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II . Kegelschnitte
1 . Überblick

In der Vorbemerkung haben wir schon erwähnt , dass beim Schnitt von Kegel und Ebene
drei Typen von Kurven entstehen können . Welcher entsteht , hängt ab
vom halben Öffnungswinkel cp des Kegels und
vom Winkel oc, den Kegelachse und Schnittebene bilden :
für a > cp entsteht eine Ellipse,
für oc = cp eine Parabel und
für a < cp eine Hyperbel.

Parabel : Hyperbel:
a < (pEllipse: a > ip
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Wenn die Schnittebene die Kegelspitze enthält , dann entarten die Schnittkurven :
die Ellipse zu einem Punkt (Kegelspitze) ,
die Parabel zu einer Gerade (Mantellinie) und
die Hyperbel zu einer Geradenkreuzung (zwei Mantellinien ) .

Auf den ersten Blick glaubt man nicht recht , dass der geschlossene Kegelschnitt tatsächlich
eine Ellipse (mit zwei Symmetrieachsen also) sein soll . Eher erwartet man eine eiförmigeKurve, die oben - wo der Kegel enger ist - stärker gekrümmt ist als unten - wo der Kegelweiter ist. Auch ein so scharfer Beobachter wie Albrecht Dürer (Nürnberg 1471 bis 1528
Nürnberg ) ist dieser Täuschung erlegen. In seiner Underweysung von 1525 beschreibt er
die Ellipse als Eierlini = darumb daß sie schier einem Ei gleich ist. Erst 1640 wagte der
schweizer Mathematiker Paul Guldin (St . Gallen 1577 bis 1643 Graz) , an der Autorität
Dürers zu rütteln , indem er die wirkliche Gestalt der Ellipse mit zwei Symmetrieachsen
aufzeigte.
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Berührkreis

Ellipse: a > (p

Berührkreis

Für uns ist der Nachweis nicht schwer, weil wir auf die Idee Dandelins zurückgreifen kön¬
nen . Analog zum Zylinder stecken wir in den Kegel zwei Kugeln, die Kegel und Schnitt¬
ebene berühren . Jede der beiden Kugeln berührt den Kegel in einem Kreis und die Schnitt¬
ebene in einem Punkt (Brennpunkte F , und F2) . Die Mantellinie durch P trifft die
Berührkreise in B [ und B2, sie ist Tangente beider Kugeln . Es gilt

PF) = PB^ und PF^ = PB^

(Tangentenabschnitte von einem Punkt aus an eine Kugel sind gleich lang .)

PF\ + PF^ = PB^ + PB^ = B^ ( = const.)

Das ist genau die Eigenschaft der Ellipse , die zur Gärtnerkonstruktion führt . (Siehe Kapi¬
tel 9 . I , 3)
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2 . Die Hyperbel

Wieder stecken wir in den Kegel zwei Dandelin -Kugeln , jetzt aber so , dass die Kegelspitzedazwischen liegt . Jede der beiden Kugeln berührt den Kegel in einem Kreis und die
Schnittebene in einem Punkt : F , und F2. F , und F2 heißen Brennpunkte der Hyperbel . F,F2ist eine Symmetrieachse der Hyperbel . Die Mantellinie durch P trifft die Berührkreise in
B , und B 2, sie ist Tangente beider Kugeln . Es gilt

PF , = PB , und PF2 = PB2
(Tangentenabschnitte von einem Punkt aus an eine Kugel
sind gleich lang .)

B,B 2 ist konstant ( = k)
BjB^ = PB^ - PBi = PF , - PF) = k ©

Die Hyperbel besteht aus zwei Teilen, man nennt sie auch
Äste der Hyperbel . Liegt P auf dem bei F2 liegenden Ast ,dann ergibt eine entsprechende Überlegung

PF) - PF) = k ©
Die Gleichungen © und © lassen sich zur kennzeichnen¬
den Eigenschaft der Hyperbel zusammenfassen :

| PF) - PF) | = k .
Für jeden Hyperbelpunkt P ist der Betrag der Differenz sei¬
ner Entfernungen von F , und F2 eine Konstante . Diese De¬
finition unterscheidet sich von der der Ellipse nur im Re¬
chenzeichen ! Wie bei der Ellipse bezeichnet man die
Konstante k mit 2a

Hyperbel-Eigenschaft Hyperbel:
a < (p -

Aufgrund dieser Eigenschaft können wir jetzt Punkte der
Hyperbel konstruieren , wenn F, , F2 und a bekannt sind.

Berührkreis

Hyperbel-Ast

Berührkreis

Hyperbel:
a < (p /
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Der Betrag in der Bedingung | r t - r2 | = 2a erlaubt eine Vertauschung von r , und r2 und er¬
möglicht so den 2 . Hyperbel -Ast . Dieser ist symmetrisch zum l . Ast , Symmetrieachse ist die
Mittelsenkrechte von F , und F2.

Bezeichnungen
Das Symmetriezentrum M heißt Mittelpunkt der Hyperbel .
Die Schnittpunkte A, , A2 von Hyperbel und einer Symmetrieachse heißen Scheitel . Dabei

gilt

A,F 2
- AiF ; = 2a oder wegen A^ , = A2F2

A^ ~ A2F2 = 2a

A 1A2 = 2ä

A,M - MA 2 = a , a heißt reelle Halbachse .
F [M = F2M = e , e heißt lineare Exzentrizität .

a
7T = G e heißt numerische Exzentrizität .

Ähnlich wie bei der Ellipse definiert man eine zweite Halbachse b durch

b2 = e2 - a2

Trägt man b von M aus auf der 2 . Symmetrie¬
achse ab , so ergeben sich zwei Punkte B , und B 2,
die aber nicht auf der Hyperbel liegen . Deshalb
nennt man b imaginäre Halbachse . Im Gegensatz
zur Ellipse muss hier a nicht größer sein als b .
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Ähnlich wie bei der Ellipse lassen sich auch die Punkte der Hyperbel mit einer Gleichung
festlegen . Wir verwenden dafür nur die Beziehung | PF !

- PF 2 1= 2a .

Die Mittelpunkt -Gleichung der Hyperbel

: y2 + (x + e)2 b2 r2 = y2 + (x - e)2

| r , + r2 1 = 2a
r , = ±2a - r2 || quadrieren
v\ = 4a 2 ± 4ar 2 + r\

X (x + e)2 = 4a 2 + 4ar 2 + ^ + (x - e)2

+ 2xe +X .
== 4a2 ± 4ar 2 + y? - 2xe +X .

xe - a2 = ±ar , quadrieren
e2x2 - 2a 2ex + a4 = a2

[y2 + (x - e)2 ]
e2x2 - 2ßß€x + a4 = a2y2 + a2x2 - 2a%x + a2e2

x2 (e^ - a2) - y2a2 = a2 (e^ - a2)
b2 b2

b2x2 - a2y2 = a2b2
|| : (a2b2)

Das ist die Mittelpunkt -Gleichung der Hyperbel mit der reellen Halbachse a und den
Brennpunkten auf der x-Achse sowie der imaginären Halbachse b auf der y-Achse .
Vertauscht man x und y, so spiegelt man die Hyperbel an der Winkelhalbierenden des
1 . Quadranten . Die Gleichung der so gespiegelten Hyperbel ist

yi _ ^L = 1
a2 b2

Die reelle Halbachse a und die Brennpunkte lie¬
gen jetzt auf der y-Achse , die imaginäre Halb¬
achse b liegt auf der x-Achse .

9 7
= 1
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Die Asymptoten der Hyperbel

Die Gleichung
y2 b

~rr = 1 lässt sich umformen zu | y | = — | x |
tr 3

. Speziell im

I . Quadranten (x > 0 , y > 0) ergibt sich y = — x
3

Für sehr große Werte von x ist a2
x2 fast null , das heißt , die Hyperbel unterscheidet sich fast

nicht mehr von der Gerade mit der Gleichung y = — x . Aus Symmetriegründen gilt das
3

Entsprechende in den anderen Quadranten . Die beiden Geraden mit den Gleichungen
b b

y = — x und y = - x heißen Asymptoten der Hyperbel . Es gilt : Für große | x |-Werte
3 3

(also auch für große | y |-Werte) unterscheidet sich die Hyperbel kaum noch von ihren
Asymptoten .

b / a2 b
Wegen — x -i/l - r- < — x (für x > 0) verläuft die Hyperbel im E Quadranten immer

a V x2 a
unterhalb ihrer Asymptote . In größerer Entfernung von den Scheiteln geben die Asympto¬
ten den Verlauf der Hyperbel im Groben wieder. Man zeichnet die Asymptoten als Verlän¬

gerungen der Diagonalen des Bestimmungsrechtecksmit Mittelpunkt M und den Seiten 2a
und 2b .

Hyperbel
= 1

Bestimmungs-
rechteck

Hyperbel :
x2 y2
a2 b2

Asymptoten : , b
y = -1- xa

239



Zu einem Bestimmungsdreieck gibt es zwei Hyperbeln mit denselben Asymptoten .
x2 y2

Die eine hat die Gleichung —r - — = 1
a2 b2

ihre reelle Halbachse ist a , ihre Brennpunkte liegen auf der x-Achse.
y2 x2

Die andre hat die Gleichung -ry - - = 1
Dz B.

ihre reelle Halbachse ist b , ihre Brennpunkte liegen auf der y -Achse.

^ = 1

* Die Scheitel -Krümmungskreise
Wie bei der Ellipse gibt es auch bei der Hyperbel Kreise, die die Hyperbel in der Umge¬
bung ihrer Scheitel recht gut annähern . Die Mittelpunkte liegen aus Symmetriegründenauf der reellen Achse. Das Bild erklärt die Konstruktion des Mittelpunkts und die Herlei¬
tung der Formel für den Radius der Krümmungskreise .

Diebeiden rechtwinkligenDreieckesind ähnlich: /

4 , a . o



Die mathematische Begründung ist ähnlich wie bei der Ellipse .
Ein Kreis mit Mittelpunkt auf der x -Achse , der durch einen Hyperbelscheitel geht , schnei¬
det die Hyperbel im Allgemeinen in zwei weiteren Punkten P und Q.

2r - (x - a)

Für die Koordinaten von P und Q gelten zwei Gleichungen :

I . y2 = (x - a) (2r - x + a) (Höhensatz im Dreieck ACP )
b2

II . y2 = — (x2 - a2) (Hyperbelgleichung )
3.

Gleichsetzen liefert : (x - a) (2r - x + a) = — (x - a) (x + a)
SL

das ergibt eine quadratische Gleichung für x : (x - a)
b2

(2r - x + a) - (x + a) = 0 .

Eine Lösung ist Xj = a , sie gehört zum Scheitel , r soll nun so bestimmt werden , dass auch

die 2 . Lösung x2 , für die die Klammer [ . . . ] gleich null ist , den Wert a hat . Geometrisch be¬
deutet das , dass die Punkte A , P und Q zusammenfallen .
Setzen wir in [ . . . ] a für x ein , so ergibt sich für r

(2r — a + a)
b2

-
^

- ( a + a ) = 0 o o b2
2r = 2 —

a
r = IE

a

* Tangenten der Hyperbel
Bei der Ellipse ist die Winkelhalbierende des Außenwinkels bei P im Dreieck F,F 2P Tan¬

gente im Punkt P .
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Ähnliches gilt bei der Hyperbel : Die Halbierende des Innenwinkels bei P im Dreieck
F,F 2P ist Tangente im Punkt P.

Zum Beweis spiegelt man einen der beiden Brennpunkte an der Winkelhalbierenden wH
(Spiegelpunkt F£ ) . Wegen Achsensymmetrie ist PF2 = PFJ .
Für jeden von P verschiedenen Punkt Q auf wa gilt dann (Dreieck-Ungleichung !) :

QF; - QF^
= QF; - QF * < QF * + FJF* - QF * = FfFf = 2a

Also gilt QF ]
- QF2 < 2a = > Q liegt nicht auf der Hyperbel =^> wK ist Tangente im Punkt

P.

Folgerungen
a) Licht , das von einem Brennpunkt ausgeht , wird an der Hyperbel so reflektiert, als ob es

vom andern Brennpunkt käme.
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b) Zeichnet man zu zwei gegebenen Brennpunkten eine zugehörige Ellipse und Hyperbel ,
so schneiden sich diese in vier Punkten . In jedem Schnittpunkt sind die Tangenten von
Hyperbel beziehungsweise Ellipse die Winkelhalbierenden des Innen - , beziehungs¬
weise Außenwinkels der Brennstrahlen , das heißt , sie stehen aufeinander senkrecht.
Man sagt auch : Konfokale Ellipsen und Hyperbeln schneiden sich rechtwinklig.

Hyperbel-Aufgaben

Bis auf Aufgabe 12 . liegen alle erwähnten Hyperbeln symmetrisch zum Ursprung und ha¬
ben die Brennpunkte auf der x -Achse.

1 . Zeichne die zwei Hyperbeln mit a = 2 , b = 1 und a = 4 , b = 3 in ein und dasselbe

Koordinatensystem und berechne die Schnittpunkte .

2 . Wie lautet die Gleichung einer Hyperbel h mit A2 (410 ) durch P (5 | 3) ?

3 . Bestimme die Gleichung der Hyperbel ; zeichne die Scheitel , die Brennpunkte und

die Asymptoten ; skizziere die Hyperbel.

a) a = 3 , b = 4 b) a = 2 , e = c) b = l , e = V2

4 . Zeichne ein Rechteck mit den Seitenlangen 4 und 6 (waagrecht) .
Skizziere die Hyperbeln , für die das Rechteck Bestimmungsrechteck ist.

5 . Eine Hyperbel hat den Scheitel A2 (2 | 0) und den Brennpunkt F2 (2 |o ) .
Bestimme a , b und e . Zeichne die Asymptoten und skizziere die Hyperbel.

6 . Eine Hyperbel hat die Brennpunkte F2j 1( + 3,75 | 0) und geht durch P (5 | 3 ) .
Konstruiere die Scheitel , die Asymptoten und skizziere die Hyperbel.
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7 . Eine Hyperbel hat die Asymptoten y = ±2,4x und einen Scheitel A, ( — 2,5 | 0) .
Bestimme a, b und e . Skizziere die Hyperbel.

8 . Die Gerade durch P ( 110) und Q ( — 21 — 3) berührt eine Hyperbel mit den Brennpunk¬
ten F2j i ( ± 3 | 0) . Konstruiere den Berührpunkt B , die Scheitel und die Asymptoten ;
skizziere die Hyperbel.

9 . Die Mittelpunkte zweier Kreise mit Radius 2 haben die Entfernung 5 .
Zeichne die Ellipse und die Hyperbel , für die die beiden Kreise Krümmungskreise
sind . Anleitung : Berechne jeweils a und b , zeichne die Asymptoten der Hyperbel
und die andern beiden Krümmungskreise der Ellipse . (Für die Ellipse : Mittelpunkt
M (0 | 0) , Querformat)

10 . Die Mittelpunkte zweier Kreise mit Radius 2,25 haben die Entfernung 12,5 . Zeichne
die Kreise und konstruiere die Asymptoten der Hyperbel , für die die beiden Kreise
Krümmungskreise sind . Skizziere dann auch die Hyperbel .

11 . Eine Hyperbel heißt gleichseitig, wenn a = b gilt.
a) Zeichne eine gleichseitige Hyperbel mit M (010) und a = 2 . Berechne e und den

Krümmungskreis -Radius r und gib die Gleichungen der Asymptoten an.
b) Begründe folgende Konstruktion für die Punkte (x0 | y0) einer gleichseitigen Hy¬

perbel.

12 . Zeichne die Halbachsen und die Lage der Brennpunkte einer Hyperbel mit der Glei¬

chung y = y (siehe auch Aufgabe 19 .) .

13 . Zeige :
Für den Punkt P (e | p) über dem Brennpunkt von Ellipse (Mittelpunkt M (0 | 0) , Quer¬
format) oder Hyperbel gilt

b2
P = T

p heißt Formparameter , p ist auch der Radius der Krümmungskreise .
14 . Gegeben sind die Hyperbel h : 4x2 - 9y2 = 162 und die Gerade g : y = 2x - 24 .

a) Berechne die Schnittpunkte A und B der Gerade und der Hyperbel .
b) Berechne die Schnittpunkte P und Q der Gerade und der Hyperbel -Asympto¬

ten.
• c) Berechne den Mittelpunkt MAB von [AB ] und M PQ von [PQ ] , Folgerung ?
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15 . Gegeben sind die Hyperbel h : b2x2 - a2y2 = a2b2 und die Gerade g : y = mx + t . A
und B seien die Schnittpunkte von g und h, P und Q seien die Schnittpunkte von g
und den Hyperbel-Asymptoten . Berechne die x -Werte der Mittelpunkte von [AB]
und [ PQ] - VIETA erspart viel Rechnerei ! - und begründe damit den Satz : Bei je¬
der Hyperbel -Sekante sind die beiden Abschnitte zwischen Hyperbel und Asymptote
gleich lang.

16 . A und B seien Punkte der Hyperbel h : b2x2 - a2y2 = a2b2 .
Zeige mit Hilfe des Satzes der vorigen Aufgabe : Die Parallelogramme OVAR und
OSBU sind flächengleich.
Folgere dazu zunächst aus dem Satz der vorigen Aufgabe , dass die Strecken [AB ],
[ BQ ] und [ UV ] gleich lang und parallel sind.

; 17 . 1 . Flächensatz
Zeige :
Zeichnet man durch einen Hyperbelpunkt A die Parallelen zu
den Asymptoten , so entsteht ein Parallelogramm mit den Ge¬

genecken A und M (Mittelpunkt der Hyperbel) . Dieses Paralle¬

logramm hat für jeden Hyperbelpunkt den Flächeninhalt — ab .

yi Parallelogramme
mit gleichem
Flächeninhalt z '
F = | ab / ^
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• 18 . Umkehrung des 1 . Flächensatzes
Zeige :
Vom 1 . Flächensatz gilt auch die Umkehrung :
Zeichnet man in einen Winkel flächengleiche Parallelogramme , bei denen eine Ecke
im Scheitel liegt und die Seiten parallel zu den Schenkeln sind , dann liegen die
freien Ecken auf einem Hyperbelast .

19 . Zeige : Der Graph der Funktion f mit f (x) = — ist eine Hyperbel . Was sind ihre

Asymptoten ?
(Tip : 17 . und 18 .)

Hyperbel

• 20 . 2 . Flächensatz
Zeige :
Jede Hyperbel-Tangente und die Asymptoten schließen ein Dreieck vom Flächenin¬
halt a ■b ein.



3 . Die Parabel

Brennpunkt und Leitgerade
Eine Ebene , die mit einem Kegel genau eine Mantellinie gemeinsam hat , heißt Tangential¬
ebene . Schneidet eine Ebene E einen Kegel parallel zu einer Tangentialebene T, so ergibt
sich als Kegelschnitt eine Parabel . In diesem Fall gibt es nur eine Dandelin -Kugel. Sie be¬
rührt den Kegel in einem Kreis und die Schnittebene in einem Punkt , dem Brennpunkt F .
Der Dandelin -Berührkreis legt die Ebene H fest. Schnittebene E und Berührkreisebene H
schneiden sich in der Leitgerade 1 . Um einen Zusammenhang zwischen den Parabelpunk¬
ten , der Leitgerade und dem Brennpunkt herzuleiten, müssen wir uns über die Lage dieser
drei Ebenen und der Zeichenebene Z im Klaren sein :

Berührkreis-
ebeneH

Leitgerade

Parabel :

Zeichenebene Z
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Die Tangentialebene T berührt den Kegel in der Mantellinie m ' .
m ' und die Kegelachse bestimmen die Zeichenebene Z.
Schnittebene E , Tangentialebene T und Berührkreisebene H stehen senkrecht auf Z ; man
sieht E , T und H deshalb als Geraden , wenn man senkrecht auf die Zeichenebene Z
schaut .

Berührkreis-
Ebene H

Leitgerade

EbeneW

Weil 1 die Schnittgerade von H und E ist, steht sie auch senkrecht auf Z ; sie erscheint als
Punkt , wenn man senkrecht auf Z schaut .
E und Z schneiden sich in der Symmetrieachse f der Parabel ; deshalb steht f senkrecht auf
der Leitgerade 1.
Wir wählen einen beliebigen Parabelpunkt P . Die Mantellinie durch P trifft den Berühr¬
kreis in B . Es gilt PF = PB (gleich lange Tangentenabschnitte ) . Die Ebene W , die parallel
ist zu H und durch P geht, schneidet die Mantellinie m ' in B '

. Es gilt PB = P ' B ' .
Das Lot von P auf die Leitgerade 1 erzeugt den Lotfußpunkt L . Es gilt PL | | f (beide sind
Lote auf 1) und f | | m ' (Z schneidet E in f und T in m ') , also ist PL | | m '.
Die Ebenen W und H schneiden aus den Parallelen m ' und PL die gleich langen Strecken
[PL] und [P'B '

] aus . Also gilt PL = PT5 7 = PB = PF .
Für jeden Parabelpunkt ist die Entfernung vom Brennpunkt so groß wie sein Abstand von
der Leitgerade. Anders formuliert : Eine Parabel ist der geometrische Ort der Punkte , deren
Entfernung von einem gegebenen Punkt gleich ist ihrem Abstand von einer gegebenen Ge¬
rade .

Leitgerade der Parabel

DerAbstandvon Brennpunkt

L ^ Parameter p y H

und Leitgeradeheißt Parameter p.
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Diese Eigenschaft gibt uns eine einfache Möglichkeit, Parabelpunkte zu konstruieren ,
wenn die Leitgerade 1 und der Brennpunkt F gegeben sind : Man schneidet eine Parallele
zur Leitgerade im Abstand r mit einem Kreis um F mit Radius r.

s\ Tf

S ist derjenige Parabelpunkt , der von der Leitgerade den kleinsten Abstand hat . Er hal¬
biert die Abstandstrecke zwischen F und 1 und heißt Scheitel der Parabel . Scheitel S und

Brennpunkt F haben die Entfernung 0,5 p.

Die Scheitelgleichung der Parabel

Im Algebra -Unterricht haben wir die Kurve mit der Gleichung y = ax2 als Parabel kennen

gelernt . Wir müssen jetzt zeigen, dass der Kegelschnitt, den wir Parabel genannt haben ,
auch einer solchen Gleichung genügt. Wir legen den Ursprung des Koordinatensystems in

den Scheitel und die y-Achse durch den Brennpunkt . Aus der Eigenschaft PF = PL leiten
wir die Parabelgleichung her.

Leitgerade
PF = PL

x2 + y quadrieren

x2 + - yp + f + yp + - fr
/ 4

2py

Scheitelgleichung der Parabel
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* Tangenten der Parabel

Wie bei Ellipse und Hyperbel ist auch die Parabeltan¬
gente die Winkelhalbierende geeigneter Geraden : Im Pa¬
rabelpunkt P halbiert sie den Winkel der Brennstrecke
[PF] und des Lots [PL] auf die Leitgerade.
Beweis
Für jeden von P verschiedenen Punkt Q auf w(/ gilt :
QL* < QL = QF .

Also liegt Q nicht auf der Parabel und w„ ist Tangente.

Folgerungen
a) Licht , das vom Brennpunkt ausgeht , wird an der Parabel so reflektiert, dass es die Para¬

bel senkrecht zur Leitgerade, also parallel zur Achse verlässt . (Scheinwerfer)
Umgekehrt : Strahlung , die parallel zur Achse einfällt , wird im Brennpunkt gebündelt .
(Parabol -Antenne)

b) Die Tangente im Parabelpunkt P schneidet die Parabelachse im Punkt T. Weil PL = PF
und PL parallel zur Achse ist und PT den Winkel bei P halbiert , ist PLTF eine Raute .
Der Mittelpunkt M der Raute liegt auf der Scheiteltangente, weil diese Mittelparallele
im Dreieck FLL' ist.

ScheiteltangenteLeitgerade

Subtangente Subnormale
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Auf dieser Eigenschaft beruht die Konstruktion der Parabel als Hüllkurve ihrer Tan¬
gentenschar : Man zeichnet die Scheiteltangente und den Brennpunkt . Gleitet der Schei¬
tel eines rechten Winkels auf der Scheiteltangente und geht ein Schenkel durch den
Brennpunkt , dann ist der andere Schenkel Tangente der Parabel .

Die Eigenschaft , dass die Parabeltangente den Winkel zwischen Brennstrecke und Lot auf

die Leitgerade halbiert , liegt auch der folgenden Faltkonstruktion zu Grunde : Auf einem

Blatt markiert man einen Punkt als Brennpunkt . Die Blattkante ist dann die Leitgerade.
Faltet man das Blatt so , dass die Kante auf dem Brennpunkt zu liegen kommt, dann ist die

Knicklinie eine Parabeltangente .

Aus dem Bild mit der Raute liest man auch ab :

TF = LP = SQ +

TF = TS + -
y

Scheitel¬
tangente

Leitgerade

also ist TS = SQ , das heißt , S halbiert die Subtangente (senkrechte Projektion der Tangen¬
tenstrecke [PT] auf die Parabelachse) .
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Diese Eigenschaft erlaubt eine einfache Konstruktion der Tangente in einem Parabel¬
punkt : Man projiziert den Berührpunkt P senkrecht auf die Achse, das ist Q . Q an S ge¬
spiegelt ergibt T. PT ist die gesuchte Tangente.
Die Normale in P (Lot auf die Tangente) schneidet die Achse in N.
Dann gilt TF = FN , weil FF Mittelparallele im Dreieck TPN ist.
Damit gilt auch QN = F'F = p , und wir haben den Satz :
Die Subnormale [QN ] (senkrechte Projektion der Normalstrecke [PN] auf die Parabel¬
achse) hat für alle Parabelpunkte die Fänge p.

Konstruktion der Parabeltangente mit der Subtangente
© Fot auf P auf Achse : Q
© Kreis um S mit r = SQ schneidet Achse in T
© PT ist Tangente

Aufgaben

1 . Von einer Parabel ist der Brennpunkt F und die Feitgerade 1 bekannt .
Konstruiere einige Parabelpunkte und skizziere die Parabel .
Gib zur Kontrolle die fehlende Koordinate des Parabelpunkts P an.
a) 1 : y = - 1 F (0 | 0) P (2 | ?)
b ) 1 : x = - 1 F ( 110) P (4 | ?)
c) 1 : y = x F (21 - 2) P (4 | ?)

2 . Parabelkonstruktion von Werner
Der Nürnberger Geistliche Johannes Werner veröffentlichte in seinem Todesjahr
1522 eine einfache Konstruktion von Parabelpunkten . Beschreibe und begründe sie
und führe sie für B (01 — 3) aus.

B(0 | - 2p )
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3 . Zeige : Die Sehne, die im Brennpunkt senkrecht auf der Parabelachse steht, hat die
Länge 2p.

4 . Zeige : Für jeden Parabelpunkt P ist das Dreieck gleichschenklig , dessen Seiten auf
Brennstrahl , Normale und Achse liegen .

5 . Eine Parabel mit Scheitel S ( 110) geht durch P (4 ]2) ; ihre Achse ist die x -Achse. Kon¬
struiere die Tangente der Parabel P und bestimme aus der Zeichnung den Wert von p.

6 . Eine Parabel mit Brennpunkt F (510) hat die Tangente mit der Gleichung 2y = x ; ihre
Achse ist die x -Achse. Konstruiere den Scheitel , die Leitgerade und einige Parabel¬
punkte , darunter auch den Berührpunkt B .

7 . Gegeben sind zwei konfokale entgegengesetzt geöffnete Parabeln mit
gemeinsamer Achse.
Zeige : Die Tangenten in den Schnittpunkten stehen aufeinander
senkrecht . (Dazu sagt man : Konfokale Gegenparabeln schneiden
sich senkrecht .)

S8. Eine Parabel mit Brennpunkt F (2 | 0) hat die y-Achse als Leitgerade
Konstruiere diejenigen Parabelpunkte , die auf der Gerade mit der Gleichung
y = - x + 6 liegen .
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* 4 . Die Leitgerade

Auch bei Ellipse und Hyperbel gibt es Leitgeraden , die eine ähnliche Rolle spielen wie die
Leitgerade der Parabel . Sie ergeben sich auch dort als Schnitt von Berührkreisebene und
Schnittebene . Deshalb haben Ellipse und Hyperbel zwei Leitgeraden , für jeden Brenn¬
punkt eine . Bezeichnen wir mit d den Abstand eines Kurvenpunkts P von der Leitgerade
und mit f seine Entfernung vom Brennpunkt L , dann gilt für alle drei Kegelschnitt-Typen

ist konstant

Diese Konstante ist bei Ellipse und Hyperbel
ezität e = — . (Nachweis siehe unten)

Je nach der Größe von e bekommt man

- eine Ellipse e =■
d < 1 ' also f < d

- eine Parabel e = also f = d

- eine Hyperbel e =4 » . also f > d

nichts anderes als die numerische Exzentri-

Allerdings lässt sich der Kreis als
Sonderfall der Ellipse (e = 0)
nicht mit Leitgerade und Brenn¬
punkt erzeugen, weil dann Be¬
rührkreisebene und Schnittebene
parallel sind.

Leitgeraden 1
(senkrechtzurPapierebene)

Berührkreisebene

Kreis
Der Kreis
hat keine

Leitgerade .

Ellipse Parabel , Hyperbel



Zum Beweis der Konstanz von f/d bei der Ellipse projiziert man die Strecken [PL ] und
[PE] senkrecht auf die Kegelachse.

®/\

PL-cosa PE-cos (p
PL = d

PE = PFa = f

PL -cosa = PE -cos (p

(konstant )cos (p

Für die Hyperbel läuft der Beweis entsprechend , bloß ist hier a — cp , also cos a > cos cp ,
also 8 > 1 .

Nachweis für die Gleichheit — = ed

Für den Nebenscheitel B gilt —
j
- =

f
Für den Hauptscheitel A gilt = a - e

s - a

im Bild ist
a —5
e = 4
s = 0,8
s = 6,25

Also ist — =
s

a - e
s - a

as - a2 = as - es

_ e_
s a
I I
f
T = 5

Für die Hyperbel geht der Beweis entsprechend .
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Leitgerade
Leitgerade

Parabel
e = 1

Ellipse

Hyperbel

e = -
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5 . Anwendungen

Auf Kegelschnitte trifft man in Natur , Technik und Architektur .

Bahnkurven

Galileo Galilei (1564 bis 1642) hat Anfang des 17 . Jahrhunderts erkannt , dass ein geworfe¬
ner Körper eine Parabelbahn beschreibt . Dank Kepler ( 1571 bis 1630) und Newton

( 1643 bis 1727) wissen wir heute, dass die Bahnkurven eigentlich Ellipsen sind , die aber in
der Gegend des Scheitels, des Abwurfpunkts also, sehr gut durch Parabeln angenähert
werden . Es lassen sich sogar alle drei Kegelschnitt-Typen beim Werfen erzeugen. Ihre
Form hängt allein von der Abwurfgeschwindigkeit ab.

Kegelschnitte als Satelliten -Bahnen

Ellipsen : e < l Kreis : e=0
v <7,9km/s

Kegelschnitte als Satelliten -Bahnen

Hyperbeln : £ > 1 Parabel : e = l

Fluchtgeschwindigkeit
vF = 11,2 km/s

Ellipsen : e < l
v<vP

Im Makrokosmos der Astronomie findet man Kegelschnitte als Flugbahnen von Raketen,
Planeten , Kometen . . .
Im Mikrokosmos der Atomphysik treten die Kegelschnitte als Flugbahnen geladener Teil¬

chen auf.

Reflexionen

Die Reflexionseigenschaften von Spiegeln, deren Querschnitte Ellipsen , Hyperbeln oder

Parabeln sind , nutzt vor allem die Technik.
Mit Parabolspiegeln erzeugt man Parallelstrahl -Bündel, zum Beispiel in Sendeantennen

(Richtfunk ) oder Autoscheinwerfern (Fernlicht) .
Mit Parabolspiegeln empfängt man Parallelstrahl -Bündel, zum Beispiel in Empfangsan¬
tennen für kosmische Strahlung und Satelliten-Fernsehen oder in astronomischen Spiegel -
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Ellipse

Parabel

Hyperbel

fernrohren . Im Cassegrain- Teleskop ist ein Parabolspiegel mit einem hyperbolisch ge¬
krümmten Spiegel gekoppelt . Mit dieser Spiegelkombination erzielt man eine Brennweite,
die größer ist als die des Parabolspiegels allein . (Ein Fernrohr vergrößert um so stärker , je
länger seine Brennweite ist .) Man könnte sogar ein Teleskop mit Spiegeln bauen , in denen
alle drei Kegelschnitt-Typen Vorkommen .
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Cassegrain -Fernrohr

vom Stern ausgehendes
Parallelstrahl -Bündel

Fotoplatte

Hauptspiegel
(parabolisch)

Seit es den Nierenlithotripter gibt, das ist ein Nierenstein-Zerbrösler, lassen sich Nieren¬
steine ohne blutige Operation entfernen . Sein Funktionsprinzip ist recht einfach : In einem

Brennpunkt eines Ellipsenspiegels sendet ein starker Funke einen Knall aus - das ist eine
Stoßwelle. Der Patient ist so justiert , dass im andern Brennpunkt sein Nierenstein sitzt. Die

am Ellipsenspiegel reflektierte Stoßwelle konzentriert sich auf den Nierenstein und be¬
wirkt , dass eine dünne Außenschicht abplatzt . Einige hundert Funkenknalle zerbröseln so

den Stein zu Grieß .
Nierenstein -Zerbrösler

Stein
Niere

Zündkerze
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Flüstergalerien sind raffinierte Einrichtungen in Schlössern und Residenzen : Eine ellip¬
tisch gewölbte Decke überspannt zwei Räume so , dass in jedem Raum ein Brennpunkt
liegt . Findet ein (geflüstertes) Gespräch im Brennpunkt des einen Raums statt , dann kann
man es im Brennpunkt des andern Raums abhören . Lauschangriffe sind also schon seit
der Renaissance durch trickreiche Nutzung einer Ellipsen -Eigenschaft in der Architektur
möglich!
Flüstergewölbe finden sich zum Beispiel
- in der Vorhalle der Residenz in Würzburg
- im Karyatiden -Saal des Louvre in Paris
- in einem Raum des Castello Sforzesco in Mailand
- in St . Paul ’s in London .

Kegel-Schnitte

Mit einem Lichtkegel, der auf eine
ebene Wand trifft , lassen sich alle
drei Kegelschnitt-Typen als Ränder
von Schatten erzeugen.

Beim Anspitzen eines sechskantigen Bleistifts entstehen Hyperbeln als Schnitte eines Ke¬
gels (im Spitzer) mit Ebenen (Bleistift) , die parallel sind zur Kreisachse . Ähnlich kommen
auch die Hyperbeln auf Gewindemuttern zustande .
Bei der Sonnenuhr wirft ein fester Stab einen Schatten , der die wahre Sonnenzeit angibt .
Die Schattenspitze beschreibt jeden Tag eine andere Kurve ( Datumslinie) . Diese Kurve
entsteht als Schnitt der Bildebene und des Kegels , den die Verbindungsgeraden Stab¬
spitze- Sonne bilden . Sie ist deshalb ein Kegelschnitt , und zwar meistens eine Hyperbel .
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Modebewusste Messingmutter beim
Mustern ihrer hyperbolischen
Konturen vorm Spiegel

Navigation

Hyperbeln spielen eine große Rolle in der
Ortung von Schiffen. Das LORAN -Sy-
stem (LOng RAnge Navigation) ist ein
Funkortungsverfahren für die Langstrek-
kenpeilung (von den Amerikanern wäh¬
rend des Zweiten Weltkriegs entwickelt).
Drei verschiedene ortsfeste Stationen sen¬
den gleichzeitig Signale aus , die ein Schiff
oder Flugzeug empfängt . Der Laufzeitun¬
terschied der empfangenen Signale zweier
Sender legt eine Hyperbel als Standlinie
fest (die Sender stehen in den Brennpunk¬
ten) . Der Standort ergibt sich als Schnitt¬
punkt von zwei oder drei Hyperbeln . Die
Genauigkeit bei Auswertung der Boden¬
wellenimpulse liegt bei 5 km , bei Auswer¬
tung der Raumwellenimpulse bei 15 km.
Die Reichweite der Sender beträgt tags¬
über 1400 km und nachts etwa das Dop¬
pelte. Das LORAN -System überdeckt fast
vollständig den Nordatlantik sowie große
Teile des Indischen Ozeans.

LORAN -System
Standlinie

Standlmie

Standort

Die Sender A, B und C
strahlen synchrone Signale ab.

6 . Geschichtliches

Etwa um 350 v . Chr . erfindet Menaichmos , der Lehrer Alexanders des Großen , die Ke¬

gelschnitte als Kegel -Schnitte zur Lösung geometrischer Probleme, bei denen man mit der
klassischen Methode (Zirkel, Lineal) nicht weiterkommt. Er löst zum Beispiel das Delische
Problem der Würfelverdopplung über den Schnitt von Parabeln : Aus x2 = ay und y2 = 2ax

folgt nämlich x = a .
Mit den Kegelschnitten ist es auch möglich, einen Winkel in drei gleich große Winkel zu

zerlegen.
Nur das dritte der drei klassischen Probleme, die Quadratur des Kreises, kann Menaich¬

mos nicht lösen .
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Apollonios von Perge (262 bis 190 ) untersucht die Kegelschnitte eingehend und schreibt
seine Konika, acht Bücher über Kegelschnitte : I bis IV sind griechisch überliefert , V bis
VII liegen arabisch vor und VIII ist verloren gegangen . Im Gegensatz zu Menaichmos , der
für jeden Kegelschnitt-Typ einen neuen Kegel braucht , weil er immer senkrecht zu einer
Mantellinie schneidet , bekommt Apollonios alle Kegelschnitte an einem Kegel durch
Schnitte unter verschiedenen Winkeln . Er treibt geometrische Algebra, indem er versucht,
quadratische Gleichungen über Flächengleichheiten zu lösen :
Die Gleichung ax = b2 ist gelöst, wenn es gelingt, zu einer gegebenen Rechteckseite a die
andere Rechteckseite x so zu finden , dass dieses Rechteck flächengleich ist einem Quadrat
mit gegebener Seitenlänge b . (paraballein = vergleichen, gleich sein)

^p : ax = b

a-x . . = i t fl .

a
b

Zur Lösung der Gleichung ax + x2 = b2 braucht man die Rechteckseite x so , dass Recht¬
eck - und Quadratfläche (Seite x) zusammen so groß sind wie das Quadrat mit Seitenlänge
b . Apollonios bezeichnet das kleine Quadrat mit der Seite x als überschießendes Quadrat .
(hyperballein = über ein Ziel hinauswerfen , übers Ziel hinausschießen )

Typ : ax + x2 = b2
X

2 . il2 !
X i a*x X — . 1. b . j.

a
b

Weil negative Zahlen damals noch nicht bekannt sind , schafft die Gleichung ax - x2 = b2
ein neues Problem . Jetzt braucht man die Rechteckseite x so , dass der Flächenunterschied
von Rechteck und kleinem Quadrat so groß ist wie das Quadrat mit Seitenlänge b . Apol¬
lonios bezeichnet das kleine Quadrat mit der Seite x als unterschießendes Quadrat , (ellei-
pein = mangeln , fehlen)

Typ : ax - x = b

Schreibt man die drei Gleichungen in der Form

y2 = ax
y2 = ax + x2
y2 = ax - x2

so ergeben sich Gleichungen von Parabeln , Hyperbeln und Ellipsen . Die Mittelpunkte die¬
ser Hyperbeln und Ellipsen liegen nicht im Koordinatenursprung .
Nach den Griechen kümmert man sich kaum noch um die Kegelschnitte. Erst Johannes
Werner ( 1468 bis 1522) erweckt sie zu neuem Leben in seiner Schrift Elemente der Ke¬
gelschnitte. Darin steht zum Beispiel eine einfache Parabelkonstruktion mittels einer Schar
von Kreisen mit gemeinsamem Berührpunkt (siehe Kapitel 9 . II , 3) .
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