Gestirne auf Kreisbahnen oder auf
Uberlagerungen von Kreisbahnen bewegen. Als Johannes KEepLEr (Weil der Stadt 1571
bis 1630 Regensburg) auf der Grundlage der Beobachtungen von Tycho Brane die Pla-
netenbewegung mathematisch beschreiben wollte, musste er dieses Ideal der Kreisbahn
aufgeben. Er stellte fest, dass die Planeten auf Ellipsenbahnen laufen, bei denen die Sonne
in einem Brennpunkt steht.

Die Entfernung von Planet und Sonne dndert sich also wihrend des Umlaufs. Der Punkt,
bei dem die Entfernung am groBten ist (r,,.,), heiBt Aphel; der Punkt, bei dem die Entfer-
nung am kleinsten ist (r,;,), heiBt Perihel. Die Ellipsenbahnen weichen nur sehr wenig von
der Kreisform ab. Ihre numerischen Exzentrizitdten reichen von 0,007 (Venus) bis 0,25
(Pluto). Fiir die Erde gilt

a =148,65-10°km,

b =148,63-10°km, daraus errechnet sich
e =244-10°km,

g =0,016

Tmin —a— €= 146,2- 10°km

 max =t N e ]511.' ' iﬂﬁkm

o

Am 3.Juli (!) durchliuft die Erde das Aphel und am 2. Januar das Periphel.

;‘\]anm

Tp=a+e ) Erdbahn Plutobahn
Perihel L Aphel malfistéblich malistéblich

& F £=0,016 e=025

Die Girtner-Konstruktion der Ellipse

Die Beziehung PF, + PF, = 2a erlaubt ein einfa-
ches mechanisches Verfahren zum Erzeugen von
Ellipsen. In den Brennpunkten befestigt man zwei
Pflocke und an ihnen eine Schnur der Linge 2a.
Ein Stift, der so gefiihrt wird, dass die Schnur ge-
spannt ist, beschreibt eine Ellipse. Der Name die-
ser Konstruktion geht zuriick auf die Art, mit der
Girtner im Barock die Rinder der damals so be-
liebten elliptischen Blumenbeete markiert haben.
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Die Ellipseneigenschaft, die der Girtner-Konstruktion zugrunde liegt, fiihrt auch zu einer
Konstruktion einzelner Ellipsenpunkte: Man zeichnet um die Brennpunkte Kreise, deren
Radien zusammen 2a ergeben; die Schnittpunkte sind Ellipsenpunkte.

=y +(e+x) g=y =%

r,t+r,=2a
r,=2a—r1, | quadrieren
r; = 4a’> — dar, + I
Y(e + x)? = 4a% — 4ar, + ¥ + (e — x)’
2+ 2ex + 2 = da’ — dar, + 27— 2ex +X
ar, = a’ —ex | quadrieren
a’[y*+ (e—xp]=2a*— 2a%ex + e*x?
ay? + ale? — 2a%6% + a’x? = a* — 2%k + &’x’

a’y? + a’x? — e’x’ = a‘ — a’¢?

aj}fi Lt x: (al — el) — H_’ {a'." - e!}
b: h"
a’y?+ x?b?=2a%? || : (a’b?)
X* y?
P
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Ein Punkt P liegt also genau dann auf der Ellipse, wenn die Summe der beiden Brenn-
strecken r; und r, gleich der Hauptachse 2a ist. Fiir einen Punkt Q, der auBerhalb der El-
lipse liegt, ist die Summe der Brennstrecken groBer als 2a; fiir einen Punkt R, der inner-
halb liegt, ist sie kleiner als 2a. Zur Begriindung verwenden wir die Dreteck-Ungleichung.

Im Dreieck QPF, gilt: PQ + QF, > PF

+ QF, = PF, + QP + QF, > PF, + PF, = 2a
QF, + QF, > 2a

5

Im Dreieck RPF, gilt: RP + PF, > RF,

I)

RF, + RF, < RF, + RP + RF, = PF, + PF, =2
RF, + RF, < 2a
* Brennpunkt und Tangente
oder: Wie der Brennpunkt zu seinem Namen kommt. st wy Tangente

der ]*:]]I]]H_L! inP?

o W

Das Bild zeigt einen Ellipsenpunkt P und eine Winkelhalbierende w, der Brennstrahlen
[FiP und [F,P. Dem Augenschein nach ist w, Tangente der Ellipse in P. Aber nicht nur
dem Augenschein nach! Mit einem kleinen Trlck ldsst sich das beweisen: Man spiegelt
einen der beiden Brennpunkte an w, (Spiegelpunkt F¥). Wegen Achsensymmetrie ist

PF, = PF*.

PF, + PF, = 2a Qe a2
PF, + PE;* = :

REF = 2a A=




Fiir jeden von P verschiedenen Punkt Q auf w, gilt dann (Dreieck-Ungleichung!):

QF, + QF; = QF, + QFf > FiFf = 22
Also gilt m + QT >2a = Q liegt auBBerhalb der Ellipse = w, ist Tangente im Punkt
P. Weil die beiden Winkelhalbierenden einer Geradenkreuzung aufeinander senkrecht ste-
hen, ist die andere Winkelhalbierende Normale der Ellipse im Punkt P.

o '?{I_”JH |'I1'

Ty
i
4] ]-‘?r'ff”c-

Damit haben wir den Satz:

Die beiden Winkelhalbierenden der Brennstrahlen eines Ellipsenpunkts P sind Tan-
gente und Normale der Ellipse in P.

Wir haben so eine einfache Méglichkeit gefunden, die Tangenten in einem beliebigen El-
lipsenpunkt zu konstruieren: Man halbiert den Winkel der Brennstrahlen, durch den die
Ellipse geht.

Nach dem Reflexionsgesetz der Physik sind Einfalls- und Ausfallswinkel gleich groB. Alle
von einem Brennpunkt ausgehenden (Licht-)Strahlen werden an der Ellipse so reflektiert,
dass sie sich im andern Brennpunkt treffen. Weil die Wege aller Strahlen gleich lang (= 2a)
sind, treffen sich die reflektierten Strahlen auch alle zum selben Zeitpunkt. (Anwendung

dieses Effekts im Kapitel 9. II, 5)
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Aufgaben

1. Berechne die fehlenden Gralien

a|b|e|s
a) | 4 | 2
b) | 4 2
c) 7 i 0,5
d) 4 (0,8

2. Zeichne eine Ellipse mit e =b = 4, Welchen Winkel bilden die Brennstrahlen, die
durch einen Nebenscheitel gehen?

3. Bestimme das Achsenverhiltnis b/a bei Ellipsen mit
a) e=0,5 b) £=10,75 ¢) =09 d) e =095 e) €=10,99

4. Zeichne (mit Hilfe der Scheitelkriimmungs-Kreise) die Ellipse E, mit den Halbach-
sen a = 4 und b = 3,5 sowie die beiden Brennpunkte. Zeichne dann die Ellipse E, mit
der gleichen linearen Exzentrizitit wie E,, deren groBe Halbachse die Linge 2,5 hat.
Berechne flir beide Ellipsen die numerische Exzentrizitit.

5. Zeichne (mit Hilfe der Scheitelkrimmungs-Kreise) die Ellipse E, mit den Halbach-
sen a = 3 und b = 1,5 sowie die beiden Brennpunkte. Zeichne dann die Ellipse E, mit
der gleichen numerischen Exzentrizitit wie E,, deren groBe Halbachse die Linge 4
hat. Berechne fiir beide Ellipsen die lineare Exzentrizitit.

6. Der Komet Halley ldauft auf einer Ellipsenbahn um die Sonne. Ein Umlauf dauert
etwa 76 Jahre. Seine kleinste Entfernung bis zur Sonne ist 87.8 - 10° km, seine ordfite
5232,5 - 10° km. Berechne die Werte a, b, e und ¢ seiner Ellipsenbahn.

Berechne allgemein a, b, e und € aus r,,;, und r,,,, einer Planetenbahn.

8. Von einer Ellipse mit a = 5 kennt man F,(—3|0) und F,(3|0). Konstruiere die Ellip-
senpunkte, die von F; die Entfernungen 3, 5, 6 und 7 haben und zeichne damit nihe-
rungsweise die Ellipse.

9. Zeichne zwei Punkte F, und F, mit 8 cm Entfernung und um jeden dieser Punkte
Kreise mit den Radien lcm, 2c¢m, ..., 10 cm. Suche alle Schnittpunkte P mit
PF, + PF, = 12cm und verbinde sie zu einer Ellipse. Welche weiteren Ellipsen
(a=7) kannst du in dem Kreisgewirr entdecken? Zeichne sie!

Ellipsentangenten
Wenn nichts vermerkt ist, liegen Haupt- und Nebenachse in den Koordinatenachsen.

10. Gegeben: F,(—4|0), Ellipsenpunkt P(3|—2,5)
Konstruiere die Tangente in P und die vier Scheitel der Ellipse.

11. Gegeben: F,(—3|0), Tangente y=0,5x + 4
Konstruiere den Bertihrpunkt P und die vier Scheitel der Ellipse.
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12. Gegeben: Halbachse a =5, Tangente y = —0,5x +x 4
Konstruiere die Brennpunkte und die Nebenscheitel der Ellipse.

13. Gegeben: F,(4|0), a=>5, Tangente y = —3x +3,5 mit Bertihrpunkt P(3(2,5)
Konstruiere den zweiten Brennpunkt und die vier Scheitel der Ellipse. (Die Ellipse
liegt nicht symmetrisch zum Koordinatensystem!)

14. Gegeben: F,(—4|0), a =5, Tangentensteigung m = —0,5
Konstruiere die Tangenten und die Beriihrpunkte.

15. Gegeben: F,(—4|0), a=5, Punkt Q(1|4) aulerhalb der Ellipse
Konstruiere die Tangenten durch Q.

Leitkreis und Hiillgeraden
*16. Leitkreis

a) Zeige: Spiegelt man den Brennpunkt F, an irgendeiner Ellipsentangente (Spie-
gelpunkt F#), dann liegen alle so erzeugten Spiegelpunkte auf dem Kreis
um F, mit Radius 2a.

Dieser Kreis hei3t Leitkreis der Ellipse zum Brennpunkt F,.
:Jl‘l?.".’ﬁ'f'n.',a \ 'tl iJeitkre-iS

et

\

| k)
&Hﬁ_ /

b) Zeige: Der Mittelpunkt H der Strecke [F,F*] liegt auf dem Hauptkreis mit

Radius a (siehe Aufgabe a)).
I\_\-‘_‘—\—\_

L




e17.

1. Hiillkonstruktion mit Leitkreis

Man zeichnet einen Kreis; er ist der Leitkreis, sein Mittelpunkt F, ist ein Brennpunkt

der Ellipse. Den andern Brennpunkt F, zeichnet man in den Leitkreis.

Zeige: Verbindet man F, mit irgendeinem Kreispunkt L, dann ist die Mittelsenk-
rechte von [F,L] Tangente der Ellipse mit den Brennpunkten F, und F,.
Diese Konstruktion ldsst sich auch eindrucksvoll durch Falten einer Kreis-
scheibe aus Papier vorfiihren.

+18. 2. Hiillkonstruktion mit Hauptkreis
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Man zeichnet einen Kreis; er ist der Hauptkreis, sein Mittelpunkt M ist Mittelpunkt

der Ellipse. Den Brennpunkt F, zeichnet man in den Hauptkreis.

Zeige: Bewegt man einen rechten Winkel (Geodreieck!) so, dass sein Scheitel auf
dem Hauptkreis wandert und ein Schenkel durch F, geht, dann ist der andere
Schenkel Tangente der Ellipse.




I1. Kegelschnitte
1. Uberblick

In der Vorbemerkung haben wir schon erwéhnt, dass beim Schnitt von Kegel und Ebene
drei Typen von Kurven entstehen konnen. Welcher entsteht, hingt ab

vom halben Offnungswinkel @ des Kegels und

vom Winkel «, den Kegelachse und Schnittebene bilden:
fiir o« > @ entsteht eine Ellipse,

fiir x = @ eine Parabel und

fiir oc < @ eine Hyperbel.

H_-L"rm,.hflll

o]
=
)
D
(-1
()

e

Hyperbel:

x={

”-"';J{-r!'r[ N

Parabel:

=) 5 L
Ellipse: =g\ =0
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Wenn die Schnittebene die Kegelspitze enthilt, dann entarten die Schnittkurven:
die Ellipse zu einem Punkt (Kegelspitze),

die Parabel zu einer Gerade (Mantellinie) und

die Hyperbel zu einer Geradenkreuzung (zwei Mantellinien).

Auf den ersten Blick glaubt man nicht recht, dass der geschlossene Kegelschnitt tatsichlich
eine Ellipse (mit zwei Symmetrieachsen also) sein soll. Eher erwartet man eine eiférmige
Kurve, die oben — wo der Kegel enger ist — stirker gekriimmt ist als unten — wo der Kegel
weiter ist. Auch ein so scharfer Beobachter wie Albrecht DURER (Niirnberg 1471 bis 1528
Niirnberg) ist dieser Tauschung erlegen. In seiner Underweysung von 1525 beschreibt er
die Ellipse als Eierlini = darumb daf3 sie schier einem Ei gleich ist. Erst 1640 wagte der
schweizer Mathematiker Paul GuLpin (St. Gallen 1577 bis 1643 Graz), an der Autoritit
DURERs zu riitteln, indem er die wirkliche Gestalt der Ellipse mit zwei Symmetrieachsen
aufzeigte.
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Beriihrkreis

. Ellipse: a.>¢

Berihrkreis %

i
i 8 kY

Fiir uns ist der Nachweis nicht schwer, weil wir auf die Idee Dandelins zuriickgreifen kon-
nen. Analog zum Zylinder stecken wir in den Kegel zwei Kugeln, die Kegel und Schnitt-
ebene beriihren. Jede der beiden Kugeln beriihrt den Kegel in einem Kreis und die Schnitt-
ebene in einem Punkt (Brennpunkte F, und F;). Die Mantellinie durch P trifft die
Beriihrkreise in B, und B,, sie ist Tangente beider Kugeln. Es gilt

PF,=PB, und PF,=PB,
(Tangentenabschnitte von einem Punkt aus an eine Kugel sind gleich lang.)

W, 3F W = 'PIT, ar T“B_ = EB_:( = const.)

Das ist genau die Eigenschaft der Ellipse, die zur Girtnerkonstruktion fiihrt. (Siehe Kapi-
tel 9. 1, 3)
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2. Die Hyperbel

Wieder stecken wir in den Kegel zwei Dandelin-Kugeln, jetzt aber so, dass die Kegelspitze
dazwischen liegt. Jede der beiden Kugeln beriihrt den Kegel in einem Kreis und die
Schnittebene in einem Punkt: F, und F,. F, und F, heiBen Brennpunkte der Hyperbel. F,F,

ist eine Symmetrieachse der Hyperbel. Die Mantellinie durch P trifft die Beriihrkreise in
B, und B,, sie ist Tangente beider Kugeln. Es gilt
PF, = PB,

PF,=PB, und
(Tangentenabschnitte von einem Punkt aus an eine Kugel
sind gleich lang.)

B,B, ist konstant (= k) I
BB,=PB,~PB,=PF,-PF =k (D S / |

Die Hyperbel besteht aus zwei Teilen, man nennt sie auch
Aste der Hyperbel. Liegt P auf dem bei F, liegenden Ast,

dann ergibt eine entsprechende Uberlegung

e

PF, - PF,=k @
Die Gleichungen (1) und (2) lassen sich zur kennzeichnen-
den Eigenschaft der Hyperbel zusammenfassen:

|PF, — PF,|=k.
Fiir jeden Hyperbelpunkt P ist der Betrag der Differenz sei-
ner Entfernungen von F, und F, eine Konstante. Diese De-
finition unterscheidet sich von der der Ellipse nur im Re-
chenzeichen! Wie bei der Ellipse bezeichnet man die

Konstante k mit 2a

| ‘PF, — PF,|= Eﬂ Hyperbel-Eigenschaft Hyperbel:
x<ag
Aufgrund dieser Eigenschaft kénnen wir jetzt Punkte der
Hyperbel konstruieren, wenn F,, F, und a bekannt sind.
Berithrkreis
Hyperbel-Ast \
fiir r,—r.=2a ) \
.. 2a P
| II|
| L
I : T, : \‘
‘II
. i \
4 - i \
E, Fy 5] ' Beriihrkreis | 'I. 4
Hyperbel: B,
<




Der Betrag in der Bedingung |r, — ;| = 2a erlaubt eine Vertauschung von r; und r, und er-
moglicht so den 2. Hyperbel-Ast. Dieser ist symmetrisch zum 1.Ast, Symmetrieachse ist die
Mittelsenkrechte von F, und F..

Bezeichnungen

Das Symmetriezentrum M heilt Mittelpunkt der Hyperbel.
Die Schnittpunkte A,, A, von Hyperbel und einer Symmetrieachse heillen Scheitel. Dabei

gilt
AF,— AF, =2a oder wegen A_|F,' -AF,

AM — MA, =a, a heiBt reelle Halbachse.
FM = fﬁ =g, e heilt lineare Exzentrizitit,

a ' " E Y
T heif3t numerische Exzentrizitat.
Ahnlich wie bei der Ellipse definiert man eine zweite Halbachse b durch
——
bl=e?—a?

Tragt man b von M aus auf der 2. Symmetrie-

achse ab, so ergeben sich zwei Punkte B, und B, \
die aber nicht auf der Hyperbel liegen. Deshalb \
nennt man b imaginiire Halbachse. Im Gegensatz .- \e e
zur Ellipse muss hier a nicht groBer sein als b. F, A
/
i
i
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Ahnlich wie bei der Ellipse lassen sich auch die Punkte der Hyperbel mit einer Gleichung
festlegen. Wir verwenden dafiir nur die Beziechung | PF, — PF,|= 2a.

Die Mittelpunkt-Gleichung der Hyperbel

| e [ [ Ko/ g
F | ite '|I X
I-Izz},ﬁ_,_{x_e)z el =al+ h? 1.5’=},;!_._(K_e}2
|t +15|=2a

r, = +*2a—r, | quadrieren
1 = 4a’ + dar, + 3
W(x + e) =4a’ + dar, + ¥ + (x — e)?
X'+ 2xe +¥ = 4a £ dar, + ¥ — 2xe +&
ele . za"cx_f_ at — a2 l)"1+(1 = e}’J
e’x? — 2a%€X + a* = a%y? + a’x? — 2a%6x + a%?
x2 (€2 — a%) — y?a? = 2% (& — a?)
—_— W
h? b?
b2x? — a?y? = a’h? | - (a?b?)

x? _Vj

5 T i
a b?

Das ist die Mittelpunkt-Gleichung der Hyperbel mit der reellen Halbachse a und den
Brennpunkten auf der x-Achse sowie der imaginiren Halbachse b auf der y-Achse.

Vertauscht man x und y, so spiegelt man die Hyperbel an der Winkelhalbierenden des
I.Quadranten. Die Gleichung der so gespiegelten Hyperbel ist

yﬂ X:
'd:' b?

Die reelle Halbachse a und die Brennpunkte lie-
gen jetzt auf der y-Achse, die imaginire Halb- - L )
- e --—ol-.—| &" =
T \
9 7

—i

e = -

achse b liegt auf der x-Achse.
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Die Asymptoten der Hyperbel

: : X° 3 . b a’ [N
Die Gleichung = i = | lésst sich umformen zu |y| F |x| 4/ 1 ——5 . Speziell im
: LY g b a’
I. Quadranten (x >0, y > 0) ergibt sich y = = = =

=

= ., af : ; : i
Fiir sehr grolle Werte von X 1st = fast null, das heiBt, die Hyperbel unterscheidet sich fast

nicht mehr von der Gerade mit der Gleichung y = 2 X Aus Symmetriegriinden gilt das

Entsprechende in den anderen Quadranten. Die beiden Geraden mit den Gleichungen
b b : o .

y=ex und y= — P heiBen Asymptoten der Hyperbel. Es gilt: Fiir grolie |x|-Werte

(also auch fiir groBe |y|-Werte) unterscheidet sich die Hyperbel kaum noch von ihren
Asymptoten.

b : : :
Wegen A T % x (fiir x > 0) verlduft die Hyperbel im I. Quadranten immer

unterhalb ihrer Asymptote. In gréBerer Entfernung von den Scheiteln geben die Asympto-
ten den Verlauf der Hyperbel im Groben wieder. Man zeichnet die Asymptoten als Verldn-
gerungen der Diagonalen des Bestimmungsrechtecks mit Mittelpunkt M und den Seiten 2a
und 2b.

yi Hyperbel

Bestimmungs- |
rechieck

S N I
Hyperbel: 7 b 1
o

Asymptoten: y=*—X
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Zu einem Bestimmungsdreieck gibt es zwei Hyperbeln mit denselben Asymptoten.

e T GO
Die eine hat die Gleichung e _b = 1
a’ g

ihre reelle Halbachse ist a, ihre Brennpunkte liegen auf der x-Achse.

¥

e g

thre reelle Halbachse ist b, ihre Brennpunkte liegen auf der y-Achse.

Die andre hat die Gleichung

* Die Scheitel-Kriimmungskreise

Wie bei der Ellipse gibt es auch bei der Hyperbel Kreise, die die Hyperbel in der Umge-
bung ihrer Scheitel recht gut anndhern. Die Mittelpunkte liegen aus .‘nmmfﬂnwlundcn
auf der reellen Achse. Das Bild erklirt die Konstruktion des Mittelpunkts und die Herlei-
tung der Formel fiir den Radius der Kriimmungskreise.
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Die mathematische Begriindung ist &hnlich wie bei der Ellipse.
Ein Kreis mit Mittelpunkt auf der x-Achse, der durch einen Hyperbelscheitel geht, schnei-
det die Hyperbel im Allgemeinen in zwei weiteren Punkten P und Q.

¥i

Pix|y)

Fiir die Koordinaten von P und Q gelten zwei Gleichungen:

. y»=(x—a)(2r—x+a) (Hohensatz im Dreieck ACP)

1. y’= : (=g (Hyperbelgleichung)

Gleichsetzen liefert: (x —a)(2r—x+a)= a_” (x—a)(x+a)

: b
das ergibt eine quadratische Gleichung fur x: (x —a) [(Zr —x-t4)— 2 (x+a)|[=0.

Eine Losung ist x, = a, sie gehort zum Scheitel. T soll nun so bestimmt werden, dass auch
die 2. Losung x, fiir die die Klammer [...] gleich null ist, den Wert a hat. Geometrisch be-
deutet das, dass die Punkte A, P und Q zusammen fallen.

Setzen wir in [...] a fiir x ein, so ergibt sich fur r
: b? b.‘ hE
@r—-at+a)——(@ta)|=0 = 2r=2— = [=—-
a’ a a

*Tangenten der Hyperbel

Bei der Ellipse ist die Winkelhalbierende des AuBenwinkels bei P im Dreieck F,F,P Tan-
gente im Punkt P.

T
Hgey, te
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Ahnliches gilt bei der Hyperbel: Die Halbierende des Innenwinkels bei P im Dreieck
F,F,P ist Tangente im Punkt P.

Fiir jeden von P verschiedenen Punkt Q auf w, gilt dann (Dreieck-Ungleichung!):

QF, - QF, = QF, - QFf < QFf + F,F¥ - QFf = F,Ff = 2a
Also gilt QF, — QF,<2a = Q liegt nicht auf der Hyperbel = w,, ist Tangente im Punkt
B

Q)
b
o "JJ of
B =
Za /SIAY
. :' \
I / F,
: ,r'|l PF,— PF;=2a W \
PF, - FF = 2a
FFF = 2a /8

Folgerungen

a) Licht, das von einem Brennpunkt ausgeht, wird an der Hyperbel so reflektiert, als ob es
vom andern Brennpunkt kime.

& =
- | . - - —
F E F
~ e o 1 =
\ \
'\_l F\
v \




b) Zeichnet man zu zwei gegebenen Brennpunkten eine zugehorige Ellipse und Hyperbel,
so schneiden sich diese in vier Punkten. In jedem Schnittpunkt sind die Tangenten von
Hyperbel beziechungsweise Ellipse die Winkelhalbierenden des Innen-, beziehungs-
weise AuBenwinkels der Brennstrahlen, das heifit, sie stehen aufeinander senkrecht.
Man sagt auch: Konfokale Ellipsen und Hyperbeln schneiden sich rechtwinklig.

Hyperbel-Aufgaben

Bis auf Aufgabe 12. liegen alle erwihnten Hyperbeln symmetrisch zum Ursprung und ha-
ben die Brennpunkte auf der x-Achse.

th

Zeichne die zwei Hyperbeln mit a=2,b=1 und a =4, b =3 in ein und dasselbe
Koordinatensystem und berechne die Schnittpunkte.

. Wie lautet die Gleichung einer Hyperbel h mit A,(4[0) durch P(5|3)?

Bestimme die Gleichung der Hyperbel: zeichne die Scheitel, die Brennpunkte und
die Asymptoten; skizziere die Hyperbel.

3) a=3,b=4 Ba=2,e=413 b=1e=12

Zeichne ein Rechteck mit den Seitenlingen 4 und 6 (waagrecht).

Skizziere die Hyperbeln, fiir die das Rechteck Bestimmungsrechteck ist.

Eine Hyperbel hat den Scheitel A,(2|0) und den Brennpunkt F, |2 .,-"'2_|l}}.
Bestimme a. b und e. Zeichne die Asymptoten und skizziere die Hyperbel.

Eine Hyperbel hat die Brennpunkte F, (£3,75/0) und geht durch P(5|3).
Konstruiere die Scheitel, die Asymptoten und skizziere die Hyperbel.

b2
=
e




10.

11.

12.

13.

14.
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Eine Hyperbel hat die Asymptoten y = £2,4x und einen Scheitel A,(—2,5|0).
Bestimme a, b und e. Skizziere die Hyperbel.

Die Gerade durch P(1|0) und Q(—2| —3) beriihrt eine Hyperbel mit den Brennpunk-
ten F, ((£3|0). Konstruiere den Beriihrpunkt B, die Scheitel und die Asymptoten;
skizziere die Hyperbel.

Die Mittelpunkte zweier Kreise mit Radius 2 haben die Entfernung 5.

Zeichne die Ellipse und die Hyperbel, fiir die die beiden Kreise Kriimmungskreise
sind. Anleitung: Berechne jeweils a und b, zeichne die Asymptoten der Hyperbel
und die andern beiden Kriimmungskreise der Ellipse. (Fiir die Ellipse: Mittelpunkt
M(0]0), Querformat)

Die Mittelpunkte zweier Kreise mit Radius 2,25 haben die Entfernung 12,5. Zeichne
die Kreise und konstruiere die Asymptoten der Hyperbel, fiir die die beiden Kreise
Kriimmungskreise sind. Skizziere dann auch die Hyperbel.

Eine Hyperbel heil3it gleichseitig, wenn a = b gilt.

a) Zeichne eine gleichseitige Hyperbel mit M(0|0) und a = 2. Berechne e und den
Krimmungskreis-Radius r und gib die Gleichungen der Asymptoten an.

b) Begriinde folgende Konstruktion fiir die Punkte (x,|y,) einer gleichseitigen Hy-
perbel.

F'"-.“)\'q. Vo

Zeichne die Halbachsen und die Lage der Brennpunkte einer Hyperbel mit der Glei-

1
chung y= = (siehe auch Aufgabe 19.).

Zeige:
F'l‘.irbdcn Punkt P(e|p) liber dem Brennpunkt von Ellipse (Mittelpunkt M (0]0), Quer-
format) oder Hyperbel gilt
e
a
p heilit Formparameter. p ist auch der Radius der Kriimmungskreise.

Gegeben sind die Hyperbel h: 4x> —9y? = 16’ und die Gerade g: y =2x — 24 .
a) Berechne die Schnittpunkte A und B der Gerade und der Hyperbel.

b) Berechne die Schnittpunkte P und Q der Gerade und der Hyperbel-Asympto-
ten.

*c) Berechne den Mittelpunkt M, von [AB] und M, von [PQ]. Folgerung?




15.

16.

. 1. Flachensaiz

Gegeben sind die Hyperbel h: b’x? — a’y* = a’b? und die Gerade g: y=mx + L. A
und B seien die Schnittpunkte von g und h, P und Q seien die Schnittpunkte von g
und den Hyperbel-Asymptoten. Berechne die x-Werte der Mittelpunkte von [AB]
und [PQ] — VIETA erspart viel Rechnerei! — und begriinde damit den Satz: Bei je-
der Hyperbel-Sekante sind die beiden Abschnitte zwischen Hyperbel und Asymptote
gleich lang.

A und B seien Punkte der Hyperbel h: b’x? — a’y? = a’b”.

Zeige mit Hilfe des Satzes der vorigen Aufgabe: Die Parallelogramme OVAR und
OSBU sind flichengleich.

Folgere dazu zundchst aus dem Satz der vorigen Aufgabe, dass die Strecken [AB],
[BQ] und [UV] gleich lang und parallel sind.

)
5

¥4 Parallelogramme .
mit gleichem ’
Flacheninhalt

Zeige:

Zeichnet man durch einen Hyperbelpunkt A die Parallelen zu
den Asymptoten, so entsteht ein Parallelogramm mit den Ge-
genecken A und M (Mittelpunkt der Hyperbel). Dieses Paralle-

=y

A 1
logramm hat fiir jeden Hyperbelpunkt den Flicheninhalt = ab.
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:18.

19;

L1
Lo}
=
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Umkehrung des 1. Flichensatzes

Zeige:

Vom |. Fldchensatz gilt auch die Umkehrung:

Zeichnet man in einen Winkel flichengleiche Parallelogramme, bei denen eine Ecke
im Scheitel liegt und die Seiten parallel zu den Schenkeln sind, dann liegen die
freien Ecken auf einem Hyperbelast.

Zeige: Der Graph der Funktion f mit f(x)= L Ist etne Hyperbel. Was sind ihre

Asymptoten? )
(Tip: 17. und 18.) '

4%
Hyperbel
1
E=1 }" T X
‘\\\:'\-
“"""--.._.
Fi=xpqv=1 === -l'-\~--_____
F.=1 —=
. 2. Flichensatz
Zeige:

Jede Hyperbel-Tangente und die Asymptoten schlieBen ein Dreieck vom Fldchenin-
te i

r
]
=5
]
e
-




3. Die Parabel

Brennpunkt und Leitgerade

Eine Ebene. die mit einem Kegel genau eine Mantellinie gemeinsam hat, heil3t Tangential-
ebene. Schneidet eine Ebene E einen Kegel parallel zu einer Tangentialebene T, so ergibt
sich als Kegelschnitt eine Parabel. In diesem Fall gibt es nur eine Dandelin-Kugel. Sie be-
rithrt den Kegel in einem Kreis und die Schnittebene in einem Punkt, dem Brennpunkt F.
Der Dandelin-Beriihrkreis legt die Ebene H fest. Schnittebene E und Beriihrkreisebene H
schneiden sich in der Leitgerade 1. Um einen Zusammenhang zwischen den Parabelpunk-
ten, der Leitgerade und dem Brennpunkt herzuleiten, miissen wir uns liber die Lage dieser
drei Ebenen und der Zeichenebene Z im Klaren sein:

o ‘
.\b\'\ i
ATh Oy
& W
LA :
'\"\\:Fx \I::;::\ 1 _\-‘}
2 & ]
K | I T LY o
f||m' / i
/'/ b
NN \ \
._‘\"-.‘- |
o 2 ;‘- \ N
i oM \ 9
e \
&

Zeichenebene Z
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Die Tangentialebene T beriihrt den Kegel in der Mantellinie m'.

m’ und die Kegelachse bestimmen die Zeichenebene Z.

Schnittebene E, Tangentialebene T und Beriihrkreisebene H stehen senkrecht auf Z:; man
sieht E, T und H deshalb als Geraden, wenn man senkrecht auf die Zeichenebene Z
schaut.

Bertihrkreia

L _a'/ 'B ‘-\.!H' Ebene H
¥ ‘;_

y i
a — -..*
Ebene W

m'

Weil 1 die Schnittgerade von H und E ist, steht sie auch senkrecht auf Z: sie erscheint als
Punkt, wenn man senkrecht auf Z schaut.

E und Z schneiden sich in der Symmetrieachse f der Parabel: deshalb steht f senkrecht auf
der Leitgerade I.

Wir wihlen einen beliebigen Parabelpunkt P. Die Mantellinie durch P trifft den Beriihr-
kreis in B. Es gilt PF = PB (gleich lange Tangentenabschnitte). Die Ebene W, die parallel
ist zu H und durch P geht, schneidet die Mantellinie m’ in B'. Es gilt PB = P'B’.

Das Lot von P auf die Leitgerade 1 erzeugt den LotfuBpunkt L. Es gilt PL||f (beide sind
Lote auf 1) und f||m’ (Z schneidet E in f und T in m’), also ist PL|m".

Die Ebenen W und H schneiden aus den Parallelen m’ und PL die gleich langen Strecken
[PL] und [P'B'] aus. Also gilt PL = P'B' = PB = PF .

Fiir jeden Parabelpunkt ist die Entfernung vom Brennpunkt so grof8 wie sein Abstand von
der Leitgerade. Anders formuliert: Eine Parabel ist der geometrische Ort der Punkte, deren
Entfernung von einem gegebenen Punkt gleich ist ihrem Abstand von einer gegebenen Ge-
rade.

Leitgerade der Parabel

- : :
L; Parameter p|*

e
e B

[FMIEIE ] I8P SRUEa LML

| Der Abstand von Brennpunkt \
! und Leitgerade heift Parameter p, \
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Diese Eigenschaft gibt uns eine einfache Mdglichkeit, Parabelpunkte zu konstruieren,
wenn die Leitgerade 1 und der Brennpunkt F gegeben sind: Man schneidet eine Parallele
zur Leitgerade im Abstand r mit einem Kreis um F mit Radius r.

Leitgerads |

—

S ist derjenige Parabelpunkt, der von der Leitgerade den kleinsten Abstand hat. Er hal-
biert die Abstandstrecke zwischen F und | und heilit Scheitel der Parabel. Scheitel S und

Brennpunkt F haben die Entfernung 0.5p.

Die Scheitelgleichung der Parabel

Im Algebra-Unterricht haben wir die Kurve mit der Gleichung y = ax? als Parabel kennen
gelernt. Wir miissen jetzt zeigen, dass der Kegelschnitt, den wir Parabel genannt haben,
auch einer solchen Gleichung geniigt. Wir legen den Ursprung des Koordinatensystems in

den Scheitel und die y-Achse durch den Brennpunkt. Aus der Eigenschaft PF = PL leiten
wir die Parabelgleichung her. :

Pix|y)

24 (}, = %) —y+ % | quadrieren

Scheitelgleichung der Parabel
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*Tangenten der Parabel

apeIagie]

Wie bei Ellipse und Hyperbel ist auch die Parabeltan-
gente die Winkelhalbierende geeigneter Geraden: Im Pa-
rabelpunkt P halbiert sie den Winkel der Brennstrecke '
[PF] und des Lots [PL] auf die Leitgerade.

Beweis 1
Fiir jeden von P verschiedenen Punkt Q auf w, gilt: _
QL* <QL=0QF. T
Also liegt Q nicht auf der Parabel und w, ist Tangente. i
I:

Folgerungen

a) Licht, das vom Brennpunkt ausgeht, wird an der Parabel so reflektiert, dass es die Para-
bel senkrecht zur Leitgerade, also parallel zur Achse verlisst. (Scheinwerfer)
Umgekehrt: Strahlung, die parallel zur Achse einfillt, wird im Brennpunkt gebiindelt.
(Parabol-Antenne)

i

b) Die Tangente im Parabelpunkt P schneidet die Parabelachse im Punkt T. Weil PL = PF
und PL parallel zur Achse ist und PT den Winkel bei P halbiert, ist PLTF eine Raute.
Der Mittelpunkt M der Raute liegt auf der Scheiteltangente, weil diese Mittelparallele
im Dreieck FLL' ist.

T £ Ls)

Suhl;m;_fu-nh\ Subnormale




Auf dieser Eigenschaft beruht die Konstruktion der Parabel als Hiillkurve ihrer Tan-
gentenschar: Man zeichnet die Scheiteltangente und den Brennpunkt. Gleitet der Schei-
tel eines rechten Winkels auf der Scheiteltangente und geht ein Schenkel durch den
Brennpunkt, dann ist der andere Schenkel Tangente der Parabel.

Die Eigenschaft, dass die Parabeltangente den Winkel zwischen Brennstrecke und Lot auf
die Leitgerade halbiert, liegt auch der folgenden Faltkonstruktion zu Grunde: Auf einem
Blatt markiert man einen Punkt als Brennpunkt. Die Blattkante ist dann die Leitgerade.
Faltet man das Blatt so, dass die Kante auf dem Brennpunkt zu liegen kommt, dann ist die
Knicklinie eine Parabeltangente.

=
e o

7
A

# e

I..-i1,c_rvruci_+-| Scheitel-
tangente

TF=LP=50Q g’— X
I_—T F p T - S
TE=TS +—

also ist TS = SQ , das heifit, S halbiert die Subtangente (senkrechte Projektion der Tangen-
tenstrecke [PT] auf die Parabelachse).
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Diese Eigenschaft erlaubt eine einfache Konstruktion der Tangente in einem Parabel-
punkt: Man projiziert den Beriihrpunkt P senkrecht auf die Achse, das ist Q. Q an S ge-
spiegelt ergibt T. PT ist die gesuchte Tangente.

Die Normale in P (Lot auf die Tangente) schneidet die Achse in N.

Dann gilt TF = FEN, weil LF Mittelparallele im Dreieck TPN ist.

Damit gilt auch QN = L'F=p, und wir haben den Satz:

Die Subnormale [QN] (senkrechte Projektion der Normalstrecke [PN] auf die Parabel-
achse) hat fiir alle Parabelpunkte die Lange p.

Konstruktion der Parabeltangente mit der Subtangente
(1) Lot auf P auf Achse: Q

(2) Kreis um S mit r = SQ schneidet Achse in T
(3) PT ist Tangente

Aufgaben

1. Von einer Parabel ist der Brennpunkt F und die Leitgerade 1 bekannt.
Konstruiere einige Parabelpunkte und skizziere die Parabel.
Gib zur Kontrolle die fehlende Koordinate des Parabelpunkts P an.

a)l:y=—1 F@O[0) PE[D
b)I: x=—1 F(@1]|0) P@|?)
¢) Liy=x F(2|-2) P@|?

2. Parabelkonstruktion von WERNER
Der Niirnberger Geistliche Johannes WerNER verdffentlichte in seinem Todesjahr
1522 eine einfache Konstruktion von Parabelpunkten. Beschreibe und begriinde sie
und fiihre sie fiir B(0| —3) aus.

Vi Pix|y)

B(0|-2p)




. Zeige: Die Sehne, die im Brennpunkt senkrecht auf der Parabelachse steht, hat die
Linge 2p.

. Zeige: Fiir jeden Parabelpunkt P ist das Dreieck gleichschenklig, dessen Seiten auf
Brennstrahl, Normale und Achse liegen.

. Eine Parabel mit Scheitel S(1|0) geht durch P(4|2); ihre Achse ist die x-Achse. Kon-
struiere die Tangente der Parabel P und bestimme aus der Zeichnung den Wert von p.

. Eine Parabel mit Brennpunkt F(5|0) hat die Tangente mit der Gleichung 2y = X ihre
Achse ist die x-Achse. Konstruiere den Scheitel, die Leitgerade und einige Parabel-
punkte, darunter auch den Berithrpunkt B.

. Gegeben sind zwei konfokale entgegengesetzt gedffnete Parabeln mit
gemeinsamer Achse.

Zeige: Die Tangenten in den Schnittpunkten stehen aufeinander
senkrecht. (Dazu sagt man: Konfokale Gegenparabeln schneiden
sich senkrecht.)

. Eine Parabel mit Brennpunkt F(2|0) hat die y-Achse als Leitgerade.
Konstruiere diejenigen Parabelpunkte, die auf der Gerade mit der Gleichung
y = —x + 6 liegen.

e |
Ln
Lad




*4. Die Leitgerade

Auch bei Ellipse und Hyperbel gibt es Leitgeraden, die eine dhnliche Rolle spielen wie die
Leitgerade der Parabel. Sie ergeben sich auch dort als Schnitt von Beriihrkreisebene und
Schnittebene. Deshalb haben Ellipse und Hyperbel zwei Leitgeraden, fiir jeden Brenn-
punkt eine. Bezeichnen wir mit d den Abstand eines Kurvenpunkts P von der Leitgerade
und mit f seine Entfernung vom Brennpunkt F, dann gilt fiir alle drei Kegelschnitt-Typen

f . o d
= ist konstant R

| apetada]
]

|
|
[
|
|

|

Diese Konstante ist bei Ellipse und Hyperbel nichts anderes als die numerische Exzentri-

s C : .
zitdat ¢ = — . (Nachweis siehe unten)

a
Je nach der Grofie von € bekommt man
— eine Ellipse e 1, also f<d Allerdings lasst sich der Kreis als
Sonderfall der Ellipse (g=0)
. e =N = nicht mit Leitgerade und Brenn-
— eine Parabel e=—=1, also f=d _ E :
d punkt erzeugen, weil dann Be-
r rithrkreisebene und Schnittebene
— eine Hyperbel &= T 1. also f>d parallel sind.
.'Ill:

7 A Der Kreis
A
i / I % _hat keine
- Leitgerade.
Ellipse ]‘:lr;tln'l/ /]l:.'pr:'hri

254




7Zum Beweis der Konstanz von f/d bei der Ellipse projiziert man die Strecken [PL] und
[PE] senkrecht auf die Kegelachse.

PL-cosct—-

/ ~PE-cosy
PL=4d /

/ PE=PF =f

PL:-cosw = PE-coso
f_ eosa

= (konstant)
d cos ¢ mstant

Fiir die Hyperbel lduft der Beweis entsprechend, blol3 ist hier o« = @, also cos «>cos @,
also € > 1.

g I R e im Bild ist
Nachweis fir die Gleichheit T =g 5
e )
0.8
s =025

e el [ f a
Fiir den Nebenscheitel B gilt 7 ‘T
) . - a=¢
Fiir den Hauptscheitel A gilt —=—-
di isi—=a
ot e
Also ist — =
S S—4d

as—a‘=as—es
a e

5 a

ol

¢

d

£

Fiir die Hyperbel geht der Beweis entsprechend.

]
LN
Lh




ECHEL |

Parabel
Fa=ti]
also I’]_\*’Ili’.]'hﬁ‘.]
f- = [] ~
£=
é' also
: B =
-3 " f="d
5| \
L . 1 il 1 -
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5. Anwendungen
Auf Kegelschnitte trifft man in Natur, Technik und Architektur.

Bahnkurven

Galileo GALILEI (1564 bis 1642) hat Anfang des 17. Jahrhunderts erkannt, dass ein geworfe-
ner Korper eine Parabelbahn beschreibt. Dank KEPLER (1571 bis 1630) und NEWTON
(1643 bis 1727) wissen wir heute, dass die Bahnkurven eigentlich Ellipsen sind, die aber in
der Gegend des Scheitels, des Abwurfpunkts also, sehr gut durch Parabeln angendhert
werden. Es lassen sich sogar alle drei Kegelschnitt-Typen beim Werfen erzeugen. Ihre
Form hingt allein von der Abwurfgeschwindigkeit ab.

: : Kegelschnitte als Satelliten-Bahne
Kegelschnitte als Satelliten-Bahnen ceelsconste s pelEE

Hyperbeln: e>1 Parabel: =1
_—— = ; V=1, —
Sllipsen: £ oig: £= e
Ellipsen: e<1 _— Kreis: e=0 e
.—f

v<T,9km/s _—— = v=T,9km/s

Fluchtgeschwindigkeit

v, = 11.2km/s

Ellipsen: <1
vV, \

L]
=
=
=)
e
i

Im Makrokosmos der Astronomie findet man Kegelschnitte als Flugbahnen von Raketen,
Planeten, Kometen ...

Im Mikrokosmos der Atomphysik treten die Kegelschnitte als Flugbahnen geladener Teil-
chen auf.

Reflexionen

Die Reflexionseigenschaften von Spiegeln, deren Querschnitte Ellipsen, Hyperbeln oder
Parabeln sind, nutzt vor allem die Technik.

Mit Parabolspiegeln erzeugt man Parallelstrahl-Biindel, zum Beispiel in Sendeantennen
(Richtfunk) oder Autoscheinwerfern (Fernlicht).

Mit Parabolspiegeln empfingt man Parallelstrahl-Biindel, zum Beispiel in Empfangsan-
tennen fiir kosmische Strahlung und Satelliten-Fernsehen oder in astronomischen Spiegel-




Parabel

4 LY
e LY TPTRIVI N B,
v

fernrohren. Im Cassegrain-Teleskop ist ein Parabolspiegel mit einem hyperbolisch ge-
kriimmten Spiegel gekoppelt. Mit dieser Spiegelkombination erzielt man eine Brennweite,
die groBer ist als die des Parabolspiegels allein. (Ein Fernrohr vergréBert um so stirker, je
linger seine Brennweite ist.) Man konnte sogar ein Teleskop mit Spiegeln bauen, in denen
alle drei Kegelschnitt-Typen vorkommen.
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Cassegrain-Fernrohr

vom Stern ausgehendes
l‘zu';l]leln'! rahl-Biindel

'|'“ang5pil;;{l:|
{hyperbolisch)

F,=Fy

‘T: _______

Fotoplatte

Hauptspiegel
{parabolisch)

Seit es den Nierenlithotripter gibt, das ist ein Nierenstein-Zerbrosler, lassen sich Nieren-
steine ohne blutige Operation entfernen. Sein Funktionsprinzip ist recht einfach: In einem
Brennpunkt eines Ellipsenspiegels sendet ein starker Funke einen Knall aus — das ist eine
StoBwelle. Der Patient ist so justiert, dass im andern Brennpunkt sein Nierenstein sitzt. Die
am Ellipsenspiegel reflektierte StoBwelle konzentriert sich auf den Nierenstein und be-
wirkt, dass eine diinne Aufienschicht abplatzt. Einige hundert Funkenknalle zerbréseln so
den Stein zu GrieB.

Nierenstein-Zerbrosler
Stein
: Niere

Ellipsenspiegel

Ziindkerze
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Fliistergalerien sind raffinierte Einrichtungen in Schléssern und Residenzen: Eine ellip-
tisch gewdlbte Decke iiberspannt zwei Rdume so, dass in jedem Raum ein Brennpunkt
liegt. Findet ein (gefliistertes) Gespréich im Brennpunkt des einen Raums statt, dann kann
man es im Brennpunkt des andern Raums abhoren. Lauschangriffe sind also schon seit
der Renaissance durch trickreiche Nutzung einer Ellipsen-Eigenschaft in der Architektur
moglich!

Flistergewdlbe finden sich zum Beispiel

— in der Vorhalle der Residenz in Wiirzburg

— im Karyatiden-Saal des Louvre in Paris

— in einem Raum des Castello Sforzesco in Mailand

— in St. Paul’s in London.

Kegel-Schnitte

Mit einem Lichtkegel, der auf eine
ebene Wand trifft, lassen sich alle
drei Kegelschnitt-Typen als Rinder
von Schatten erzeugen.

Beim Anspitzen eines sechskantigen Bleistifts entstehen Hyperbeln als Schnitte eines Ke-
gels (im Spitzer) mit Ebenen (Bleistift), die parallel sind zur Kreisachse. Ahnlich kommen
auch die Hyperbeln auf Gewindemuttern zustande.

Bei der Sonnenuhr wirft ein fester Stab einen Schatten, der die wahre Sonnenzeit angibt.
Die Schattenspitze beschreibt jeden Tag eine andere Kurve (Datumslinie). Diese Kurve
entsteht als Schnitt der Bildebene und des Kegels, den die Verbindungsgeraden Stab-
spitze—Sonne bilden. Sie ist deshalb ein Kegelschnitt, und zwar meistens eine Hyperbel.
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Modebewusste Messingmutier beim
Mustern ihrer hyperbolischen
Konturen vorm Spiegel

Danga LORAN-System
Hyperbeln spielen eine grofie Rolle in der

Ortung von Schiffen. Das LORAN-Sy-

stem (LOng RAnge Navigation) ist ein
Funkortungsverfahren fiir die Langstrek-

kenpeilung (von den Amerikanern wah-

rend des Zweiten Weltkriegs entwickelt). | \Standlinie
Drei verschiedene ortsfeste Stationen sen- N
den gleichzeitig Signale aus, die ein Schiff
oder Flugzeug empfingt. Der Laufzeitun-
terschied der empfangenen Signale zweier
Sender legt eine Hyperbel als Standlinie
fest (die Sender stehen in den Brennpunk-
ten). Der Standort ergibt sich als Schnitt-
punkt von zwei oder drei Hyperbeln. Die
Genauigkeit bei Auswertung der Boden- \
wellenimpulse liegt bei 5km, bei Auswer- fg N\ Sl
tung der Raumwellenimpulse bei [Skm. |

Die Reichweite der Sender betrigt tags- |

iiber 1400 km und nachts etwa das Dop-
pelte. Das LORAN-System iberdeckt fast
vollstindig den Nordatlantik sowie grolie
Teile des Indischen Ozeans.

Standlinie

Die Sender A, B und C
strahlen synchrone Signale ab.

6. Geschichtliches

Etwa um 350 v. Chr. erfindet MENAICHMOS, der Lehrer Alexanders des Grof3en, die Ke-
gelschnitte als Kegel-Schnitte zur Losung geometrischer Probleme, bei denen man mit der
klassischen Methode (Zirkel, Lineal) nicht weiterkommt. Er 16st zum Beispiel das Delische
Problem der Wiirfelverdopplung iiber den Schnitt von Parabeln: Aus x* = ay und y* = 2ax
folgt namlich x = a V2 .
Mit den Kegelschnitten ist es auch moglich, einen Winkel in drei gleich groBe Winkel zu
zerlegen.
Nur das dritte der drei klassischen Probleme, die Quadratur des Kreises, kann MENAICH-
MOs nicht 1dsen.
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APOLLONIOS von Perge (262 bis 190) untersucht die Kegelschnitte eingehend und schreibt
seine Konika, acht Bilicher tiber Kegelschnitte: 1 bis IV sind griechisch tiberliefert, V bis
VII liegen arabisch vor und VII1I ist verloren gegangen. Im Gegensatz zu MENAICHMOS, der
fiir jeden Kegelschnitt-Typ einen neuen Kegel braucht, weil er immer senkrecht zu einer
Mantellinie schneidet, bekommt AproLLoNiOs alle Kegelschnitte an einem Kegel durch
Schnitte unter verschiedenen Winkeln. Er treibt geometrische Algebra, indem er versucht,
quadratische Gleichungen iiber Flichengleichheiten zu losen:

Die Gleichung ax = b? ist gelst, wenn es gelingt, zu einer gegebenen Rechteckseite a die
andere Rechteckseite x so zu finden, dass dieses Rechteck flichengleich ist einem Quadrat
mit gegebener Seitenldnge b. (paraballein = vergleichen, gleich sein)

Typ: ax= b’

X ax = b b

a

Zur Losung der Gleichung ax + x? = b? braucht man die Rechteckseite x so, dass Recht-
eck- und Quadratfliche (Seite x) zusammen so grof3 sind wie das Quadrat mit Seitenldnge
b. ArPOLLONIOS bezeichnet das kleine Quadrat mit der Seite x als iiberschieflendes Quadrat.
(hyperballein = iiber ein Ziel hinauswerfen, libers Ziel hinausschief3en)

Typ: ax + x=b

Weil negative Zahlen damals noch nicht bekannt sind, schafft die Gleichung ax — x> = b?
ein neues Problem. Jetzt braucht man die Rechteckseite x so, dass der Flichenunterschied
von Rechteck und kleinem Quadrat so groB3 ist wie das Quadrat mit Seitenldnge b. APOL-
LONIOS bezeichnet das kleine Quadrat mit der Seite x als unterschieflendes Quadrat. (ellei-
pein = mangeln, fehlen)

2 ¥
Typ: ax—x =b

=
X 5 E— b

{3~

b

Schreibt man die drei Gleichungen in der Form

y? = ax

y:=ax+x°

y:=ax —x?
so ergeben sich Gleichungen von Parabeln, Hyperbeln und Ellipsen. Die Mittelpunkte die-
ser Hyperbeln und Ellipsen liegen nicht im Koordinatenursprung.

Nach den Griechen kiimmert man sich kaum noch um die Kegelschnitte. Erst Johannes
WERNER (1468 bis 1522) erweckt sie zu neuem Leben in seiner Schrift Elemente der Ke-
gelschnitte. Darin steht zum Beispiel eine einfache Parabelkonstruktion mittels einer Schar
von Kreisen mit gemeinsamem Beriihrpunkt (sieche Kapitel 9. 11, 3).
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