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1 . Bezeichnungen

Ein einfacher Fall eines linearen Gleichungssystems sind zwei lineare Gleichungen mit
zwei Unbekannten

I 2x - 3y = 21
II 3x + 4y = 6

Linear heißt ein Gleichungssystem, wenn in allen Gleichungen die Unbekannten höch¬
stens in der ersten Potenz Vorkommen. Weil wir künftig auch mit mehr als zwei Unbe¬
kannten arbeiten werden , numerieren wir sie und schreiben statt x , y , z , (? ) . . . nun
Xj , x2 , x3 , x4 , . . . . Das Gleichungssystemschaut dann so aus

I 2xx - 3x2 = 21
II 3xj + 4x2 = 6

Eine Lösung ist ein Zahlenpaar ; man schreibt x2 = 6 , x2 = - 3 oder kürzer (6 I — 3 ) oder
das ganze untereinander j .

Ein allgemeines lineares Gleichungssystem besteht aus m Gleichungen mit n Unbe¬
kannten . Man bezeichnet es auch als m , n-System .

Eine Lösung ist ein n -Tupel von Zahlen (x4 1x2

f Xl \

xn ) beziehungsweise
x2

Beispiel für ein 2,3-System : I xx + 2x2 + x3 = 3
II Xj — x2 — 2x3 = 0

Eine Lösung ist das 3-Tupel
( 3 \
- 1 eine andere

( 2 \
0 Statt 3-Tupel sagt man auch Tripel.

Normalerweise schreibt man die Gleichungen so , daß alle Unbekannten auf der linken
Seite und die konstanten Summanden auf der rechten Seite stehen . Haben alle Konstan¬
ten den Wert null , dann nennt man das Gleichungssystem homogen , sonst heißt das
Gleichungssysteminhomogen .
Beispiel für ein homogenes 3 , 3-System : I Xj + 2x2 - 3x3 = 0

II Xj + x2 - x3 = 0
III 4xj + 3x2 - 2x3 = 0

Die Faktoren bei den Unbekannten und die Konstanten heißen Koeffizienten des Sy¬
stems . Dank einer raffinierten Kennzeichnung sieht man sofort , an welche Stelle im
System der Koeffizient hingehört :

I anxx + a12x2 + . . . + aln xn = bj
II a2iX! + a22x2 + . . . + a2n xn = b2

( m ) am4x4 + am2x2 + . . . + amn xn bm
a32 ist zum Beispiel der Koeffizient in der 3 .Gleichung bei der Unbekannten x2 .
b3 ist die Konstante der 3 .Gleichung.
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Ziel unsrer Untersuchungen wird es sein , bei einem m,n-System herauszufinden :
- wann ist das System überhaupt lösbar ?
- wann hat das System genau eine Lösung ?
- wie findet man die Lösung!en) ?
- wie stellt man die Lösungsmenge übersichtlich dar ?

Erstaunlicherweise treten alle möglichen Fälle von Lösungsmengen schon bei 2,2 -
Systemen auf und sind durch geometrische Überlegungen sogar leicht verständlich .
Man deutet die beiden Zeilen des Systems als Gleichungen von Geraden :

genau eine Lösung : I Xj + 2x2 = 8 T .. ( 2 \
Lösung fgLösung {̂ 3 J

Deutung : Die beiden Geraden schneiden sich im Punkt (21 3 ).

I x, + 2x 2 = 8
II 3x , + x 2 = 9

genau eine Lösung

keine Lösung : I x: + 2x2 = 8
II Xj + 2x2 = 12

Deutung : Die beiden Geraden sind parallel , fallen aber nicht zusammen.

I x, + 2x2 = 8
II x , + 2x z = 12 I x , + 2x 2 = 8

II -2x , - 4x 2 = - 16
unendlich vieLe Lösungen:

(aHa +4 )

keine Lösung

(-2b + 8 | b)

unendlich viele Lösungen ; I x , + 2x2 = 8
II —2xj - 4x2 = —16

■2b + 8
Lösung

Die Lösungsmenge kann man mit einem Parameter b darstellen . Für jeden Wert belR
ergibt sich eine andre Lösung. Deutung : Die beiden Geraden sind identisch . Die Lösun¬
gen sind die Punkte der Gerade . Der Parameter numeriert sie durch .



Aufgaben

[T] Bestimme die Lösungen und zeichne die zugehörigen Geraden :
a ) I Xi + x2 = 1 b) I — 4x x + 2x2 = — 6 c) I Xj - x2 = 0

II 2xj — x2 = 8 II 6x x — 3x 2 = 9 II Xj + x2 = 0

d) I 6xj - 9x2 = 1 e) I 3xj - 0,5 x2 = 0 f) I Xl = 1
II 4xj - 6x 2 =3 0 II 011+£1 II x2 = 2

2. Gib ein 2,2-System an , das die Lösung (_
2
4 j hat und

a ) keine weitere Lösung hat

b ) auch noch die Lösung ^ 4 j hat c ) homogen ist .

3. Ein m,2 -System hat die Lösung ^ 3 j . Gib ein Beispiel an für m = 1,2,3 .

Kann man es so einrichten , daß ^ 3 j jeweils die einzige Lösung ist ?

4. I 3xj - x2 + 2x3 = 1
II 2x1 + 2xa = 0 Gib die Koeffizienten an : a u , a12 , a21 , a23 und bi .

5. Gib ein 3,2-System an , für das gilt :
a ) an = a21 = 1 , bj = — b2 = 2 a 12 = b3 = 0 , a31 = 2a 32 = — a22 = 6
b ) ajj = 1 , a^ - 1 , bj = j ( i , j , k = 1,2,3 )
c) ajk = i + k , bj = 0 ( i,j = 1,2,3 ; k = 1,2 )

6. In einem homogenen 3,3-System gilt a21 = - 1 , a 13 = a23 = 2 und aik = - akl
(i,k = 1 , 2 , 3 ) . Schreib das Gleichungssystem hin .



2. Das Einsetzverfahren

ist der naheliegendste Weg , ein Gleichungssystem zu lösen : Man löst eine Gleichung
nach einer Unbekannten auf und ersetzt diese Unbekannte in allen andern Gleichun¬
gen durch den gefundenen Term . Das wiederholt man immer wieder . Wir führen das
Einsetzverfahren zunächst an einigen 3,3 -Systemen vor ; wir haben sie so ausgewählt ,
daß die wichtigsten Fälle Vorkommen.

Inhomogene Gleichungssysteme
Genau eine Lösung

I 2x 1 — 3x2 + x3 = — 1
II Xj + x2 + 5x3 = 0

III - xx + 2x2 - x3 = 2
■x2 - 5 x£ in I und III

in I 2(— x2 - 5x3 ) — 3x2 + x3 = — 1
in III — (— x2 — 5x3) + 2x2 — x3 = 2

I ' — 5x2 — 9x3 = - 1
III ' 3x2 + 4x3 = 2 => x2 = - | x3 + | in I'

in I ' - 5 (- | x3 + 1) - 9x3 = - 1
20x3 - 10 — 27x 3 = — 3

I" - 7x3 = 7 => x3 = - 1 in III ' und II

x3 = - 1 fx^ r 3 a
in III X2 = 2 Lösung : X2 = 2
in II Xj = 3 w l- l J

Beim Einsetzverfahren geht es nur darum , Gleichungen umzuformen und Terme ein¬
zusetzen . Es kommen keine gefährlichen Umformungen vor wie Quadrieren und Mul¬
tiplizieren beziehungsweise Dividieren durch Terme , die null werden könnten . So ist si¬
chergestellt , daß weder Lösungen verloren gehen noch sich Scheinlösungen einschlei¬
chen . Allerdings muß man darauf achten , daß die Anzahl der aktuellen Gleichungen
nach jedem Rechenschritt dieselbe ist . In unserm Schema heben wir die zum Einsetzen
reife Gleichung mit einem Rahmen hervor . Aktuell sind dann jeweils die Gleichungen
unterm Strich und die eingerahmten .

Keine Lösung
I 2xt - 3 x2 - x3 = 4

II Xj + 2x2 + 3x3 = 1 =
III 3xj - 8x2 - 5x3 = 5

I ' — 7x2 — 7x3 = 2 =
III ’ - 14x 2 - 14x3 = 2
III " 0 = - 2

~ ~
l

1 — 2x 9 — 3xc in I und III

in III’

keine Lösung!
III " ist eine widersprüchliche Gleichung . Wenn ein Widerspruch auftaucht , dann muß
irgendwo eine Annahme stecken . Tatsächlich beruht das Lösungsverfahren auf der
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Annahme , daß das Gleichungssystem mindestens eine Lösung (xj | x2 1x3 ) hat , die alle
Gleichungen erfüllt . Stößt man beim Rechnen irgendwo auf einen Widerspruch , dann
erweist sich die Annahme als falsch , das Gleichungssystem hat keine Lösung .

Unendlich viele Lösungen

I Xj + 2x2 — 3x 3 = 6
II 2x x - x2 + 4x3 = 2

III 4x 3 + 3x2 - 2x3 = 14
II ' - 5x 2 + 10x3 = - 10

III ' —5x 2 + 10x3 = —10
III " - 10 - 10x3 +10x3 = - 10

0 = 0

Xj = 6 — 2x 2 + 3x3

x2 = 2 + 2x3

Die aktuellen Gleichungen reichen nicht aus , um die Unbekannten eindeutig zu bestim¬
men . Wenn x3 bekannt wäre , dann ließen sich die dazu passenden Werte für x2 und xxberechnen . So findet man zum Beispiel für x3 = - l die Lösung (3 I 0 I - 1 ) und für x3 = 0
die Lösung (21 2 I 0 ) . Weil x3 frei wählbar ist , gibt es unendlich viele Lösungen (abhängig
von x3) . Eine frei wählbare Größe heißt auch freier Parameter . Man bezeichnet Para¬
meter mit einem kleinen griechischen , manchmal auch lateinischen Buchstaben . Setzt
man x3 = X, dann bekommt man durch Einsetzen in die eingerahmten Gleichungen

( 2 - X \
x2 = 2 + 2X und xx = 2 — X oder x2 2 + 2X

{ X J

Weil die Lösungsmenge genau einen freien Parameter enthält , sagt man , daß das Sy¬stem oo 1 Lösungen hat (sprich : unendlich hoch eins ) . Zur besseren Übersicht trennt man
in der Lösung den konstanten Teil vom parameterabhängigen Teil und schreibt

r2 - X ^ ( 2 - X\ f2 \ f - k \
x2 — 2 + 2X — 2 + 2k— 2 + 2X

w , ^ j , 0 + 'X / loj U J
(2 \ 1 \

x2
V x37 vOy

+ X
v 1 ,

Lösung :

(zeilenweise Addition )

(Parameter abspalten )

, kelR [Tj

^Xl
') ( 2 -\ ( - 1ni

X2 = 2
kOj

+ X 2
l 1 J

Die Darstellung der Lösungsmenge ist nicht eindeutig , sie hängt ab vom Lösungsweg .
Das letzte Gleichungssystem jetzt anders gelöst :

I xt + 2x2 - 3x3 = 6
x2 = 2x x + 4x 3 — 2

III ' lOxj + 10x3 = 20
III ” 0 = 0
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Nun ist xx die einzige Unbekannte , die nicht links vorkommt ; deshalb ernennen wir sie
zum freien Parameter p . Wir setzen xx = p und bekommen durch Einsetzen in die ein¬
gerahmten Gleichungen

r x1
N

f h > f 0 '! f 1 j
2 - p und x2 = 6 - 2p oder x2 = 6 - 2p = 6 + p - 2

V
X3y l 2 " U v UJ l- l J

f 1 )
Lösung : X2

v Xa J
6I2J+ p - 2

l- l J @
Bei Wahl von x2 als freien Parameter hätte sich ergeben

( 3 > ( - Va ^
Lösung : X2

l *3 )
— 0

l - l ,
+ 0 1

l v2 J
, o elR

Ein Vergleich von [T ] , [2 ] und [3 ] zeigt , daß sich die Anteile beim Parameter nur in einem
Faktor unterscheiden

( 1 1 , - l > ( ~ 1 \
- 2 = (- ! ) ■ 2 und 1 = v2- 2

l- l , l 1 , V
V 2 , l 1 J

Die konstanten Anteile — das sind die Lösungen , die jeweils zum Parameterwert 0 gehö¬
ren - zeigen keinerlei Ähnlichkeit . Trotzdem sind die drei Darstellungen gleichwertig ,
denn jedes Lösungstripel ist in jeder Darstellung enthalten : In [3 ] liefert g = 4 das Tripel
( 11 411 ) , dasselbe Tripel ergibt sich für p = 1 in [2] beziehungsweise für X = 1 in |T | .

Es gibt auch Gleichungssysteme , deren Lösungsmengen mehr als einen Parameter ent¬
halten . Dazu ein Beispiel :

I O^ Xj - 4x2 + 0,5x3 = 3
II — x3 + 8x2 - x3 = - 6

III 0,25xj - 2 x2 + 0,25x3 = 1,5
I ' 0 = 0

IIP 0 = 0

Xj = 8 x 2 - x 3 + 6

x2 und x3 sind frei wählbar und werden deshalb zu Parametern ernannt :

x2 = X und x3 = p
in II Xj = 6 + 8X — p

Lösung :
( 6 >, r8 ) r - 1 \

*2
\ X3 )

= 0
lo ,

+ X 1
lo ,

+ ß 0
l 1 J X, p elR

Weil hier zwei freie Parameter Vorkommen , spricht man von °°2 Lösungen . Auch hier
sind andere Darstellungen der Lösungsmenge möglich . Hätte man zum Beispiel Glei¬
chung II nach x3 aufgelöst , dann wären x , und x2 die freien Parameter :
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II x 3 = 6 — Xj + 8x5
I ' 0 = 0

III ' 0 = 0

xx = g und x2 = x
in II x3 = 6 - g + 8t

Lösung:
( 0 > f 1 1 r ° A

X2 = 0 + G 0 + T 1

1 * 3 ; 16 , l - l ;
, o , t elR

Homogene Gleichungssysteme
Wie verändern sich die Lösungen , wenn man die rechten Seiten der Gleichungen null
setzt , das heißt , zu homogenen Systemen übergeht ? Wir rollen die Sache von hinten auf
und untersuchen zuerst inhomogene Systeme mit unendlich vielen Lösungen . Das ho¬
mogene System , das zum inhomogenen System mit Lösungen ( Seite 17 ) gehört ,lautet :

I x1 + 2x2 - 3x3 = 0 => x l = - 2x2 + 3x3
II 2xj — x2 + 4x3 = 0

III 4x! + 3x2 - 2x3 = 0
II ’ - 5x2 + 10x3 = 0 => x2 = 2x3

III ' — 5x2 + 10x3 = 0
III " 0 = 0

x3 = X (freier Parameter , es gibt oo 1 Losa

( Xl >
zusammengefaßt zur Lösung :

V X3 ,
(

(andrer Lösungsweg ) : Lösung : x2
V

X3 V

mgen) => x2 = 2Ä. und x1 = —X,
r - l \

= X 2 t X eIR oder
l 1 J
( * '

= g - 2 , gelR
l - l J

Auch das homogene System hat «4 Lösungen.

Nun zum System mit den °°2 Lösungen . Das zugehörige homogene System ist :
I Ojöxj

II - x
III O ^ öxj

4x 2 + 0,5x 3 = 0
x3 = 0

2x 2 + 0,25x 3 = 0
1 + 8x 2 - Xj = 8 x 2 — Xc

I ’
III ' 0 = 0

0 = 0

in II
x2 = X und x3 = ja (zwei freie Parameter , also oo2 Lösungen)
x: = 8L - g

Lösung:
fx 1

'i
f - lA

^
-
- = X 1

lo ,
+ g 0

1 1 J Ä,, g elR
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Es fällt auf:

— der konstante Anteil ist 0
0

(wird deshalb meistens weggelassen)

— die Lösung des homogenen Systems ist gerade der parameterabhängige Anteil der
Lösung des inhomogenen Systems.

Diese Übereinstimmung verwundert nicht : An der Variablenrechnung hat sich nichts
geändert , und die Konstanten der rechten Seite sind alle gleich null . Der Parameteran¬
teil wird allein von der Variablenrechnung festgelegt.

Jetzt behandeln wir das Beispiel, das im inhomogenen Fall keine Lösung hat .

x2 = - x3
III ' - 14x 9 - 14xo = 0
III " 0 = 0

x3 = X , x2 = —X , x -l = —X Lösung:
' x ^
X2

w
= X - 1

1 1 J X elR

Obwohl das inhomogene System keine Lösung hat , gibt es beim homogenen System
Lösungen (sogar unendlich viele !) . Das sollte uns eigentlich nicht überraschen , denn je¬
des homogene System hat zumindest die Lösung , bei der alle Unbekannten gleich null
sind . Diese Lösung heißt auch triviale Lösung *

. Ein homogenes System kann also nie
unlösbar sein , die triviale Lösung gibts garantiert .
Zum Schluß rechnen wir das Beispiel , das im inhomogenen Fall genau eine Lösung hat .

X2 = Xj

II ’ 7Xl = 0

X [ = 0 fO \

in III '
Xa = 0 Lösung : x2 = 0

in I x:) = 0 { * 3 ) loj
(triviale Lösung)

Auch das homogene System hat genau eine Lösung, und die muß dann die triviale sein.

trivial = selbstverständlich
Als Trivium (=Dreiweg ) bezeichnete man die ersten drei Fächer der siebenArtes Liberales, die in den Klosterschulen des Mittelalters als
elementare Vorstufe des Studiums gelehrt wurden: Grammatik , Dialektik und Rhetorik. Danach folgte das anspruchsvollere Quadrivium
(=Vierweg ) mit: Arithmetik, GeometrieAstronomieund Musik . Deswegen nennt man besonders einfache Dinge auch trivial.
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Das Einsetzverfahren funktioniert freilich auch bei 4,4 -Systemen , 5,5 -Systemen usw .
Auch hier sind genau eine , keine oder unendlich viele Lösungen möglich . Die Anzahl
der freien Parameter kann entsprechend der Anzahl der Unbekannten steigen . Das
Einsetzverfahren führt auch dann zum Ziel , wenn die Anzahl der Gleichungen nicht
übereinstimmt mit der Anzahl der Unbekannten . Dazu zwei Beispiele :

s 4,2-System I 2xj - x2 = 5 x2 = 2xj - 5
1- II - 3x x + 2x2 = - 8

III x x + 3x2 = - 1
IV 4x x + 3x2 = 4
II ' Xl = 2 Xi — 2

III ' 7xx = 14
1—
1< 10xx = 19

III " 14 = 14
IV " 20 = 19 l Das System hat keine Lösung .

Wie das Beispiel zeigt , genügt es nicht , aus dem System einige Gleichungen
herauszupicken und daraus »Lösungen « zu produzieren (die ersten beiden
Gleichungen würden zur »Lösung « (2 I - 1 ) führen ) . Weil alle Gleichungen
erfüllt sein müssen , muß man die »Lösung « an den restlichen Gleichungen
überprüfen ( (2 | - 1 ) löst zwar noch die dritte , aber nicht mehr die vierte
Gleichung ) .

m 2,4-System I xx + 3x2 + x3 + x4 = 4
e-
ill
ie

II xx + x3 — 2x4 = - 5 x x = 2x 4 - x 3 - 5
I ' 3x 2 + 3x 4 = 9 x4 = —x2 + 3

Weil x2 und x3 nicht links Vorkommen , wählen wir sie als freie Parameter
t . x2 = X, x3 = p . Einsetzen in die eingerahmten Gleichungen liefert x4 = 3 - X

und Xj = 1 - 2X - p.

Lösung:
M fl \ f ~ 2 \

X2 0
+ A,

1 0
X3

SS 0 0 + b 1
l - l ) 1 ° J

X, p elR

Systeme mit mehr Gleichungen als Unbekannten heißen auch
überbestimmte Systeme . Normalerweise haben sie keine Lösung.
Systeme mit weniger Gleichungen als Unbekannten heißen
unterbestimmte Systeme . Normalerweise haben sie unendlich viele Lösungen .
Man kann zeigen : Enthält das System keinen Widerspruch , dann gilt :

Anzahl der Anzahl der < Anzahl der
Unbekannten Gleichungen freien Parameter

als
um
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Aufgaben

[T![ Löse die Gleichungssysteme :
a) 10xj + x2 - 2x3 = 2 b) - Xi - x2 + x3 = 0

Xl + 2x2 + 2x3 = 3 3Xl + x2 + 2x3 = 11
4Xl + 4X2 + 3x3 = 5 - Xi - x2 + 4x3 = 9

c) 4x , + 5x2 + 2x3 rr3 d) - Xl + x2 + x3 = 0
- 19Xl - x2 - 3X3 = 2 - Xl + 4x2 + 2x3 = 0

7Xl + 4x2 + x3 = 1 2Xj + 2x2 + 3x3 — 0

e) 2X] - 3x2 - x3 = 4 f) - Xi + X2 + x3 = 0
3Xl - x2 + 2x3 = 5 Xl — 3x2 + 2x3 0
3Xl - 8x2 — 5x3 = 5 2Xj - 4x2 + x3 = 0

g) 4Xl + X2 + x3 = 1 h ) l- 5X1+ | x2 + ^ x3 = 0
Xl + 4x2 + 4x3 = 1 5 A

3Xj — 6 x 2 — 3x 3 = 0
Xl + x2 + x3 ” 1 2 4 2 03 X1 “

3 X2~
3 X3 “

i) Xl + 5x2 — 2x3 _ 0 j ) Xl + 2x2- 3x3 = 0
- 2 Xl - x2 - 3x3 = 0 2Xj - x2+ 4x3 = 0

4xi + 3x2 - x3 = 0 4xi + 3x2- 2x3 = 0

2. Löse die Gleichungssysteme und die zugehörigen homogenen Systeme:
a) 2xi + x2 — 3x3 = 5 b) 2xi + 3x2 - 2x 3 = 5

3xi — 2x 2 + 2x3 = 5 Xj — 2x 2 + 3x s = 2
5xi — 3x2 — x 3 = 16 4xj - x 2 + 4x3 = 1

c) Xi + 2x2 + 3x 3 = 3 d) 2xi - x2 + 3x3 = 4
2xj + 3x2 + 8x 3 = 4 4xi - 2x 2 + 6x 3 = 8
3x 2 + 2x2 + 17x 3 = 1 - 6xi + 3x2 - 9x 3 = - 12

Einfach - aber nicht leicht (jedes System ist ein 3,3 -System !)

a) x i + x2 = — 2 b) 2xj + 3x2 = 5
x 2 + x3 = — 2 x3 = 2

Xj + x3 = — 2 4xj - x2 = 3

c) Xj = 3 d) 2xj + 3x3 = 4
8x3 = 4 4xi + 6x3 = 8

2x 2 = 1 — 6xj - 9x3 = -- 12

e) Xi + 2x3 = 3 f ) X 1 = x 2
IICOX00+><1 X2 = X3

x 3 = 1 X3 = Xj
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4. Kleine Ursache - große Wirkung
a ) 2,01x x + x2 + x3 = 201 b) l,99xj + x2 + x3 = 201

Xl + X3 = 200 Xl + x3 = 200
~ x2 + X3 = 200 - X2 + x3 = 200

c) 2xj + x2 + X3 = 201 d) 2,01xj X2 + x3 = 200
xi + X3 = 200 X 1 + x3 = 200

- x2 + X3 = 200 - X2 + x3 = 200
e) 2xj + x2 -i- X3 = 200 f) l,99xj + X2 + x3 = 200

Xl + X3 = 200 Xl + x3 = 200
- x2 + X3 = 200 - x2 + X3 = 200

Bestimme die Parameter so , daß das System die angegebene Lösung hat :
a ) 2xj + ax2 + X3 = - 4 b) 2xx + X2 - x3 = 1

bxx - 3x2 + X3 = - 5 2xj + 3x2 = 0
6xj - x2 + icx3 = 3a 6xx + ax2 - x3 = 1

Lösung :
r- U (x^ r ( 3a

X2
VxaJ

- 2
l 2V

Lösung : x2
lXsJ

0
l- lj

+ k - 2
l 4j

c) 2x x + ax2 + x3 = 0
x 1 + x3 = 0

— x2 + ax3 = 0

Lösung : X2
{X3J

= X 1
l lJ

d ) - 3x 4 + 2x2 + ax3 = 0
Xj + ax2 + 2x3 = 0

- x2 + x3 = 0
Das System hat Lösungen .

6. Parabeln durch gegebene Punkte
Bestimme die Koeffizienten von y = ax 2 + bx + c so , daß die zugehörige Parabel
durch die angegebenen Punkte geht .
a ) P ( lll ) Q(- 2 I - 2 ) R(3 I —7 ) b) S( 0 I - 3 ) T ( 1 | —1 ) U (2 | 3)
c ) I ( lll ) J (- l | - l ) K(21 14 ) d ) E ( l | l ) F (213 ) GK—1 1 —3 )
e) U ( 1 I 0 ) V( 0 I 1 ) f ) W( 1 I 2 )

7. Bestimme die Lösungen der 4,4 -Systeme
a) 2x1 + 2x 2 — 2x 3 + 2x4 = 8 b) x 4 - 2x2 + 3x3 = 6

Xl x2 + x3 + 2x4 = 10 2x x + X3 - X4 = 1
2xi 3x 2 + 4x 3 - 3x 4 = - 4 3x 2 + 5x 3 = 21

—2x ! • 4x 2 — 3x 3 + 3x 4 = 9 3xj - 4x4 = - 13
c) Xl + 2x3 + x4 = 0 d) xL - x 2 + 2x 3 - x4 = 1

x2 + x3 - x4 = 0 3x 4 - 3x2 + 6x 3 - 3x 4 = 3
- Xl + X2 = 0 —2x x + 2x2 — 4x 3 + 2x4 = - 2

—3xj + 3x 2 — x3 - 2x 4 = 0 4xi - 4x2 + 8x 3 — 4x 4 = 4



[&] Überbestimmte Systeme

a) x i + 2x 2 = 0 b) 2xj +
2x x + 5x2 = 2 l CO* +

xi - x2 = - 5 4x : -

d) x i - 2x 2 + 2x 3 = 4
2xj 3x3 = - 2
- x i + 2x2 — 3x3 = - 6

xi + x3 = 3

x2 = - 5 c ) Xj — 2x2 + 2x3 = 4
2x2 = 11 2xj - 3x3 = - 2

= - 13 - Xj + 2x2 - 3x3 = - 6
x2 + x3 = 3

• e) Xj — 2x2 + 2x3 = 4
X2 + X3 = 3

xi — x2 + 3x3 = 7
xx - 4x2 = - 2

9J Unterbestimmte Systeme

a ) x i + x2 - 3x 3 = 3
xi - x2 + x3 = 1

c ) 6xj 2x 2 + 3x 3 = 9

2xj
2-
3 X2 + x3 = 0

e ) 2x x + x2 - x3 + 3x 4 == 0
xi — 3x 2 - X4 := 3

b) 6xx - 2x2 + 3x3 = 9
- 2x : + 1 x2 - x3 = — 3

d) 2x4 — x2 + 2x3 = 6

f ) x1 + x2 = 1
X3 + X4 = 1

** 3 . Mathematischer Hintergrund

Zwischen den Lösungen eines inhomogenen und des zugehörigen homogenen Systems
besteht ein einfacher Zusammenhang . Sind (uj | u 2 | . . . | u n ) und (v1 | v2 | . . . | vn ) zwei
Lösungen eines inhomogenen m,n -Systems , dann ist (uj - Vj I u 2- v2 1 . . . | un- v n ) eine
Lösung des zugehörigen homogenen Systems . Das sieht man sofort ein , wenn man die
i—ten Gleichungen des inhomogenen Systems nach dem Einsetzen voneinander
subtrahiert

ail u1 + ai2 u2 + . . . + ain un = bi
aji vi + ai2 v2 + • • • + ajn vn = bi_

=> a ;i (uj - Vj ) + ai2 (u2 — v2) + . . . + ain (un - vn ) = 0
Das ist die i-te Gleichung des zugehörigen homogenen Systems . Die Differenz zweier
Lösungen des inhomogenen Systems ist also eine Lösung des zugehörigen homogenen
Systems . Folglich ist jede Lösung des inhomogenen Systems darstellbar als Summe
einer speziellen Lösung des inhomogenen Systems und einer Lösung des homogenen
Systems . Es kommen sogar alle Lösungen des homogenen Systems vor, es gilt nämlich :

Alle Lösungen des homogenen Systems ergeben sich als Differenz zweier Lösungen
des inhomogenen Systems.
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Begründung : Ist (hjhal . . . I h n ) irgendeine Lösung des homogenen Systems und
(vj v2 | . . . I vn ) irgendeine Lösung des inhomogenen Systems , dann ist
(h , + vj h2 + v2 | . . . I hn + vn ) eine Lösung des inhomogenen Systems : Setzt
man (h , + vj h 2 + v2 | . . . I hn + vn ) in die linke Seite der i-ten Gleichung des
inhomogenen Systems ein , dann ergibt sich:
aii (hi + Vj ) + ai2(h2 + v2 ) + . . . + ain (hn + vn ) =
(a^hj + ai2h 2 + . . . + ainhn) + (a^ + ai2v2 +
V.

0
J K. "V "

bi

+ ainvn ) = b;
_ J

qed .
Das alles faßt man zusammen in dem Satz :

Die allgemeine Lösung eines inhomogenen Systems läßt sich darstellen
als Summe einer speziellen Lösung des inhomogenen Systems und der
allgemeinen Lösung des homogenen Systems .

Unter allgemeiner Lösung versteht man eine Lösung, die mindestens einen Parameter
enthält . Eine allgemeine Lösung beschreibt eine Lösungsmenge . Ersetzt man in einer
allgemeinen Lösung alle Parameter durch Zahlen , dann bekommt man eine spezielle
Lösung. Genau das haben unsere Beispiele ergeben:

inhomogenes System

Xj + 2x2 — 3x3 = 6
2x : - x2 + 4x3 = 2
4xj + 3x2 - 2x3 = 14

zugehöriges homogenes System

Xj+ 2x2 — 3x3 = 0
2xx — x2 + 4x3 = 0
4x x+ 3x2 - 2x3 = 0

allgemeine Lösung : allgemeine Lösung :
' Xi

' '
(2 \ (- L f- L

X2
[x3 )

= 2
loj+ X 2

l 1)
X2 = X 2

Allgemeine Lösung des inhomogenen Systems

f2 >
2 + X

f- 1 \
2

^ 1 J
spezielle Lösung des allgemeine Lösung des
inhomogenen Systems zugehörigen homogenen Systems

Jedes homogene System hat mindestens eine Lösung, nämlich die triviale . Gibt es eine
weitere Lösung, dann gibt es gleich unendlich viele. (Nr . 4 der folgenden Aufgaben)
Ein homogenes System kann nur genau eine oder unendlich viele Lösungen haben .
Ein inhomogenes System kann keine , genau eine oder imendlich viele Lösungen haben .

F erner gilt : Wenn ein homogenes System genau eine , also nur die triviale Lösung hat ,
dann hat auch jedes zugehörige inhomogene System genau eine Lösung .

Den Beweis bringen wir später .



Übersicht über die Anzahlen von Lösungen

das inhomogene System hat das zugehörige homogene System hat

keine Lösung oo1 oder °°2 oder . . . Lösungen

genau eine Lösung genau eine Lösung (die triviale )

oo 1 Lösungen oo 1
Lösungen

°°2 Lösungen °° 2
Lösungen

usw . usw .

das homogene System hat jedes zugehörige inhomogene System hat

genau eine Lösung genau eine Lösung
oo 1 Lösungen keine oder Lösungen
oo2 Lösungen keine oder °°2 Lösungen

USW . USW .

Aufgaben

0 a> Xi + Xo

3xj + x2

b) Begründe den Satz :

Sind

= 1 r 3 ) f 1 1
_ _ 2 Jemand behauptet ,
= 6 ,

- 2
l b + A - 1

l 2 J, Ae IR liefere

h . A A . . \ h . . \
Xj ri + A Ui + p Vi

Lösungen des Gleichungssystems .
Wie ist eine Probe möglich ?

mit A, juelR Lösungen des Gleichungssystems

mit der i-ten Zeile a^ + a i2x2 + . . . +ain xn = b; , dann erfüllt h das

GleichungsSystem und
A . A
Ui bzw.

G . A
Vj

V " J V ' V
Gleichungssystem .

Xi — 2x 2 + 3x 3 = 0
3xj — x2 — x3 = 0
2xj + x2 - 4x3 = 0

das zugehörige homogene

a ) Löse das Gleichungssystem .
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A . A A . . \
Zeige : b ) Ist eine Lösung , dann ist es auch k - 3i

V ' V V /

c ) Sind
( •■■h

und
/ . . A

bi Lösungen , dann ist es auch
( ^

aj + bj
l - )

• 3. Zeige allgemein :

a ) Hat man eine Lösung eines homogenen Systems ,
dann ist auch jedes Vielfache eine Lösung .

b ) Hat man zwei Lösungen eines homogenen Systems ,
dann ist auch ihre Summe eine Lösung .

e ) a ) und b ) sind falsch für echte inhomogene Systeme .

4. Zeige : Hat ein homogenes System mehr als eine Lösung ,
dann hat es gleich unendlich viele .

5. Unendlich viel oder nichts x , + x2 - x;! = 0
—2xj + x2 + x3 = 0

3xj - 2x3 = 0
a) Bestimme die Lösung .
b) Gib ein zugehöriges inhomogenes System an , das keine Lösung hat .
c ) Gib ein zugehöriges inhomogenes System an , das «d Lösungen hat .
d) Warum gibt es kein zugehöriges inhomogenes System ,

das genau eine Lösung oder o°2 Lösungen hat ?

• 6. Zeige : Kommt eine Unbekannte Xj , 1 < i < n , in einem homogenen System nicht
vor , dann gibt es unendlich viele Lösungen .

Dieser Satz ist falsch für inhomogene Systeme !
Zeige dies durch ein Gegenbeispiel .

• 7 . Zeige : Ein homogenes System mit weniger Gleichungen als Unbekannten hat
unendlich viele Lösungen .

Dieser Satz ist falsch für inhomogene Systeme !
Zeige dies durch ein Gegenbeispiel .
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4 . Der Gauß-Algorithmus

Besonders schnell lassen sich lineare Gleichungssysteme lösen,wenn sie in »Dreieckform« vorliegen:
Xj + 3x2 + x3 = 5

x2 - 2x3 = 6
x3 = — 2

Xj — 5 — 3x2 — X3
x2 = 6 + 2x3
x3 = - 2

Jede Gleichung kann man unabhängig von den andern nach einer Unbekannten auflö-
sen (hier sogar ohne lästige Divisionen ) : Man setzt wieder von unten nach oben in die
eingerahmten Gleichungen ein

( 1 \
x3 = - 2 , x2 = 2 , Xj = 1 Lösung : X2

vx U
= 2

1- 2 J
Für Gleichungssysteme in dieser praktischen Form hat man eigene Bezeichnungeneingeführt . Ein System hat Dreieckform , wenn jede Gleichung genau eine Unbekannte
weniger enthält als die vorhergehende . Noch ein Beispiel:

3x x — x2 + 5x3 = 1
x 2 + 2x3 = 4

Die Dreieckform ist ein Sonderfall der Stufenform . Ein System hat Stufenform , wennjede Gleichung mindestens eine Unbekannte weniger enthält als die vorhergehende .Beispiel :
3x x - x2 + 5x3 = 1

2x3 = 4
Der bedeutendste deutsche Mathematiker Carl Friedrich GAUß (Braunschweig 1777bis 1855 Göttingen ) hat 1810 ein Verfahren angegeben , mit dem sich lineare Glei¬
chungssysteme auf Stufenform bringen und dann bequem lösen lassen . Es war ein Ne¬
benprodukt seiner mathematischen Untersuchungen des Planetoiden Pallas . Das Ver¬fahren verallgemeinert das von den 2,2 -Systemen her bekannte Additionsverfahren .GAUß zu Ehren bezeichnet man es als Gauß-Verfahren oder Gauß-Algorithmus .
Der Gauß-Algorithmus beruht auf zwei elementaren Umformungen , die die Lösungs¬menge des Gleichungssystems nicht verändern (Äquivalenzumformungen ) :
• Multiplikation einer Gleichung mit einer Zahl (a0)
• Ersetzen einer Gleichung durch die Summe aus ihr und dem Vielfachen einer andern
Man überlegt sich leicht , daß dies Äquivalenzumformungen sind :
Wir bringen die Konstanten auf die linken Seiten und kürzen die Gleichungen ab mit T = 0 bezie¬hungsweise S = 0 . Mit X als Abkürzung für ein Lösungstupel gilt dann

T(X) = 0 <=> k -T(X) = 0 falls k * 0

T(X) = 01 f T(X) = 0und S(X) = 0 j <=> | S(X) + k -T(X) = 0
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Wir führen das Gauß -Verfahren an Beispielen vor .
Xj + 4x2 + x3 = 7

3x x + 2x2 + 4x3 = - 1
2xj + 5x2 + 4x3 = 4

Xj + 4x2 + x3 = 7
3xj + 2x2 + 4x3 = - 1
2xj + 5x2 + 4x3 = 4

x3 + 4x2 + x3 = 7
- 10x 2 + x3 = - 22
- 3x2 + 2x3 = — 10

X! + 4x2 + x3 = 7
- 10x 2 + x3 = - 22
- 3x2 + 2x3 = —10

x^ 4- 4x2 + x3 = 7
- 10x 2 + x3 = - 22

V * _ _ IZ
10 X3 5

Xj + 4x2 + x3 = 7

—10x 2 + x3 = —22
17 17
IÖ X3 = - V

Die 1 . Gleichung schreiben wir ab . In der 2 . und 3 . Glei¬
chung beseitigen wir x1( indem wir geeignete Vielfache
der 1 . Gleichung addieren :

^
- 3 ) j + • (- 2 ) -i

+

Jetzt beseitigen wir x2 in der 3 . Gleichung . Wir addieren
ein geeignetes Vielfaches der 2 . Gleichung zur dritten , die
1 . und 2 . Gleichung schreiben wir ab :

Das Gleichungssystem hat jetzt Dreieckform .
Wir besorgen uns die üblichen Rahmengleichungen und
setzen von unten nach oben ein :

Xi = 7 - 4x 2 - x3
_ 22 1

X2 "
10 + 10 X3

x3 = - 2

( 1 j
Lösung: X2

w
2

k- 2 )

Bei der praktischen Durchführung läßt man der Einfachheit halber die Variablen weg
und schreibt nur die Koeffizienten und die rechten Seiten hin . Zur besseren Übersicht
trennt ein senkrechter Strich rechte und linke Seiten :

1 4 1 7
3 2 4 - 1
2 5 4 4

1 4 1 7
0 - 10 1 22
0 - 3 2 10

1 4 1 7
0 - 10 1 22
0 0 17 17

10 5

Xi + 4x 2 + x3 =

—10x 2 + x3 __

17
10*3

17
5

• (- 3 ) -
| + • (- 2 ) n

+

Das ist die Dreieckform . Jetzt schreibt man die Variablen
am besten wieder hin und löst das System wie oben :

Xj = 7 - 4x 2 - x 3
22 1

X2 =
W

+ 1ÖX3

x 3 - —2

( xi 'S f 1 )
Lösung: Xa

\
X 3 J

= 2
<- 2J
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Manchmal gehts sogar noch schneller , wenn man nicht stur die Unbekannten von
links nach rechts beseitigt . Das Beispiel zeigt , was gemeint ist :

1 4 1 7
3 2 4 - 1
2 5 4 4
1 4 1 7
0 - 10 1 - 22
0 - 3 2 - 10

1 4 1 7
0 - 10 1 - 22
0 17 0 34

anze wieder mit Va
xi + 4x 2 + x3 =

• (- 3 ) ' • (- 2 )
(wie gehabt )

• ( - 2 ) -
] + (in der 3 . Gleichung x 3beseitigen)

Dreieckform (leicht vernebelt )

Xj = 7 - 4x2 - x .
— 10x2 + x3 = —22

17x 2 = 34
x3 = - 22 + 10xs
x2 = 2

f 1 j
Lösung :

V._
_= 2

1 - 2 J

Räumt man auch noch nach oben aus (Gauß-Jordan -Algorithmus ) , dann ergibt sich die
Diagonalform : in jeder Gleichung gibt es eine Unbekannte, die nur in dieser Gleichungvorkommt . Aus der Diagonalform liest man die Lösung unmittelbar ab . Wieder unser
Beispiel :

14 1
3 2 4
2 5 4

7
- 1

4

• ( 3) | +- 1 • (- 2 ) - i
+ (wie gehabt )

14 1
0 - 10 1
0 - 3 2

7
- 22
- 10

■(- 2 ) - l + ■(- 1 )
3 +

1 14 0 29
0 -- 10 1 - 22
0 17 0 34

-<- 1
-*- 1 , +

JO J + / _ J _’
17 ‘V 177

’
ly

10 0 1
0 0 1 - 2
0 10 2

* i = 1
x3 = - 2

Diagonalform ( leicht vernebelt ) x2 = 2
Nach Vertauschung der 2 . und 3 . Zeile (Gleichungen ) ist die Diagonalform deutlicherund die Lösung augenfällig (rechte Spalte ! ) :

10 0
0 10
0 0 1

1
2

- 2

Xi = 1
x2 = 2
x3 = - 2
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Das Gauß-Verfahren funktioniert auch bei Gleichungssystemen , die keine oder unend¬
lich viele Lösungen haben . Wir greifen die Beispielevon Seite 16 auf:
Keine Lösung

2xj — 3x 2 — x3 = 4
x x + 2x2 + 3x 3 = 1

3x x - 8x 2 - 5x 3 = 5
Aus naheliegenden Gründen vertauschen wir die
ersten beiden Zeilen :

12 3
2 - 3 - 1
3 - 8 - 5
12 3
0 - 7 - 7
0 - 14 - 14

1
4
5
1
2
2

• ( - 2 ) J +

• (- 2 ) □ +

■(- 3 ) -

12 3
0 - 7 - 7
0 0 0

1
2

- 2 ^ Widerspruch in 0 = - 2 , keine Lösung!
Allgemeingilt : Hat eine Zeile links vom Strich lauter Nullen und rechts keine,

dann hat das Gleichungssystem keine Lösung.

Unendlich viele Lösungen
X1 + 2x 2 — 3x 3 =

2xj — X2 + 4x 3 =
4xj + 3x 2 2x 3 =

1 2 6
2 - 1 4 2
4 3 - 2 14

1 2 - 3 6
0 - 5 10 10
0 - 5 10 10

1 2 - 3 6
0 - 5 10 10
0 0 0 0

1 2 - 3 6
0 1 - 2 2

* 1 + 2x 2 3x 3 =

X1— 2x 3 =

6
2

14 Variablen weg :

■(- 2 ) 1 + • (—4L

• ( - 1 ) □ +

•( — V5 )

»Nullzeile« , läßt man weg

jetzt müssen die Variablen wieder her :

Xj = 6 - 2 x2 + ßx3
x 2 = 2 + 2x3

freier Parameter x3 = p , x2 = 2 + 2p , x , = 2 - p

Lösung:
r 2 ~\

*2 = 2 + h 2
, 1 ,

, peK
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Zum Schluß ein homogenes 4,6 -System , das nicht auf eine Dreieckform führt :
x i + x2 + 2x 3 + x4 + 3x5 + Xg = 0
Xi + x2 + 3x3 + 5x 4 + 5x s + 3xg = 0

2xj + 2x 2 + 6x 3 + 16x 4 + 10x 5 + 10xg = 0
x i + x2 + 2x 3 + 4x 4 + 3x 5 + 3x 6 = 0 Variablen weg !

1
1
2
1

1
0
0
0

1
0
0
0

1
0
0
0
1
0
0

1
1
2
1

1
0
0
0

1
0
0
0

1
0
0
0

1
0
0

2 13 1
3 5 5 3
6 16 10 10
2 4 3 3
2 13 1
14 2 2
2 14 4 8
0 3 0 2
2 13 1
14 2 2
0 6 0 4
0 3 0 2
2 13 1
14 2 2
0 6 0 4
0 0 0 0

2 13 1
14 2 2
0 1 0 z/3

0
0
0
0

- (- 1 )1 + • (—2 )—
|

• (- l )u

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0

ÄJ +

•(- ! ) -
] +

• Vg

Nullzeile weglassen

Variablen her !
Xj . + X2 + 2x 3 + x 4 + 3x 5 + xg = 0

x3 + 4x4 + 2x5 + 2xg = 0
x 4 + = 0

x4 = - 2/3Xg
x 3 = — 4x 4 - 2x 5 - 2x6

X 1 — x 2 2x 3 — X 4 — 3 X 5 — Xg

Die drei Variablen x2 , x5 und x6 kommen links nicht vor , sind also freie Parame¬
ter . Das System hat °°3-Lösungen . Um Brüche zu vermeiden , setzen wir : x6 = 3k ,x5 = ß und x2 = v und bekommen x4 = - 2k , x3 = 2k - 2g und x4 = - 5k + g - v,

Lösung:

f - 5 ^
X2 0 0 1
X3 2 - 2 0
X4

— A, - 2 + g 0 + V 0
Xä 0 1 0

\ X<>J ^ 3 ) ^ 0 ) J

k, g , v eIR

Wegen des ständigen Abschreibens der Zahlentafeln braucht man beim Gauß -Algorith¬mus viel Zeit und Platz . Weil er so schematisch abläuft , läßt er sich gut im Computer
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programmieren und steht deshalb heute hoch im Kurs . Für den Handbetrieb aber eig¬
net sich das Einsetzverfahren besser .
Das Additionsverfahren , auf dem der Gauß -Algorithmus beruht , wird gefährlich , wenn
man sich nicht an die erlaubten Umformungen hält und kreuz und quer drauf los¬
addiert . Dazu ein Warnungsbeispiel :

I - Xj + x2 + x3 = 1 Durch I+II beseitigen wir xg 2x2 = 2
II x 1 + x2 - x3 = 1 durch 2I+2II +III beseitigen wir x2 : 5x3 = 5

III - 4x2 + 5x3 = 1 III schreiben wir ab : - 4x2 + 5x3 = 1

f1Nl
Das neue System hat die Lösung : x2

VX 3 /

1
UJ

+ g 0
loj

Von diesen Lösungen ist nur eine einzige , nämlich die für g = 1 auch Lösung des
gegebenen Systems . Die verwegenen Umformungen haben uns ein System beschert ,
das zum ursprünglichen nicht äquivalent ist .

Aufgaben

[u | Löse die Gleichungssysteme mit dem Gauß -Verfahren :

a ) lOxj + x2 - 2x3 = 2
Xj + 2x2 + 2x3 = 3

4x x + 4x2 + 3x3 = 5

c ) 4xj + 5x2 + 2x3 = 3
- 19XJ - x2 - 3x3 = 2

7xj + 4x2 + 2x3 = 1

e ) 2x x - 3x2 - x3 = 4
3xj — x2 + 2x3 = 5
3xj — 8x2 - 5x3 = 5

g ) 4x x + x2 + x3 = 1
Xj + 4x2 + 4x3 = 1
Xi + x2 + x3 = 1

i ) Xj + 5x2 - 2x3 = 0
—2xj — x2 — 3x3 = 0

4xj + 3x2 - x3 = 0

2. Löse die Gleichungssysteme mit

a ) x x + 2x2 + 4x3 = 1
2x x + 4x2 + 8x3 = 3

c ) xx + 2x2 + 2x3 = 2
3XJ - 2x2 - x3 = 5
2xj — 5x2 + 3x3 = - 4

xx + 4x2 + 6x3 = 0

b) ~ Xj - x2 + x3 = 0
3xx + x2 + 2x3 = 11

- Xi - x2 + 4x3 = 9

d) - Xi + x2 + x3 = 0
- Xj + 4x2 + 2x3 = 0
2xj + 2x2 + 3x3 = 0

f ) - Xj + x2 + 2x3 = 0
Xj - 3x2 + 4x3 = 0

2xx - 4x2 + 2x3 = 0

h ) - | xi + | x2 + | x3 = 0
3xj — 6x2 - 3x3 = 0
2 _ _ 2 _ 0
3

X1 3 X2 3 X3 _ U

j ) xx + 2x2 - 3x3 = 0
2x 1 - x2 + 4x3 = 0
4x x + 3x2 - 2x3 = 0

Gauß -Verfahren :

Xl + 2x 2 + 12x 3 = 1
3xj + 2x2 + 16x 3 = 3

Xl - 2x 2 + 5x 3 = 0
2xj + x2 • 5x 3 = 0
3x x + 4x 2 15x 3 = 0
3xj -- Hx 2 ■ 30x 3 = 0
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3. Löse die Gleichungssysteme mit dem Gauß-Verfahren :
a) x x + 2x2 - 2x3 + 3x4 = 2 b) x 4 — 3x2 + 4x3 — 2x4 = 1

2xj + 4x2 - 3x 3 + 4x 4 = 5 2x 2 + 5x 3 + llx 4 = —11
öx ^ 10x 2 - 8x3 + 11x 4 = 12 x 2 — 3x 3 = 11

4. Löse die Gleichungssysteme mit dem Gauß-Verfahren :
a) 2xj - 3x2 + 6x3 + 2x4 - 5x5 = 3

x 2 - 4x 3 + X4 = 1
x4 - 3x 5 = 2

b) x4 + x2 + x3 + x4 — x5 = 15
x 4 - x2 + x3 - 1x4 + x5 = 3
x 4 + 2x2 + 3x 3 + 4x 4 + 5x 5 = 35
Xj - 2x2 + 3x 3 - 4x 4 + 5x 5 = 3

• 5. Seltsame Gleichungssysteme fürs Gauß-Verfahren
(jedes System hat die vier Unbekannten x4 bis x4) :
a)

c)

e)

Xl - X2 + X3 - X4 = 1 b) xx — x2 + X3 - x4 = 1
Xl - X2 + X3 = 1 X3 “ X4 = 0
X1 - X2 = 1
Xl = 1

Xl + X3 = 0 d) x4 - 2x 2 = —3
X2 + X4 = 1 x4 = 1

Xl - X2 + X3 - X4 = 1 f) - x2 + X3 = 1
Xl - X2 + X3 - X4 = 1 Xl — 1

x4 =

6. Seltsame Gleichungssysteme fürs Gauß-Verfahren
(jedes System hat die vier Unbekannten x4 bis x4):
a ) xx + x2 = x2 + x3 = x3 + x4 = 1 b) x4 x2 = x2 x3 = x3 ■

• 7. Entscheide mit dem Gauß-Verfahren , für welche Werte von a , b und c es keine ,
genau eine oder unendlich viele Lösungen gibt.
a)

c)

2x 4 - 4x 2 = a b) Xl - x2 + 3x3 = a
Xl - 2x 2 = b 3x 4 - 2x 2 + 9x3 - b

- 2x 4 — 2x 2 — 6x 3 = c

Xl + 2x 2 + x3 = a d) Xl + ax 3 — 2
Xl + 3x 2 + ax 3 = 2 x2 - x3 = 0
Xl + ax 2 + x3 = 2 axj + x2 = 3 - a
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5. Das Determinantenverfahren

Für quadratische Gleichungen haben wir eine Formel , mit der wir entscheiden , wieviel
Lösungen es gibt , und mit der wir die Lösungen gegebenenfalls auch bestimmen . Wenn
bei einem linearen Gleichungssystem die Anzahl der Gleichungen übereinstimmt mit
der Anzahl der Unbekannten (n,n-System ) , dann gibts auch hier eine Formel , die fast
dasselbe kann .
Fangen wir mit einem 2,2 -System an . Um die Formel zu finden , lösen wir das Glei¬
chungssystem allgemein mit dem Additionsverfahren :

axj + bx2 = u •d •(- 0
cxx + dx2 = v •( - b ) •a

(ad - cb )xj = ud -- vb (ad - cb )x2 = av - cu
Es fällt auf , daß lauter Terme der Form »Produkt minus Produkt « auftreten . Seit GAUß
nennt man solche Ausdrücke Determinanten . Für die Determinante hat der britische
Mathematiker Arthur CAYLEY (Richmond 1821 bis 1895 Cambridge ) eine einfache
Schreibweise eingeführt , die sich gut einprägen läßt , weil sie an die Form des Glei¬
chungssystems erinnert :

ah
Definition :

^ ^ := ad - cb heißt zweireihige Determinante .

Grafische Eselsbrücke

+ ^cb
a b
c d

“

- ‘
ad

ad - cb

Mit den Determinanten D = a b
c d = ad - cb

Di =
u b
v d

D2 = a u
c v

ud - vb

av - cu

die 1 . Spalte von D ist ersetzt
worden durch die rechte Seite
des Gleichungssystems ,
die 2 . Spalte von D ist ersetzt
worden durch die rechte Seite
des Gleichungssystems .

lauten die beiden Gleichungen ( * * ) : Dx , = Dj und Dx2 = D2 . Sie haben für D ^ O die eindeu-
Dj D2tigen Lösungen Xj = und x2 = . Wie man sich ( durch Einsetzen ) leicht überzeugt ,

ist (^jj I 0=) auch Lösung des ursprünglichen Systems.
Ist D = 0 , aber Di * 0 oder D2 * 0 , dann liegt ein Widerspruchvor: Das System hat keine
Lösung. Sind alle drei Determinanten gleich null , dann hat das System sicher keine ein¬
deutige Lösung, also unendlich viele oder keine Lösung.
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Für Gleichungssysteme mit genau einer Lösung haben wir die Formel gefunden . Sie
heißt zu Ehren des schweizer Mathematikers Gabriel CRAMER ( Genf 1704 bis 1752
Bagnole-sur -Ceze ) , weil er sie als erster veröffentlicht hat .

Orr

Cramer-Regel

Das Gleichungssystem ax, + bx2 = u
cxj + dx2 = v

hat für D = a b
c d 0 die eindeutige Lösung mit xx

Di
D x2 =

D,
D

dabei ist Dx
u b
v d und D2 = a u

c v

Auch für 3,3 -Systeme gibt es eine Lösungsformel mit Determinanten .
I axj + bx2 + cx3 = r

II dx3 + ex2 + fx3 = s Gleichungssystem [l ]
III gxx + hx2 + ix3 = t

Wie bei 2,2 -Systemen isolieren wir durch geschickte Multiplikation und Addition der
Gleichungen die Variable xx. Dabei verwenden wir die zweireihigen Determinanten :

I e f I I b c I I b c II ’ | h i | - n - | h i | + III ' | e f | ergibt

rlefl , | b c I Ibch I e f I I b c I , I b c I , .
\̂ a | h i | a | hi | + S | ef | J x i _ r | h i | — s | h i | + e f |

Diese Formel kann sich kein Mensch merken ! CAYLEY hat auch dafür eine prägnanteAbkürzung eingeführt . Es ist die dreireihige Determinante :

Definition: D =
a b c
d e f
g h i

I e f
* a | h i

I b e I
+ g | e f |

Eine dreireihige Determinante berechnet man schematisch so : Man nimmt das 1 . Ele¬ment der 1 . Spalte (in unserm Fall ist es a ) und streicht die Zeile und Spalte , in der es

steht
L 1
<1 e f
; h i

Die übrigen 4 Elemente bilden eine zweireihige Determinante , die zugehö¬

rige Unterdeterminante Ua = e f I
h i I Genauso verfährt man mit den anderen Elementen

der 1 . Spalte:
i b c
I ~ e

i’ h i
=* u d =

b c I
h i |

a b c
4 e f U„

I b e |
I e f |

Nun bildet man die drei Produkte der Elemente und ihrer Unterdeterminanten und
addiert beziehungsweise subtrahiert sie abwechselnd . Damit läßt sich die linke Seite der
Gleichung ( v ) abkürzen mit D x, . Auch die rechte Seite entpuppt sich als dreireihige
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Determinante , wir nennen sie D, . Sie entsteht aus D , wenn man die 1 . Spalte durch die

rechte Seite des ursprünglichen Gleichungssystems ersetzt :

0 f* I I b c t [ bei= r | hi | - s | hi | + t | ef - Jetzt heißt die Gleichung ( v ) kurz Dxx = Dx .

Dxj = Dx
Analoge Rechnung ergibt : Dx2 = D2 Gleichungssystem [2 ]

Dx3 = D3
Man bekommt D, , indem man die i-te Spalte von D durch die
rechte Seite des ursprünglichen Gleichungssystems ersetzt .

Wir haben das System [2 ] aus dem System jT] abgeleitet; also ist jede Lösung von [l ] auch
Lösung von [2 ] . Weil wir aber nicht nur Äquivalenzumformungen verwendet haben ,
können Scheinlösungen dazugekommen sein . Die Anzahl der Lösungen von [2 ] ist des¬
halb größer oder gleich der Anzahl der Lösungen von [T | . Ist D ^ O, dann hat [2 ] als einzige

Dj 1—|Lösung das Tripel (xx I x2 1x3 ) mit X; = jj . Zum Glück ist es auch immer Lösung von [ 11 ,
wie man durch Einsetzen mühsam bestätigt . Das ist die Cramer -Regel für 3,3 -Systeme.

Dx :
r b c
s e f
t h i

Cramer-Regel

Das Gleichungssystem axj
dxx
gXi

bx9 +L2
ex2
hx2

cx3 = r
+ fx3 = s
+ ix3 = t

hat für D =
a b
d e
g h

/ : 0 die eindeutige Lösung
Di
D

r b c a r c abr
dabei ist Dx = s e f

t h i , d 2 = d s f
g t i

und D3 = des
g h t

x2 ; D
D3und x3 = p

"

Ist D = 0 und mindestens ein D^ O ( i = l,2,3 ) , dann enthält [2] einen Widerspruch und
auch [l ] hat keine Lösung. Ist aber D = D 1 = D2 = D3 = 0 , so hat das System [2 ] °°3 Lösun¬

gen . Das System [ l ] hat dann entweder auch unendlich viele Lösungen oder gar keine .
Man kann beweisen — und wir werden das später auch tun —, daß [l ] in diesem Fall
sicher keine eindeutige Lösung hat .

Zusammenfassung

D * 0 <=>
D = 0 , mindestens ein Dj * 0 =>
D = Dx = D2 = D3 = 0 =>

[l ] hat genau eine Lösung.
[T] hat keine Lösung.
[T] hat unendlich viele oder keine Lösung.
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Hier noch ein Beispiel für den letzten Fall : xi _ x2 + 2x 3 = 1
—2xj + 2x2 - 4x3 = 2 [T]

2xj - 2x2 + 4x3 = 2
1 - 1 2

D = - 2 2 - 4 = 0
2 - 2 4

1 - 12 112
D, = 2 2 - 4 = 0 , D 2 = - 2 2 - 4 = 0 ,1

2 - 2 4 2 2 4

1 - 11
D , = - 2 2 2 = 0

2 - 2 2

O -Xj = 0
0 -x2 = 0 §
0 -x3 = 0

Das System [2 ] hat °°3 Lösungen .
(xi = A , x2 = p , x3 = v)
Das System [T ] ist dagegen unlösbar !

Man könnte meinen , die Cramer -Regel sei für Gleichungssysteme reserviert , die ge-
nausoviel Gleichungen wie Unbekannte haben . Mit einem kleinen Trick klappt die
Cramer -Regel aber auch bei andern Systemen . Bei einem 2,3-System zum Beispiel geht
das so :

I 2x x + x2 - 3x3 = 2
II 3xj + 4x2 + x3 = 0

Wir ernennen die »überzählige « Unbekannte x3 zum freien Parameter A und bringen
alle Terme mit x3 auf die rechte Seite

I 2x 1 + x2 = 2 + 3A
II 3x3 + 4x2 = - A

Jetzt kann Cramer ran :
2+ 3A 1 2 2+3A8 + 13A. 6 - HA ,X 4

8 + 13A
1,6 + 2,6A

6 - 11A
■1,2 - 2,2A

( xU ( 1,6 \ ( 0,6 \
Lösung : x,2 - - 1,2 + ^. - 2,2

^ 3 J l 0 J 1 ,
Die Cramer -Regel läßt sich auch auf n,n -Gleichungssysteme mit mehr als drei Unbe¬
kannten anwenden . Wie in den Fällen n = 2 , n = 3 gibt es für D ^ O eine eindeutige Lö-

Di
sung in der Form x; = . Doch muß man wissen , wie man n -reihige Determinanten be¬
rechnet . Es geht ähnlich wie bei den 3-reihigen Determinanten . Man nimmt der Reihe
nach die n Elemente der 1 . Spalte , multipliziert sie mit den zugehörigen (n- l )-reihigenUnterdeterminanten und addiert beziehungsweise subtrahiert diese Produkte abwech¬selnd . Bei einer 4-reihigen Determinante sieht das so aus :

Jede Unterdeterminante muß nach demselben Schema reduziert werden , bis schießlicheine zweireihige (oder einreihige ) Determinante übrig bleibt . Das Prinzip ist zwar recht
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einfach , aber die Rechnung geht schnell ins Uferlose : Bei einer 10-reihigen Determi¬
nante braucht man zehn 9reihige Determinanten , das heißt , man muß 10 -9 ßreihige ,
also 10 -9 -8 7reihige , also . . . , also 10 -9 -8 -7 -6 -5 -4 -3 = 1814400 zweireihige Determinanten
berechnen ! Will man ein 10,10 -System mit der Cramer -Regel bewältigen , dann fallen
bei den 11 10-reihigen Determinanten D , Dx , D2 , . . . , D10 11 -1814400 -2 = 39916800 Mul¬
tiplikationen an . Mit der Abkürzung n ! := n -(n- l ) -(n- 2 ) - . . . -3 -2 -1 (lies n-Fakultät ) sind
somit zur Lösung eines n,n -Systems (n+ l ) -n ! = (n+ 1 ) ! Multiplikationen nötig . Der
Gauß-Algorithmus dagegen kommt mit | (2n3 + 3n2 + n ) Multiplikationen aus , er ist
für n>3 dem Determinantenverfahren haushoch überlegen . Zum Vergleich sind in
einer Tabelle die Anzahlen der Multiplikationen bei beiden Methoden aufgeführt .
n,n- Gleichungssystem n = 2 3 4 5 6 7 8 9 10
Anzahl der Cramer 6 24 120 720 5040 40320 362 880 3 628 800 39916800
Multiplikationen Gauß 5 14 30 55 91 140 204 285 385

Ein Personal- Computer, der heute ( 1989 ) 20 |is für eine Multiplikation braucht, schafft in einer lOtel
Sekunde die 4900 Multiplikationen für ein 24,24-System beim Gauß -Algorithmus . Dasselbe Glei¬
chungssystem wird denselben Computer beim Determinantenverfahren ungefähr 10 13 Jahre be¬
schäftigen - das ist etwa 500mal so lang , wie unser Weltall besteht .
Man könnte nun meinen , daß Determinanten nur von theoretischem Belang , praktisch
aber völlig nutzlos wären . Dem ist aber nicht so ! In einigen Gebieten der Mathematik
sind sie ein hilfreiches Werkzeug , und auch wir werden 2- und 3-reihige Determinan¬
ten vorteilhaft verwenden , zum Beispiel zur Berechnung von Flächen - und Raum¬
inhalten .

Aufgaben

[u | Berechne

a)

2,

1 2
3 4 b)

- 1 2
- 3 4 c)

0 2
1 4 d) 0,5 - 5

2 18 e)
18 - 9

- 6 3

Berechne

a)
k 0
0 k b)

r r
4 2r c) a+b a- b

a- b a+b d )
sm a cos a
cos a —sin a

[& | Für welche Werte von a wird die Determinante null ?

a) a a
1 a b)

a - a
4 - 2 c)

a+ 1 a- 1
a- 1 a + 1 d)

sm a cos a
- cos a sin a

4j Löse mit der Cramer -Regel (falls möglich !)

a ) x x + x2 = 1
2x 1 — x2 = 8

d ) 4xj — 5x2 = 12
- 5xj + 4x2 = 12

b) — 4xj + 2x2 = — 6
6xj - 3x2 = 9

e> “ I X 1 + \ X2 = 1
2xj - x2 = - 6

C ) Xj
+ x, = 0

f ) 6x x - 3 x2
2x1 - x2

9
3
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[5. Löse mit der Cramer -Regel (Fallunterscheidungen !)

a ) ax x + x2 = 1 b) Xl + 2x 2 = a c) Xj — ax 2 = 0
2axj — x2 = 8 ax 3 - 4x 2 = 0 axj + x2 = 0

d ) 4ax t - 5ax 2 = •- 9 e) ax x + x2 = b f) 6ax x + 3bx2 = - 9
ax x - ax2 = 3 bxj + x2 = a 2bxj — ax2 = - 3

Berechne

12 3 2 5 - 4 - 3 5 - 4
a ) 4 5 6

7 8 9
b) 1 - 3 2

4 1 - 1
c) 1 - 3 2

- 1 1 - 1
d)

e)
2 0 1
0 3 - 2
0 0 5

f)
10 0

- 3 2 0
4 13

g )

10 0
0 - 3 0
0 0 - 5

h )

7. Berechne und vereinfache

110 1 a - b 111
a) 1 1 +a 0

1 1 1+b
b) - a 1 c

b - c 1
c) a b c

a 2 b2 c2

d)
a b a+b
b a+b a

a+b a b
e)

sin a cos a tan ß cos a
- cos a sin a tan ß sin a

0 - 1 tan ß

2 1 - 2 a - 2 b a 5 - 4
4 a 1
0 - 6 5

b) 4 12
3 3 9

c) i a 2
- 1 1 - 1

d )

8. Für welche Werte von a ist die Determinante null ?

a)

[9. | Löse die Gleichungssysteme mit der Cramer -Regel
a )

c)

10 . Löse mit der Cramer -Regel (Fallunterscheidungen !)
a )

c)

1 +a 1 1
1 1 +a 1
1 1 1 +a

2xj + X2 + 5x 3 = 1 b ) 3xj + 5x 2 + 3x3 = 1
2xj + 4x 2 +■ x3 = 1 2xj - x2 - x3 = - 2

Xi + x2 + 2x 3 = 1 Xl + 3x2 + 2x 3 = - 1
2xj + 3x2 - x3 = 1 d ) Xl 1 COXto - x3 = 4
3xj + 9x 2 + 2x 3 = 4 Xl - x2 = - 2
- Xl + 2x 2 + 3x3 = 1 4xj + 3x3 = 0

axj + 2x 2 IIOCXOC1 1 b) Xl + x2 + Xo — a
3xj - x2 + 2x 3 = - 1 xx+ ( l +a )x2 + Xo = 2a
5xj + 3x2 1 XCOII 2 Xl + x2 + ( l +a )x3 = 0

Xl + x2 + ax 3 = 0 d) cx2 + bx3 = a
Xl + x2 + bx 3 = 0 CXj + ax 3 = b

ax x + bx 2 + x 3 = 0 bxj + ax2 c
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11 . Nimm x3 als freien Parameter X und löse mit der Cramer -Regel
a) 2x : + x2 - 2x3 = 2

5xj + 3x2 + x3 = 3

c) 7xj - 5x2 + 21x3 = 0
5xj - 3x2 + llx 3 = 0

b) - 2x x + 3x2 + 21x3 =
5 x3 + 3x2 - 21x3 =

d) 2x ! + x2 + x3 = 1
x3 + x2 + x3 = 1

3
3

12 . Löse mit der Cramer -Regel x : + x2 + x3 = 7
3xj + 2x2 + 2x3 = 3

und nimm a ) x3 als freien Parameter X
b) x2 als freien Parameter p
c) x, als freien Parameter v

13 . Löse mit der Cramer -Regel
a) x3 + x2 + x3 = 0

Xi + x2 - x3 = 2

c) Xj + x2 + 3x3 = 2
3x 3 + 2x2 + 9x3 = 3

b) - 2xj - 3 x2 + x3 = 3
4xj + 6x2 + x3 = 3

d) xx + 6x2 + 9x3 = 6
9xx + 4x2 + 6x3 = 4

**6. Eigenschaften von Determinanten
Von den Determinanten brauchen wir später hauptsächlich die 3-reihigen . Deshalb

a b c
stellen wir einige Sätze für sie vor. Berechnet man die 3-reihige Determinante d e f

g h i
allgemein , so ergibt sich ein Aggregat von sechs Produkten : D = aei + bfg + cdh - gec -
hfa - idb . Der deutsche Philosoph und Mathematiker Gottfried Wilhelm LEIBNIZ (Leip¬
zig 1 . 7 . 1646 bis 14 . 11 . 1716 Hannover ) hat n-reihige Determinanten als Aggregate von
n-fachen Produkten definiert . Ihm zu Ehren nennen wir ein solches Aggregat die Leib -
niz -Form der Determinante, aei + bfg + cdh - gec - hfa - idb ist also die Leibniz -Form
der 3-reihigen Determinante .
Für 3 -reihige Determinanten hat der französische Mathematiker Pierre F . SARRUS
eine Merkregel formuliert , sie heißt Sarrus -Regel oder auch Jägerzaunregel . Mit ihr
findet man schnell die sechs Produkte und ihre Vorzeichen: Man schreibt die ersten
beiden Spalten als 4 . und 5 . Spalte nochmal und multipliziert längs der Pfeile . Die
»Abwärtsprodukte « zählen positiv, die »Aufwärtsprodukte « negativ :

+ .
b c

+ +
a
d e f
g h i

gec hfa idb
y y y

a b
d e = aei + bfg + cdh - gec - hfa - idb

g b
, \ 'A
aei bfg cdh
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Beispiel :
12 3 12 3 1 2
2 3 1 - 2 3 1 2 3 = 1 -3 -2 + 2 - 1 -3 + 3 -2 -1 - 3 -3 -3
3 12 3 12 3 1

(Die Sarrus -Regel gilt nur für dreireihige Determinanten !)

14 . 1 _ 2 -2 -2 = - 18

Aus der Leibniz-Form kann man einige Determinantensätze leicht ableiten :

[l ] Vertauschtmanin einer Determinantedie Zeilen mit den Spalten,
so ändert die Determinante ihren Wert nicht

Beispiel :
a b c a d g
d e f = b e h
g h i c f i

Zum Beweis berechnen wir die Leibniz-Form der rechten Determinante :
aei + dhc + gbf - ceg - fha - ibd.
Sie stimmt mit der Leibniz-Form der linken Determinante überein .
Nach diesem Satz sind in allen Determinanten Spalten und Zeilen gleichberechtigt .Deshalb verwenden wir vonjetzt an den OberbegriffReihe .

[2 ] Ersetztman eine Reihe durch ihr k-faches, so ist der Wert der neuen
Determinante k-mal so groß wie der Wert der alten Determinante.

ka kb kc a b c
Beispiel : d e f

g h i
= k d e f

g h i
Zum Beweis überlegt man sich mit der Sarrus -Regel, daß der Faktor k in jedemProdukt genau einmal vorkommt (und deswegen ausgeklammert werden kann ) .

Eine Nullreihe macht die Determinante zu null
0 0 0
d e f = 0 Zum Beweis setze man in Satz [2 ] k = 0.
g h i

Beispiel :

[4 ] Vertauschtman zwei paralleleReihen,
so ändertsich dasVorzeichender Determinante.

Beispiel :
d e f a b c
a b c — _ d e f
g h i g h i

Zum Beweis berechnet man die linke Seite:
dbi + ecg + fah - gbf - hcd - iae = - (aei + bfg + cdh - gec - hfa - idb)

[5] Sind zwei paralleleReihenzueinanderproportional ,
so hat die Determinanteden Wert null

a b c a b c a b c
Beispiel : D = ka kb kc

g h i
= 0 Beweis : D = k a b c

g h i
= - k a b c

g h i
(Vertauschen von 1 . und 2 . Zeile)

Aus D = - D folgt D = 0.
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[ß] Besteht eine Reihe aus Summen , so läßt sich die Determinante als
Summe zweier Determinanten schreiben .

a+x b+y c + z a b c x y z
Beispiel : d e f

g h i
= d e f

g h i
+ d e f

g h i
Zum Beweis überlegt man sich mit der Sarrus -Regel , daß in jedem Produkt genau
eine Summe vorkommt . Das Distributivgesetz bestätigt die Behauptung .

[7 ] Addiert man zu einer Reihe ein Vielfaches einer andern parallelen Reihe,
so ändert die Determinante ihren Wert nicht

Beispiel :
a+kb b c a b c
d+ke e f = d e f
g+kh h i g h i

Beweis :
a+kb b c
d+ke e f = (Satz [£ ]) =

a b c
d e f +

kb b c
ke e f

a b c
d e f

g+kh h i g h i kh h i g h i

denn nach Satz [5 ] ist
kb b c
ke e f
kh h i

= 0 .

Mit Satz [7 ] lassen sich Determinanten wesentlich einfacher berechnen als mit dem
Unterdeterminanten -Verfahren . Wie beim Gauß-Algorithmus bringt man durch Addi¬
tion geeigneter Reihen -Vielfacher die Determinante auf Dreieckform.

Beispiel :
12 3 12 3 12 3
2 3 1 _ 0 - 1 - 5 - 0 - 1 - 5
3 12 0 - 5 - 7 0 0 18

Der Wert einer Determinante ergibt sich aus der Dreieckform, wenn man alle Zahlen
der Hauptdiagonale (von links oben nach rechts unten ) multipliziert . Das gilt auch für
n-reihige Determinanten .

Beispiel :

2 5 7 9
0 1 - 23
0 0 3 - 1
0 0 0 - 4

= 2 -

1 - 2
0 3
0 0

3
- 1
- 4

2 -l -3 -(—4) = - 24

Auch die Sätze [ l ] bis [v] gelten für n-reihige Determinanten .
Wir verzichten auf die Beweise, weil wir die Sätze für n > 3 nicht brauchen .

Zum Abschluß verallgemeinern wir das Verfahren der Entwick - + _ +
lung einer Determinante . Wie man leicht nachrechnet , läßt sich
eine Determinante nach jeder Reihe entwickeln , wenn man die — "t "
Unterdeterminante nach dem Verfahren von Seite 36 durch + _ +
Streichen der jeweiligen Zeilen und Spalten erzeugt und mit dem
Vorzeichen versieht , das sich aus dem Schema (rechts ) ergibt :
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Beliebt sind Reihen mit möglichst vielen Nullen .
So wird man die folgende Determinante nach der 2 . Zeile entwickeln :

117
0 4 0

- 3 3 5
+ 4

1 7
- 3 5 = 4(5 + 21 ) = 104

Entwickeln nach der 3 . Zeile dauert etwas länger :
117
0 4 0

- 3 3 5
1 7
4 0 - 3

1 7
0 0 + 5

1 1
0 4 = - 3 - (- 28 ) + 0 + 5 - 4 = 104

Aufgaben

1 . Berechne ohne zu „ rechnen "

2 1 - 2 2 0 - 2 2 5 - 2 6 - 1 - 4
a) 4 a 3

0 0 0
b) 4 0 3

5 0 9
c) 4 13

2 5 - 2
c) - 3 12

12 5 - 8

2. Berechne ohne zu „rechnen "

0 0a x2 x 0 b+c c + a b+a
a) 2 11

0 0b
b) 2 11

x 1 0
c) a b c

1 1 1

3. Begründe mit den Determinantensätzen
a b a +b+c a b c a+b a- b c a b c

a ) U V u + v + w
x y x+y+ z

u v w
x y z

b) u +v u —v w
x+y x- y z

= - 2 u v w
x y z

a+tb ta +b c a b c
c) u + tv tu +v w

x+ty tx +y z
= ( 1- t 2) u v w

x y z

• 4 . Schreibe als Summe von Determinanten , die keine Summen enthalten
0 0 1 +a b+c c + a b+a a+b b+c 1

a ) 2 1 1 b) a b c c) a+b 1 1
0 0 b 1 1 1 1 1 1

l 5. Addiere ein Vielfaches einer Reihe zu einer andern parallelen Reihe und zeige
( rechtzeitig ausklammern ! ) :

a)
1 x x2
i y y2
1 z z2 = (x - y) (y - z )( z - x)

1111
a b c d
a 2 b2 c 2 d2
a 3 b3 c 3 d3

= (a - b )(b - c ) (c - d ) ( d - a ) [Vandermonde -Determinante ,nach Alexandre Theophile
VANDERMONDE (1735 bis 1796 )]
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