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7 . Kapitel
Summenformeln

Theodolit von Reichenbach , Utzschneider und Liebherr , um 1810 , München



Von manchen Winkeln kennen wir die exakten Sinuswerte, zum Beispiel ist sin 30 ° = \
1 ^

und sin 45 ° = — ^2 - Lässt sich der Sinus von 75 ° = 45° + 30 ° beziehungsweise
15 ° = 45° - 30° genau berechnen ? Schön wäre es , wenn sin (45° + 30°) gleich
sin 45° + sin 30° wäre . Nun ist aber sin 45° + sin 30 ° =

y ĵ2 + y =
y ( ■ + 1 ) « 1,2 , das

ist mehr als 1 - also kann ’s so einfach nicht gehen ! Wir brauchen eine Formel, die einen
Zusammenhang zwischen sin (oc + ß) und sin a und sin ß herstellt.
Zunächst soll oc + ß < 90° und a > ß sein .
Wir tragen an einen Schenkel von oc den Winkel ß einmal nach außen und einmal nach in¬
nen so an , dass der neue Schenkel die Länge 1 hat : Jedesmal entsteht ein rechtwinkliges
Dreieck mit der Hypotenuse 1 und den Katheten sin ß und cos ß .

sinßsing

sinßsing

COSß COS(X

cos ß cos g
cos (a - ß)

Betrachten wir die Figur für cc + ß . Beim Abtragen von ß nach außen entsteht noch ein
rechtwinkliges Dreieck mit derselben Hypotenuse 1 , aber mit den (roten) Katheten
sin (cc + ß) und cos (a + ß) . Vom Endpunkt des gemeinsamen Schenkels der Länge cos ß
fällen wir die Lote auf die roten Katheten (beziehungsweise ihre Verlängerungen) , zwei
neue rechtwinklige Dreiecke entstehen : Das eine hat die Hypotenuse sin ß und die Kathe¬
ten sin ß sin oc und cos ß cos oc. Ein Blick auf die Figur zeigt :

sin (oc + ß) = sin oc cos ß + cos oc sin ß
und cos (oc + ß) = cos a cos ß - sin cc sin ß .

Die Figur für a - ß ist analog aufgebaut . Aus ihr lesen wir ab :
sin (oc — ß) = sin oc cos ß - cos oc sin ß

und cos (oc - ß) = cos oc cos ß + sin oc sin ß .
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Dieser Beweis stimmt nur für a + ß < 90° und a § ß . Die vier Beziehungen aber gelten für
beliebige Winkel , das heißt , oc und ß dürfen zum Beispiel auch negativ sein . Deshalb muss
man sich bloß die Summenformeln merken . Man fasst sie zusammen als

Additionstheoreme für sin und cos

sin (oc + ß) = sin oc cos ß + cos <x sin ß
cos (oc + ß) = cos a cos ß - sin oc sin ß

Ein Beispiel zeigt den Beweis der Additionstheoreme für den Fall , dass cc und ß spitz sind
cc + ß aber stumpf ist . Auch die dritte Figur ist analog der
ersten aufgebaut , aus ihr liest man ab :

sin (oc + ß) = sin oc cos ß + cos oc sin ß
und - cos (oc + ß) = sin oc sin ß - cos oc cos ß , das heißt

cos (oc + ß) = cos cc cos ß - sin oc sin ß .

sin ß sing

cos ß cos g

Sind cc und ß nicht mehr spitz , so spaltet man die spitzen Anteile 6c beziehungsweise ß ab
und wendet auf sie die Additionstheoreme an . Beispiel : 90° < oc < 180 ° und 0 ° < ß < 90°

oc = 180° - 6c
sin (cc + ß) = sin ( 180 ° - cc + ß) = sin ( 180 ° - (oc — ß))

= sin (6c - ß)
sin ( 180 ° - cp) = sin cp

Additionstheorem
= sin 6c cos ß - cos oc sin ß

oc = 180° - cc
= sin ( 180° - oc) cos ß - cos ( 180 ° - cc) sin ß

cos ( 180° - cp) = - cos cp
= sin cc cos ß + cos cc sin ß w . z . b . w.

Jetzt endlich finden wir den genauen Wert von sin 75 ° :

sin 75 ° = sin (45° + 30°)
= sin 45 ° cos 30° + cos 45 ° sin 30°

- jV2 ' yV3
'

+ yV? Y = iV2 (V? + l )
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Auch für den Tangens gibt es ein Additionstheorem ; wir leiten es aus den Additionstheo¬
remen für sin und cos her :

tan (oc + ß) = sin (a + ß)
cos (oc + ß)

sin a cos ß + cos oc sin ß
cos a cos ß - sin a sin ß

sin oc sin ß
cos a cos ß
_ sin a cos ß

cos oc cos ß
Additionstheorem für tan

tan oc + tan ß
1 - tan oc tan ß

kürzen mit cos oc cos ß

tan (oc + ß) : tan oc + tan ß
1 - tan oc tan ß

Alle darin vorkommenden Tangenswerte müssen definiert sein , das heißt , die Winkel oc, ß
und oc + ß dürfen nicht gleich tt/2 + kn , ke Z sein .
Mit dem Tangens -Additionstheorem berechnet man Schnittwinkel von Geraden im Koor¬
dinatensystem . Der Neigungswinkel a einer Gerade ist der Drehwinkel , um den man die
x-Achse nach links drehen muss , damit sie mit
der Gerade zur Deckung kommt : bei positiver
Steigung m nimmt man den Neigungswinkel oc
zwischen 0 ° und 90°

, bei negativer Steigung m
nimmt man oc zwischen 90° und 180 ° (manchmal
auch zwischen 0° und - 90°

) . In jedem Fall gilt

m > 0
0°< (x < 90' |tan {180°- ot2}

tana .2

m = tan oc 90°< oc< 180
oder- 90°<tt < 0°

m = tan ot

Der Schnittwinkel cp = oc2 - oc , zweier Geraden mit den Steigungen m , und m2 errechnet
sich so :

tan cp = tan (<x2
- ocj )

tan oc2
— tan 0C[

1 + tan cc2 tan oc .
m2 - m ,

1 + m2m.

Beispiel : Die Geraden g : y = — x + 6 und h : y = —— x - 4 haben die Steigungen n^ = —

und m2 = —
j

-

_ 1 _ 5
3 2

tan cp = - -— -
1 - — ■—

3 2

Die Geraden schneiden sich unter cp = 45 °.

- 29
- 29

= 1 .
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Hätten wir n^ und m2 vertauscht , so hätte sich ergeben tan cp = — 1 und deshalb cp = 135°

beziehungsweise cp = - 45 °
. Damit die Formel immer den spitzen Schnittwinkel liefert , un¬

terdrücken wir solche Minuszeichen mit dem Betrag :

imBildist

tanip =tan cp = m2 - m

Diese Formel klappt freilich nur , wenn der Nenner 1 + m2m , ungleich null ist . Wenn er

aber gleich null ist , dann gilt m2 = — — , das heißt , tan a 2 = —-- . Wegen der Kom -
ni ] tan (Xj

plementformel

tan (90° - cp)

tan (90° - ( — oci )) = tan (90° + c^) ,tan a 2 tan ( - aO

also unterscheiden sich cq und a 2 um 90° : Die Geraden stehen aufeinander senkrecht .
Verwendet man den Kotangens , dann sieht man dies auch direkt :

cot cp
1 + m2m !
m2

- m.
= 0 , also ist cp = 90°

. Damit gilt

Ist eine Steigung m2 der negative Kehrwert einer andern Steigung m „ dann sind die zu¬
gehörigen Geraden g , und g2 zueinander senkrecht.

m2 m ,
gl 1 g2

Aus den Additionstheoremen folgen viele weitere Formeln . Besonders wichtig sind die
Doppelwinkel - und Halbwinkel -Formeln . Für a = ß ergeben sich die
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Doppelwinkel -Formeln

sin 2a = 2 sin <x cos a
cos 2a = (cos a )2 - (sin a ):

= 1 - 2 (sin a )2
= 2 (cos a )2 — 1

2 tan a
1 — (tan a );

sing

sinacosot = F = fM -sin2a

Die erste Formel lässt sich einfach veranschaulichen .
Auch ein anderes Bild veranschaulicht einige der Doppelwinkel -Formeln . In einem Halb -
kreis (Radius 1 ) sehen wir ein rechtwinkliges Dreieck mit dem Winkel a und der Hypote¬
nuse 2 . Der Radius 1 bildet mit der Hypotenuse den Winkel 2a (warum ?) . Mit den Bezie¬
hungen von Seite 108 :

Gegenkathete = Hypotenuse mal Sinus

>g\ cos2a »i
- 1-cos2g-
=2(sing )2

—1+cos2g-
= 2(cosg )2Ankathete = Hypotenuse mal Kosinus

lesen wir ab : sin 2a = 2 sin a cos a
2

1 + cos 2a = 2 (cos a )2
1 - cos 2a = 2 (sin a )2

Die Halbwinkel -Formeln folgen aus den Doppelwinkel -Formeln : Man ersetzt a durch
a/2 .

(1 - cos a )

(1 + cos a )

1 - cos a
1 + cos a

* Halbwinkel -Formeln

Mit diesen Formeln lassen sich die exakten sin - , cos- und tan -Werte aller konstruierbaren
Winkel mit ganzzahligem Gradmaß berechnen . Startwinkel sind 90° (Lot) , 60° (gleichseiti¬
ges Dreieck ) und 36 ° (Zehneck ) . Für sie gilt :

sin 90° = 1 cos 90° = 0

sin 60° = -
y V3

"
cos 60° = — tan 60° =

VlO — 2 V? cos 36'
V5 - 2V5

"
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Den Kosinus des kleinsten dieser Winkel : cos 3 ° berechnen wir so
cos 6° = cos (36° - 30°) Additionstheorem anwenden

= cos 36 ° cos 30° + sin 36 ° sin 30°

= | (V3 + VT? + V10 — 2 Vs
"

)

cos 36 ° = = W |
6°

cos 3 ° = cos — Halbwinkel -Formel anwenden

= -yjj ( 1 + cos 6°)

= ^ y ( 1 + y ( V3
“

+ VT5
“
+ Viö ^ iTT ))

= V■8 + V3
"

+ -/l5
"

+ VlO — 2 -/F
'
”

Ausgehend von cos 3 ° kann man (wenn man will ) mit den Summenformeln die sin- , cos-
und tan -Werte aller Vielfachen von 3 ° berechnen , also aller konstruierbaren Winkel mit
ganzzahligem Gradmaß .

4 (A - 0 (A - 0 (2 + A - VA7Ä) (A + 0 (Vs - 1) (2 - A + VA2A ) V3A + VA - 2A —4) (V>o —2A - 2)

j (A + i) (Vü^ - 0
= 4- (V30 - 6 VV - VV- !)

y (A + 1) (Vs - 2 V5
"

+ A )
= y (Vio - 2VT + A + 7A) { ( VhWTT ! A - VA )

y (V^ + V ) ( i - V5 - 2A )
= j (VÜ + ^ - 23CT )
= y ( V8 - 2/lO + 2VJ )

y (VA + V2
"
) ( l + V5 - 2A )

= y (VlO + V2 + 2V5 - V )
= y ( V8 + 2VlO + 2A )

v? + 1- Vwr

12° y (A - 0 (1/5+ 275
' - VT)

= y ( VlO ! 2V? +*VF- VTS
"
)

-
g
-(VV- l) (Vl5 + 6VV + 0

=y (V30+ 6V? + A “ 0
y (3 - A/CzA- VI0 - 2V )
-F (3VF- Vis

"- Vso - 22V5
")

15°

18°

21 °

V2 - A = F ( V̂ - V2 ) jvVwr = F (^ + ^ ) 2 - A

r (Vs
"- 0 F (Vi^ 2A ) F V25 - 10A

tsVA 1 0 (A + 0 (A 2 + Vs 2Vf ) -ttVA - OCA + 0 (A + 2 + V5 - 2A ) F (3A - VA - 2A + 4) ( V10 + 2A - 2)
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24° r ( VF + i) ( J3 - tIs - 2Js )

r ( V5
"

+ VTT- 2V? )
j ( VF + l) ( Vl5 - 6,/F + ])

= i (V30 - 6^ + VF + l)
r (3 + ^ ) (VlO + 2^ - 2VF)

r (V50 + 22VF - ifi - JIs )

27° ~ ({w - j2 ) {4s + 24s - \)
= - ( 2 ^ 5 + 45 + V2 - ViF)

= ~ - 2tJ \0 - 2VF

y ( /T0 - V2
*
) ( l + Vs + 2V5

" )
= j ( 2 ^ 5 + ^5 + VTo- ifi

"
)

= jV « + 2tI \Q- 2Js
VT- 1- V5 - 2V5

"

30°

33 °

36°

39°

42°

4 (V3
~- 0 (^ - 0 (^ + 2 + VIWT ) -^ - (VF + lXVF - l ) (^2 - 2 + ^5 + 245 ) j- (3V3

"
+ VTT- 2 -i/5

~- 4) (VlO - 2 V5
“

+ 2)

j (VlO- 2^ ) r ( VF + 0 Vs - 2VT

-̂ (V3
"- l ) ( V? - 0 (V3

"
+ 2 - l/5 - 2VF ) 4 - ( V? + 1) ( V? + 1) ( 2 - VF + Vŝ ITT ) r (3V3 —-/Ts

"
+ 2Vs

"—4) (V10+ 2 V5
" - 2)

-i (v^ i) Wnwr - i)
=4- ( V30 4- eVs

" - 3/5
“

+ 1)
j (i/F - 0 (3/5+ 2VF + VF)

=^ (Vio + 2VF - VF + ViF)
y (VF + ViF - Vio + 2VF )

45° rVF rVF

Zwei Formelgruppen runden dieses Kapitel ab . In der ersten werden Produkte in Summen
und Differenzen umgewandelt , in der zweiten Gruppe geht ’s umgekehrt .

Additionstheoreme I sin (y + 5) = sin y cos 5 + cos y sin 5
II sin (y - 5) = sin y cos 5 - cos y sin 5
I + II sin (y + 5) + sin (y - 5) = 2 sin y cos 5 | | : 2

sin y cos ö =
y [sin (y + 5) + sin (y - 5) ]

Verwenden wir wieder a und ß statt y und 5 , so ergibt sich die erste Gruppe :

* Produkt-Summen-Formeln

sin a cos ß = 4 " [sin (oc - ß) + sin (oc + ß )]Zt

sin oc sin ß =
y [cos (oc - ß) — cos (<x + ß)]

COS OCCOS ß = y [cos (oc — ß) + cos (oc + ß)]z

Die unteren beiden Formeln ergeben sich , wenn man die Additionstheoreme für cos (y + 5)
und cos (y - 5) addiert beziehungsweise subtrahiert .
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Jetzt zur zweiten Gruppe : Aus den Additionstheoremen I und II von oben folgt
I + II sin (y + 8) + sin (y - 5) = 2 sin y cos 5
I - II sin (y + 5) — sin (y - 8) = 2 cos y sin 5

_ a + ß
Y + ö = a ] 2y = a + ß

^

5 =
setze

Y - ö 25 = a - ß
2

a - ß

einsetzen in

in

TI ■ , . „ - . oc + ß <* - ßA \ sin a + sm ß = 2 sin —-— cos —-—
■ o * oc + ß . OC— ßsin a - sin ß = 2 cos —-— sin —-—B

Durch ähnliche Umformungen ergeben sich Ausdrücke für cos a + cos ß und cos a - cos ß .
* Summen-Produkt-Formeln

. _ - (x + ß . oc - ßsin oc - sin ß = 2 cos — -— sin — —
2 2

. a + ß a - ßsin a + sin ß = - 2 sm — -— cos — —c-

. „ - a + ß oc - ßcos a + cos ß = 2 cos — -— cos — r- 1-
Zd Z

_ . . a + ß . a — ßcos a - cos ß = - 2 sm — -— sm — —

* Goniometrische Gleichungen

Neben den algebraischen Termen wie 2x + 1 , x2
, y[x , . . . haben wir jetzt auch trigonometri¬

sche Terme kennen gelernt wie sin x , cos 2x , tan ^x - Eine Gleichung heißt goniome -
trisch, wenn sie die Unbekannte x in mindestens einem trigonometrischen Term enthält .Wir beschränken uns vorläufig auf rein-goniometrische Gleichungen ; das sind Gleichun¬
gen , bei denen die Unbekannte x nur in trigonometrischen Termen auftritt .
Beispiele rein-goniometrischer Gleichungen :
[T] (tan x)2 = tan x
rXI 3 sin x — 4 cos x = 0

2 cos 2x - cos x = 0
4 3 sin x — 4 cos x = 5

Beim Auflösen versucht man , auf eine Gleichung zu kommen, die nur noch einen trigono¬metrischen Term (womöglich an mehreren Stellen ) enthält . Zum Umformen dienen die
bisher abgeleiteten Formeln.
[T ] (tan x)2 = tan x

Hier kommt nur tan x vor, zum Lösen genügt Algebra
tan x (tan x - 1 ) = 0 , also tan x = 0 oder tan x = 1

TTx lk = 0 + kn oder xlk = — + kn , k e Z
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2 cos 2x - cos x = 0

wir drücken cos 2x durch cos x aus
[ 2(cos x)2 - 1 ] - cos x = 0
Substitution : cos x = z

2z2 - z - 1 = 0 , also
1 ±3

also cos x = 1 oder cos x = -

Das ergibt drei Serien von Lösungen :
x ik = 0 + k • 271 oder

X2k = — 7T + k - 27T

x3k =
y ^ + k - 2^

oder

jedesmal k e Z

2

3 sin x — 4 cos x = 0
solche Gleichungen sind mit einem Trick schnell erledigt : man dividiert durch cos x 4=0

3 tan x = 4 , oder tan x = — ,

xk = 0,927 . . . + kn , keZ
Für cos x = 0 ergibt sich sin x = 0 , das kann aber nicht sein , weil sin und cos nicht
gleichzeitig null sind .

4 3 sin x - 4 cos x = 5 Wir drücken cos x mit sin x aus
3 sin x - 5 = 4 cos x | |

2

(3 sin x - 5)2 = 16 (cos x)2 (cos x)2 = 1 - (sin x)2

9 (sin x)2 - 30 sin x + 25 = 16 [ 1 - (sin x)2]
25 (sin x)2 - 30 sin x + 9 = 0

3
[5 sin x - 3 ]

2 = 0 , also sin x = — ,
das ergäbe x lk = 0,643 . . . + k • 2tt ( I . Quadrant )

oder x2k = 2,498 . . . + k - 271 ( II . Quadrant )

Quadrieren ist keine Äquivalenzumformung !
Beim Auflösen können sich deshalb Ergebnisse einschleichen , die keine Lösungen der
Ausgangsgleichung sind . Also müssen wir die Probe machen ; wir machen sie mit dem
exakten Ergebnis sin x = 0,6.
x kann im I . Quadranten liegen , dann gilt
cos x = V1 “ (sin x)2 = 0,8 . Setzt man diesen Wert in die linke Seite der Gleichung ein ,
so ergibt sich
3 sin x - 4 cos x = 1,8 - 3,2 = - 1,4
Wegen - 1,4 =1= 5 gibt es keine Lösung im I . Quadranten .
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x kann im II . Quadranten liegen , dann gilt
cos x = - Vl _ (sin x)2 = - 0,8 . Setzt man diesen Wert in die linke Seite der Gleichung
ein , so ergibt sich
3 sin x - 4 cos x = 1,8 + 3,2 = 5
Also gibt es bloß die Lösungsserie
xk = 2,498 . . . + k • 27i , keZ .

Aufgaben zu 7 .
1 . Überprüfe die Additionstheoreme an den Beispielen

a) sin (60° + 30°) b) sin (60° - 30°) c) sin (90° - 45°)
d) sin (210° - 60°) e) cos (90° + 30°)
g) cos (240° - 60°) h) cos (210° + 90°)
j) tan ( 150 ° + 60°

) k) tan (240° - 60°)
2 . Berechne die exakten Werte von

a) sin 75 ° b) sin 15 ° c) cos 75 °

f) tan 75 °
g) sin 72° h) cos 72°

3 . x und y seien spitze Winkel . Berechne

f) cos (90° - 30°)
i) tan (60° - 30 °)
1) cos (315° + 45 °)

d) cos 15°

i) tan 12°.
e) tan 15 °

sin x =a) sin (x + y) und sin (x - y) , wenn

b) cos (x + y) und cos (x - y) , wenn cos x =

13

17

und sin y = ■

und cos y = -
j^

-

4 . Berechne sin 2a , cos 2a und tan 2a , wenn a spitz ist und
5

a) sin a =
13 b) cos a = 0,6 c) tan a = 0,5 .

5 . Berechne sin — , cos — und tan —
, wenn a spitz ist und

a) sin a = 0,8 b) cos a = 0,5.
6 . Berechne die exakten Werte sin a , cos a und tan a für

a) a = 15 ° b) a = 7,5° c) a = 22,5°

7 . Verwandle in ein Produkt .
a) sin5x + sinx b) sin7x - sin3x
c) cos3x + cosx d) cos6x - cosx

8 . Verwandle in ein Produkt.
a) sin x + cos y b) sin x - cos y
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9 . DOPPELHÖHE
a) Drücke CD durch b und a aus , wenn Winkel ACB = 90° ist.
b) Drücke CD durch a und b aus , wenn Winkel ACB = 90° und b > a ist.

S 10 . DREILINSEN
Zeichne ein Dreieck ABC und den Höhenschnittpunkt H . Zeichne die drei Kreise :
Jeder geht durch zwei Ecken und durch den Höhenschnittpunkt H . Zeige :
a) Die Radien der drei Kreise sind gleich dem Umkreisradius .
b) Die drei linsenförmigen Überlappungsflächen sind zusammen so groß wie die

Umkreisfläche , verringert ums Doppelte der Dreieckfläche.

Ul . WINKELPLUSSECHZIG
Vergrößert man einen Dreieckwinkel auf beiden Seiten um 30°

, so entsteht ein Drei¬
eck , das in zwei Seitenlängen mit dem alten übereinstimmt , die dritte Seite ist länger.
Man macht das mit allen drei Winkeln.
Zeige : Die jeweils dritten (längeren) Seiten sind alle gleich lang.

a' = b’= c'
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S 12 . GERADLINIG
Zeichne ein (nicht gleichschenkliges) Dreieck ABC mit seinem Umkreis . Zeichne in
einem Eckpunkt die Umkreistangente und schneide sie mit der verlängerten Gegen¬
seite . Mache das für alle Eckpunkte .
Zeige : Die Schnittpunkte von Tangente und verlängerter Gegenseite liegen auf einer
Gerade.

: i3 . SCHEINDRITTEL
a) Die einfachste Näherung beruht auf der Sehnendrittelung . Wie groß sind p und

co , wenn cp = 30°
, 60°

, 90°
, 120 ° ist?

b) Wie groß ist e , wenn io = 30 °
, 45 °

, 60°
, 90° ist ?

c) Wie groß ist e , wenn co = 30 °
, 45 °

, 60°
, 90° ist ?

d) Wie groß ist e , wenn co = 30 °
, 45 °

, 60°
, 90° ist ?

a)

3e = u)
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Vereinfache

1 . a)
sin 2a
sin a

b)
sin 2a
cos a

2 . a) 2(sin a )2 + (cos a )4 - (sin a )4

b) (sin a + cos a + 1 ) (sin a + cos a - 1)

3 . a) 2 sin (45° + a ) sin (45° - a )
b) sin (60° + a ) - sin (60° - a )
c) cos (60° + a ) + cos (60° - a )

sin a + sin 2a cos a _ cos a
’ 1 + cos a + cos 2a ’ cos - sin a cos a + sin a

5 . a)
b)
c)
d)

6 . a)

7 . a)

c)

8 . a)

9 . a)

c)

10 . a)

11 . a)

d)

sin (a + ß) cos a - cos (a + ß) sin a
cos (a + ß) cos a + sin (a + ß) sin a
sin (a + ß) cos (a - ß) + cos (a + ß) sin (a - ß)
sin (a - ß) cos (ß - y) + cos (a ~ ß) sin (ß - y)

sin (a + ß) - sin a cos ß
sin (a + ß) - cos a sin ß
sin (a + ß) + sin (a - ß)
sin (a + ß) - sin (a - ß)
cos (a + ß) - cos (a - ß)
sin (a + ß) - sin (a - ß)
1 + cos 1 + cos a

1 - cos a (sin a )2

{ Tipp : halbe Winkel !)

b)

b)

cos (a + ß) - cos a cos ß
cos (a - ß) - sin a sin ß

sin (a + ß) + sin (a - ß)
cos (a + ß) + cos (a - ß)

c)
1 1

sin a tan a
d)

1
cos a

2 sin a - sin 2a
2 sin a + sin 2a
sin a + sin a cos ß
sin ß + cos a sin ß

2 cos a + sin 2a
2 cos a — sin 2a

{ Tip : halbe Winkel !)

1 - cos a + sin a , . 1 + cos a - sin a-- :- b) - - :-
1 + cos a + sin a 1 - cos a - sin a

{ Tipp : halbe Winkel !)

cos 2a sin a - sin ß
1 - (tan a )2 ’ cos a + cos ß

cos (a + ß) cos (a - ß)
sin (a + ß) sin (a - ß) + (cos a )2

c)
( 1 + cos a ) sin — a

sin a

tan a
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Beweise

1 . a) sin a + sin (a + 120 °) + sin (a + 240°
) = 0

b) tan a + tan (a + 120 °
) + tan (a + 240 °

) = 3 tan 3a

c) cos a cos (a + 120 ) cos (a + 240 ) = — cos 3a

d) tan a tan (a + 120 ) tan (a + 240 ) = - tan 3a

2 . a) sin 3x = 3 sin x - 4(sin x)3

b) cos 3x = 4 (cos x)3 - 3 cos x ( Tipp : 3x = 2x + x !)

3 tan x - (tan x)3
3 . tan 3x =

1 - 3 (tanx )2

• 4 . a) sin 4x = 8 sin x (cos x)3 - 4 sin x cos x
b) cos 4x = 8 (cos x)4 - 8 (cos x)2 + 1

4tanx - 4 (tan x)3
• 5 . tan 4x

I - 6 (tan x)2 + (tan x)

. a / 1 - cos a a6 . a) Leite her : sin — = -W - ;- und cos — = 1 + cos a

b) Welche Formel ergibt sich für tan — ?

sin a 1- cos a7 . a ) sin (45 + a ) = cos (45 ° - a ) =
V2

cos a - sin ab) sin (45 - a ) = cos (45 ° + a ) =

1 + tan ac) tan (45 + a)

d) tan (45 ° - a ) =

1 — tan a
1 - tan a
1 + tan a

8 . a) tan (45 ° + a ) - tan (45 ° - a ) = 2 tan 2a

b) tan (45 + a ) + tan (45 ° - a ) =
cos 2a

1 + sin a cos a i a
i

— =- = tan 45 + —
1 - sin a \ 2cos a

1 - sin a cos a = tan 45+ sm a

2 tan a

cos a

b) CO s2a = 4 -
~ tana

;
1 + (tan a )2

10 . a) sin 2a =
(tan a )2

sin 2a 1 - cos 2a
c) tan a =

1 + cos 2a sm 2a
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11 . a) sin 55 ° + sin 5° = cos 25°

b) sin 80° - cos 50 ° = sin 20°

c) cos 170 ° + cos 70° + cos 50 ° = 0
d) sin 20° + sin 40° = sin 80°

• e) 8 sin 20° sin 40° sin 80° =
• f) 8 cos 20° cos 40° cos 80 ° = 1
• g) tan 20° tan 40° tan 60° tan 80 ° = 3

(Teste auch deinen Taschenrechner !)

12 . a) sin 75 ° + sin 15 ° = -yVö
"

und sin 75 ° - sin 15 ° = -
y V2

~
-

b) Berechne aus a) sin 75° und sin 15 °.

13 . tan 3a - tan 2a - tan a = tan 3a tan 2a tan a

• 14 . Dreieck ABC ist rechtwinklig , wenn gilt

„ . sinß + sinv
a) sin a = - — -

cos ß + cos y
b) sin a = cos ß + cos y

• 15 . Welche Eigenschaft hat ein Dreieck , in dem gilt ^ ^

• 16 . Für die Winkel eines Dreiecks ABC gilt :
a) tan a + tan ß + tan y = tan a tan ß tan y
b) tan 2a + tan 2ß + tan 2y = tan 2a tan 2ß tan 2y

2 cos y ?

• 17. Für die Winkel eines Dreiecks ABC gilt :

a) sin a + sin ß + sin y = 4 cos -
y cos -

y cos y
-

b) sin a + sin ß - sin y = 4 sin -
y sin y

- cos y
-

c) cos a + cos ß + cos y = 4 sin -
y sin -

y sin -
y + 1

d) cos a + cos ß - cos y = 4 cos -
y cos -

y sin — 1

• 18 . Für die Winkel eines Dreiecks ABC gilt :
a) sin 2a + sin 2ß + sin 2y = 4 sin a sin ß sin y
b) sin 2a + sin 2ß - sin 2y = 4 cos a cos ß sin y
c) cos 2a + cos 2ß + cos 2y = —4 cos a cos ß cos y — 1
d) cos 2a + cos 2ß — cos 2y = — 4 sin a sin ß cos y + 1
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• 19 . Für die Winkel eines Dreiecks ABC gilt :
a) (sin a )2 + (sin ß)2 + (sin y)2 = 2 cos a cos ß cos y + 2
b) (sin a )2 + (sin ß )2 - (sin y)2 = 2 sin a sin ß cos y
c) (cos a )2 + (cos ß)2 + (cos y)2 = - 2 cos a cos ß cos y + 1
d) (cos a )2 + (cos ß )2 - (cos y)2 = - 2 sin a sin ß cos y + 1

20 . SUMDIFSIN
ABCD und ABEF sind Rauten .

a) Zeige : < BAF1 = a = -
y (e + to) , <Jc F1AD = r = -

y (co - e)

b) Begründe :
Fläche (ABCD ) + Fläche (ABEF ) = 2 • Fläche (ABGH )
Fläche (ABCD ) - Fläche (ABEF ) = Fläche (ECDF )

c) Drücke die Flächeninhalte in b) durch die Winkel co , e , a und r aus und leite so
die Formeln für die Summe und Differenz zweier Sinuswerte her .

21 . Zeichne ein gleichschenkliges Dreieck mit der Basis c und den Schenkellängen 1 .
a) Zeichne die Flöhe ha ein und berechne sie auf zwei Wegen : einmal aus dem Drei¬

eck ABH a, dann aus dem Dreieck AFIaC . Beweise :

Y Ysin y = 2 sin — cos — .

b) Fälle von FI C aus das Lot auf BC (Lotfußpunkt F) und zeige :

CH a = CF — FB und cos y = ( cos -ff - M 1
c) Folgere aus b) : 1 - cos y = 2 ( sin -

yj .

d) Verlängere den Schenkel [BC] über C hinaus bis D , sodass BC = CD ist.
Beweise mit Hilfe des Dreiecks AFED : 1 cos y = 2 ( cosy

-
j

22 . ADDITIONSTHEOREM UND DREIECKFLÄCHE
Berechne die Flächen der Dreiecke PQS , PSR und PQR . Folgere das Additionstheo¬
rem des Sinus aus

Fläche (PQR ) = Fläche (PQS ) + Fläche (PSR ) .
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23 . ADDITIONSTHEOREM UND UMKREIS
Begründe mit der Sehnenformel, dass die Umkreise der Dreiecke ABC und A 'BC
gleichen Radius haben . Folgere aus dem Projektionssatz c = a cos ß + b cos a und
aus der Sehnenformel das Additionstheorem des Sinus.

A(xA|yA)/

24 . ADDITIONSTHEOREM UND KOSINUSSATZ
Berechne e einmal mit der Formel e2 = (xB

- xA)2 + (yB
- yA)2 und einmal mit dem

Kosinussatz . Folgere daraus das Additionstheorem des Kosinus.
J 25 . a) Zeige : Für den Flächeninhalt F des Vierecks ABCD gilt

F = ~ (ad sin a + bc sin y) .

b) Begründe mit a) die Flächenformel » Heron fürs Viereck «

F =
Y (s - a) (s - b) (s - c) (s - d) - abcd fcos a + y

s ist der halbe Viereckumfang.
( Tipp: Kosinussatz für Teildreiecke)

26 . Warum hat das Sehnenviereck unter allen Vierecken mit den Seitenlängen a, b , c
und d den größten Flächeninhalt ?
( Tipp: vorige Aufgabe)

• 27.
j2o\

Zeige
c=30°
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Gleichungen Bestimme die Lösungsmengen in [0 ; 2tt [

1 . a) 192 (sin x)2 + 128 sin x = 75 b) 100 (cos x)2 + 75 sin x = 1 14

2 . a) sin x = sin 2x

c) 4 sin x cos x = - V2
~

e) cos x - cos 2x = 1

3 . a) sin x + cos 2x = 1
c) sin 2x + 2 (cos x)2 = 1

• 4 . a) sin x + cos x = 0,8
c) 8 sin x - 9 cos x = 12

5 . a) (sin x)2 + 2 sin 2x = 3 (cos x)2

b) (cos x)2 + 3 cos 2x = (sin x)2

c) 24 (cos x)2 - 12 (sin x)2 = sin 2x
d) 6 (sin x)2 + 8 (cos x)2 = 7 sin 2x

b) sin 2x - sin x = 04

d) tan 2x + tan x = 0

b) cos x + cos 2x = 1

b) 8 sin x + 9 cos x = 12

• 6 . a) sin x = 3 cos ( — — xTT
b) cos x = 3 sin ( — - xTI

7 . a) 15 cos x = 16 tan x

S 8 . a)
tan 2x tan x

= 2 b ) 2

b) 6 sin 2x - 3 tan x = 5 sin x

tan x
tan 2x ' tan x

b) cos 13x = cos 5x
d) tan 15x = tan 9x

tan x tan 2x

9 . a) sin 1 lx = sin 5x
• c) sin 7x = cos 3x

e) sin 5x - sin 3x = cos 9x - cos 7x
10 . a) sin x + sin 2x + sin 3x = 0

b) cos x + cos 2x + cos 3x = 0
11 . a) sin x + sin 2x + sin 3x + sin 4x = 0

• b) cos x - cos 2x - cos 3x - cos 4x = 0

] 2 _
tan2x

_ + n _ 0
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