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1 . Räumliche Koordinatensysteme

In der Ebene beschreibt man die Lage von Punkten in einem Koordinatensystem mit
zwei Zahlen , den Koordinaten . Für Punkte im Raum brauchen wir eine dritte Zahl , also
ein Koordinatensystem mit drei Achsen. Üblicherweise legt man die drei Achsen so , daß
sie paarweise aufeinander senkrecht stehen . Verwendet man auf allen Achsen auch
noch dieselbe Einheit , dann spricht man von einem räumlichen kartesischen Koordina¬
tensystem oder auch orthonormierten (= rechtwinklig mit gleich langen Einheiten) Ko¬
ordinatensystem . Künftig verwenden wir bis auf Ausnahmen nur kartesische Systeme .
Die Achsen nennt man xt-Achse , x2-Achse und x3-Achse , manchmal auch x- , y- und z-
Achse oder i- , j - und k-Achse .

Eine wirklichkeitsgetreue Darstellung verlangt ein dreidimensionales Modell . Doch da¬für ist kein Platz , weder im Heft noch im Buch - ganz zu schweigen von der zeitrau¬benden Anfertigung ! Deswegen begnügen wir uns mit zweidimensionalen Bildern
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räumlicher Figuren . Am anschaulichsten sind Normalbilder . Sie zeigen Figuren so, wie
man sie aus großer Entfernung wirklich sieht . Wie Koordinatensysteme ausschauen ,
hängt von der Blickrichtung ab . Es gibt unendlich viele Ansichten . Beim Zeichnen
allerdings verwendet man nur einige, nämlich:

Normalbild in Isometrie
In der Zeichnung sind alle drei Einheiten gleich lang und die Winkel zwischen den
Achsen 120 °

. Papier mit aufgedrucktem Isometrienetz und passende Schablonen er¬
leichtern das Zeichnen beträchtlich .

Normalbild in Isometrie
Würfel & ”
im Norm ;
Isometrie

Normalbild in Dimetrie
In der Zeichnung sind zwei Einheiten gleich lang und die dritte halb so lang . Auch dieses
System ist genormt : die x3-Achse geht senkrecht nach oben, die x2-Achse ist 7 °

, die x r
Achse 42 ° gegen die Waagrechte geneigt . Und auch hier gibt es passende Schablonen
und Papier mit Dimetrienetz . Diese Darstellungsart ist in der Technik gebräuchlich .
Man nennt sie deshalb Ingenieur -Axonometrie.

Normalbild in Dimetrie

Würfel & Kugel
im Normalbild :



Normalbildin Trimetrie
In der Zeichnung sind alle drei Einheiten verschieden lang . Fürs Zeichnen auf Karopa¬
pier eignen sich besonders solche Systeme , bei denen die Einheitsmarken auf Gitter¬
punkten liegen . Hier ein bewährtes , leicht zeichenbares Koordinatensystem :

Normalbild in Trimetrie
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Würfel & Kugel
im Normalbild :
Trimetrie >4

Daneben gibt es noch ein Verfahren , das wegen seiner Einfachheit zwar recht beliebt ist
(man bringt es schnell aufs Karopapier ) , aber auch nur verzerrte Bilder liefert , wenn
man — wie üblich - senkrecht aufs Papier schaut : Schrägbild .
Die x3-Achse geht senkrecht nach oben, die x2-Achse waagrecht nach rechts und die xrAchse unter 45 ° gegen die Waagrechte nach vorn . Die Einheiten wählt man so , daß die
Einheitsmarken auf Gitterpunkten liegen.

Schrägbild

Würfel & Kugel
im Schrägbild

Die drei Koordinaten legen die Lage eines Punkts im Koordinatensystem eindeutig fest .
So bedeutet C (- l 12,5 12 ) : der Punkt C hat die xr Koordinate - 1 , die x2-Koordinate 2,5und die x3-Koordinate 2 . Am besten zeichnet man C so ein : Starte im Ursprung , gehe 1
Einheit entgegen der xr Richtung , dann 2,5 Einheiten in x2-Richtung und schließlich 2
Einheiten in x3-Richtung .
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C(- l I2,5 I2 )

A(3,51 —113 )

B(- 31 - 3 1- 1,5 )

D (2 12 1—1)

Die drei Koordinatenachsen legen die drei Koordinatenebenen fest:
die x1x2-Ebene (sie enthält die xr Achse und die x2-Achse ),
die x1x3-Ebene und die X2X3-Ebene .
Die drei Koordinatenebenen zerlegen den Raum in acht Teile, die Oktanten , gehören
aber nicht zu den Oktanten . Die Vorzeichen der Koordinaten geben an , in welchem
Oktanten der Punkt liegt:

Die acht OktantenXi X2 X3 Oktant
+ + + I
- + + II
- - + III
+ - + IV
+ + - V
- + - VI
- - — VII
+ — — VIII
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Ist eine Koordinate null , dann liegt der Punkt in einer -
Ist x3 = 0, so liegt der Punkt in der x^ -Ebcne .
Ist x2 = 0 , so liegt der Punkt in der x^ -Ebene .
Ist Xj = 0, so liegt der Punkt in der x2x3-Ebene .

Koordinatenebene
-.

i
^ ^ ä-Eb
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Sind zwei Koordinaten null , dann liegt der Punkt auf einer Koordinatenachse :
Ist x2 = x3 = 0 , so liegt der Punkt auf der x^Achse .
Ist Xj = x3 = 0 , so liegt der Punkt auf der x2-Achse .
Ist Xj = x2 = 0 , so liegt der Punkt auf der x3-Achse .

Ein gutes Training der Raumvorstellung ist das Zeichnen und Beschreiben von Punkt¬
mengen , die durch einfache Gleichungen oder Ungleichungen definiert sind . Dazu drei
Beispiele .
x2 = — 5

Diese Menge enthält zum Beispiel die Punkte A(3 I - 5 I 3 ) , B (— 2 I - 5 I 4 ) , C (41 - 5 | — 3 )
und D( 0 I - 5 I 0 ) . x2 ist immer gleich - 5 , während Xj und x3 beliebige Werte annehmen
können . Die Punktmenge ist also eine Ebene E durch ( 0 I - 5 I 0 ) , die parallel zur XjX3-
Ebene ist.
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Diese Menge enthält die gerade besprochene Ebene E . E zerlegt den Raum in zwei Teile,diese nennt man Halbräume . E gehört zu keinem der beiden Halbräume . Die gesuchtePunktmenge ist derjenige Halbraum einschließlich E , der den Ursprung nicht enthält .

Die Punkte mit x2 — — x3 und Xj — 0 bilden die Winkelhalbierende der positiven x2- undder negativen x3-Achse. Ist nun x , beliebig, dann entsteht eine Ebene , die senkrecht zurx2x3-Ebene ist und die xr Achse sowie die gerade beschriebene Winkelhalbierende ent¬hält . Die x2x3-Ebene teilt diese Ebene in zwei Halbebenen . Die Punkte der x2x3-Ebenegehören zu keiner der beiden Halbebenen . Wegen x: < 0 ist die gesuchte Punktmengediejenige Halbebene , die die negative xr Achse enthält .
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SenkrechteProjektionenund Spiegelungenan Koordinatenebenen
Der Punkt P* (3 I 4 I 0 ) liegt in der x1x2-Ebene , der Punkt P( 3 I 41 5 ) liegt senkrecht über
P*

, und zwar 5 Einheiten . Hat man also einen beliebigen Punkt Q(q , | q2 1 q3) , dann ist
Q*(qi I q2 10 ) seine senkrechte Projektion in die x1x2-Ebene.
Der Punkt P '

( 3 I 4 I - 5 ) liegt senkrecht unter P* (3 I 4 | 0 ) , und zwar 5 Einheiten ; P ' ist
also der Spiegelpunkt von P bezüglich der x1x2-Ebene . Hat man einen beliebigen Punkt
Q(qi I q2 1 qa ) , dann sind Q '

(qi I q2 1- qs ) und Q (q ! I q2 1 q3) Spiegelpunkte bezüglich der
x1x2-Ebene .
Bei den andern Koordinatenebenen ist es entsprechend .

P (31415)

SenkrechteProjektionenund Spiegelungenan Koordinatenachsen
Der Punkt P* (0 I 0 I 5) liegt auf der x3-Achse, der Punkt P(3 I 4 I 5 ) liegt in gleicher Höhe
wie P* . Hat man also einen beliebigen Punkt Q (qx I q2 I q3) , dann ist Q*( 0 I 0 I q3) seine

senkrechte Projektion in die x3-Achse .

3 1- 41 ® .

Der Punkt P ' (- 3 I - 4 I 5 ) ist der
Spiegelpunkt von P bezüglich der
x3-Achse . Hat man also einen belie¬
bigen Punkt Q (qx I q2 1 q 3 ) , so sind
Q ’

( - qi I - q 2 I Ü3 ) und Q (qi I q 2 1 q 3)
Spiegelpunkte bezüglich der x3-
Achse .
Bei den andern Koordinatenachsen
ist es entsprechend .
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Spiegelung am Koordinatenursprung
Ändert man bei allen Koordinaten eines Punkts die Vorzeichen, dann bekommt man
den Spiegelpunkt bezüglich des Ursprungs . So sind also die Punkte Q(qx | q2 I q3 ) und
Q '

(- qi | —q2 I — q3) Spiegelpunkte bezüglich des Ursprungs .

Orientierung
Je nach Lage der Achsen unterscheidet man in der Ebene zwei verschieden orientierte
Koordinatensysteme . Wenn man die xx-Achse durch eine mathematisch positive Dre¬
hung ( linksrum , entgegen dem Uhrzeigersinn ) auf kürzestem Weg in die x2-Achse
überführen kann , dann heißt das Koordinatensystem positiv orientiert oder kurz
Rechtssystem . Vertauscht man die beiden Achsen , so ergibt sich ein negativ orientiertes
Koordinatensystem, kurz ein Linkssystem .

Ebenes Linkssystem Ebenes Rechtssystem
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Im Raum ist es komplizierter . Ebene Koordinatensysteme lassen sich hier nicht mehr in
Links- und Rechtssysteme einteilen , weil man sie von zwei Seiten betrachten kann . Was
man von der einen Seite als Rechtssystem sieht , ist von der andern Seite aus gesehen ein
Linkssystem und umgekehrt . Räumliche Koordinatensysteme aber lassen sich wieder
in zwei Gruppen einteilen : Schaut man so auf die x1x2-Ebene , daß ihre Achsen ein ebenes
Rechtssystem bilden , und kommt die x3-Achse auf einen zu , dann hat man ein
räumliches Rechtssystem vor sich . Zeigt dagegen die x3-Achse von einem weg , so ist das
Koordinatensystemein räumliches Linkssystem .

Räumliches Linkssystem Räumliches Rechtssystem

Daumen (xr Achse ) , Zeigefinger (x2-Achse) und Mittelfinger (x3-Achse) der rechten

Hand bilden ein Rechtssystem , die gleichen Finger der linken Hand bilden ein Links¬

system.
Bei einem Rechtssystem bewegt sich eine normale Schraube (Rechtsschraube ) in x3-

Richtung , wenn man sie so dreht , daß die Xj.-Achse auf kürzestem Weg in ie x2 c se

übergeht .

Spiegelt man ein Rechtssystem an einer Ebene , so entsteht ein Linkssystem und umge¬
kehrt . Wir verwenden künftig nur Rechtssysteme .

55



Aufgaben
»Bestimme die Punkte . . . « , »Lies die Punkte . . . ab« steht kurz und bündig für :Bestimme die Koordinaten der Punkte . . . , Lies die Koordinaten der Punkte . . . ab.

m Zeichne ein Koordinatensystem
a ) im Schrägbild
b) im Normalbild und trage die Punkte ein :
A( 0 I - 2 | 0 ) , B(0 I 21 3) , C (- 5 I 0 I 3 ) , D(2 | 4 I 4 ) ,
E (- 41 2 | 3 ) , F (- 2 I - 4 | 5 ) , G(5 I - 2 | 1 ) , H (4 | - 6 1- 5 ) ,
I (— 61 - 6 I - 1 ) , J (31 61 3), K(- 31 4 I — 6 ).

[2] Auf welcher Koordinatenachse , in welcher Koordinatenebene oder in welchem
Oktanten liegen die Punkte :
A( 11 - 2 | 2 ) , B (0 I 01 3 ) , C (- ^ 2 \ - ^ 2 \ - 2 ) , D( 1989 I 47111 — tc ) ,
E (- 3 I 33 I 33 ) , F (01 01 0) , G(sin 21 sin 41 sin 6), Ha(a I a2 1 a 3)

3. Von welchem Oktanten schaut man auf den Ursprung ?

a) % b ) >

g ) h ) P
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Lies die Punkte A bis 0 aus dem Bild ab . Die Punkte liegen auf Gitterlinien.
Benachbarte parallele Gitterlinien in den Koordinatenebenen haben den Abstand 1 .

5. Bestimme in jedem der gezeichneten Koordinatensysteme einen Punkt ,
der den Ursprung verdeckt und möglichst kleine ganzzahlige Koordinaten hat .
(Das Quadratnetz ist nur als Hilfe zum Zeichnen des Koordinatensystems gedacht ;
wo sein Umriß die Achsen schneidet , setze man die Einheit oder ein Vielfaches davon .)

Isometrie

Isometrie

6. Bestimme in jedem Koordinatensystem von Aufgabe 5 . einen Punkt mitganzzahli -

gen Koordinaten , der möglichst nah am Ursprung hegt und vom Ursprung
verdeckt wird.
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7 . Bestimme im Schrägbild von Aufgabe 5 . a) einen Punkt mit möglichst kleinen
ganzzahligen Koordinaten , der den Punkt A(- 2 I - 3 I 2 ) verdeckt .

[&j Beschreibe die Menge aller Punkte X(xj I x2 1x3) , für die gilt
( Skizzen erleichtern das Leben!)
a) x2 = 0 b) Xj = - 2 c) X2 — X3 = 0 d) x3 = 0 a x2 = 1
e) x2 = x3 f ) Xj = - x3 g) Xj = X2 = X3 h) x2 = —2 a x3 = 1
i) x2 < 0 <M1AI* k) X2 > 0 A X3 > 0 1) x2 < 0 a x3 — 3
m) Xj = —x2 A X3 < 0 n) Xj > 0 A x2 > 0 A X3 < 0

o) Xj > 0 a x2 > 0 a x3 = 0

• 9. • Beschreibe die Menge aller Punkte X(xj I x2 1x3) , für die gilt
a ) O < XJ < IAO < X2 < IAO < X3 < I
b) - 1 < Xj < 1 a —1 < x2 < 1 a - 1 < x3 < 1

c ) 0 < xx < 1 a - 1 < x2 < 1 a - 2 < x3 < 2
d) 0 < x1 < 1a0 < x2 < 1ax 3 = 0
e) O < XJ < IAO < X2 < I f) 0 < Xj < 1

10 . Beschreibedie Punktmenge im Bild oder Text mit Koordinaten (un )gleichungen

Ebene

Halbebene
mit Rand

Halbebene mit Rand



Ebene

Gerade

Quaderinneres

g ) Die Halbebene , die den III . vom IV . Oktanten und den VII . vom VIII . Oktanten
trennt .

h ) Die Gerade , die das Spiegelbild der Gerade in d) bezüglich der
x,x2-Ebene ist .

i) Die Gerade, die das Spiegelbild der Gerade in d) bezüglich des
Ursprungs ist .

j ) Die Ebene im Abstand 3 von der x1x2-Ebene , die die positive x3-Achse schneidet .

k ) Der Halbraum , der von der Ebene in j ) erzeugt wird und den Ursprung
enthält .

l) Die Ebene , die die xr Achse enthält und den VII. Oktanten halbiert .

[TT] Zeichne den Punkt A(2 14 1 6) und seine Spiegelbilder bezüglich der Koordinaten¬
achsen , der Koordinatenebenen und des Ursprungs . Verbinde alle Punkte so ,
daß ein Quaderbild entsteht . Markiere und bestimme die Punkte ,
in denen die Koordinatenachsen die Quaderflächen durchstoßen .
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12 . A(3 I 2 I 3 ) , B (- 3 I 6 I 1 )
a ) Zeichne die Strecke [AB] und ihre Spiegelbilder bezüglich

der Koordinatenebenen .
b) Zeichne die Geraden , in denen die vier Strecken aus a ) liegen.

Warum schneidet die Gerade AB jedes ihrer Spiegelbilder ?
Gib die drei Schnittpunkte an .

• 13 . A(61 31 0 ) , B(31 61 0) , C (01 61 3 ) , D(01 31 6 ) , E (31 01 6) , F(61 01 3)
sind die Ecken eines ebenen regelmäßigen Sechsecks.
Zeichne das Sechseck und seine senkrechte Projektion in die
a ) x1x2-Ebene b) x1x3-Ebene c) x2x3-Ebene .

• 14 . A(61 0 I 0 ) , B ( 0 I 61 0) , C ( 01 0 I 6 ) sind die Ecken eines gleichseitigen Dreiecks.
Zeichne es und seine Spiegelbilder bezüglich der drei Koordinatenebenen ,der drei Koordinatenachsen und des Ursprungs .
Was für einen Körper begrenzen die acht Dreiecke ?

r 15 . A(6 I 3 I 0 ) , B(3 I 61 0 ) , C ( 0 I 6 I 3 ) , D( 01 3 I 6 ) , E (3 I 01 6 ) , F(61 0 I 3 )
sind die Ecken eines ebenen regelmäßigen Sechsecks. Zeichne es und seine
Spiegelbilder bezüglich der drei Koordinatenebenen , der drei Koordinatenachsen
und des Ursprungs . Die Seiten der acht Sechsecke sind die Kanten eines
Archimedischen Körpers : Er ist ein Oktaederstumpf , er entsteht , wenn man von
einem regelmäßigen Oktaeder passende Pyramiden abschneidet .

16 . A(8 I 2 I 0 ) , B(91 51 0 ) , C (3 I 7 I 0 ) , D(2 I 4 | 0 )
ABCD ist die Grundfläche eines Quaders der Höhe 1 .
a ) Zeichne den Quader
b) Zeichne das Spiegelbild des Quaders bezüglich der xp^ -Ebene.
c ) Zeichne das Spiegelbild des Quaders bezüglich der x1x3-Ebene.
d) Zeichne das Spiegelbilddes Quaders bezüglich der x2x3-Ebene.

• 17 A(8 I 2 I 0 ) , B( 91 5 I 0 ) , C (3 I 7 I 0 ) , D(2 I 41 0 )
ABCD ist die Grundfläche eines Quaders der Höhe 1 .
a ) Zeichne den Quader
b) Zeichne das Spiegelbild des Quaders bezüglich der x3-Achse .
c) Zeichne das Spiegelbild des Quaders bezüglich der x2-Achse .
d) Zeichne das Spiegelbild des Quaders bezüglich der x1-Achse .

J 18 . A( 61 41 1 ) , B( 41 6 I 0 ) , C(5 I 81 2 ) , D(7 I 61 3 ) ,
E(41 31 3) , F (21 51 2) , G(31 7 I 4) , H(51 51 5)
ABCD ist die Grundfläche , EFGH die Deckfläche eines Würfels.
a ) Zeichne den Würfel
b) Zeichne das Spiegelbild des Würfels bezüglich der x1x2-Ebene.
c ) Zeichne das Spiegelbild des Würfels bezüglich der XjXg -Ebene.
d) Zeichne das Spiegelbild des Würfels bezüglich der x2x3-Ebene.
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• 19 . A(- 4 I 2 | 0 ) , B ( 2 | 5 I 0 ) , C ( 0 I 61 5 ) , D(- 2 I 8 I 5 )
a) Zeichne ABCD und alle Verbindungsstrecken .

Welcher Körper entsteht ? Hebe die sichtbaren Kanten hervor .
b) Zeichne das Spiegelbild des Körpers bezüglich der x1x3-Ebene.
c) Zeichne das Spiegelbild des Körpers bezüglich der x3-Achse .
d) Zeichne das Spiegelbild des Körpers bezüglich des Ursprungs .

• 20. A( 41 3 I 0 ) , B(5 I - 41 0 ) , C (81 01 5 ) , D( 11 - 11 5 )
a) Zeichne ABCD und alle Verbindungsstrecken .

Hebe die sichtbaren Kanten hervor .
b) Zeichne das Spiegelbild des Körpers bezüglich der x2x3-Ebene .
c ) Zeichne das Spiegelbild des Körpers bezüglich der x3-Achse.

J 21 . A(61 41 1 ) , B (2 I 8 11 ) , C(0 | - 2 | 1 ) , D( 61 41 - 3 )
[AB ] , [AC ] und [AD ] sind die Kanten eines Quaders.

a) Zeichne den Quader und bestimme die restlichen Eckpunkte .
b) Bestimme die Punkte , in denen die Quaderkanten die XjXj-Ebene

durchstoßen .
c) Bestimme die Punkte , in denen die Koordinatenachsen die Quaderebenen

durchstoßen .
d) Zeichne den Quader , wie man ihn aus dem 5 . Oktanten sieht.

• 22. Welche Koordinatensysteme sind Rechtssysteme ?
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23 . Ersetze a und b so durch xx , x2 beziehungsweise x3 , daß ein Rechtssystem entsteht .

a) A \

2. Vektoren

Wir wissen jetzt , wie man Punkte im Koordinatensystem darstellt . In der Analytischen
Geometrie löst man geometrische Probleme durch Rechnung . Wie kann man mit
Punkten beziehungsweise ihren Koordinaten rechnen ? Wie findet man zum Beispiel
den Mittelpunkt der Strecke [AB] mit A(4 I 2 11 ) und B (- 2 I 6 I - 7 ) ? Die Lösung solcher
und komplizierterer Aufgaben wird sehr unübersichtlich , wenn man nur mit Koordi¬
naten arbeitet . Gottseidank haben HERMANN GÜNTHER GRAßMANN ( Stettin 1809 bis
1877 Stettin ) und WILLIAM ROWAN HAMILTON (Dublin 1805 bis 1865 Dunsink ) etwa
Mitte des 19 . Jahrhunderts ein nützliches Werkzeug geschaffen , das das Koordinaten¬
rechnen sehr vereinfacht : die Vektoren .

HERMANN GRAßMANN war ausgebildeter Theologe . Er lehrte als Gymnasiallehrer Re¬
ligion, Chemie , Mineralogie , Physik , Mathematik , Deutsch und Latein . Obendrein war
er ein bedeutender Sanskrit -Forscher , komponierte und gab eine Volksliedersammlung
heraus . Doch war es ihm nicht gegeben , seine Ideen den Mitmenschen zu vermitteln .
Er schaffte es nie , Universitätsprofessor zu werden , seine Bewerbungen wurden immer
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abgelehnt mit dem Urteil : originell , aber unverständlich . Auch sein Hauptwerk »Die
lineale Ausdehnungslehre « von 1844 - er stellte darin zum ersten Mal die Vektorrech¬
nung vor — blieb lange Zeit verkannt .
Etwa gleichzeitig mit GRAßMANN entwickelte WILLIAM HAMILTON die Quaternionen -
rechnung als Erweiterung des Rechnens mit komplexen Zahlen . Er war es , der darin
die Bezeichnung »Vektor« eingeführt hat .
JOSIAH WlLLARD GlBBS , amerikanischer Mathematiker und Physiker , (New Haven
1839 bis 1903 New Haven ) und OLIVER HEAVISIDE , englischer Physiker , (London 1850
bis 1925 Homefield in Torquay ) haben die Vektorrechnung vor allem für physikalische
Anwendungen ausgebaut .
Nach und nach fanden auch die Mathematiker Gefallen an diesem neuen Instrument .
Anfang des 20 . Jahrhunderts hat sich die Vektorrechnung durchgesetzt . In vielen ma¬
thematischen und technischen Disziplinen ist sie heute unentbehrlich .

Was sind Vektoren?

Die Addition von Zahlen läßt sich mit Pfeilen veranschaulichen . Pfeile addiert man ,
indem man sie »Fuß an Spitze« aneinanderhängt . Der Ergebnispfeil geht vom Fuß des
ersten zur Spitze des letzten Pfeils . Diese Pfeilrechnung erweitern wir jetzt auf den
Raum .

. - 9.
- 6 3

3 + (- 9 ) = - 6

Ein Pfeil ist festgelegt durch ein Paar von Punkten . Für einen Pfeil , der von P nach Q
geht , schreibt man PQ . Wie bei der Zahlen -Pfeilrechnung sind auch jetzt nur Länge
und Richtung maßgebend . Wir nennen Pfeile parallelgleich , wenn sie dieselbe Länge
und dieselbe Richtung haben . Für parallelgleiche Pfeile verwenden wir das Gleich¬
heitszeichen und schreiben PQ = AB .

parallelgleiche Pfeile

PQ = AB

Als Sammelbegriff für die Menge aller parallelgleichen Pfeile verwenden wir die Be¬
zeichnung Vektor . Jeder Pfeil dieser Menge heißt Repräsentant des Vektors. Oft nennt
man auch die Pfeile selber kurz und bündig Vektoren.
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Eine ähnliche Unterscheidung macht man auch bei den Brüchen . | , | . . . sind Repräsen¬
tanten des Bruchs mit dem Wert 0,75 . Auch hier nennt man jeden Repräsentanten einfachheits¬
halber selber Bruch .

Wir fassen zusammen :

Definition
_ s. -

Der Vektor PQ ist die Menge aller zum Pfeil PQ parallelgleichen Pfeile.

Der Vorteil dieser Definition besteht darin , daß ein Vektor an jedem Raumpunkt als
Pfeil zur Verfügung steht .

A

AZ = v = m

Um einen Vektor unabhängig vom Repräsentanten zu bezeichnen , verwendet manauch kleine bepfeilte lateinische oder kleine deutsche Buchstaben .
Addition von Vektoren
Die Addition von Vektoren im Raum (und in der Ebene ) ist so festgelegt:Man hängt an einen Pfeil des 1 . Summanden einen passenden Pfeil des 2 . Summanden ,das heißt , einen Pfeil, der da anfängt , wo der erste aufhört . Der Ergebnispfeil führt vomFuß des ersten zur Spitze des zweiten Pfeils. Er legt den Ergebnisvektor fest.

Bezeichnet man die Anfangs- und Endpunkte der Pfeile mit Buchstaben , dann sieht dieAddition so aus:

PQ + QR = PR

Regel von CHASLES (sprich schaal )
(Michel CHASLES , französischer Mathematiker ,Epernon 1793 bis 1880 Paris )
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Für diese Vektoraddition gelten dieselben Rechenregeln wie für die Addition von Zahlen:

KonunutativgesetzderVektoraddition

U + V = V + u

u + v = AD + DC = AC
u + v

' = AB + BC = AC

U + V

v + u

AssoziativgesetzderVektoraddition

( u + v ) + w = u + ( v + w )

( uVv ) +
"
w = ( AB + BC ) +

"
CG = AC +

"
CG = ÄG

1? + (V +^ ) = ÄB + ( ESCf +
'
CG ) = AB + BG = ÄG

Weil die Reihenfolge der Additionen keine Rolle spielt,
läßt man die Klammern meist weg und schreibt lT + v + w .

G

Addiert man Vektorenlf , v
"

,
~w

" dann nennt man diese Aneinanderreihung auch
Vektorkette . Sind Fuß A des ersten und Spitze Z des letzten Pfeils verschieden , so heißt
die Vektorkette offen : der Summenvektor AZ = u + v + w + . . . hat die Richtung von A
nach Z . Fallen A und Z zusammen (Z = A) , so heißt die Vektorkette geschlossen . Formal

ergibt sich jetzt der Summenvektor AA , ein Gebilde ohne Richtung und Ausdehnung .
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T

AA = Ü + v + w + x + y

P

offene Vektorkette geschlosseneVektorkette
Wir verlangen , daß jede Addition von Vektoren wieder einen Vektor ergibt . Deshalb
müssen wir AA als Vektor zulassen . Man nennt ihn Nullvektor . Wie die Zahl 0 bewirkt
seine Addition nichts , er verhält sich »neutral « .

Definitiondes neutralenElements
Der Vektor, der beim Addieren nichts ändert , heißt Nullvektor . Man schreibt ihn "? .

a + o = a ,
AB + BB = Aß

'
, BB = "

o .
Der Nullvektor hat die Länge null .
Der Begriff der Richtung verliert beim Nullvektor seinen Sinn.

Beim Zahlenrechnen spricht man bei - 13 und 13 von Gegenzahlen , weil sich die beiden
beim Addieren aufheben , also null ergeben . Die allgemeinere Bezeichnung für Gegen¬zahl ist inverses Element . Weil man Entsprechendes auch beim Vektorrechnen
braucht , definiert man :

Definitiondes inversenElements
Der Vektor, der zu einem Vektor a' addiert den Nullvektor ergibt ,
heißt Gegenvektor von a . Man schreibt ihn —

~a .

a + (- a ) = o ,
AB + ( - AB ) = AB + BA - AA = ~

o AB = BA . Gegenvektoren

BA = - AB, AB = - BA
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Der Gegenvektor - a von a ist genau so lang wie ~a und hat die Gegenrichtung von ~a .
a ist Gegenvektor von - a . a und —

’a ' sind Gegenvektoren.
Statt ~u + (- "

v
'
) schreibt man kurz ~u - ~v und hat damit die Subtraktion von Vekto¬

ren auf die Addition zurückgeführt .

Subtraktion - Addition

u + v

S-Multiplikation

Wie beim Zahlenrechnen führt
manden eine Abkürzung ein:

man auch bei Vektoren für Summen mit gleichen Sum-

a + a + a = : 3 - a ( = 3 a )

Der Vektor 3 a ist also dreimal so lang wie und hat dieselbe Richtung.
Wie bei Zahlen erweitert man diese Produktdefinition auf reelle Faktoren :

Definition
Der Vektor r -

’a '
(reIR ) ist I r I -mal so lang wie der Vektor a .

Für r > 0 hat er dieselbe Richtung wie a ,
für r < 0 hat er die Gegenrichtung von a .

Insbesondere gilt : 1 -lf = ~a und (- 1 ) -iT = - a .
Zwei Vektoren , von denen einer ein Vielfaches des andern ist , sind parallel ;
man nennt sie auch kollineare Vektoren .



Manchmal nennt man reelle Zahlen im Gegensatz zu Vektoren auch Skalare .
Deshalb heißt die Produktbildung »Skalar -Vektor « auch S-Multiplikation .
Für die S -Multiplikation gelten ähnliche Gesetze wie für die Zahlen -Multiplikation :

Assoziativgesetz der S-Multiplikation

r , selRr -(s - u ) = ( rs ) - u
Die Begründung überlegt man sich ,
indem man auf die Definition der S -Multiplikation zurückgeht .

1 . Distributivgesetz der S-Multiplikation

r -( u + v ) = r - u + r - v re IR
Die Begründung klappt mit dem Strahlensatz .

r (ü + v) = ru + rv

2. Distributivgesetz der S-Multiplikation

( r + s ) - u = r - u + s - u r , selR
Dieses Gesetz beschreibt die Zahlenaddition r+s auf einer Zahlengerade
in Richtung ! ? , die Einheit ist die Länge von ”u .
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Beispielezum Rechnen mitVektoren

SeitenhalbierenderVektor

Die Seiten [RP] und [RQ ] des Dreiecks PQR legen die Vektoren ~a - RP und b = RQ
fest. Man sagt auch : »Die Vektoren RP und RQ spannen das Dreieck PQR auf« . M ist
die Mitte von [PQ] . Gesucht ist eine Darstellung des Seitenhalbierenden Vektors R M
durch ~a und b .

Lösung : RM = RP + PM

= "a + ~ (- ~a + b ) = ~a - |
"a + | b = | a + | b

RM = | Ca + b )
Der Seitenhalbierende Vektor ist also das arithmetische Mittel der Vektoren , die ihn be¬
grenzen . »Im Parallelogramm halbieren sich die Diagonalen . « Mit diesem Satz hätte
man das Ergebnis gleich sehen können . Betrachte dazu das Parallelogramm RPSQ, das
von a und b aufgespannt wird.

a + b = 2RM
Aufgaben vom Typ »Drücke den Vektor PQ mit den Vektoren a , b und c aus « löst
man so : Gehe von P nach Q auf einem Umweg. Der Umweg setzt sich zusammen aus
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a , b und ~
c oder aus Vektoren , die sich aus a , b und c berechnen lassen ( offene

Vektorkette ) . Dazu noch ein Beispiel:

Spatmittelpunkt
Das Spat ist ein Prisma , das von sechs Parallelogrammen begrenzt ist ( »schiefer Qua¬
der« ) . Es wird von drei Vektoren aufgespannt . Im Spat ABCDEFGH ist M der Mittel¬
punkt der Raumdiagonale [BH] .

B

AM soll mit den Kantenvektoren u = AB , v = AD und w = AE ausgedrückt werden .

Lösung: AM = AB + BM

= u + | (- u + V^ + V ) = | li ‘
+ | Vv?'+ |

'v

AM - | (
“u + "v + "w )

Wegen AG = u + v + w ist M auch Mitte der Raumdiagonale [AG] .
G
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Ist N Mitte von [EC] , dann gilt
AN = AE + KN

=
~
vt + | EC

= w
*

+ | (- "w + + V ) = | W
* + f U

*’ + ! ^

AN = AM , also ist N = M.
Genau so kann man schließlich noch zeigen, daß M auch Mittelpunkt der Raumdiago¬
nale [DF] ist . Damit ist bewiesen daß sich die vier Raumdiagonalen eines Spats in einem
Punkt schneiden und gegenseitig halbieren .
Diese Aufgabe ist ein typisches Beispiel für die Kraft der Vektorrechnung . Das raum¬
geometrische Problem »Wie liegen die vier Raumdiagonalen eines Spats zueinander ?«
haben wir durch einfaches Rechnen mit Vektoren gelöst. Das ist Analytische Geometrie!

2 Vektoren spannen
ein Dreieck auf

spannende Vektoren

2 Vektoren spannen
in Parallelogramm auf

3 Vektoren spannen
ein Spat auf

3 Vektoren spannen
ein Tetraeder auf

Auch für Probleme der ebenen Geometrie bietet die Vektorrechnung oft eine verblüf¬
fend einfache Lösung , zum Beispiel für den Beweis des Aubel -Theorems:
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Über den Seiten eines beliebigen Vierecks zeichnet man die Außenquadrate . Verbindet
man jeweils die Mitten zweier gegenüberliegender Quadrate , so entstehen zwei Strek -
ken , die gleich lang und zueinander senkrecht sind.

AUBEL:
ÜV = XY und UVJ. XY

Im Beweis brauchen wir eine Abkürzung : Der Vektor li ist der 90 ° nach links gedrehte
Vektor "? . Dann ist ~a = - "a und a + b = "? + b . Der Beweis steht im Bild , er ver¬
wendet M aM c = d - b .

Entweder sieht man das direkt (Mittelparallelen in den Dreiecken ABD und BCD )
oder erst nach trickreicher Vektorrechnung :

M aM c = a + 2 d + c
M .M . = - "a - 2b - " M „M „ | ( M aM c

'
+ M aM c ) = d - b .
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a + d - b + ca UV = -

UV = - a + d - b + c

= a + d - b - c = XY- b - c + a + d

Beim Beweis haben wir keine Voraussetzung über eine spezielle Lage der Punkte A, B ,
C und D gemacht . Deshalb gilt das Aubel-Theorem für allerlei Sonderfälle: So kann das
Viereck konkav oder überschlagen sein , es kann zu einem Dreieck , ja sogar zu einer
Strecke entarten !
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A=D

Aufgaben
»Bestimme die Punkte . . . « steht kurz und bündig für : »Bestimme die Koordinaten der Punkte . . .«

[Ti| Zeichne in ein Koordinatensystem die Punkte A(- l | -2 ) , B (3 I 0 ) , C (2 | 2 ) , D( 0 1 1 )
und E (- 2 | 3 ) . Bestimme die Punkte V , W, X , Y und Z so , daß gilt :
V = ÄV = WB =

~
CX = DY = ZE

a ) = OA b) V = AO c )
~
v = CD

[&] Zeichne in ein Koordinatensystem A(2 | 0 ) , B(8 I 4 ) und C (4 | 8 ) .
Zeichne den Summenvektor .

a ) AB + AC b) AB + CB c ) CB + BA 5 0 14
5

d) BC + BA + CA e ) AB + BC + CA
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Zeichne in ein Koordinatensystem A( 11 1 ) , B(41 1 ) , C (61 3 ) und D(3 I 4).

Die Vektoren a , b und c sind definiert durch a = AB , b = BC ,

c = CD . Drücke folgende Vektoren mit a , b und c aus :

a ) AC b) CA c ) DA d) BD

Zeichne das Fünfeck ABCDE mit A(0 I 0 ) , B (3 I 0 ) , C (411 ) , D(4 | 4 ) und

E ( 11 3 ) . a , b , c und d sind festgelegt durch a = AB , b = BC , c = CD und

d = DE . Drücke folgende Vektoren mit A, B , C , D und E aus :

a ) it + b b)

d) - ( b + ~
tT + d ) e)

Vereinfache

a ) UV + VW b)

d) AB + TA + Bt
"

e)

- b - c

- b - Ca +
"
cT )

AB + CA

c ) a + b + c + d

c) RS - RT

XY - ZY - XZ

6. | Bestimme x

a ) ÄB + lC = "
o b) ÄB + xl

= ÄC c) AB - "x = ÄjC - ÄD

7. ABCDEF ist ein regelmäßiges Sechseck mit a = AB , b = BC,c = CD .

Drücke mit "a , b und c aus :

a ) ED b ) DE c ) FD d ) FC
"

e ) FB f ) FA g ) AD

[& j Durch Anträgen von a , b und ~
c in einem Punkt O entsteht ein räumliches

Dreibein . Ergänze die Figur zu einem Spat .
Welche Vektoren , ausgedrückt mit "a , b und ~

c , werden repräsentiert

a ) durch die Flächendiagonalen , die von O ausgehen .
b) durch die Raumdiagonale , die von 0 ausgeht .

[ft ] b und ~
cT spannen ein Tetraeder SABC auf .

Drücke BC , AB und AC mit "a\ b und ~
c aus .



10 . a , b und c setzen im Ursprung an und bestimmen das Dreieck ABC mit

OA = a , OB = b und OC = c . D, E und F sind die Mittelpunkte der Seiten [BC] ,
[CA] und [AB] . Drücke DE , EF und FD mit ”a , b und ~

c aus .

11 . AB = b und AD = d spannen das Parallelogramm ABCD auf . Nimm die Punkte

E und F so an , daß gilt : DE = | DC und AF = | AB . Drücke EF mit d und b aus .

12 . AB = a , AD = b und AE = c spannen das Spat ABCDEFGH auf .
Drücke EG , HF , EC , DF und HB mit ~a , b und ~

c aus .

13 . AE = u , AB = df und AD = w'
spannen das Spat ABCDEFGH auf .

R , S und T sind die Mittelpunkte der Seitenflächen , X und Y sind
Kantenmitten . Drücke folgende Vektoren mit df ,

”
v und 'w ' aus .

a ) ÄT , HT , AX,1ÜX , YD b) RS , YX , YT , XT , ST

14 . AB = a , AD = b und AE = c spannen das Spat ABCDEFGH auf .
a ) S und T sind festgelegt durch AS = | AB und AT = | AD .

Drücke SG , TF und ST mit ~a , b und ~
c aus .

b) M ist der Mittelpunkt von [EC ] . L liegt auf [EG] mit LE = | GE .

Drücke M L mit ~a , b und c aus .
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15 . Zeige : In jedem Dreieck ist die Summe der drei Vektoren von den
Ecken zum Schwerpunkt gleich dem Nullvektor .

16 . Eine Pyramide mit der Spitze S hat als Grundfläche das Rechteck ABCD .
Die Pyramide ist festgelegt durch die Vektoren AB = ~a , AD = b und AS = 7f .
M ist der Mittelpunkt der Grundfläche , K ist der Schwerpunkt des Dreiecks BCS .
Drücke MK mit a , b und ~

c aus.

• 17 . DA = "a , DB = b und DC - ~
c spannen das Tetraeder ABCD auf.

U , V, W und X sind Kantenmitten des Tetraeders .
a ) Drücke VX und UW mit "a , b und ~c aus.
b) L ist Mittelpunkt von [VX ] , M ist Mittelpunkt von [UW] ,

Berechne DL und D M in Abhängigkeit von ~a , b und c .
Was folgt aus dem Ergebnis ?

c ) Berechne UV und XW in Abhängigkeit von ”a , b und -? .
Was folgt aus dem Ergebnis ?

Stangenoktaeder
in Trimetrie

Stangenoktaeder
in Isometrie
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