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x kann im II. Quadranten liegen, dann gilt

cos X = —y1 — (sin x)* = —0.8. Setzt man diesen Wert in die linke Seite der Gleichung
ein, so ergibt sich

3sinx—4cosx=18+32=35

Also gibt es blol} die Losungsserie

X, =2498...+k-2n, keZ.

Aufgaben zu 7.
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Uberpriife die Additionstheoreme an den Beispielen

a) sin (60° + 30°) b) sin (60° — 307) ¢) sin (90° — 45°)
d) sin(210° — 60°) e) cos (90° + 30°) f) cos(90° — 30°)
g) cos(240°—60%)  h) cos(210°+90°) i) tan(60°— 30°)
j) tan(150°+60%) k) tan(240°—60°) 1) cos(315° + 45°)

. Berechne die exakten Werte von

a) sin 75° b) sin 15° ¢) cos75° d) cos 15° e) tan 15°
f) tan75° g) sin72° h) cos 72° i) tan 72°.

x und y seien spitze Winkel. Berechne

: : ; 5 : 4
a) sin(x+y) und sin(x—y), wenn sinx= e und siny =
8 5
b) cos(x+y) und cos(x—y), wenn cosx= 17 und cosy= i5)

Berechne sin 2¢, cos 2oc und tan 2«, wenn o spitz ist und

. 5
a) sino = 13 b) cosa= 0,6 ¢) tan o = 0,5.

. o 4 04 3 A
Berechne HIHE’ cmE und tan > wenn ¢ spitz ist und
a) sinoc=0,8 b) cos o =0,5.
Berechne die exakten Werte sin ¢, cos o« und tan o fir
a) a=15° b) ox=7,5° ¢) oo =225°

. Verwandle in ein Produkt.

a) sin 5x +sin x b) sin 7x—sin 3x
¢) cos3x + cos x d) cos 6x—cos x
Verwandle in ein Produkt.

a) sinx + cosy b) sinx —cosy
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9. DOPPELHOHE
a) Driicke CD durch b und « aus, wenn Winkel ACB = 90° ist.
b) Driicke CD durch a und b aus, wenn Winkel ACB = 90° und b > a ist.

$10. DREILINSEN
Zeichne ein Dreieck ABC und den Hohenschnittpunkt H. Zeichne die drei Kreise:
Jeder geht durch zwei Ecken und durch den Héhenschnittpunkt H. Zeige:
a) Die Radien der drei Kreise sind gleich dem Umkreisradius.
b) Die drei linsenférmigen Uberlappungsflichen sind zusammen so grofl wie die
Umkreisfliche, verringert ums Doppelte der Dreieckfliiche.

$11. WINKELPLUSSECHZIG
VergroBert man einen Dreieckwinkel auf beiden Seiten um 30°, so entsteht ein Drei-
eck, das in zwei Seitenlédngen mit dem alten iibereinstimmt, die dritte Seite ist linger.
Man macht das mit allen drei Winkeln.
Zeige: Die jeweils dritten (lingeren) Seiten sind alle gleich lang.
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12. GERADLINIG
Zeichne ein (nicht gleichschenkliges) Dreieck ABC mit seinem Umkreis. Zeichne in
einem Eckpunkt die Umkreistangente und schneide sie mit der verlingerten Gegen-
seite. Mache das fiir alle Eckpunkte.
Zeige: Die Schnittpunkte von Tangente und verlédngerter Gegenseite liegen auf einer
Gerade.

i

2 13. SCHEINDRITTEL
a) Die einfachste Nidherung beruht auf der Sehnendrittelung. Wie grof3 sind p und
w, wenn @ = 30°, 60°, 90°, 120° ist?

b) Wie grof} ist £, wenn w = 30°, 45°, 60°, 90° ist?
¢) Wie groB3 ist €, wenn o = 30°, 457, 60°, 90° ist?
d) Wie groB} ist e, wenn w = 30°, 45°, 60°, 90° ist?

a) b)
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Vereinfache
i @ sin 2o sin 2c
| e =
SIN of COS
)

. a) 2(sin ¢)* + (cos &)* — (sin &)*

b) (sino + cosox + 1)(sinc + cosox — 1)

. a) 2sin (45° + &) sin (45° — &)

b) sin (60° + &) — sin (60° — o)
¢) cos (60° + &) + cos (60° — &)

sin o + sin 2o COS ¢ COS

I + cos ot + cos 2u cos — sin o COS ¢ + §in o

a) sin (o + B) cos o — cos (& + P) sin o
b) cos (¢t + B) cos o + sin (& + ) sin o
¢) sin (o + B) cos (e — B) + cos (e + B) sin (o« — B)
d) sin (o — B)cos (p — y) + cos (cx — B) sin (f — y)

i sin (o + ) — sin & cos b) ©os (o + ) — cos x cos p
; sin (et + P) — cos ¢ sin p cos (ot — ) — sin sin B
7. a) sin (ot + B) + sin (&« — ) b) sin (ot + ) + sin (x — §)
g sin (o + B) — sin (cc — B) cos (oc + B) + cos (ot — P)
0 cos (o + f) — cos (x — f)
sin (¢ + ) — sin (o« — B)
1 + cos 1 + cos o 1 |
8. a) T b) SEER ¢) — 1 d) — tan o
|l —cose (sin ) sinot tano COS ot
( Tipp: halbe Winkel!)
2 sin o — sin 2o 2 cos of + sin 2o
g- g o e el = e e e BT
2 sin o + sin 2o 2 cos ot — sin 2o
sin o + sin ¢ cos [ . :
. S < halbe kel!
sin f + cos o sin B (Zip:halbe Winkell
10. 2) 1 — cos o Hinu b 1 +coso— s?nu
1 +cos o+ sin 1 — cos o — sin &
( Tipp: halbe Winkel!)
| + cos o) sin =
e cos 2 ; b) sino —sin P 5 e f:m g 2 =
R (tan o)’ cos o + cos p sin o

cos (& + B) cos (o — B)
sin (o + B) sin (o« — ) + (cos &)’
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Beweise

. tan 3x =

. a) sin (45° + ) = cos (45° — &) =

a) sin o + sin (e + 120°%) + sin (o + 240%) = 0
b) tan o + tan (¢ + 120%) + tan (o + 240°) = 3 tan 3o

S
¢) cos o cos (o + 120°) cos (o + 240°) = T cos 3

d) tanc tan (o + 120%) tan (o + 240%) = —tan 3o

. a) sin3x = 3sin x — 4(sin x)°

b) cos 3x = 4(cos x)* — 3 cos x (Tipp: 3x = 2x + x!)

3tan x — (tan x)?
1 — 3(tan x)?

a) sin4x = 8 sin x (cos x)* — 4 sin X cos X
b) cos 4x = §(cos x)* — 8(cos x)* + 1

4 tan x — 4(tan x)*
1 — 6(tan x)* + (tan x)*

= e e S o
) Leite o 1 — cos o 1 o 1 + cos o
a) Leite her: sin—= 4/———— un 08— = —

7 > und cos— 3

tan 4x =

b) Welche Formel ergibt sich fiir Laﬂ% ?

sin & + cos «
>
V<

b) sin (45° — ) = cos (45° + o) = —= &SI K

V2
5 | +tan o
c) tan (45° + o) ==
| —tan &
] —tan
d) tan (45" — ) = o
| +tan &
8. a) tan (45° + &) — tan (45° — o) = 2 tan 2«
b) tan (45° + &) + tan (45° — &) = :
cos 2ot
1 +sina COS X s =
9. a) = : g tan ( 45° + —
COS X | —sino 2
| —sino COS o
b) ; ==c = tan | 457 — —
COS X ] +sine 2
- 2 tan o 1 — tan ool
10. a) sin200=———— b) cos 20 =— {M
I + (tan «)? 14 (tan o)
sin 2o = cos 2er

178

¢) tanx = = -
1 + cos 2t sin 2o




11. a) sin 55° + sin 5° = cos 25°

b) sin 80° — cos 50° = sin 20°
¢) cos 170°+ cos 70° + cos 50° =0
d) sin 20° + sin 40° = sin 80°

® ¢) 8sin20°sin 40°sin 80° \E

o) 8cos 20° cos 40° cos 80° = |

e o) tan 20° tan 40° tan 60° tan 80° = 3
(Teste auch deinen Taschenrechner!)

= E

12. a) sin 75° +sin 15° = 5 y6 und sin75°—sin 15" =— V2.
b) Berechne aus a) sin 75° und sin 15°.
13. tan 3¢ —tan 2o — tan o« = tan 3¢ tan 2o tan o
¢ 14. Dreieck ABC ist rechtwinklig, wenn gilt
: sin B + siny
a) s =
cos f+cosy
b) sin o= cos f + cos y
. ] : : ’ ; . ... Sinoc S
¢ 15. Welche Eigenschaft hat ein Dreieck, in dem gilt = |3'. =2cosy !

¢ 16. Fiir die Winkel eines Dreiecks ABC gilt:
a) tano +tan B +tany =tan« tan p tany
b) tan 2c¢c + tan 2p + tan 2y = tan 2¢ tan 2f tan 2y

¢ 17. Fiir die Winkel eines Dreiecks ABC gilt:

; e o 5} Y
a) sinx +sinf +siny= 40057{:0!43 co$ -
a ; / S = 5, Y
b) sinot +s5inf —siny = 4 sin — 51N — COS
2 2 2
St VI MESAL

¢) cos o+ cos P+ cosy=4sin—-sin—-sin—+ 1
2 2 2
: g B

d) cosa + cos i — cos y =4 cos 5 COS —- .*;Ln? |

¢ 18. Fiir die Winkel eines Dreiecks ABC gilt:
a) sin 2« +sin 2p +sin2y =4sino sin f siny
b) sin 2« + sin 2p — sin 2y = 4 cos & cos f siny
¢) cos 2ec+ cos 2B + cos 2y = —4cos o cos P cosy — |

d) cos 2e+ cos 2P — cos 2y = —4sinx sin f cosy + |
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20.

21.

b
[ &)
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. Fiir die Winkel eines Dreiecks ABC gilt:

a) (sin )’ + (sinB)* + (siny)’ =2 cos & cos P cosy + 2
b) (sin &)? + (sin f)* — (sin y)>* = 2sin o sin B cos y
¢) (cos o)’ + (cos B)* + (cosy)* = —2cosot cos B cosy + 1

-

d) (cos o)’ + (cos B)’ — (cosy)’ = —2sino sin f cosy + |

SUMDIFSIN
ABCD und ABEF sind Rauten.

= I I
a) Zeige: <BAH=0=—(etw), < HA]:):T:'E{UJ £)

b) Begriinde:
Fliiche (ABCD) + Fliche (ABEF) = 2 - Fliche (ABGH)
Fliche (ABCD)—Fliche (ABEF)=Fliche (ECDF)

¢) Driicke die Flacheninhalte in b) durch die Winkel w, £, ¢ und t aus und leite so
die Formeln fiir die Summe und Differenz zweier Sinuswerte her.

Zeichne ein gleichschenkliges Dreieck mit der Basis ¢ und den Schenkelldngen 1.

a) Zeichne die Hohe h, ein und berechne sie auf zwei Wegen: einmal aus dem Drei-
eck ABH,, dann aus dem Dreieck AH,C. Beweise:

siny = 2 sin _;COS ;i

b) Fille von H, aus das Lot auf BC (LotfuBpunkt F) und zeige:

H. CF—-FB und cos v = Lcm %) = (sin ;)

¢) Folgere ausb): 1 —cosy=2 (sin %)

d) Verlingere den Schenkel [BC] iiber C hinaus bis D, sodass BC = CD ist.

Beweise mit Hilfe des Dreiecks AH,D: 1 + cosy = 2 (ms ;) .

ADDITIONSTHEOREM UND DREIECKFLACHE
Berechne die Flichen der Dreiecke PQS, PSR und PQR. Folgere das Additionstheo-
rem des Sinus aus

Fliche (PQR) = Fliche (PQS) + Fliche (PSR).
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23. ADDITIONSTHEOREM UND UMKREIS
Begriinde mit der Sehnenformel, dass die Umkreise der Dreiecke ABC und A’BC
gleichen Radius haben. Folgere aus dem Projektionssatz ¢ = acos p + b cos & und
aus der Sehnenformel das Additionstheorem des Sinus.

_Bixy)

Aly)

24. ADDITIONSTHEOREM UND KOSINUSSATZ
Berechne e einmal mit der Formel e’ = (x; — xA)> + (v — va)* und einmal mit dem
Kosinussatz. Folgere daraus das Additionstheorem des Kosinus.

EZS. a) Zeige: Fir den Flicheninhalt F des Vierecks ABCD gilt
1
F E[ad sin ¢« + besin y).
b) Begriinde mit a) die Flichenformel » HERON fiirs Viereck«
o+vy\?
F=4/(s—2a)(s—Db)(s—c)(s—d)— abcd ( cos 5 :

s ist der halbe Viereckumfang.
( Tipp: Kosinussatz fiir Teildreiecke)

26. Warum hat das Sehnenviereck unter allen Vierecken mit den Seitenldngen a, b, ¢
und d den grofiten Flacheninhalt?
(Tipp: vorige Aufgabe)

I
27, A
II II
it
\ Zeige
[ | e=30°
II II|
) 1
|II II'
| CascE |
I 1
) 1
I T |
|I II
k \
III Ill
II |I
{ \
| \
| |
I|I 4 III
LB i
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Gleichungen Bestimme die Losungsmengen in [0; 27|

1. a) 192(sinx)*+ 128 sinx =75 b) 100(cos x)* +75sinx =114

. : ;
2. a) sin x = sin 2x b) 4 Sin 2x —sinx =0
¢) 4sinxcosx= —y2 d) tan2x +tanx =0

e) cosx—cos2x=1

3. a) sinx +cos2x = | b) cos x + cos 2x = |
¢) sin2x +2(cosx)* =1

4. a) sinx +cosx =028 b) 8sinx+9cosx=12

¢) 8sinx —9cosx=12

5. a) (sin x)> + 2 sin 2x = 3(cos x)’
b) (cos x)* + 3 cos 2x = (sin x)?
¢) 24(cos x)* — 12(sin x)? = sin 2x
d) 6(sin x)* + &(cos x)* = 7 sin 2x

b

: (1T m {11 3
$6. a) sinx=3cos(——x| b) cosx =3sin |- —x)
\ 6 \ 4
7. a) 15cosx = l6tan x b) 6sin2x —3tanx=5sinx
o tan 2x tan x tan x L tan2x
8. a) et 2 b) 2 Pt ll={)
tan x tan 2x tan 2x tan x
9, a) sin 11x = sin 5x b) cos 13x = cos 5x
® ey ~ c
® c) sin 7x = cos 3x d) tan 15x = tan 9x

e) sin 5x —'sin 3x = cos 9x — cos 7X
10. a) sinx + sin 2x +sin3x =0

b) cosXx +cos2x +cos3x=0
11. a) sin X + sin 2x + sin 3x +sin4x =0

L4 » %
¢h) cos X — cos2x — cos Ix —cos 4x = ()
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