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2. Das Einsetzverfahren

ist der naheliegendste Weg , ein Gleichungssystem zu lösen : Man löst eine Gleichung
nach einer Unbekannten auf und ersetzt diese Unbekannte in allen andern Gleichun¬
gen durch den gefundenen Term . Das wiederholt man immer wieder . Wir führen das
Einsetzverfahren zunächst an einigen 3,3 -Systemen vor ; wir haben sie so ausgewählt ,
daß die wichtigsten Fälle Vorkommen.

Inhomogene Gleichungssysteme
Genau eine Lösung

I 2x 1 — 3x2 + x3 = — 1
II Xj + x2 + 5x3 = 0

III - xx + 2x2 - x3 = 2
■x2 - 5 x£ in I und III

in I 2(— x2 - 5x3 ) — 3x2 + x3 = — 1
in III — (— x2 — 5x3) + 2x2 — x3 = 2

I ' — 5x2 — 9x3 = - 1
III ' 3x2 + 4x3 = 2 => x2 = - | x3 + | in I'

in I ' - 5 (- | x3 + 1) - 9x3 = - 1
20x3 - 10 — 27x 3 = — 3

I" - 7x3 = 7 => x3 = - 1 in III ' und II

x3 = - 1 fx^ r 3 a
in III X2 = 2 Lösung : X2 = 2
in II Xj = 3 w l- l J

Beim Einsetzverfahren geht es nur darum , Gleichungen umzuformen und Terme ein¬
zusetzen . Es kommen keine gefährlichen Umformungen vor wie Quadrieren und Mul¬
tiplizieren beziehungsweise Dividieren durch Terme , die null werden könnten . So ist si¬
chergestellt , daß weder Lösungen verloren gehen noch sich Scheinlösungen einschlei¬
chen . Allerdings muß man darauf achten , daß die Anzahl der aktuellen Gleichungen
nach jedem Rechenschritt dieselbe ist . In unserm Schema heben wir die zum Einsetzen
reife Gleichung mit einem Rahmen hervor . Aktuell sind dann jeweils die Gleichungen
unterm Strich und die eingerahmten .

Keine Lösung
I 2xt - 3 x2 - x3 = 4

II Xj + 2x2 + 3x3 = 1 =
III 3xj - 8x2 - 5x3 = 5

I ' — 7x2 — 7x3 = 2 =
III ’ - 14x 2 - 14x3 = 2
III " 0 = - 2

~ ~
l

1 — 2x 9 — 3xc in I und III

in III’

keine Lösung!
III " ist eine widersprüchliche Gleichung . Wenn ein Widerspruch auftaucht , dann muß
irgendwo eine Annahme stecken . Tatsächlich beruht das Lösungsverfahren auf der
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Annahme , daß das Gleichungssystem mindestens eine Lösung (xj | x2 1x3 ) hat , die alle
Gleichungen erfüllt . Stößt man beim Rechnen irgendwo auf einen Widerspruch , dann
erweist sich die Annahme als falsch , das Gleichungssystem hat keine Lösung .

Unendlich viele Lösungen

I Xj + 2x2 — 3x 3 = 6
II 2x x - x2 + 4x3 = 2

III 4x 3 + 3x2 - 2x3 = 14
II ' - 5x 2 + 10x3 = - 10

III ' —5x 2 + 10x3 = —10
III " - 10 - 10x3 +10x3 = - 10

0 = 0

Xj = 6 — 2x 2 + 3x3

x2 = 2 + 2x3

Die aktuellen Gleichungen reichen nicht aus , um die Unbekannten eindeutig zu bestim¬
men . Wenn x3 bekannt wäre , dann ließen sich die dazu passenden Werte für x2 und xxberechnen . So findet man zum Beispiel für x3 = - l die Lösung (3 I 0 I - 1 ) und für x3 = 0
die Lösung (21 2 I 0 ) . Weil x3 frei wählbar ist , gibt es unendlich viele Lösungen (abhängig
von x3) . Eine frei wählbare Größe heißt auch freier Parameter . Man bezeichnet Para¬
meter mit einem kleinen griechischen , manchmal auch lateinischen Buchstaben . Setzt
man x3 = X, dann bekommt man durch Einsetzen in die eingerahmten Gleichungen

( 2 - X \
x2 = 2 + 2X und xx = 2 — X oder x2 2 + 2X

{ X J

Weil die Lösungsmenge genau einen freien Parameter enthält , sagt man , daß das Sy¬stem oo 1 Lösungen hat (sprich : unendlich hoch eins ) . Zur besseren Übersicht trennt man
in der Lösung den konstanten Teil vom parameterabhängigen Teil und schreibt

r2 - X ^ ( 2 - X\ f2 \ f - k \
x2 — 2 + 2X — 2 + 2k— 2 + 2X

w , ^ j , 0 + 'X / loj U J
(2 \ 1 \

x2
V x37 vOy

+ X
v 1 ,

Lösung :

(zeilenweise Addition )

(Parameter abspalten )

, kelR [Tj

^Xl
') ( 2 -\ ( - 1ni

X2 = 2
kOj

+ X 2
l 1 J

Die Darstellung der Lösungsmenge ist nicht eindeutig , sie hängt ab vom Lösungsweg .
Das letzte Gleichungssystem jetzt anders gelöst :

I xt + 2x2 - 3x3 = 6
x2 = 2x x + 4x 3 — 2

III ' lOxj + 10x3 = 20
III ” 0 = 0

17



Nun ist xx die einzige Unbekannte , die nicht links vorkommt ; deshalb ernennen wir sie
zum freien Parameter p . Wir setzen xx = p und bekommen durch Einsetzen in die ein¬
gerahmten Gleichungen

r x1
N

f h > f 0 '! f 1 j
2 - p und x2 = 6 - 2p oder x2 = 6 - 2p = 6 + p - 2

V
X3y l 2 " U v UJ l- l J

f 1 )
Lösung : X2

v Xa J
6I2J+ p - 2

l- l J @
Bei Wahl von x2 als freien Parameter hätte sich ergeben

( 3 > ( - Va ^
Lösung : X2

l *3 )
— 0

l - l ,
+ 0 1

l v2 J
, o elR

Ein Vergleich von [T ] , [2 ] und [3 ] zeigt , daß sich die Anteile beim Parameter nur in einem
Faktor unterscheiden

( 1 1 , - l > ( ~ 1 \
- 2 = (- ! ) ■ 2 und 1 = v2- 2

l- l , l 1 , V
V 2 , l 1 J

Die konstanten Anteile — das sind die Lösungen , die jeweils zum Parameterwert 0 gehö¬
ren - zeigen keinerlei Ähnlichkeit . Trotzdem sind die drei Darstellungen gleichwertig ,
denn jedes Lösungstripel ist in jeder Darstellung enthalten : In [3 ] liefert g = 4 das Tripel
( 11 411 ) , dasselbe Tripel ergibt sich für p = 1 in [2] beziehungsweise für X = 1 in |T | .

Es gibt auch Gleichungssysteme , deren Lösungsmengen mehr als einen Parameter ent¬
halten . Dazu ein Beispiel :

I O^ Xj - 4x2 + 0,5x3 = 3
II — x3 + 8x2 - x3 = - 6

III 0,25xj - 2 x2 + 0,25x3 = 1,5
I ' 0 = 0

IIP 0 = 0

Xj = 8 x 2 - x 3 + 6

x2 und x3 sind frei wählbar und werden deshalb zu Parametern ernannt :

x2 = X und x3 = p
in II Xj = 6 + 8X — p

Lösung :
( 6 >, r8 ) r - 1 \

*2
\ X3 )

= 0
lo ,

+ X 1
lo ,

+ ß 0
l 1 J X, p elR

Weil hier zwei freie Parameter Vorkommen , spricht man von °°2 Lösungen . Auch hier
sind andere Darstellungen der Lösungsmenge möglich . Hätte man zum Beispiel Glei¬
chung II nach x3 aufgelöst , dann wären x , und x2 die freien Parameter :
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II x 3 = 6 — Xj + 8x5
I ' 0 = 0

III ' 0 = 0

xx = g und x2 = x
in II x3 = 6 - g + 8t

Lösung:
( 0 > f 1 1 r ° A

X2 = 0 + G 0 + T 1

1 * 3 ; 16 , l - l ;
, o , t elR

Homogene Gleichungssysteme
Wie verändern sich die Lösungen , wenn man die rechten Seiten der Gleichungen null
setzt , das heißt , zu homogenen Systemen übergeht ? Wir rollen die Sache von hinten auf
und untersuchen zuerst inhomogene Systeme mit unendlich vielen Lösungen . Das ho¬
mogene System , das zum inhomogenen System mit Lösungen ( Seite 17 ) gehört ,lautet :

I x1 + 2x2 - 3x3 = 0 => x l = - 2x2 + 3x3
II 2xj — x2 + 4x3 = 0

III 4x! + 3x2 - 2x3 = 0
II ’ - 5x2 + 10x3 = 0 => x2 = 2x3

III ' — 5x2 + 10x3 = 0
III " 0 = 0

x3 = X (freier Parameter , es gibt oo 1 Losa

( Xl >
zusammengefaßt zur Lösung :

V X3 ,
(

(andrer Lösungsweg ) : Lösung : x2
V

X3 V

mgen) => x2 = 2Ä. und x1 = —X,
r - l \

= X 2 t X eIR oder
l 1 J
( * '

= g - 2 , gelR
l - l J

Auch das homogene System hat «4 Lösungen.

Nun zum System mit den °°2 Lösungen . Das zugehörige homogene System ist :
I Ojöxj

II - x
III O ^ öxj

4x 2 + 0,5x 3 = 0
x3 = 0

2x 2 + 0,25x 3 = 0
1 + 8x 2 - Xj = 8 x 2 — Xc

I ’
III ' 0 = 0

0 = 0

in II
x2 = X und x3 = ja (zwei freie Parameter , also oo2 Lösungen)
x: = 8L - g

Lösung:
fx 1

'i
f - lA

^
-
- = X 1

lo ,
+ g 0

1 1 J Ä,, g elR
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Es fällt auf:

— der konstante Anteil ist 0
0

(wird deshalb meistens weggelassen)

— die Lösung des homogenen Systems ist gerade der parameterabhängige Anteil der
Lösung des inhomogenen Systems.

Diese Übereinstimmung verwundert nicht : An der Variablenrechnung hat sich nichts
geändert , und die Konstanten der rechten Seite sind alle gleich null . Der Parameteran¬
teil wird allein von der Variablenrechnung festgelegt.

Jetzt behandeln wir das Beispiel, das im inhomogenen Fall keine Lösung hat .

x2 = - x3
III ' - 14x 9 - 14xo = 0
III " 0 = 0

x3 = X , x2 = —X , x -l = —X Lösung:
' x ^
X2

w
= X - 1

1 1 J X elR

Obwohl das inhomogene System keine Lösung hat , gibt es beim homogenen System
Lösungen (sogar unendlich viele !) . Das sollte uns eigentlich nicht überraschen , denn je¬
des homogene System hat zumindest die Lösung , bei der alle Unbekannten gleich null
sind . Diese Lösung heißt auch triviale Lösung *

. Ein homogenes System kann also nie
unlösbar sein , die triviale Lösung gibts garantiert .
Zum Schluß rechnen wir das Beispiel , das im inhomogenen Fall genau eine Lösung hat .

X2 = Xj

II ’ 7Xl = 0

X [ = 0 fO \

in III '
Xa = 0 Lösung : x2 = 0

in I x:) = 0 { * 3 ) loj
(triviale Lösung)

Auch das homogene System hat genau eine Lösung, und die muß dann die triviale sein.

trivial = selbstverständlich
Als Trivium (=Dreiweg ) bezeichnete man die ersten drei Fächer der siebenArtes Liberales, die in den Klosterschulen des Mittelalters als
elementare Vorstufe des Studiums gelehrt wurden: Grammatik , Dialektik und Rhetorik. Danach folgte das anspruchsvollere Quadrivium
(=Vierweg ) mit: Arithmetik, GeometrieAstronomieund Musik . Deswegen nennt man besonders einfache Dinge auch trivial.
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Das Einsetzverfahren funktioniert freilich auch bei 4,4 -Systemen , 5,5 -Systemen usw .
Auch hier sind genau eine , keine oder unendlich viele Lösungen möglich . Die Anzahl
der freien Parameter kann entsprechend der Anzahl der Unbekannten steigen . Das
Einsetzverfahren führt auch dann zum Ziel , wenn die Anzahl der Gleichungen nicht
übereinstimmt mit der Anzahl der Unbekannten . Dazu zwei Beispiele :

s 4,2-System I 2xj - x2 = 5 x2 = 2xj - 5
1- II - 3x x + 2x2 = - 8

III x x + 3x2 = - 1
IV 4x x + 3x2 = 4
II ' Xl = 2 Xi — 2

III ' 7xx = 14
1—
1< 10xx = 19

III " 14 = 14
IV " 20 = 19 l Das System hat keine Lösung .

Wie das Beispiel zeigt , genügt es nicht , aus dem System einige Gleichungen
herauszupicken und daraus »Lösungen « zu produzieren (die ersten beiden
Gleichungen würden zur »Lösung « (2 I - 1 ) führen ) . Weil alle Gleichungen
erfüllt sein müssen , muß man die »Lösung « an den restlichen Gleichungen
überprüfen ( (2 | - 1 ) löst zwar noch die dritte , aber nicht mehr die vierte
Gleichung ) .

m 2,4-System I xx + 3x2 + x3 + x4 = 4
e-
ill
ie

II xx + x3 — 2x4 = - 5 x x = 2x 4 - x 3 - 5
I ' 3x 2 + 3x 4 = 9 x4 = —x2 + 3

Weil x2 und x3 nicht links Vorkommen , wählen wir sie als freie Parameter
t . x2 = X, x3 = p . Einsetzen in die eingerahmten Gleichungen liefert x4 = 3 - X

und Xj = 1 - 2X - p.

Lösung:
M fl \ f ~ 2 \

X2 0
+ A,

1 0
X3

SS 0 0 + b 1
l - l ) 1 ° J

X, p elR

Systeme mit mehr Gleichungen als Unbekannten heißen auch
überbestimmte Systeme . Normalerweise haben sie keine Lösung.
Systeme mit weniger Gleichungen als Unbekannten heißen
unterbestimmte Systeme . Normalerweise haben sie unendlich viele Lösungen .
Man kann zeigen : Enthält das System keinen Widerspruch , dann gilt :

Anzahl der Anzahl der < Anzahl der
Unbekannten Gleichungen freien Parameter

als
um
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Aufgaben

[T![ Löse die Gleichungssysteme :
a) 10xj + x2 - 2x3 = 2 b) - Xi - x2 + x3 = 0

Xl + 2x2 + 2x3 = 3 3Xl + x2 + 2x3 = 11
4Xl + 4X2 + 3x3 = 5 - Xi - x2 + 4x3 = 9

c) 4x , + 5x2 + 2x3 rr3 d) - Xl + x2 + x3 = 0
- 19Xl - x2 - 3X3 = 2 - Xl + 4x2 + 2x3 = 0

7Xl + 4x2 + x3 = 1 2Xj + 2x2 + 3x3 — 0

e) 2X] - 3x2 - x3 = 4 f) - Xi + X2 + x3 = 0
3Xl - x2 + 2x3 = 5 Xl — 3x2 + 2x3 0
3Xl - 8x2 — 5x3 = 5 2Xj - 4x2 + x3 = 0

g) 4Xl + X2 + x3 = 1 h ) l- 5X1+ | x2 + ^ x3 = 0
Xl + 4x2 + 4x3 = 1 5 A

3Xj — 6 x 2 — 3x 3 = 0
Xl + x2 + x3 ” 1 2 4 2 03 X1 “

3 X2~
3 X3 “

i) Xl + 5x2 — 2x3 _ 0 j ) Xl + 2x2- 3x3 = 0
- 2 Xl - x2 - 3x3 = 0 2Xj - x2+ 4x3 = 0

4xi + 3x2 - x3 = 0 4xi + 3x2- 2x3 = 0

2. Löse die Gleichungssysteme und die zugehörigen homogenen Systeme:
a) 2xi + x2 — 3x3 = 5 b) 2xi + 3x2 - 2x 3 = 5

3xi — 2x 2 + 2x3 = 5 Xj — 2x 2 + 3x s = 2
5xi — 3x2 — x 3 = 16 4xj - x 2 + 4x3 = 1

c) Xi + 2x2 + 3x 3 = 3 d) 2xi - x2 + 3x3 = 4
2xj + 3x2 + 8x 3 = 4 4xi - 2x 2 + 6x 3 = 8
3x 2 + 2x2 + 17x 3 = 1 - 6xi + 3x2 - 9x 3 = - 12

Einfach - aber nicht leicht (jedes System ist ein 3,3 -System !)

a) x i + x2 = — 2 b) 2xj + 3x2 = 5
x 2 + x3 = — 2 x3 = 2

Xj + x3 = — 2 4xj - x2 = 3

c) Xj = 3 d) 2xj + 3x3 = 4
8x3 = 4 4xi + 6x3 = 8

2x 2 = 1 — 6xj - 9x3 = -- 12

e) Xi + 2x3 = 3 f ) X 1 = x 2
IICOX00+><1 X2 = X3

x 3 = 1 X3 = Xj
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4. Kleine Ursache - große Wirkung
a ) 2,01x x + x2 + x3 = 201 b) l,99xj + x2 + x3 = 201

Xl + X3 = 200 Xl + x3 = 200
~ x2 + X3 = 200 - X2 + x3 = 200

c) 2xj + x2 + X3 = 201 d) 2,01xj X2 + x3 = 200
xi + X3 = 200 X 1 + x3 = 200

- x2 + X3 = 200 - X2 + x3 = 200
e) 2xj + x2 -i- X3 = 200 f) l,99xj + X2 + x3 = 200

Xl + X3 = 200 Xl + x3 = 200
- x2 + X3 = 200 - x2 + X3 = 200

Bestimme die Parameter so , daß das System die angegebene Lösung hat :
a ) 2xj + ax2 + X3 = - 4 b) 2xx + X2 - x3 = 1

bxx - 3x2 + X3 = - 5 2xj + 3x2 = 0
6xj - x2 + icx3 = 3a 6xx + ax2 - x3 = 1

Lösung :
r- U (x^ r ( 3a

X2
VxaJ

- 2
l 2V

Lösung : x2
lXsJ

0
l- lj

+ k - 2
l 4j

c) 2x x + ax2 + x3 = 0
x 1 + x3 = 0

— x2 + ax3 = 0

Lösung : X2
{X3J

= X 1
l lJ

d ) - 3x 4 + 2x2 + ax3 = 0
Xj + ax2 + 2x3 = 0

- x2 + x3 = 0
Das System hat Lösungen .

6. Parabeln durch gegebene Punkte
Bestimme die Koeffizienten von y = ax 2 + bx + c so , daß die zugehörige Parabel
durch die angegebenen Punkte geht .
a ) P ( lll ) Q(- 2 I - 2 ) R(3 I —7 ) b) S( 0 I - 3 ) T ( 1 | —1 ) U (2 | 3)
c ) I ( lll ) J (- l | - l ) K(21 14 ) d ) E ( l | l ) F (213 ) GK—1 1 —3 )
e) U ( 1 I 0 ) V( 0 I 1 ) f ) W( 1 I 2 )

7. Bestimme die Lösungen der 4,4 -Systeme
a) 2x1 + 2x 2 — 2x 3 + 2x4 = 8 b) x 4 - 2x2 + 3x3 = 6

Xl x2 + x3 + 2x4 = 10 2x x + X3 - X4 = 1
2xi 3x 2 + 4x 3 - 3x 4 = - 4 3x 2 + 5x 3 = 21

—2x ! • 4x 2 — 3x 3 + 3x 4 = 9 3xj - 4x4 = - 13
c) Xl + 2x3 + x4 = 0 d) xL - x 2 + 2x 3 - x4 = 1

x2 + x3 - x4 = 0 3x 4 - 3x2 + 6x 3 - 3x 4 = 3
- Xl + X2 = 0 —2x x + 2x2 — 4x 3 + 2x4 = - 2

—3xj + 3x 2 — x3 - 2x 4 = 0 4xi - 4x2 + 8x 3 — 4x 4 = 4



[&] Überbestimmte Systeme

a) x i + 2x 2 = 0 b) 2xj +
2x x + 5x2 = 2 l CO* +

xi - x2 = - 5 4x : -

d) x i - 2x 2 + 2x 3 = 4
2xj 3x3 = - 2
- x i + 2x2 — 3x3 = - 6

xi + x3 = 3

x2 = - 5 c ) Xj — 2x2 + 2x3 = 4
2x2 = 11 2xj - 3x3 = - 2

= - 13 - Xj + 2x2 - 3x3 = - 6
x2 + x3 = 3

• e) Xj — 2x2 + 2x3 = 4
X2 + X3 = 3

xi — x2 + 3x3 = 7
xx - 4x2 = - 2

9J Unterbestimmte Systeme

a ) x i + x2 - 3x 3 = 3
xi - x2 + x3 = 1

c ) 6xj 2x 2 + 3x 3 = 9

2xj
2-
3 X2 + x3 = 0

e ) 2x x + x2 - x3 + 3x 4 == 0
xi — 3x 2 - X4 := 3

b) 6xx - 2x2 + 3x3 = 9
- 2x : + 1 x2 - x3 = — 3

d) 2x4 — x2 + 2x3 = 6

f ) x1 + x2 = 1
X3 + X4 = 1

** 3 . Mathematischer Hintergrund

Zwischen den Lösungen eines inhomogenen und des zugehörigen homogenen Systems
besteht ein einfacher Zusammenhang . Sind (uj | u 2 | . . . | u n ) und (v1 | v2 | . . . | vn ) zwei
Lösungen eines inhomogenen m,n -Systems , dann ist (uj - Vj I u 2- v2 1 . . . | un- v n ) eine
Lösung des zugehörigen homogenen Systems . Das sieht man sofort ein , wenn man die
i—ten Gleichungen des inhomogenen Systems nach dem Einsetzen voneinander
subtrahiert

ail u1 + ai2 u2 + . . . + ain un = bi
aji vi + ai2 v2 + • • • + ajn vn = bi_

=> a ;i (uj - Vj ) + ai2 (u2 — v2) + . . . + ain (un - vn ) = 0
Das ist die i-te Gleichung des zugehörigen homogenen Systems . Die Differenz zweier
Lösungen des inhomogenen Systems ist also eine Lösung des zugehörigen homogenen
Systems . Folglich ist jede Lösung des inhomogenen Systems darstellbar als Summe
einer speziellen Lösung des inhomogenen Systems und einer Lösung des homogenen
Systems . Es kommen sogar alle Lösungen des homogenen Systems vor, es gilt nämlich :

Alle Lösungen des homogenen Systems ergeben sich als Differenz zweier Lösungen
des inhomogenen Systems.
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