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3. Die Brennpunkte der Ellipse

Der belgische Mathematiker und Baumeister Pierre Germinal DANDELIN (1794 bis
1847) hatte bei der Untersuchung von Kegelschnitten eine schone Idee aus der Raumgeo-
metrie, die uns eine sehr wichtige Eigenschaft der Ellipse vor Augen fiihrt. Dazu betrach-
ten wir die Ellipse wieder als Schnitt einer Ebene E und eines Zylinders. Auf beiden Seiten
der Ebene schiebt man eine genau passende Kugel (Kugelradius = Zylinderradius) in den
Zylinder, bis sie die Ebene beriihrt. Die beiden Kugeln beriihren auBBerdem den Zylinder
in den Kreisen k, und k,. Aus Symmetriegriinden liegen die beiden Beriihrpunkte F, und
F, auf der Hauptachse gleich weit vom Mittelpunkt M der Ellipse weg. F, und F, heillen
Brennpunkte der Ellipse. Zu Ehren von DANDELIN nennt man die beiden Kugeln
Dandelin-Kugeln.
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P sei ein beliebiger Punkt der Schnittellipse. Weil die Schnittebene auch Tangentialebene
der beiden Dandelin-Kugeln ist, sind PF, und PF, Tangenten dieser Kugeln. Die Mantel-
linie durch P schneidet die beiden Beriihrkreise k, und k; in Q, und Q,. PQ, und PQ, sind
also auch Tangenten der Dandelin-Kugeln. Alle Kugel-Tangentenabschnitte durch einen
Punkt sind gleich lang. Deshalb gilt:

PQ, = PF, und PQ, = PE, also PF, + PF, = PQ, + PQ;- Q,Q, = const.




Fir jeden Ellipsenpunkt ist die Summe seiner Entfernungen von den beiden Brennpunk-
ten die Konstante Q,Q,, der Abstand der beiden Beriihrkreise. Der Wert dieser Konstante
ergibt sich, wenn wir P in einen Hauptscheitel, zum Beispiel A,, legen, wenn also P = A,
ist:

Q,Q; = AF, + _A:r: =AF, +FlA =2a

Zusammenfassung
Fiir jeden Ellipsenpunkt P gilt

P—F|-| = P["J = 2::1

Die beiden Brennstrecken [PF,] und [PF,] sind zusammen so

lang wie die Hauptachse 2a.

Legt man P in einen Nebenscheitel B, dann gilt aus Symmetrie-
grinden F\B=F,B=a. Mit dieser Bezichung lassen sich die
Brennpunkte einfach konstruieren.

* Exzentrizititen

Y=

Die Entfernung e der Brennpunkte vom Mittelpunkt heiBt lineare Exzentrizitiit. Die
Zeichnung (Pythagoras!) zeigt:

[elzﬁﬁ_b?
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Fiir einen Kreis gilt a=b, also e = (. e ist aber noch kein Mal3 dafiir, wie die Ellipse vom
Kreis abweicht. Denn bei einer Ahnlichkeitsabbildung, zum Beispiel zentrische Streckung,
dndert sich zwar e, nicht aber die Form. Umgekehrt gibt es zu ein und demselben Wert fiir
e verschieden geformte Ellipsen. Bezieht man jedoch e auf die groBe Halbachse, dann ent-
steht eine Zahl, in der die Gestalt der Ellipse zum Ausdruck kommt, sie heil3t numerische
Exzentrizitit €:

Konfokale Ellipsen mit F,F, = 2e = const.
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Wegen €= X = Al —— ist O0=eg=1
' a a’
Fiir die Grenzfille gilt
g =0, das heiBt a=b: Kreis
g=1, das heiit b=0: Strecke
Konfokale Ellipsen mit F,F, = 2e = const.
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Die Ellipse in der Astronomie

Bis ins 16. Jahrhundert glaubte man, dass sich alle Gestirne auf Kreisbahnen oder auf
Uberlagerungen von Kreisbahnen bewegen. Als Johannes KEepLEr (Weil der Stadt 1571
bis 1630 Regensburg) auf der Grundlage der Beobachtungen von Tycho Brane die Pla-
netenbewegung mathematisch beschreiben wollte, musste er dieses Ideal der Kreisbahn
aufgeben. Er stellte fest, dass die Planeten auf Ellipsenbahnen laufen, bei denen die Sonne
in einem Brennpunkt steht.

Die Entfernung von Planet und Sonne dndert sich also wihrend des Umlaufs. Der Punkt,
bei dem die Entfernung am groBten ist (r,,.,), heiBt Aphel; der Punkt, bei dem die Entfer-
nung am kleinsten ist (r,;,), heiBt Perihel. Die Ellipsenbahnen weichen nur sehr wenig von
der Kreisform ab. Ihre numerischen Exzentrizitdten reichen von 0,007 (Venus) bis 0,25
(Pluto). Fiir die Erde gilt

a =148,65-10°km,

b =148,63-10°km, daraus errechnet sich
e =244-10°km,

g =0,016

Tmin —a— €= 146,2- 10°km

 max =t N e ]511.' ' iﬂﬁkm

o

Am 3.Juli (!) durchliuft die Erde das Aphel und am 2. Januar das Periphel.

;‘\]anm

Tp=a+e ) Erdbahn Plutobahn
Perihel L Aphel malfistéblich malistéblich

& F £=0,016 e=025

Die Girtner-Konstruktion der Ellipse

Die Beziehung PF, + PF, = 2a erlaubt ein einfa-
ches mechanisches Verfahren zum Erzeugen von
Ellipsen. In den Brennpunkten befestigt man zwei
Pflocke und an ihnen eine Schnur der Linge 2a.
Ein Stift, der so gefiihrt wird, dass die Schnur ge-
spannt ist, beschreibt eine Ellipse. Der Name die-
ser Konstruktion geht zuriick auf die Art, mit der
Girtner im Barock die Rinder der damals so be-
liebten elliptischen Blumenbeete markiert haben.
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Die Ellipseneigenschaft, die der Girtner-Konstruktion zugrunde liegt, fiihrt auch zu einer
Konstruktion einzelner Ellipsenpunkte: Man zeichnet um die Brennpunkte Kreise, deren
Radien zusammen 2a ergeben; die Schnittpunkte sind Ellipsenpunkte.

=y +(e+x) g=y =%

r,t+r,=2a
r,=2a—r1, | quadrieren
r; = 4a’> — dar, + I
Y(e + x)? = 4a% — 4ar, + ¥ + (e — x)’
2+ 2ex + 2 = da’ — dar, + 27— 2ex +X
ar, = a’ —ex | quadrieren
a’[y*+ (e—xp]=2a*— 2a%ex + e*x?
ay? + ale? — 2a%6% + a’x? = a* — 2%k + &’x’

a’y? + a’x? — e’x’ = a‘ — a’¢?

aj}fi Lt x: (al — el) — H_’ {a'." - e!}
b: h"
a’y?+ x?b?=2a%? || : (a’b?)
X* y?
P
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Ein Punkt P liegt also genau dann auf der Ellipse, wenn die Summe der beiden Brenn-
strecken r; und r, gleich der Hauptachse 2a ist. Fiir einen Punkt Q, der auBerhalb der El-
lipse liegt, ist die Summe der Brennstrecken groBer als 2a; fiir einen Punkt R, der inner-
halb liegt, ist sie kleiner als 2a. Zur Begriindung verwenden wir die Dreteck-Ungleichung.

Im Dreieck QPF, gilt: PQ + QF, > PF

+ QF, = PF, + QP + QF, > PF, + PF, = 2a
QF, + QF, > 2a

5

Im Dreieck RPF, gilt: RP + PF, > RF,

I)

RF, + RF, < RF, + RP + RF, = PF, + PF, =2
RF, + RF, < 2a
* Brennpunkt und Tangente
oder: Wie der Brennpunkt zu seinem Namen kommt. st wy Tangente

der ]*:]]I]]H_L! inP?

o W

Das Bild zeigt einen Ellipsenpunkt P und eine Winkelhalbierende w, der Brennstrahlen
[FiP und [F,P. Dem Augenschein nach ist w, Tangente der Ellipse in P. Aber nicht nur
dem Augenschein nach! Mit einem kleinen Trlck ldsst sich das beweisen: Man spiegelt
einen der beiden Brennpunkte an w, (Spiegelpunkt F¥). Wegen Achsensymmetrie ist

PF, = PF*.

PF, + PF, = 2a Qe a2
PF, + PE;* = :

REF = 2a A=




Fiir jeden von P verschiedenen Punkt Q auf w, gilt dann (Dreieck-Ungleichung!):

QF, + QF; = QF, + QFf > FiFf = 22
Also gilt m + QT >2a = Q liegt auBBerhalb der Ellipse = w, ist Tangente im Punkt
P. Weil die beiden Winkelhalbierenden einer Geradenkreuzung aufeinander senkrecht ste-
hen, ist die andere Winkelhalbierende Normale der Ellipse im Punkt P.
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Damit haben wir den Satz:

Die beiden Winkelhalbierenden der Brennstrahlen eines Ellipsenpunkts P sind Tan-
gente und Normale der Ellipse in P.

Wir haben so eine einfache Méglichkeit gefunden, die Tangenten in einem beliebigen El-
lipsenpunkt zu konstruieren: Man halbiert den Winkel der Brennstrahlen, durch den die
Ellipse geht.

Nach dem Reflexionsgesetz der Physik sind Einfalls- und Ausfallswinkel gleich groB. Alle
von einem Brennpunkt ausgehenden (Licht-)Strahlen werden an der Ellipse so reflektiert,
dass sie sich im andern Brennpunkt treffen. Weil die Wege aller Strahlen gleich lang (= 2a)
sind, treffen sich die reflektierten Strahlen auch alle zum selben Zeitpunkt. (Anwendung

dieses Effekts im Kapitel 9. II, 5)
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