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23 . Ersetze a und b so durch xx , x2 beziehungsweise x3 , daß ein Rechtssystem entsteht .

a) A \

2. Vektoren

Wir wissen jetzt , wie man Punkte im Koordinatensystem darstellt . In der Analytischen
Geometrie löst man geometrische Probleme durch Rechnung . Wie kann man mit
Punkten beziehungsweise ihren Koordinaten rechnen ? Wie findet man zum Beispiel
den Mittelpunkt der Strecke [AB] mit A(4 I 2 11 ) und B (- 2 I 6 I - 7 ) ? Die Lösung solcher
und komplizierterer Aufgaben wird sehr unübersichtlich , wenn man nur mit Koordi¬
naten arbeitet . Gottseidank haben HERMANN GÜNTHER GRAßMANN ( Stettin 1809 bis
1877 Stettin ) und WILLIAM ROWAN HAMILTON (Dublin 1805 bis 1865 Dunsink ) etwa
Mitte des 19 . Jahrhunderts ein nützliches Werkzeug geschaffen , das das Koordinaten¬
rechnen sehr vereinfacht : die Vektoren .

HERMANN GRAßMANN war ausgebildeter Theologe . Er lehrte als Gymnasiallehrer Re¬
ligion, Chemie , Mineralogie , Physik , Mathematik , Deutsch und Latein . Obendrein war
er ein bedeutender Sanskrit -Forscher , komponierte und gab eine Volksliedersammlung
heraus . Doch war es ihm nicht gegeben , seine Ideen den Mitmenschen zu vermitteln .
Er schaffte es nie , Universitätsprofessor zu werden , seine Bewerbungen wurden immer
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abgelehnt mit dem Urteil : originell , aber unverständlich . Auch sein Hauptwerk »Die
lineale Ausdehnungslehre « von 1844 - er stellte darin zum ersten Mal die Vektorrech¬
nung vor — blieb lange Zeit verkannt .
Etwa gleichzeitig mit GRAßMANN entwickelte WILLIAM HAMILTON die Quaternionen -
rechnung als Erweiterung des Rechnens mit komplexen Zahlen . Er war es , der darin
die Bezeichnung »Vektor« eingeführt hat .
JOSIAH WlLLARD GlBBS , amerikanischer Mathematiker und Physiker , (New Haven
1839 bis 1903 New Haven ) und OLIVER HEAVISIDE , englischer Physiker , (London 1850
bis 1925 Homefield in Torquay ) haben die Vektorrechnung vor allem für physikalische
Anwendungen ausgebaut .
Nach und nach fanden auch die Mathematiker Gefallen an diesem neuen Instrument .
Anfang des 20 . Jahrhunderts hat sich die Vektorrechnung durchgesetzt . In vielen ma¬
thematischen und technischen Disziplinen ist sie heute unentbehrlich .

Was sind Vektoren?

Die Addition von Zahlen läßt sich mit Pfeilen veranschaulichen . Pfeile addiert man ,
indem man sie »Fuß an Spitze« aneinanderhängt . Der Ergebnispfeil geht vom Fuß des
ersten zur Spitze des letzten Pfeils . Diese Pfeilrechnung erweitern wir jetzt auf den
Raum .

. - 9.
- 6 3

3 + (- 9 ) = - 6

Ein Pfeil ist festgelegt durch ein Paar von Punkten . Für einen Pfeil , der von P nach Q
geht , schreibt man PQ . Wie bei der Zahlen -Pfeilrechnung sind auch jetzt nur Länge
und Richtung maßgebend . Wir nennen Pfeile parallelgleich , wenn sie dieselbe Länge
und dieselbe Richtung haben . Für parallelgleiche Pfeile verwenden wir das Gleich¬
heitszeichen und schreiben PQ = AB .

parallelgleiche Pfeile

PQ = AB

Als Sammelbegriff für die Menge aller parallelgleichen Pfeile verwenden wir die Be¬
zeichnung Vektor . Jeder Pfeil dieser Menge heißt Repräsentant des Vektors. Oft nennt
man auch die Pfeile selber kurz und bündig Vektoren.
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Eine ähnliche Unterscheidung macht man auch bei den Brüchen . | , | . . . sind Repräsen¬
tanten des Bruchs mit dem Wert 0,75 . Auch hier nennt man jeden Repräsentanten einfachheits¬
halber selber Bruch .

Wir fassen zusammen :

Definition
_ s. -

Der Vektor PQ ist die Menge aller zum Pfeil PQ parallelgleichen Pfeile.

Der Vorteil dieser Definition besteht darin , daß ein Vektor an jedem Raumpunkt als
Pfeil zur Verfügung steht .

A

AZ = v = m

Um einen Vektor unabhängig vom Repräsentanten zu bezeichnen , verwendet manauch kleine bepfeilte lateinische oder kleine deutsche Buchstaben .
Addition von Vektoren
Die Addition von Vektoren im Raum (und in der Ebene ) ist so festgelegt:Man hängt an einen Pfeil des 1 . Summanden einen passenden Pfeil des 2 . Summanden ,das heißt , einen Pfeil, der da anfängt , wo der erste aufhört . Der Ergebnispfeil führt vomFuß des ersten zur Spitze des zweiten Pfeils. Er legt den Ergebnisvektor fest.

Bezeichnet man die Anfangs- und Endpunkte der Pfeile mit Buchstaben , dann sieht dieAddition so aus:

PQ + QR = PR

Regel von CHASLES (sprich schaal )
(Michel CHASLES , französischer Mathematiker ,Epernon 1793 bis 1880 Paris )
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Für diese Vektoraddition gelten dieselben Rechenregeln wie für die Addition von Zahlen:

KonunutativgesetzderVektoraddition

U + V = V + u

u + v = AD + DC = AC
u + v

' = AB + BC = AC

U + V

v + u

AssoziativgesetzderVektoraddition

( u + v ) + w = u + ( v + w )

( uVv ) +
"
w = ( AB + BC ) +

"
CG = AC +

"
CG = ÄG

1? + (V +^ ) = ÄB + ( ESCf +
'
CG ) = AB + BG = ÄG

Weil die Reihenfolge der Additionen keine Rolle spielt,
läßt man die Klammern meist weg und schreibt lT + v + w .

G

Addiert man Vektorenlf , v
"

,
~w

" dann nennt man diese Aneinanderreihung auch
Vektorkette . Sind Fuß A des ersten und Spitze Z des letzten Pfeils verschieden , so heißt
die Vektorkette offen : der Summenvektor AZ = u + v + w + . . . hat die Richtung von A
nach Z . Fallen A und Z zusammen (Z = A) , so heißt die Vektorkette geschlossen . Formal

ergibt sich jetzt der Summenvektor AA , ein Gebilde ohne Richtung und Ausdehnung .
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T

AA = Ü + v + w + x + y

P

offene Vektorkette geschlosseneVektorkette
Wir verlangen , daß jede Addition von Vektoren wieder einen Vektor ergibt . Deshalb
müssen wir AA als Vektor zulassen . Man nennt ihn Nullvektor . Wie die Zahl 0 bewirkt
seine Addition nichts , er verhält sich »neutral « .

Definitiondes neutralenElements
Der Vektor, der beim Addieren nichts ändert , heißt Nullvektor . Man schreibt ihn "? .

a + o = a ,
AB + BB = Aß

'
, BB = "

o .
Der Nullvektor hat die Länge null .
Der Begriff der Richtung verliert beim Nullvektor seinen Sinn.

Beim Zahlenrechnen spricht man bei - 13 und 13 von Gegenzahlen , weil sich die beiden
beim Addieren aufheben , also null ergeben . Die allgemeinere Bezeichnung für Gegen¬zahl ist inverses Element . Weil man Entsprechendes auch beim Vektorrechnen
braucht , definiert man :

Definitiondes inversenElements
Der Vektor, der zu einem Vektor a' addiert den Nullvektor ergibt ,
heißt Gegenvektor von a . Man schreibt ihn —

~a .

a + (- a ) = o ,
AB + ( - AB ) = AB + BA - AA = ~

o AB = BA . Gegenvektoren

BA = - AB, AB = - BA
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Der Gegenvektor - a von a ist genau so lang wie ~a und hat die Gegenrichtung von ~a .
a ist Gegenvektor von - a . a und —

’a ' sind Gegenvektoren.
Statt ~u + (- "

v
'
) schreibt man kurz ~u - ~v und hat damit die Subtraktion von Vekto¬

ren auf die Addition zurückgeführt .

Subtraktion - Addition

u + v

S-Multiplikation

Wie beim Zahlenrechnen führt
manden eine Abkürzung ein:

man auch bei Vektoren für Summen mit gleichen Sum-

a + a + a = : 3 - a ( = 3 a )

Der Vektor 3 a ist also dreimal so lang wie und hat dieselbe Richtung.
Wie bei Zahlen erweitert man diese Produktdefinition auf reelle Faktoren :

Definition
Der Vektor r -

’a '
(reIR ) ist I r I -mal so lang wie der Vektor a .

Für r > 0 hat er dieselbe Richtung wie a ,
für r < 0 hat er die Gegenrichtung von a .

Insbesondere gilt : 1 -lf = ~a und (- 1 ) -iT = - a .
Zwei Vektoren , von denen einer ein Vielfaches des andern ist , sind parallel ;
man nennt sie auch kollineare Vektoren .



Manchmal nennt man reelle Zahlen im Gegensatz zu Vektoren auch Skalare .
Deshalb heißt die Produktbildung »Skalar -Vektor « auch S-Multiplikation .
Für die S -Multiplikation gelten ähnliche Gesetze wie für die Zahlen -Multiplikation :

Assoziativgesetz der S-Multiplikation

r , selRr -(s - u ) = ( rs ) - u
Die Begründung überlegt man sich ,
indem man auf die Definition der S -Multiplikation zurückgeht .

1 . Distributivgesetz der S-Multiplikation

r -( u + v ) = r - u + r - v re IR
Die Begründung klappt mit dem Strahlensatz .

r (ü + v) = ru + rv

2. Distributivgesetz der S-Multiplikation

( r + s ) - u = r - u + s - u r , selR
Dieses Gesetz beschreibt die Zahlenaddition r+s auf einer Zahlengerade
in Richtung ! ? , die Einheit ist die Länge von ”u .
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Beispielezum Rechnen mitVektoren

SeitenhalbierenderVektor

Die Seiten [RP] und [RQ ] des Dreiecks PQR legen die Vektoren ~a - RP und b = RQ
fest. Man sagt auch : »Die Vektoren RP und RQ spannen das Dreieck PQR auf« . M ist
die Mitte von [PQ] . Gesucht ist eine Darstellung des Seitenhalbierenden Vektors R M
durch ~a und b .

Lösung : RM = RP + PM

= "a + ~ (- ~a + b ) = ~a - |
"a + | b = | a + | b

RM = | Ca + b )
Der Seitenhalbierende Vektor ist also das arithmetische Mittel der Vektoren , die ihn be¬
grenzen . »Im Parallelogramm halbieren sich die Diagonalen . « Mit diesem Satz hätte
man das Ergebnis gleich sehen können . Betrachte dazu das Parallelogramm RPSQ, das
von a und b aufgespannt wird.

a + b = 2RM
Aufgaben vom Typ »Drücke den Vektor PQ mit den Vektoren a , b und c aus « löst
man so : Gehe von P nach Q auf einem Umweg. Der Umweg setzt sich zusammen aus

69



a , b und ~
c oder aus Vektoren , die sich aus a , b und c berechnen lassen ( offene

Vektorkette ) . Dazu noch ein Beispiel:

Spatmittelpunkt
Das Spat ist ein Prisma , das von sechs Parallelogrammen begrenzt ist ( »schiefer Qua¬
der« ) . Es wird von drei Vektoren aufgespannt . Im Spat ABCDEFGH ist M der Mittel¬
punkt der Raumdiagonale [BH] .

B

AM soll mit den Kantenvektoren u = AB , v = AD und w = AE ausgedrückt werden .

Lösung: AM = AB + BM

= u + | (- u + V^ + V ) = | li ‘
+ | Vv?'+ |

'v

AM - | (
“u + "v + "w )

Wegen AG = u + v + w ist M auch Mitte der Raumdiagonale [AG] .
G
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Ist N Mitte von [EC] , dann gilt
AN = AE + KN

=
~
vt + | EC

= w
*

+ | (- "w + + V ) = | W
* + f U

*’ + ! ^

AN = AM , also ist N = M.
Genau so kann man schließlich noch zeigen, daß M auch Mittelpunkt der Raumdiago¬
nale [DF] ist . Damit ist bewiesen daß sich die vier Raumdiagonalen eines Spats in einem
Punkt schneiden und gegenseitig halbieren .
Diese Aufgabe ist ein typisches Beispiel für die Kraft der Vektorrechnung . Das raum¬
geometrische Problem »Wie liegen die vier Raumdiagonalen eines Spats zueinander ?«
haben wir durch einfaches Rechnen mit Vektoren gelöst. Das ist Analytische Geometrie!

2 Vektoren spannen
ein Dreieck auf

spannende Vektoren

2 Vektoren spannen
in Parallelogramm auf

3 Vektoren spannen
ein Spat auf

3 Vektoren spannen
ein Tetraeder auf

Auch für Probleme der ebenen Geometrie bietet die Vektorrechnung oft eine verblüf¬
fend einfache Lösung , zum Beispiel für den Beweis des Aubel -Theorems:
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Über den Seiten eines beliebigen Vierecks zeichnet man die Außenquadrate . Verbindet
man jeweils die Mitten zweier gegenüberliegender Quadrate , so entstehen zwei Strek -
ken , die gleich lang und zueinander senkrecht sind.

AUBEL:
ÜV = XY und UVJ. XY

Im Beweis brauchen wir eine Abkürzung : Der Vektor li ist der 90 ° nach links gedrehte
Vektor "? . Dann ist ~a = - "a und a + b = "? + b . Der Beweis steht im Bild , er ver¬
wendet M aM c = d - b .

Entweder sieht man das direkt (Mittelparallelen in den Dreiecken ABD und BCD )
oder erst nach trickreicher Vektorrechnung :

M aM c = a + 2 d + c
M .M . = - "a - 2b - " M „M „ | ( M aM c

'
+ M aM c ) = d - b .
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a + d - b + ca UV = -

UV = - a + d - b + c

= a + d - b - c = XY- b - c + a + d

Beim Beweis haben wir keine Voraussetzung über eine spezielle Lage der Punkte A, B ,
C und D gemacht . Deshalb gilt das Aubel-Theorem für allerlei Sonderfälle: So kann das
Viereck konkav oder überschlagen sein , es kann zu einem Dreieck , ja sogar zu einer
Strecke entarten !
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A=D

Aufgaben
»Bestimme die Punkte . . . « steht kurz und bündig für : »Bestimme die Koordinaten der Punkte . . .«

[Ti| Zeichne in ein Koordinatensystem die Punkte A(- l | -2 ) , B (3 I 0 ) , C (2 | 2 ) , D( 0 1 1 )
und E (- 2 | 3 ) . Bestimme die Punkte V , W, X , Y und Z so , daß gilt :
V = ÄV = WB =

~
CX = DY = ZE

a ) = OA b) V = AO c )
~
v = CD

[&] Zeichne in ein Koordinatensystem A(2 | 0 ) , B(8 I 4 ) und C (4 | 8 ) .
Zeichne den Summenvektor .

a ) AB + AC b) AB + CB c ) CB + BA 5 0 14
5

d) BC + BA + CA e ) AB + BC + CA
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Zeichne in ein Koordinatensystem A( 11 1 ) , B(41 1 ) , C (61 3 ) und D(3 I 4).

Die Vektoren a , b und c sind definiert durch a = AB , b = BC ,

c = CD . Drücke folgende Vektoren mit a , b und c aus :

a ) AC b) CA c ) DA d) BD

Zeichne das Fünfeck ABCDE mit A(0 I 0 ) , B (3 I 0 ) , C (411 ) , D(4 | 4 ) und

E ( 11 3 ) . a , b , c und d sind festgelegt durch a = AB , b = BC , c = CD und

d = DE . Drücke folgende Vektoren mit A, B , C , D und E aus :

a ) it + b b)

d) - ( b + ~
tT + d ) e)

Vereinfache

a ) UV + VW b)

d) AB + TA + Bt
"

e)

- b - c

- b - Ca +
"
cT )

AB + CA

c ) a + b + c + d

c) RS - RT

XY - ZY - XZ

6. | Bestimme x

a ) ÄB + lC = "
o b) ÄB + xl

= ÄC c) AB - "x = ÄjC - ÄD

7. ABCDEF ist ein regelmäßiges Sechseck mit a = AB , b = BC,c = CD .

Drücke mit "a , b und c aus :

a ) ED b ) DE c ) FD d ) FC
"

e ) FB f ) FA g ) AD

[& j Durch Anträgen von a , b und ~
c in einem Punkt O entsteht ein räumliches

Dreibein . Ergänze die Figur zu einem Spat .
Welche Vektoren , ausgedrückt mit "a , b und ~

c , werden repräsentiert

a ) durch die Flächendiagonalen , die von O ausgehen .
b) durch die Raumdiagonale , die von 0 ausgeht .

[ft ] b und ~
cT spannen ein Tetraeder SABC auf .

Drücke BC , AB und AC mit "a\ b und ~
c aus .



10 . a , b und c setzen im Ursprung an und bestimmen das Dreieck ABC mit

OA = a , OB = b und OC = c . D, E und F sind die Mittelpunkte der Seiten [BC] ,
[CA] und [AB] . Drücke DE , EF und FD mit ”a , b und ~

c aus .

11 . AB = b und AD = d spannen das Parallelogramm ABCD auf . Nimm die Punkte

E und F so an , daß gilt : DE = | DC und AF = | AB . Drücke EF mit d und b aus .

12 . AB = a , AD = b und AE = c spannen das Spat ABCDEFGH auf .
Drücke EG , HF , EC , DF und HB mit ~a , b und ~

c aus .

13 . AE = u , AB = df und AD = w'
spannen das Spat ABCDEFGH auf .

R , S und T sind die Mittelpunkte der Seitenflächen , X und Y sind
Kantenmitten . Drücke folgende Vektoren mit df ,

”
v und 'w ' aus .

a ) ÄT , HT , AX,1ÜX , YD b) RS , YX , YT , XT , ST

14 . AB = a , AD = b und AE = c spannen das Spat ABCDEFGH auf .
a ) S und T sind festgelegt durch AS = | AB und AT = | AD .

Drücke SG , TF und ST mit ~a , b und ~
c aus .

b) M ist der Mittelpunkt von [EC ] . L liegt auf [EG] mit LE = | GE .

Drücke M L mit ~a , b und c aus .
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15 . Zeige : In jedem Dreieck ist die Summe der drei Vektoren von den
Ecken zum Schwerpunkt gleich dem Nullvektor .

16 . Eine Pyramide mit der Spitze S hat als Grundfläche das Rechteck ABCD .
Die Pyramide ist festgelegt durch die Vektoren AB = ~a , AD = b und AS = 7f .
M ist der Mittelpunkt der Grundfläche , K ist der Schwerpunkt des Dreiecks BCS .
Drücke MK mit a , b und ~

c aus.

• 17 . DA = "a , DB = b und DC - ~
c spannen das Tetraeder ABCD auf.

U , V, W und X sind Kantenmitten des Tetraeders .
a ) Drücke VX und UW mit "a , b und ~c aus.
b) L ist Mittelpunkt von [VX ] , M ist Mittelpunkt von [UW] ,

Berechne DL und D M in Abhängigkeit von ~a , b und c .
Was folgt aus dem Ergebnis ?

c ) Berechne UV und XW in Abhängigkeit von ”a , b und -? .
Was folgt aus dem Ergebnis ?

Stangenoktaeder
in Trimetrie

Stangenoktaeder
in Isometrie
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