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2 . 1 . Umfang

Die Frage , wie man bei gegebenem Durchmesser den Umfang eines Kreises bestimmt , hat
den Menschen schon immer beschäftigt . So finden wir in der Bibel im ersten Buch der Kö¬
nige, Kapitel 7 , Vers 23 : » Hierauf fertigte er ein kreisrundes Becken an , das von einem
Rand bis zum andern 10 Ellen maß . . . , eine Schnur von 30 Ellen umspannte es .«
Will man bei beliebigen Kreisen den Umfang aus dem Durchmesser ermitteln , so braucht
man eine Formel . Um sie zu finden , erinnern wir uns zuerst daran , dass alle Kreise ähnlich
sind und dass in ähnlichen Figuren gleich liegende Stücke im gleichen Verhältnis stehen.
Man kann zeigen (aber das ist hier zu kompliziert) , dass diese Stücke auch krummlinig
sein dürfen . Demnach ist das Verhältnis Umfang : Durchmesser bei allen Kreisen dieselbe
Zahl . Seit 1737 verwendet man nach Leonhard Euler ( 1707 bis 1783 ) für diese Zahl als
Symbol den kleinen griechischen Buchstaben n.
Ist u der Umfang , d der Durchmesser und r der Radius eines Kreises, so gilt

ist konstant , als Gleichung = n oder u = dn

Gewöhnlich ersetzt man d durch 2r und bekommt so die Umfangsformel u = 27ir .

Wie groß ist n ?
Wir machen einen kleinen Spaziergang durch die Geschichte der Berechnung von Näherungswerten für n . In den
folgenden Dezimalzahlen sind die für n gültigen Werte fett gedruckt .

/ BIBLISCHER )tr — 's
' KREIS

JC= 3 /

Die Bibel verwendet für n den Wert 3 . Und mit diesem Wert rechnet man auch im alten
Babylon . Eine einfache Überprüfung (Maßband rumlegen oder Kreis abrollen) zeigt, dass
der Wert in Wirklichkeit etwas größer ist .
Schon um 1900 v . Chr . kennen die Ägypter den Wert ( 16/9)2 = 3,1604. . . , wie im Papyrus
Rhind nachzulesen ist .
Um 500 v . Chr . rechnet man in den indischen Sulbasutras (das sind Schnurregeln zur
Konstruktion von Altären) mit dem Wert (26/15 )2 = 3,0044 . . .
Platon (427 bis 348) gebraucht -fl + ^3

"
= 3,1462 . . .

Als erster berechnet Archimedes (287 bis 212) die Kreiszahl tt systematisch, indem er den
Kreis zwischen regelmäßige Vielecke einzwängt :
Man sieht leicht ein, dass der Umfang eines einbeschriebenen Vielecks kürzer ist als der
Kreisumfang , denn eine Strecke ist die kürzeste Verbindung zweier Punkte . Man kann
auch zeigen (aber das ist hier zu kompliziert) , dass der Umfang eines umbeschriebenen
Vielecks größer ist als der Kreisumfang . Beim Verdoppeln der Eckenzahl wird der Um-
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fang un des einbeschriebenen n -Ecks größer , der Umfang vn des umbeschriebenen n -Ecks
kleiner

s » < 2 s2„
ns„ < 2ns ;

nt„ > 2nt :

innen : u2n > un außen : v2n < vn , also ist zum Beispiel
u6 < u 12 < u24 < u48 < u96 < . . . < u < . . . < v96 < v48 < v24 < vi 2 < v6

Archimedes rechnet bis zum 96-Eck . Daraus folgt : 6,282063 . . . < u < 6,285 429 . . .
wegen r = 1 ist u = 2tt , und es ergibt sich für rr die Ungleichung
3,141031 . . . < rr < 3,142 2714 . . .
Weil Archimedes rationale Näherungswerte für die Wurzeln verwendet , findet er die Un -

10 1 22
gleichung 3 ^ p < 7T < 3y . Noch heute schätzt man als gute Näherung n ~ -

y
- oder

TT « 3,14 .
Der chinesische Astronom Zhang Heng (78 bis 139 ) und der indische Mathematiker
Brahmagupta (7 . Jh . n . Chr .) verwenden den Wert -fw = 3,1622 . . .
Eine ausgezeichnete Näherung findet der chinesische Mathematiker Zu Chong -Zhi (430

355
bis 501 ) : -

j
-
jj

= 3,1415929203 . . .

In der Folgezeit entwickelt sich ein regelrechter Wettkampf um möglichst viele gültige
Stellen von tt .

Leonardo Pisano , auch Leonardo Fibonacci genannt , (etwa 1180 bis um 1250) berech¬
net aus dem 96-Eck den Näherungswert 3,141818 . . .
1427 arbeitet der arabische Astronom Al -Kasi mit dem 6 • 227-Eck und bekommt

3,141592653589873 . . .
1610 erreicht der Fechtmeister und Mathematiker Ludolph van Ceulen mit einem

4 • 260-Eck 35 Dezimalen . Viele sind von dieser Leistung so beeindruckt , dass sie n
fortan als Ludolf ’sche Zahl bezeichnen .

1699 bringt es Abraham Sharp ( 1651 bis' 1742) auf 71 Dezimalen .
1841 schafft William Rutherford in mühseliger Rechnung 208 Stellen , von denen leider

nur die ersten 152 richtig sind .
1873 stellt William Shanks einen neuen Rekord auf : Fleiß und Ausdauer lassen ihn bis

zur 707 . Stelle Vordringen , doch ach , bloß die ersten 527 Stellen stimmen !
Bis jetzt sind alle Näherungswerte noch Ergebnisse anstrengender Kopf - und
Schreibarbeit .

1949 schließlich treten die ersten elektronischen Großrechner in die Arena . Und nun über¬
schlagen sich die Ereignisse :
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1949 2073 Stellen in 70 Stunden
1958 10000 Stellen in 100 Minuten
1961 100000 Stellen in 8,75 Stunden
1973 1 000000 Stellen in 23,3 Stunden
1983 16000000 Stellen in 30 Stunden

Für n -Fans geben wir hier nur die ersten tausend Dezimalen an :

3,1415926535
5820974944
8214808651
4811174502
4428810975
4564856692
7245870066
7892590360
3305727036
0744623799
9833673362
6094370277
0005681271
1468440901
4201995611
5187072113
5024459455
7101000313
5982534904
1857780532

Wer sich die ersten 23 Stellen merken will , lerne Geobolds Gedicht und zähle die
Buchstaben .
Für die Praxis ist eine Rekordjagd nach möglichst vielen Dezimalen völlig unnütz : Um
den Umfang eines Kreises von der Größe des Erdäquators auf 1 mm genau zu berech¬
nen genügen 11 Dezimalen . Trotzdem sind solche Rekordergebnisse sinnvoll :
Man testet damit die Computer und die Programme .

Heute verwendet man zur 7i-Berechnung nicht mehr regelmäßige Vielecke , sondern
zum Beispiel unendliche Summen oder unendliche Produkte wie :

8979323846
5923078164
3282306647
8410270193
6659334461
3460348610
0631558817
0113305305
5759591953
6274956735
4406566430
0539217176
4526356082
2249534301
2129021960
4999999837
3469083026
7838752886
2875546873
1712268066

2643383279
0628620899
0938446095
8521105559
2847564823
4543266482
4881520920
4882046652
0921861173
1885752724
8602139494
2931767523
7785771342
4654958537
8640344181
2978049951
4252230825
5875332083
1159562863
1300192787

5028841971
8628034825
5058223172
6446229489
3786783165
1339360726
9628292540
1384146951
8193261179
8912279381
6395224737
8467481846
7577896091
1050792279
5981362977
0597317328
3344685035
8142061717
8823537875
6611195909

6939937510
3421170679
5359408128
5493038196
2712019091
0249141273
9171536436
9415116094
3105118548
8301194912
1907021798
7669405132
7363717872
6892589235
4771309960
1609631859
2619311881
7669147303
9375195778
2164201989

, 0 DIES TC
MACHTERNSTLICHSOVIELENVIELEMÜH!N
LERNT|MMERHINJMÄGDELEIN, LEICHTEVERSELE1N,

'

yWIESOZUMBEISPIELDIESDÜRFTEZUMERKENSEIN!

1579 Vieta : _
2_
TT

1655 Wallis : Ti _ 2 • 2 4 • 4 6 • 6
Y ~ TY ' YY ’

5 • 7

1665 Newton : tt _ 1 1 1 1 - 3 1 1 - 3 - 5 1
6

“
2

+
2

’
3 - 82 - 4

'
5 - 32 2 - 4 - 6

’
7 - 128

1 - 3 - 5 - 7 1
+

2 • 4 • 6 • 8
’

9 - 512 -

1671 Gregory : 7 9
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1734 Euler : 7T

6

TT
+ — r +

8

90 l 4 +
24 +

34 +
44 +

96 l 4 +
34

1766 beweist Johann Heinrich Lambert ( 1728 bis 1777) , dass 7T eine irrationale Zahl
ist, sich also nicht als Quotient zweier natürlicher Zahlen schreiben lässt.

1882 weist Ferdinand Lindemann ( 1852 bis 1939 ) nach , dass » die Zahl tt überhaupt
nicht Wurzel einer algebraischen Gleichung irgendwelchen Grades mit rationa¬
len Coefficienten sein kann « . Das bedeutet : Es gibt keine Gleichung der Form

anxn + an _ [Xn “ 1 + an _ 2xn ~ 2 + . . . + a2x2 + a^ + a0 = 0

mit rationalem Koeffizienten a0 , a, , a2 , . . . , die ti als Lösung hat .
Solche Zahlen nennt man transzendent.
Mit seinem Beweis findet Lindemann auch die Antwort auf die uralte Frage , ob
es allein mit Zirkel und Lineal möglich ist, einen Kreis in ein flächengleiches
Quadrat zu verwandeln (Quadratur des Kreises) . Weil tt transzendent ist, gilt :
Die Quadratur des Kreises ist unmöglich.

6,28

Noch heute verwendet man den Ausdruck >Quadratur des Kreises< für schein¬
bar oder tatsächlich unlösbare Probleme.

Nun aber zu einem lösbaren Problem. Es zeigt eine verblüffende Folgerung aus der Kreis¬
umfangsformel .
Wir haben einen Globus von 0,25 m Radius . Um seinen Äquator biegen wir einen Draht
so , dass er eng anliegt . Die Drahtlänge ist (in Meter) s = 2m = 1,57 . . . . Dann nehmen wir
einen Draht , der 1 m länger ist, biegen auch ihn zu einem Kreis und legen ihn konzen¬
trisch in die Äquatorialebene . Wie groß ist der Abstand a zwischen Kreis und Kugel?

Neuer Umfang : s * = 1 + 1,57 . . . = 2,57 . . .
sneuer Radius : r* = -- — = 0,409 . . .2tt

Abstand : a = r* - r = 0,159 . . . .
Der längere Drahtring steht also etwa 16 cm ab.
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Jetzt machen wir dasselbe mit der großen Erdkugel .
Radius (in Meter) : r = 6378388

Äquatorlänge : u = 2m = 40076593,765 . . .
um 1 m längerer Umfang : u* = 1 + 40076593,756 . . . = 40076594,756 . . .

neuer Radius : r* = -̂ — = 6378388,159 . . .2rr

Abstand : a = r* - r = 0,159 . . . .

im Bild ist

s = 1 .57 . ..

Umfang

im Bild ist

r = 0,25

s = 2,57 . ..

r = 0,409 . ..

a = 0,159 . ..

Seltsam : Obwohl die Verlängerung von 1 Meter bei einer Länge von 40 Millionen Meter
praktisch nicht erkennbar ist, steht der Drahtring wieder 16 cm von der Erde ab ! Was ist
da los ? Das Rätsel löst sich, wenn wir die Rechnung allgemein machen.

Radius : r
Umfang : u = 2m

neuer Umfang : u* = u + 1 = 2m + 1

neuer Radius : r* u* _ 2m + 1 _ 1
2tt 2tt f 2rr

Abstand : a = r* - r = r + —- r = -r— = 0,159 . . .
2TT 2TT

Der Abstand a hängt nicht vom Radius ab , er ist bei jeder Kugel gleich groß !

Mathematischer Hintergrund
Wir haben so getan , als ob es klar wäre, was unter der Länge einer krummen Linie zu ver¬
stehen sei . Bisher können wir aber eigentlich nur die Längen von Strecken bestimmen . Be¬
vor der Mathematiker Kreisumfänge berechnet, muss er sich überlegen, was ein Kreisum¬
fang überhaupt sein soll . Weil Archimedes keinen Anspruch mehr auf Copyright erheben
kann , benutzen wir seine gute Idee zu folgender Definition :
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Der Kreisumfang ist das Ergebnis der Intervallschachtelung [un ; vn] für unbegrenzt
wachsendes n . un und vn sind die Umfänge des ein- und umbeschriebenen n-Ecks.

Für den Sonderfall der Verdopplung der Eckenzahl sieht man leicht , dass eine Intervall¬
schachtelung vorliegt:
Von Seite 22 wissen wir u2n > un und v2n < vn
außerdem gilt sn < tn
und damit n • sn < n • tn also un < vn und schließlich wegen

Wenn n immer größer wird , kommt sn dem Wert 0 , das heißt , cn dem Wert 2 beliebig nahe .
Weil un auf alle Fälle kleiner als v3 ist, wird das Produkt un ^

— 1 j beliebig klein und

damit auch die Differenz vn
— un .

Für die 3 -er Serie ergibt sich für den halben Umfang die Intervallschachtelung :

Eckenzahl
n

Innen :
1

y u„

Außen :
1

T v"

Unterschied

y (v„ - un)

3 2,59808 . . . 5,19615. . . 2,598 07 . . .
6 3,00000 . . . 3,46410 . . . 0,46410 . . .

12 3,105 82 . . . 3,21539 . . . 0,109 56 . . .
24 3,13262 3,15965 . . . 0,02703 . . .
48 3,13935 . . . 3,14608 . . . 0,00673 . . .
96 3,14103 . . . 3,14271 . . . 0,00168 . . .

192 3,14145 . . . 3,14187 . . . 0,00042 . . .
Die abstrakte und komplizierte Definition des Kreisumfangs ist deshalb nötig, weil an¬
schauliche Überlegungen in die Irre führen können , wenn das Unendliche mit im Spiel ist.
Dazu zwei Beispiele :
Ti = 4 ( ?) Beim Viertelkreis ist die Länge der Außentreppe

auch bei beliebiger Verfeinerung immer gleich 2 .
Folglich ist der Kreisumfang gleich 8 und damit
TT = 4 .
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tt = 2 ( ?) Die Wellenlinie besteht aus lauter Halbkreisen . Bei einer Unterteilung in drei
Halbkreise gilt zum Beispiel (Durchmesser d) :

Länge der Wellenlinie = — d^ + — d2Tt + — d37T

=
y (di + d2 + d3) TT =

y dn

Das gilt auch bei beliebig vielen , beliebig
kleinen Halbkreisen . Schließlich kann das
Auge die Wellenlinie nicht mehr vom Durch¬
messer unterscheiden . Also ist

— dir = d und somit tt = 2 .

Das letzte von Geobold : Er meint , alle Kreise hätten denselben Kreisumfang . Zum Beweis
rollt er eine Kreisscheibe ab , auf der eine kleine (rote) Kreisscheibe befestigt ist.

u = u

ALLE KREISE HABEN
DENSELBEN UMFANG!
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