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Von manchen Winkeln kennen wir die exakten Sinuswerte, zum Beispiel ist sin 30° = 5

B et e : : > : i :
5 V2. Lisst sich der Sinus von 75°=45°+30° bezichungsweise

15" =45"—30° genau berechnen? Schén wire es, wenn sin (45° + 30°) gleich
% 2 4 % = % (2 +1)~ 1,2, das
ist mehr als 1 — also kann'’s so einfach nicht gehen! Wir brauchen eine Formel, die einen
Zusammenhang zwischen sin (e + f8) und sin & und sin p herstellt.

Zunichst soll & + B < 90° und o = p sein.

Wir tragen an einen Schenkel von o« den Winkel f einmal nach auBen und einmal nach in-
nen so an, dass der neue Schenkel die Lange 1 hat: Jedesmal entsteht ein rechtwinkliges
Dreieck mit der Hypotenuse 1 und den Katheten sin f und cos .

und sin 45° =

sin 45° + sin 30° wire. Nun ist aber sin 45° + sin 30° =

oy sinfisno

Sinfisinm

Sinfoosn

sin{oe+[3)

cosfising

cos [l coso

sin{o—[3)

cosfi sino

cosfl coso
cos (a-[3)

Betrachten wir die Figur fiir & + f. Beim Abtragen von p nach auBen entsteht noch ein
rechtwinkliges Dreieck mit derselben Hypotenuse 1, aber mit den (roten) Katheten
sin (e + B) und cos (ce + B). Vom Endpunkt des gemeinsamen Schenkels der Linge cos
fallen wir die Lote auf die roten Katheten (beziehungsweise ihre Verlingerungen), zwei
neue rechtwinklige Dreiecke entstehen: Das eine hat die Hypotenuse sin f und die Kathe-
ten sin P sin « und cos f cos «. Ein Blick auf die Figur zeigt:

sin (e + B) = sin o cos f§ + cos ¢ sin f§
und cos (oc+ B)=coscosf —sinesinff.

Die Figur fiir ot — f ist analog aufgebaut. Aus ihr lesen wir ab:

sin (o — ) = sin & cos f — cos o sin
und cos (e — ) =cosocos P+ sinocsinf.




Dieser Beweis stimmt nur fiir « + § < 90° und « = p. Die vier Beziehungen aber gelten fiir
beliebige Winkel, das heil3t, « und p diirfen zum Beispiel auch negativ sein. Deshalb muss
man sich blofl die Summenformeln merken. Man fasst sie zusammen als

Additionstheoreme fiir sin und cos

sin (x + p) = sin &« cos f + cos o sin

cos (ot + B) = cos ot cos f — sin ot sin |

Ein Beispiel zeigt den Beweis der Additionstheoreme fiir den Fall, dass o und f spitz sind
o+ p aber stumpf ist. Auch die dritte Figur ist analog der
ersten aufgebaut, aus ihr liest man ab:
sin (¢r + B) = sin & cos 3 + cos o sin f
und — cos (ot + B) = sin e sin P — cos o cos P, das heiljt
cos (o + ) = cos o cos § — sin ¢ sin fi.

sinfl sina

sinfo+f3)

cosfisino

-cos (o +3) cosfcosa
Sind o und f§ nicht mehr spitz, so spaltet man die spitzen Anteile & beziehungsweise B ab
und wendet auf sie die Additionstheoreme an. Beispiel: 90° < « < 180° und 0° < f < 90°

o= 180° — &
sin (o« + B) = sin (180° — & + B) = sin (180° — (& — B))
sin (180° — ) =sin g
= sin (& — B)
Additionstheorem
=sin & cos B — cos & sin f
o= 180° — &
= 5in (180° — &) cos f — cos (180° — o) sin
cos (180° — ) = —cos @
=sinoccos f+cosasinfp w.z. b.ow.

Jetzt endlich finden wir den genauen Wert von sin 75°:

sin 75° =sin (45° + 30%)
= gin 45° cos 30° + cos 45° sin 30°

1 — | I
= 51"3 : ) Ev'ff (v3 +1)

B

>R iy

\"E :
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Auch fiir den Tangens gibt es ein Additionstheorem: wir leiten es aus den Additionstheo-
remen fir sin und cos her:

sin(oe+ B)  sin o cos P+ cos o sin B

: —— kirzen mit cos o cos
cos(oc+ f)  cosccos—sinosinp [

tan (x + p) =

sin o i sin b
_cosa  cosf tan o+ tan f

| sin ¢ cos i | —tan ¢t tan
cos o cos i

Additionstheorem fiir tan

tan ot + tan p

I—tantxtanﬁJ

tan (x + p) =

Alle darin vorkommenden Tangenswerte miissen definiert sein, das heif3t, die Winkel c, B
und o + f diirfen nicht gleich /2 + km, k € Z sein.

Mit dem Tangens-Additionstheorem berechnet man Schnittwinkel von Geraden im Koor-
dinatensystem. Der Neigungswinkel « einer Gerade ist der Drehwinkel, um den man die
x-Achse nach links drehen muss, damit sie mit
der Gerade zur Deckung kommt: bei positiver
Steigung m nimmt man den Neigungswinkel o
zwischen 0° und 90°, bei negativer Steigung m
nimmt man « zwischen 90° und 180° (manchmal
auch zwischen 0° und —90°). In jedem Fall gilt

m>0

0P< o< 90° {tan [180°-m,)

=-tan o

90°< o <180° il

| m=tanux ‘
- ~90°<L < 0° :
Ly _—
& =
/ m = tano
Der Schnittwinkel @ = o, — o, zweier Geraden mit den Steigungen m, und m, errechnet
sich so:
{’ tan [.-{1 — lan [.X| lI'h = m;
tanp = tan (¢, — o) = =
¢ : ) 1 + tan o, tan o, | + mom,
AN . 5 7 e 5
Beispiel: Die Geraden g:y = S X+6 und h:y = 7 X -4 haben die Steigungen m, = >
7
und m, = ——
)
Py 8
tan o =
s 29
3 2
Die Geraden schneiden sich unter ¢ = 45°.
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Hitten wir m, und m, vertauscht, so hétte sich ergeben tan @ = —1 und deshalb ¢ 1358
beziehungsweise @ = —45°. Damit die Formel immer den spitzen Schnittwinkel liefert, un-
terdriicken wir solche Minuszeichen mit dem Betrag:

1’]!2 s mL
tan g = ——

M= My

1 + mym,

|1+m,m,

| tany =

Diese Formel klappt freilich nur, wenn der Nenner 1 + m,m; ungleich null ist. Wenn er

‘ : I . 1
aber gleich null ist, dann gilt m, = — o das heilit, tan o, = T Wegen der Kom-
plementformel : i
an (90° — ) = ilt
tan (90° — ) S gi ,
1 |
ANt =o —— ==t > — (=) an (90° + o),
tan o ) an (90° — (—w,)) = tan ( o),

also unterscheiden sich «; und o, um 90°: Die Geraden stehen aufeinander senkrecht.
Verwendet man den Kotangens, dann siecht man dies auch direkt:
| 1+ m,m, |

cotp=|———|=0, also ist @ =90°. Damit gilt
| m;—m, | ¢

Ist eine Steigung m, der negative Kehrwert einer andern Steigung m,, dann sind die zu-
gehorigen Geraden g, und g, zueinander senkrecht.

m, = —-—— = L -
! m, LB

Aus den Additionstheoremen folgen viele weitere Formeln. Besonders wichtig sind die
Doppelwinkel- und Halbwinkel-Formeln. Fiir « = f§ ergeben sich die
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Doppelwinkel-Formeln

sing.

sin 2 = 2 sin o cos of E ) h
cos 20t = (cos o)’ — (sin x)? . il | fafe),
=1— 2 (sin o)’ A
. =2 (cos x)’ — 1 '
tan 2o = % 5 ﬂ A M . Am (B
sincoset = F=311sin2a

Die erste Formel lisst sich einfach veranschaulichen.

Auch ein anderes Bild veranschaulicht einige der Doppelwinkel-Formeln. In einem Halb-
kreis (Radius 1) sehen wir ein rechtwinkliges Dreieck mit dem Winkel o und der Hypote-
nuse 2. Der Radius | bildet mit der Hypotenuse den Winkel 2o (warum?). Mit den Bezie-
hungen von Seite 108:

Gegenkathete = Hypotenuse mal Sinus

F o

& B
1 : %

Z S : = b . - 1+ o8 2. -1 -00% Jo—
Ankathete = Hypotenuse mal Kosinus S s

lesen wir ab: sin 2¢t = 2 sin o COS &«
1 + cos 2o = 2 (cos &)’
1 — cos 20c= 2 (sin &)’

Die Halbwinkel-Formeln folgen aus den Doppelwinkel-Formeln: Man ersetzt o« durch
/2.

; (1 —cos o)

\“‘—-—“:l
[

|

|
*Halbwinkel-Formeln (cos ) = ?(l + cos )

» «\? 1—cosa
an— | =————

2 1+ cos o
Mit diesen Formeln lassen sich die exakten sin-, cos- und tan-Werte aller konstruierbaren

Winkel mit ganzzahligem Gradmal berechnen. Startwinkel sind 90° (Lot), 60° (gleichseiti-
ges Dreieck) und 36° (Zehneck). Fiir sie gilt:

sin 90° = 1 c0s90° =0

: 1 = | 5 -

sin 60° = —-y/3 cos 60° = 5 tan 60° = /3

: i i s o Ly 5 ) il 1 =
sin 36° = 4-\:10—2\-5 cos 36° = --4-.‘1 2t B | tan36°= {5 —245
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Den Kosinus des kleinsten dieser Winkel: cos 3° berechnen wir so:

cos 6° = cos (36° — 30°) Additionstheorem anwenden
= ¢0s 36° cos 30° + sin 36° sin 30°
Ches)lmael o
Y-/ 2 Y- 4 Il| Y- 2
! — _— _— —
=—\¥3 + 15 +y10-25 |
¥ 6° : !
cos 3 COS —~ Halbwinkel-Formel anwenden

e e
= \/E(I =T é‘{_\.‘j +4/15 4 V10 — 245 ,-|>

]

I — P
f

—V8+ 3 + 415 + y10-245
4
Ausgehend von cos 3° kann man (wenn man will) mit den Summenformeln die 5in-, cos-
und tan-Werte aller Vielfachen von 3° berechnen, also aller konstruierbaren Winkel mit
ganzzahligem Gradmal.

o sin o | COS o tamn o
y2 Y (= 9 3 y2 3 (= Y + ( T 3 )
3 e =S L2 3 —y5+245 G5 -1)0-, V5 + 245 (3.3 5—245 —4)(yi0-2y5 )
1 s r Iz
6 =S DAYI5-645 = 1) S hYS \YS— 245 +43 )
I 1 rf
L:|‘|r1|| 645 1 :l "_l_llﬁ V3 + 43 I'\1 o LI, vl v x|“j
| 1
9 G0 +2)(1-5-245 ) (10 +42) (14 V5245 )
| |
h[" D+ 42 =293 ) ,‘l:\"' v 2y35 ") S5 41 =5+ 245
[ 1 = 1 7 |
| 4 VE—2Y10 3245 T\VE+ 2910 +245
12 | L5 D52 ) Leg i 5 ) (2 [ )
| R ¥ Lya V3 raG LINY IS5+ 6y 164, R E AT R T V5
I/ \ 1 | = |
| ==(yI0+245 5 =415 \{\?»I 645 +45—1) : = (35 =15 =50-225)
4 == |
= / - (e ( :
15 = ¥ 7 Ve =y =ty | ] Ll oy 2—4/3
J 1 2 |
I8 (V5 - 1) F(Vi0+25 ) l Y25 - 1043
o) & | 5
2 3 - | A b
2 1A I R B 1) y3 2+ 45 \‘:] ‘:r\ (3 145 43+ 2495 \‘1| 4'\1\1 YIS =245 "-'[\|'5 ¥ 2}




o | sin o | COS o tan «

i Ly y = =% phari < I I f :
24° | 7 LS c1 ({3 =5-245 ) = (5 DA s=645 1) l:.?'\"‘f'[l,llf--_'.,* 243 )
I = 1 f | I
“'._.\R-Hr y 10 “..5] "-i(\'m ays -\-1-|} \I:.r-q\._‘._"_l-\ iy \|5]
= | o | \
27 (yio -2 ) (Ws+245 —1) (10 —y2 }(1++5+245 )
& &
| : ) Ly e
\r.‘v.‘ vl T R IRl g e V2Tl 10 —42) ¥ 1 = 45—2935
l‘,h ?\.iﬂ 245 I\\ 2410 = 245
4 i % = ¥
ik [ 1 = 1
30 : B 3
- 5 :
i .Ia.‘\.r‘: ACE l:ll:" 245425 ) \a;r‘l D (E -1 -2 445 -\.‘j 33 y15 B =) (Y10=245 +3)
i { o |
- 1y
A _1\\|:| 1\\) ‘ _.[n.q 1} ‘ Js—215
a3 V2 ¥ S aE / { W B 5 (410 v}
397 | A (B -5 - DL 5245 ) | ({3 + ) (5 +1) (2 -3+ ¥5-2¢5 ) | Z393 —VI5 245 ~4)A¥10+2¢5 =2/
E | - elr e \§ | i e Lif =
42 .‘I 5 IJ'k\I'\ [ 1} \l_rul'* I‘:H\w,< 5 p\j ".,‘ V15 ol \-\]
I f | =
L‘(\.“' Byd —o3 ) V10T 245 =43 yis }
= |
45 =2 =2

Zwei Formelgruppen runden dieses Kapitel ab. In der ersten werden Produkte in Summen
und Differenzen umgewandelt, in der zweiten Gruppe geht’s umgekehrt.

Additionstheoreme | sin (y + d) =sinycosd + cos y sind
11 sin(y —®) =siny cosd —cosysind
[+ 1 sin(y+d)+sin(y—90)=2sinycosd | :2

. (Lo y . /
sinycosd = = [sin(y + 8) + sin(y — 0)]

Verwenden wir wieder o und B statt y und d, so ergibt sich die erste Gruppe:

*Produkt-Summen-Formeln

[sin (e — ) + sin (cx + B)]

sinoccos f=

sin oc sin p = —=[cos («x — ) — cos (ot + P)]

b | = Ml—n N||—

cos o cos = —[cos (ot — ) + cos (e + )]

Die unteren beiden Formeln ergeben sich, wenn man die Additionstheoreme fiir cos (y + d)
und cos (y — d) addiert beziehungsweise subtrahiert.
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Jetzt zur zweiten Gruppe: Aus den Additionstheoremen I und II von oben folgt
[+1II sin(y+9d)+sin(y—98)=2sinycosd m
[-1II sin(y+2d)—sin(y—3)=2cosysind ﬁ_ﬂ

x+ B
: V=T e
otze ¥ TO=u] Zy=ut+p 2
ELze \g—ﬁ=fi] 20=0t—p . u—p
=
: . L.t L oy e o] =il
einsetzen 1n@ sin ¢ + sin p = 2 sin 5 oS 5
e a—p

3 171 60 — Sit 2 cOoS s
m._]—:;| 510 X n = 2cos 5 sin 5

Durch dhnliche Umformungen ergeben sich Ausdriicke fiir cos ¢ + cos B und cos o — cos f.

*Summen-Produkt-Formeln

- - + -
sinx—sinB= 2cos et sin — P cos o+ cos f = Zr:us(iv--ﬂms =D

2 2 2 2

+ = + -
sin ¢z + sin f = —2 sin ':-]-'Ez—ﬁi:m;—”E 3 £ cos ot — cos f = —2 sin o > P sin = 3 P

*Goniometrische Gleichungen
Neben den algebraischen Termen wie 2x + 1, x, y/x , ... haben wir jetzt auch trigonometri-

sche Terme kennen gelernt wie sin x, cos 2x, tan (x = I). Eine Gleichung heif3t goniome-
&

trisch, wenn sie die Unbekannte x in mindestens einem trigonometrischen Term enthilt.
Wir beschranken uns vorldufig auf rein-goniometrische Gleichungen; das sind Gleichun-
gen, bei denen die Unbekannte x nur in trigonometrischen Termen auftritt.

Beispiele rein-goniometrischer Gleichungen:

m (tan x)* = tan x E‘ cos2x —cosx =0
3sinx —4dcosx=0 E‘ 3sinx—4cosx=35

Beim Auflsen versucht man, auf eine Gleichung zu kommen, die nur noch einen trigono-
metrischen Term (womoglich an mehreren Stellen) enthilt. Zum Umformen dienen die
bisher abgeleiteten Formeln.

| | 5

[1] (tan x)* = tan x
Hier kommt nur tan x vor, zum Losen geniigt Algebra
tanx(tanx—1)=0, also tanx=0 oder tanx=1

T

4 +kn, keZ

X =0+ kwr oder x,=




<]

3sinx —4cosx=35 Wir driicken cos X mit sin x aus

cos2x—cosx=10

wir driicken cos 2x durch cos x aus
[2(cos x)* — 1] —cosx =0
Substitution: cosx =z

L+3
222—z—1=0, also z=—,
4
also cosx=1 oder cosx= F5
Das ergibt drei Serien von Lisungen:
X . =0+Kk-2xn oder
2
X =37 + k- 2n oder

4 .
x_m:?ﬂ."i' k-2m jedesmal ke Z

3sinx —4cosx =0

solche Gleichungen sind mit einem Trick schnell erledigt: man dividiert durch cos x = 0

3tanx =4, oder tanx 3
X, =0927... +kn, keZ

Fiir cos x = 0 ergibt sich sin x =0, das kann aber nicht sein, weil sin und cos nicht
gleichzeitig null sind.

3sinx—5=4cosx |?

(3 sin x —5)* = 16(cos x)° (cos x)> =1 — (sin x)?
9(sin x)* — 30sinx +25=16[1 — (sin x)’]

25(sinx)* — 30sinx+9=0

[5sinx —3P=0, also sinx=

Ln | W

das ergibe x,,=0,643... +k-27 (I. Quadrant)

oder X, =2498...+k-2x (II.Quadrant)
Quadrieren ist keine Aquivalenzumformung!
Beim Auflosen kénnen sich deshalb Ergebnisse einschleichen, die keine Losungen der
Ausgangsgleichung sind. Also miissen wir die Probe machen; wir machen sie mit dem
exakten Ergebnis sin x = 0.,6.
x kann im 1. Quadranten liegen, dann gilt
cos X = y1 — (sin x)? = 0,8. Setzt man diesen Wert in die linke Seite der Gleichung ein,
so ergibt sich
3sinx—4cosx=18—-32=-—-14

Wegen — 1,4 + 5 gibt es keine Losung im I. Quadranten.




x kann im II. Quadranten liegen, dann gilt

cos X = —y1 — (sin x)* = —0.8. Setzt man diesen Wert in die linke Seite der Gleichung
ein, so ergibt sich

3sinx—4cosx=18+32=35

Also gibt es blol} die Losungsserie

X, =2498...+k-2n, keZ.

Aufgaben zu 7.

1.

L]
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Uberpriife die Additionstheoreme an den Beispielen

a) sin (60° + 30°) b) sin (60° — 307) ¢) sin (90° — 45°)
d) sin(210° — 60°) e) cos (90° + 30°) f) cos(90° — 30°)
g) cos(240°—60%)  h) cos(210°+90°) i) tan(60°— 30°)
j) tan(150°+60%) k) tan(240°—60°) 1) cos(315° + 45°)

. Berechne die exakten Werte von

a) sin 75° b) sin 15° ¢) cos75° d) cos 15° e) tan 15°
f) tan75° g) sin72° h) cos 72° i) tan 72°.

x und y seien spitze Winkel. Berechne

: : ; 5 : 4
a) sin(x+y) und sin(x—y), wenn sinx= e und siny =
8 5
b) cos(x+y) und cos(x—y), wenn cosx= 17 und cosy= i5)

Berechne sin 2¢, cos 2oc und tan 2«, wenn o spitz ist und

. 5
a) sino = 13 b) cosa= 0,6 ¢) tan o = 0,5.

. o 4 04 3 A
Berechne HIHE’ cmE und tan > wenn ¢ spitz ist und
a) sinoc=0,8 b) cos o =0,5.
Berechne die exakten Werte sin ¢, cos o« und tan o fir
a) a=15° b) ox=7,5° ¢) oo =225°

. Verwandle in ein Produkt.

a) sin 5x +sin x b) sin 7x—sin 3x
¢) cos3x + cos x d) cos 6x—cos x
Verwandle in ein Produkt.

a) sinx + cosy b) sinx —cosy




oo,
v

o e ——— L — % e e e

9. DOPPELHOHE
a) Driicke CD durch b und « aus, wenn Winkel ACB = 90° ist.
b) Driicke CD durch a und b aus, wenn Winkel ACB = 90° und b > a ist.

$10. DREILINSEN
Zeichne ein Dreieck ABC und den Hohenschnittpunkt H. Zeichne die drei Kreise:
Jeder geht durch zwei Ecken und durch den Héhenschnittpunkt H. Zeige:
a) Die Radien der drei Kreise sind gleich dem Umkreisradius.
b) Die drei linsenférmigen Uberlappungsflichen sind zusammen so grofl wie die
Umkreisfliche, verringert ums Doppelte der Dreieckfliiche.

$11. WINKELPLUSSECHZIG
VergroBert man einen Dreieckwinkel auf beiden Seiten um 30°, so entsteht ein Drei-
eck, das in zwei Seitenlédngen mit dem alten iibereinstimmt, die dritte Seite ist linger.
Man macht das mit allen drei Winkeln.
Zeige: Die jeweils dritten (lingeren) Seiten sind alle gleich lang.
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12. GERADLINIG
Zeichne ein (nicht gleichschenkliges) Dreieck ABC mit seinem Umkreis. Zeichne in
einem Eckpunkt die Umkreistangente und schneide sie mit der verlingerten Gegen-
seite. Mache das fiir alle Eckpunkte.
Zeige: Die Schnittpunkte von Tangente und verlédngerter Gegenseite liegen auf einer
Gerade.

i

2 13. SCHEINDRITTEL
a) Die einfachste Nidherung beruht auf der Sehnendrittelung. Wie grof3 sind p und
w, wenn @ = 30°, 60°, 90°, 120° ist?

b) Wie grof} ist £, wenn w = 30°, 45°, 60°, 90° ist?
¢) Wie groB3 ist €, wenn o = 30°, 457, 60°, 90° ist?
d) Wie groB} ist e, wenn w = 30°, 45°, 60°, 90° ist?

a) b)
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Vereinfache
i @ sin 2o sin 2c
| e =
SIN of COS
)

. a) 2(sin ¢)* + (cos &)* — (sin &)*

b) (sino + cosox + 1)(sinc + cosox — 1)

. a) 2sin (45° + &) sin (45° — &)

b) sin (60° + &) — sin (60° — o)
¢) cos (60° + &) + cos (60° — &)

sin o + sin 2o COS ¢ COS

I + cos ot + cos 2u cos — sin o COS ¢ + §in o

a) sin (o + B) cos o — cos (& + P) sin o
b) cos (¢t + B) cos o + sin (& + ) sin o
¢) sin (o + B) cos (e — B) + cos (e + B) sin (o« — B)
d) sin (o — B)cos (p — y) + cos (cx — B) sin (f — y)

i sin (o + ) — sin & cos b) ©os (o + ) — cos x cos p
; sin (et + P) — cos ¢ sin p cos (ot — ) — sin sin B
7. a) sin (ot + B) + sin (&« — ) b) sin (ot + ) + sin (x — §)
g sin (o + B) — sin (cc — B) cos (oc + B) + cos (ot — P)
0 cos (o + f) — cos (x — f)
sin (¢ + ) — sin (o« — B)
1 + cos 1 + cos o 1 |
8. a) T b) SEER ¢) — 1 d) — tan o
|l —cose (sin ) sinot tano COS ot
( Tipp: halbe Winkel!)
2 sin o — sin 2o 2 cos of + sin 2o
g- g o e el = e e e BT
2 sin o + sin 2o 2 cos ot — sin 2o
sin o + sin ¢ cos [ . :
. S < halbe kel!
sin f + cos o sin B (Zip:halbe Winkell
10. 2) 1 — cos o Hinu b 1 +coso— s?nu
1 +cos o+ sin 1 — cos o — sin &
( Tipp: halbe Winkel!)
| + cos o) sin =
e cos 2 ; b) sino —sin P 5 e f:m g 2 =
R (tan o)’ cos o + cos p sin o

cos (& + B) cos (o — B)
sin (o + B) sin (o« — ) + (cos &)’
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Beweise

. tan 3x =

. a) sin (45° + ) = cos (45° — &) =

a) sin o + sin (e + 120°%) + sin (o + 240%) = 0
b) tan o + tan (¢ + 120%) + tan (o + 240°) = 3 tan 3o

S
¢) cos o cos (o + 120°) cos (o + 240°) = T cos 3

d) tanc tan (o + 120%) tan (o + 240%) = —tan 3o

. a) sin3x = 3sin x — 4(sin x)°

b) cos 3x = 4(cos x)* — 3 cos x (Tipp: 3x = 2x + x!)

3tan x — (tan x)?
1 — 3(tan x)?

a) sin4x = 8 sin x (cos x)* — 4 sin X cos X
b) cos 4x = §(cos x)* — 8(cos x)* + 1

4 tan x — 4(tan x)*
1 — 6(tan x)* + (tan x)*

= e e S o
) Leite o 1 — cos o 1 o 1 + cos o
a) Leite her: sin—= 4/———— un 08— = —

7 > und cos— 3

tan 4x =

b) Welche Formel ergibt sich fiir Laﬂ% ?

sin & + cos «
>
V<

b) sin (45° — ) = cos (45° + o) = —= &SI K

V2
5 | +tan o
c) tan (45° + o) ==
| —tan &
] —tan
d) tan (45" — ) = o
| +tan &
8. a) tan (45° + &) — tan (45° — o) = 2 tan 2«
b) tan (45° + &) + tan (45° — &) = :
cos 2ot
1 +sina COS X s =
9. a) = : g tan ( 45° + —
COS X | —sino 2
| —sino COS o
b) ; ==c = tan | 457 — —
COS X ] +sine 2
- 2 tan o 1 — tan ool
10. a) sin200=———— b) cos 20 =— {M
I + (tan «)? 14 (tan o)
sin 2o = cos 2er
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¢) tanx = = -
1 + cos 2t sin 2o




11. a) sin 55° + sin 5° = cos 25°

b) sin 80° — cos 50° = sin 20°
¢) cos 170°+ cos 70° + cos 50° =0
d) sin 20° + sin 40° = sin 80°

® ¢) 8sin20°sin 40°sin 80° \E

o) 8cos 20° cos 40° cos 80° = |

e o) tan 20° tan 40° tan 60° tan 80° = 3
(Teste auch deinen Taschenrechner!)

= E

12. a) sin 75° +sin 15° = 5 y6 und sin75°—sin 15" =— V2.
b) Berechne aus a) sin 75° und sin 15°.
13. tan 3¢ —tan 2o — tan o« = tan 3¢ tan 2o tan o
¢ 14. Dreieck ABC ist rechtwinklig, wenn gilt
: sin B + siny
a) s =
cos f+cosy
b) sin o= cos f + cos y
. ] : : ’ ; . ... Sinoc S
¢ 15. Welche Eigenschaft hat ein Dreieck, in dem gilt = |3'. =2cosy !

¢ 16. Fiir die Winkel eines Dreiecks ABC gilt:
a) tano +tan B +tany =tan« tan p tany
b) tan 2c¢c + tan 2p + tan 2y = tan 2¢ tan 2f tan 2y

¢ 17. Fiir die Winkel eines Dreiecks ABC gilt:

; e o 5} Y
a) sinx +sinf +siny= 40057{:0!43 co$ -
a ; / S = 5, Y
b) sinot +s5inf —siny = 4 sin — 51N — COS
2 2 2
St VI MESAL

¢) cos o+ cos P+ cosy=4sin—-sin—-sin—+ 1
2 2 2
: g B

d) cosa + cos i — cos y =4 cos 5 COS —- .*;Ln? |

¢ 18. Fiir die Winkel eines Dreiecks ABC gilt:
a) sin 2« +sin 2p +sin2y =4sino sin f siny
b) sin 2« + sin 2p — sin 2y = 4 cos & cos f siny
¢) cos 2ec+ cos 2B + cos 2y = —4cos o cos P cosy — |

d) cos 2e+ cos 2P — cos 2y = —4sinx sin f cosy + |
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20.

21.

b
[ &)
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. Fiir die Winkel eines Dreiecks ABC gilt:

a) (sin )’ + (sinB)* + (siny)’ =2 cos & cos P cosy + 2
b) (sin &)? + (sin f)* — (sin y)>* = 2sin o sin B cos y
¢) (cos o)’ + (cos B)* + (cosy)* = —2cosot cos B cosy + 1

-

d) (cos o)’ + (cos B)’ — (cosy)’ = —2sino sin f cosy + |

SUMDIFSIN
ABCD und ABEF sind Rauten.

= I I
a) Zeige: <BAH=0=—(etw), < HA]:):T:'E{UJ £)

b) Begriinde:
Fliiche (ABCD) + Fliche (ABEF) = 2 - Fliche (ABGH)
Fliche (ABCD)—Fliche (ABEF)=Fliche (ECDF)

¢) Driicke die Flacheninhalte in b) durch die Winkel w, £, ¢ und t aus und leite so
die Formeln fiir die Summe und Differenz zweier Sinuswerte her.

Zeichne ein gleichschenkliges Dreieck mit der Basis ¢ und den Schenkelldngen 1.

a) Zeichne die Hohe h, ein und berechne sie auf zwei Wegen: einmal aus dem Drei-
eck ABH,, dann aus dem Dreieck AH,C. Beweise:

siny = 2 sin _;COS ;i

b) Fille von H, aus das Lot auf BC (LotfuBpunkt F) und zeige:

H. CF—-FB und cos v = Lcm %) = (sin ;)

¢) Folgere ausb): 1 —cosy=2 (sin %)

d) Verlingere den Schenkel [BC] iiber C hinaus bis D, sodass BC = CD ist.

Beweise mit Hilfe des Dreiecks AH,D: 1 + cosy = 2 (ms ;) .

ADDITIONSTHEOREM UND DREIECKFLACHE
Berechne die Flichen der Dreiecke PQS, PSR und PQR. Folgere das Additionstheo-
rem des Sinus aus

Fliche (PQR) = Fliche (PQS) + Fliche (PSR).




T

e o At e o i e e 5

23. ADDITIONSTHEOREM UND UMKREIS
Begriinde mit der Sehnenformel, dass die Umkreise der Dreiecke ABC und A’BC
gleichen Radius haben. Folgere aus dem Projektionssatz ¢ = acos p + b cos & und
aus der Sehnenformel das Additionstheorem des Sinus.

_Bixy)

Aly)

24. ADDITIONSTHEOREM UND KOSINUSSATZ
Berechne e einmal mit der Formel e’ = (x; — xA)> + (v — va)* und einmal mit dem
Kosinussatz. Folgere daraus das Additionstheorem des Kosinus.

EZS. a) Zeige: Fir den Flicheninhalt F des Vierecks ABCD gilt
1
F E[ad sin ¢« + besin y).
b) Begriinde mit a) die Flichenformel » HERON fiirs Viereck«
o+vy\?
F=4/(s—2a)(s—Db)(s—c)(s—d)— abcd ( cos 5 :

s ist der halbe Viereckumfang.
( Tipp: Kosinussatz fiir Teildreiecke)

26. Warum hat das Sehnenviereck unter allen Vierecken mit den Seitenldngen a, b, ¢
und d den grofiten Flacheninhalt?
(Tipp: vorige Aufgabe)

I
27, A
II II
it
\ Zeige
[ | e=30°
II II|
) 1
|II II'
| CascE |
I 1
) 1
I T |
|I II
k \
III Ill
II |I
{ \
| \
| |
I|I 4 III
LB i
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Gleichungen Bestimme die Losungsmengen in [0; 27|

1. a) 192(sinx)*+ 128 sinx =75 b) 100(cos x)* +75sinx =114

. : ;
2. a) sin x = sin 2x b) 4 Sin 2x —sinx =0
¢) 4sinxcosx= —y2 d) tan2x +tanx =0

e) cosx—cos2x=1

3. a) sinx +cos2x = | b) cos x + cos 2x = |
¢) sin2x +2(cosx)* =1

4. a) sinx +cosx =028 b) 8sinx+9cosx=12

¢) 8sinx —9cosx=12

5. a) (sin x)> + 2 sin 2x = 3(cos x)’
b) (cos x)* + 3 cos 2x = (sin x)?
¢) 24(cos x)* — 12(sin x)? = sin 2x
d) 6(sin x)* + &(cos x)* = 7 sin 2x

b

: (1T m {11 3
$6. a) sinx=3cos(——x| b) cosx =3sin |- —x)
\ 6 \ 4
7. a) 15cosx = l6tan x b) 6sin2x —3tanx=5sinx
o tan 2x tan x tan x L tan2x
8. a) et 2 b) 2 Pt ll={)
tan x tan 2x tan 2x tan x
9, a) sin 11x = sin 5x b) cos 13x = cos 5x
® ey ~ c
® c) sin 7x = cos 3x d) tan 15x = tan 9x

e) sin 5x —'sin 3x = cos 9x — cos 7X
10. a) sinx + sin 2x +sin3x =0

b) cosXx +cos2x +cos3x=0
11. a) sin X + sin 2x + sin 3x +sin4x =0

L4 » %
¢h) cos X — cos2x — cos Ix —cos 4x = ()

3
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