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3.1 Der Zylinder

Neben dem Quader ist der Zylinder die hdaufigste regelmidBige Korperform in unserer Um-
welt: Gaskessel, LitfaBsdulen, Miinzen usw. In der Mathematik versteht man unter einem
Zylinder einen Korper, der entsteht, wenn man eine Gerade parallel zu sich lings einer ge-
schlossenen ebenen Kurve im Raum verschiebt; die Gerade darf nicht in der Ebene der
Kurve liegen. Man kann sich auch vorstellen, dass das von der Kurve begrenzte Flichen-
stiick parallel zu sich im Raum verschoben wird. Die ebene Kurve heif3t Leitkurve, die Ge-
rade heilit Erzeugende oder Mantellinie des Zylinders. Es gibt also unendlich viele ver-
schiedene Zylinderformen. Wir definieren nur den einfachsten, aber wichtigsten Fall:
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Definition

Ein Zylinder, der einen Kreis als Leitkurve
hat und dessen Mantellinien senkrecht auf
der Kreisfliche stehen, heil3t gerader Kreis-
zylinder.

Im Folgenden beschrianken wir uns auf endliche : .
gerade Kreiszylinder, die von zwei parallelen DECKFLACHE ™\
Kreisflichen begrenzt sind, und nennen sie der
Einfachheit halber kurz Zylinder. So ein Zylinder %
entsteht auch, wenn ein Rechteck um eine Seite als
Drehachse rotiert.
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Schaut man schrig auf den Zylinder, so siecht man Grund- und Deckflache als Ellipse.
Beim Zeichnen eines Schrigbilds muss man also die Kreise von Deck- und Grundfliche zu
Ellipsen stauchen.
Bezeichnungen am Zylinder: D Deckfliche r Radius

G Grundfliche h Hohe

M Mantelfliche m Mantellinie

S Oberfldche

Oberfliche
Schneidet man den Mantel lings einer Mantellinie auf, so lasst er sich zu einer Rechteck-
fliche aufbiegen. Die Rechteckseiten sind die Héhe h und der Grundkreisumfang 2rr.
Deshalb gilt fiir

Mantelinhalt | M = 2rrh

Oberflicheninhalt | S =2rh + 2r’a |
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Volumen

Den Kreisinhalt haben wir bestimmt, indem wir die Kreisfliche zwischen ein- und umbe-
schriebene regelmdlfige Vielecke eingesperrt haben. In dhnlicher Weise nihern wir den Zy-
linder durch ein- und umbeschriebene Prismen an. Die Prismen entstehen, wenn man
Grund und Deckfliche des Zylinders durch ein- und umbeschriebene regelmiflige n-Ecke
ersetzt. Fiir alle diese Prismen gilt: Volumen = Grundfliche mal Hiohe. Weil sich bei genii-
gend grofler Eckenzahl die Prismen beliebig wenig vom Zylinder unterscheiden, verwen-
den wir diese Formel auch fiir Zylinder:

Yolumen | V= Gh = r’xh e g L —T—~_

Beispiel: Ein Blatt Papier im DIN-Format ldsst sich auf zwei Arten zu einem Zylinder-
mantel biegen. Wie verhalten sich Oberflichen- und Rauminhalte dieser beiden
Zylinder?

Zuerst der Kurze-Dicke:
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Jetzt der Lange-Diinne:
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Der Kurze-Dicke hat also etwa 10 % mehr Oberfliche und etwa 41 % mehr Rauminhalt.
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