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*1.2 Konstruktionen

Ein regelmifiges Vieleck ist genau dann konstruierbar, wenn der Mittelpunktswinkel
konstruierbar ist. Kann man ein n-Eck konstruieren, dann klappt es auch bei einem mit
der doppelten Eckenzahl (Winkel lassen sich ja verdoppeln und halbieren). Am besten
fangt man mit dem Umkreis an.

Quadrat (4er Serie): Man zeichnet zwei zueinander senkrechte Durchmesser ein. Die
Lote, die man vom Mittelpunkt M auf die Quadratseiten fillt, schneiden den
Kreis in den Ecken des Achtecks.
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Sechseck (3er Serie): Die Konstruktion ist noch einfacher. Eine Seite ist so lang wie der
Radius, weil das Bestimmungsdreieck gleichseitig ist. Das Sechseck ist die Aus-
gangsfigur fiirs Dreieck (liberniachste Ecken verbinden) und fiirs Zwolfeck (Lote
fillen).
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Zehneck (Ser Serie): Im Bestimmungsdreieck des Zehnecks gilt wegen der Ahnlichkeit
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Nach Pythagoras lassen sich r, - und s + —- deuten als Seiten eines rechtwink-

ligen Dreiecks. Ist der Umkreisradius r bekannt, so findet man die Seite s des
Zehnecks so:
Das Zehneck ist die Ausgangsfigur firs 5- und 20-Eck.
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Lange Zeit hat man geglaubt, dass nur Vieleckserien mitn =4 -2k n =3 -2kundn = § - 2k
konstruierbar seien, bis schlieBlich der deutsche Mathematiker Carl Friedrich GAuUss
(Braunschweig 30.4.1777 bis 23.2.1855 Géttingen) im Jahr 1801 in seinen » Disquisitiones
arithmeticae« bewies, dass auch noch andere regelmaBige n-Ecke konstruierbar sind. Fiir
die Eckenzahl n muss gelten

n=2%p p;... pn, wobei mund k natiirliche Zahlen einschlieBlich 0 sind

Pi> P2, ... sind lauter verschiedene sogenannte Fermat’sche Primzahlen (nach Pierre de
FERMAT 1601—-1665) der Bauart 2¥ + 1 mit i € N,

i 22

0 3 Fermat’sche Primzahl

k5 Fermat'sche Primzahl
2 17 Fermat’sche Primzahl
3957 Fermat’sche Primzahl

65537 Fermat'sche Primzahl

L, I =%

4294967297 = 641 -6700417 keine Primzahl
Konstruierbar sind demnach die n-Ecke mit n = 3. 4;5.6, 8, 1012, 15, 16, 17. 20. ...
Nicht konstruierbar sind die n-Ecke mit n - T2 kL, 13, 14, 18..19 .21 ..

Enthalt n mehr als eine Fermat’sche Primzahl, dann kombiniert man die Mittelpunktswin-
kel geeignet, zum Beispiel mit n = 15

| a b | 3a+ 5b
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wir wihlen a=2 und b= —1
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1825 konstruierten PAUKER und ERDINGER das 17-Eck.

1832 konstruierte RICHELOT das 257-Eck und Ende des letzten Jahrhunderts wagte sich Prof. HErMES an die Kon-
struktion des 65537-Ecks. Er brauchte 10 Jahre und beschrieb 250 Riesense
Kiste im Mathematischen Institut der Universitiit Goitingen.

Bis heute (1995) kennt man keine weiteren Fermat'schen Primzahlen.

iten, diese schlummern heute in einer
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