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1. Definitionen
Sind zwei Vektoren it und b gegeben, so lassen sich damit beliebig viele Vektoren ~v
der Form

V = k~a + g. b , k,geIR erzeugen.
Man nennt jeden solchen Vektor v' Linearkombination von ”a und b . Das führt zur

Definition
"
v

” heißt Linearkombination der Vektoren “ä^ ,
~ä^ , . . . , ü ^j

wenn gilt V = + . . . + kn
"ä^ , ^ elR

v ist Linearkombination
von äj , aj, , äj und äj

Eine Linearkombination von Vektoren ist also eine Summe von Vielfachen dieser Vek¬
toren.

Ein Vektor
Hat man nur einen einzigen Vektor a ^ o , dann sind seine Linearkombinationen alle

seine Vielfachen, das heißt , alle zu ihm kollinearen Vektoren.

Kollineare Vektoren

Linearkombinationen von a
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Zwei Vektoren
Zwei nicht kollineare Vektoren "a" und b legen im Raum (bis auf Parallelverschiebung )
eine Ebene fest . Jede Linearkombination von ~a und b ist parallel zu dieser Ebene .
Vektoren , die alle parallel zu einer Ebene sind , heißen komplanar (planum ( lat . ) =
Ebene ).
Also ist die Menge der Linearkombinationen von ~a und b gleich der Menge der zu ~a
und b komplanaren Vektoren .

Sind a und b nicht kollinear , so ist jeder zu a und b komplanare Vektor v eindeutig
als Linearkombination von a und b darstellbar .

v = La + pb

Geometrisch ist das leicht einzusehen : Man konstruiert ein Parallelogramm , von dem
eine Diagonale und die Richtungen der Seiten bekannt sind .
Algebraisch ists nicht viel schwieriger:
Vor . :

”a und b sind nicht kollinear und ~v = X
~a + pb , L,peIR

Beh. : /, und p liegen eindeutig fest
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Bew. : Annahme v = a + gx b
"v = ^

"a + M-2 b

Subtraktion der Gleichungen ergibt o = - k2) a + (gj - g2) h
_ j. g 2 — gl —*■

Wäre zum Beispiel k, — X, * 0 , so würde folgen a = \- r ~ b ,Ai — A2
~a vmd b wären somit kollinear , im Widerspruch zur Voraussetzung .
Deshalb gilt X1 = X^ und gx = g^ , es gibt also nur eine Darstellung für ~v .

Drei Vektoren
Zwei Vektoren des Raums sind immer komplanar , drei Vektoren im allgemeinen nicht .
Drei nicht komplanare Vektoren heißen Dreibein . Mit einem Dreibein läßt sich jeder
Vektor des Raums eindeutig als Linearkombination darstellen . Mit etwas Raumvorstel¬
lung kann man sich das so klarmachen : Man zeichnet ein Spat , von dem eine Raum¬

diagonale und die Richtungen der Kanten bekannt sind . Je nach Lage des Vektors v
kann das Spat aber auch zu einem Parallelogramm oder sogar zu einer Strecke
verkümmern .

Dreibein

ä + i -b + lc

ä + f -b + Oc
a + Ob + 0c

Die Eindeutigkeit der Darstellung beweist man wie bei Zwei Vektoren durch einfache

Rechnung :
Vor. : a\ b und cf sind nicht komplanar und v = /. a + g b + v c , k,g,veIR
Beh . : X , g und v liegen eindeutig fest

Bew . : Annahme V = X-̂ a + gi b + v{c v = a + g2 b + v2 c

Subtraktion der Gleichungen ergibt 0 = — A^ ) a + ( gj - g2) b + (v x — v2) c
_ k2 — _ .. g2 gi ^

Wäre zum Beispiel v x - v 2 ^ 0 , so würde folgen c = a +
Vl - v 2

°

Damit wäre c komplanar zu a und b , im Widerspruch zur Voraussetzung .
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Die eindeutige Darstellung eines Vektors durch ein Dreibein verwenden wir ständig bei
der Koordinaten -Schreibweise von Vektoren :

f 3 \
v = 2 ist ja nur die Abkürzung für v = 3 e x + 2 e2 - 3 e3

U 3 J _ ^ ^ ^v ist eine eindeutige Linearkombination des Basis-Dreibeins ex , e2 und e3 .

Beispiele zur Berechnung von Koeffizienten in Linearkombinationen :

( 3 \
[T] Stelle ~v~=

Der Ansatz:

v- 3 y
als Linearkombination von a = 1 und b = 0 dar .

1- iJ UJ
liefert das 3,2 -Gleichungssystem

( 2 j
2 \ = X 1 + p 0

U 3J l-U UJ
I 3 = 2k + p

II 2 = k
III -k + p mit der Lösung X = 2 und p = - 1 , also V = 2 a - b .

Nehmen wir anstelle von v den Vektor c =
f3 \

V2 /
, gehts schief.

Der Ansatz:
f 3 ) ( 2 \ fl \2 = X 1 + p 0
U ; l-U UJliefert das unlösbare 3,2 -Gleichungssystem

I 3 = 2k + p
II 2 = X

III 2 = - X + p
Der Vektor “

v ist nicht parallel zu der von "a und b aufgespannten Ebene ,
~a , b und "? sind also nicht komplanar .

/ 2 \

[2j Stelle w

Der Ansatz:

v ° yals Linearkombination von a = 1 , b = 0 und c = 2 dar .
v-1J UJ UJ

führt zum 3,3 -Gleichungssystem
( 2 \ ( 2 \ , i ' f3 \- 1 = x 1 + p 0 + V 2
l ° J UJ UJ

I 2 = 2X + p + 3v
II - 1 = X + 2v

III 0 = - X + p + 2v
mit der Lösung X = 1 , p = 3 und v = - 1 , also VT = "a + 3 b - c\
Versucht man ,

"
w

“ als Linearkombination der komplanaren Vektoren "? , b und ?
(aus |T | ) darzustellen , so stößt man auf das unlösbare Gleichungssystem

I 2 = 2X + p + 3v
II - 1 = X + 2v

III 0 = - X + p - 3v
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als Linearkombination der komplanaren Vektoren a ,Dagegen läßt sich z =
( — 4n

- 3

b und v darstellen , allerdings nicht eindeutig.
Das Gleichungssystem 1 - 4 = 2X + u + 3v

II - 3 = X + 2v
III 5 = - X + p - 3v

hat die Lösungen A, = — 3 — 2t , |i = 2 + t , v = t mit telR .
Mögliche Linearkombinationen :
t = 0 =>

~
z - 3 ~a + 2 b + O ^v oder t = - 1 =>

~
z = - ~a + b - V

Komplanaritäts-Kriterium

Wir haben gesehen , daß man mit einem Dreibein ~a , b und ~
c jeden Vektor “

v des

Raums eindeutig als Linearkombination darstellen kann . Sind a , b und c aber kom-

planar , so ist eine solche Darstellung entweder gar nicht oder nur mehrdeutig möglich .
Um das zu sehen , müssen wir einige Fälle unterscheiden .

I ~a , b und ~
c sind paarweise nicht kollinear.

a) V ist nicht parallel zu der von a und b (und ~
c ) aufgespannten Ebene .

Für V gibt es keine Darstellung .

b) V ist parallel zu der von a und b aufgespannten Ebene .

Da sich v zum Beispiel durch a und b , aber auch mit a und c darstellen

läßt , gibts mehr als eine Linearkombination.



1

II a und c sind kollinear , a und b nicht .

a)
~v ist nicht parallel zu der von ~a und b (und ~

c ) aufgespannten Ebene.
Für V gibt es keine Darstellung .

b)
-y ist parallel zu der von a

' und b aufgespannten Ebene .
Da sich “v zum Beispiel durch ~a und b , aber auch mit ”a und ~

c darstellen
läßt , gibts mehr als eine Linearkombination .

III a , b und c sind kollinear.

a) ^ ist nicht kollinear zu~
a\

Für v gibt es keine Darstellung .

b) v ist kollinear zu a .
Da sich V als Linearkombination (Vielfaches) von ~a oder b oder ~

c darstellen
läßt , gibts mehr als eine Linearkombination .

IV Ist mindestens einer der Vektoren a , b oder ~
c der Nullvektor , so läßt sich "v

entweder nicht als Linearkombination schreiben oder auf unendlich viele Arten ,
weil der Koeffizientdes Nullvektors beliebig wählbar ist .
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Zusammenfassung
“a , b ,

~
c nicht komplanar , 1 J für V gibt es eine eindeutige

v beliebig J [ Linearkombination vonlf , b, ~c

Die Bestimmung der Koeffizienten X , p. und v der Linearkombination
v = ka + p b + v

~
c führt auf ein 3,3 - Gleichungssystem für X, |i und v :

I vx = Xax + pb3 + vcj
II v2 = Xa2 + pb2 + vc2

III v3 = Xa3 + |ib 3 + vc3
Es hat nach der Cramer -Regel genau dann eine eindeutige Lösung, wenn die Determi -

a i hi c x
ungleich 0 ist . Die Spalten von D sind die Vektoren “a , b und ~

c\nante D = a2 b2 c2
a3 b3 c3

Wir schreiben deshalb D = det(
”a , b ,

‘
c

’
).

Komplanaritäts-Kriterium

detCa"
, b ,

~
c ) ^ 0 "a ’

, b ,
-? nicht komplanar

detC? , b ,
"
c

"
) = 0 <=>

”a , b ,
~
c komplanar

Als Testobjekte nehmen wir die Vektoren aus unserem Beispiel:

det( a , b , v )
2 13
10 2

- 1 1 - 3
= 0 <=> ’a ' ,b,v komplanar

det(
"a , b , c )

2 13
10 2

- 112
= - 5 <=> a , b , c nicht komplanar

Die Reihenfolge der Vektoren hat keinen Einfluß auf die Komplanarität .
Deshalb kommt es nicht drauf an , wie man die Spalten in der Determinante anordnet :

det(
"a,b,V ) = 0 <=> det ( b ,

"a '
,
’
v ) = 0 <=> . . .

Ist die Determinante ungleich null , dann ändert das Vertauschen zweier Spalten nur
das Vorzeichen , wie Satz [4] in Kapitel II . 6 lehrt . Auch die Nachbarsätze [3] und [5]
lassen sich jetzt geometrisch deuten :

Eine Nullspalte macht die Determinante zu null , weil drei Vektoren komplanar sind ,
wenn einer davon der Nullvektor ist .
Zwei proportionale Spalten machen die Determinante zu null , weil drei Vektoren kom¬
planar sind , wenn zwei von ihnen kollinear sind.
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lineare Abhängigkeit
Die Begriffe »kollinear « und »komplanar « sind Sonderfälle der » linearen Abhängig¬
keit « . Allerdings ist sie erst dann wichtig , wenn man die Vektorrechnung verallgemei¬
nert . Die entscheidende Frage ist , ob der Nullvektor als Linearkombination der gegebe¬
nen Vektoren , zum Beispiel ~a , b und ~

c , darstellbar ist . Eine Darstellung ist natürlich
immer möglich:

~
o = 0 ~a + 0 - b + 0 - cf ; man nennt sie triviale Nullsumme , bei ihr sind

alle Koeffizienten0 . Manchmal gibt es aber auch Nullsummen, bei denen mindestens
ein Koeffizient von 0 verschieden ist , sie heißen nichttriviale Nullsummen - Beispiel:

o = 2a + b - 3c . Multipliziert man diese Gleichung mit einer Zahl , dann ergibt sich
zum Beispiel : o = 4a + 2b - 6c . Hat man also eine nichttriviale Nullsumme , dann
gibts unendlich viele . Geometrisch gesehen ist eine nichttriviale Nullsumme eine ge¬
schlossene Vektorkette . Die Multiplikation mit einer Zahl wirkt wie eine zentrische
Streckung .

Definition
Eine Nullsumme von n Vektoren "ä^ ,

~
äiT, . . . ,

”ä^ ist eine
Linearkombination dieser Vektoren , die gleich dem Nullvektor ist :
X, 1

'a^ + + • • • + = "
o nelN , ^ elR

Sind alle Koeffizientengleich 0 ,
dann heißt die Linearkombination triviale Nullsumme .
Ist mindestens ein Koeffizientungleich 0 ,
dann heißt die Linearkombination nichttriviale Nullsumme .

Der Sonderfall n = 1 ist auch zugelassen,
obwohl man dann nicht mehr von Summe spricht .
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Mit dem Begriff Nullsumme können wir jetzt endlich sagen,
was man unter »linear abhängig « versteht :

Definition
Eine Menge von Vektoren {ü ^ ,

”ä^ , . . . } , ncihf , heißt linear abhängig ,
wenn sich mit ihren Vektoren eine nichttriviale Nullsumme bilden läßt .
Andernfalls heißt die Menge linear unabhängig .

Statt »eine Menge von Vektoren { ax , a2 , . . . , an } ist linear abhängig«

sagt man auch »die Vektoren lf ^ , üjT, . . . , an sind linear abhängig«

Satz: Zwei Vektoren "a , b sind genau dannlinearabhängig,
wenn sie kollinearsind.

Beweis : Falls ~a und b linear abhängig sind, dann gilt X
~a + p b = o mit ( X I p ) * (010) .

Sei beispielsweiseX * 0 , dann ist ”a = b , das heißt, a" und b sind kollinear.

Falls a und b kollinear sind , dann gilt zum Beispiel a = a b , das heißt,

l -
~a + (- o ) b = ~

o , also sind ~a und b linear abhängig.

Satz: Drei Vektoren ~a , b ,
"c sind genau dannlinearabhängig,

wenn sie komplanarsind.

Beweis : Falls ~a , b und ~
c
' linear abhängig sind , dann gilt X a + p b + vc = o mit

(X I p 1v) ^ (01010). Sei beispielsweisep * 0 , dann ist b = - - a c .

b ist eine Linearkombination von a und c , das heißt a , b und c sind

komplanar . Falls Ff und b und ~
c komplanar sind , dann gilt zum Beispiel

~a = o b + t "c
^

, das heißt, 1 - a + (— o ) b + (— t ) c = o ,

also sind ~a , b und c linear abhängig.

Satz: Vier Vektoren 1? , b , c\ d im Raumsind immerlinear abhängig.

Beweis : Falls ~a ,

"
b und ~c nicht komplanar sind , dann läßt sich d eindeutig schreiben

als
"
d = X a + p b + v"c , das heißt , es gibt die nichttriviale Nullsumme

o
1 = Jfa + pl > + vc “ - 1 - d , also sind a\ b , V und d linear abhängig.

Falls "a , lo und c komplanar sind , dann gibt es eine nichttriviale Nullsumme

X
' a1

+ pl ) + vT =
~
o und damit auch die nichttriviale Nullsumme

X
~a + plo + vT + 0M =

“
o , also sind auch dann a"

, b , c
" und d linear abhän¬

gig-
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Zusammenfassung (Bild )

linear abhängig

linear unabhängig

linear abhängig

Aufgaben

0 Stelle c als Linearkombination von "a und b dar :

! a )
( 3 _v f — f - ll \

a = l b = 2 c = 1
< ' 1- 2, l 1 J l 8 J

b) ~
a -

( 2 ^
- 1

"
b = - 2 1 c =

<- l \
0

v 3 v 1 J

c) ~
a -

/ 4 \
2 b =

/ 2 \
- 3 ~

c =
f 8 >>
- 12

UJ V 16 J

d )
~a = r 3 "

- 2 b =
C- 6 '

4 c = ( 2 \
1

l" 1 , l 2 1 3 J
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e)

f)

a =

a =

7- 4 \ _^ 7 3a 7- 8a
2

1 0
b =

/
- 3

v 9y
c = 5

l 6 J

f 2 \ _* 7- 3 '\ 7 13 A
- 6

A 4 J
b = 9

1- 6 .

~
c =

/
—39
l 26 y

Stelle d als Linearkombination von ~a und b und c dar :

a )

b)

c)

d)

e)

a =

a =

7 2 \

A 3 y

71 a

y- b

b =

b =

' 3 a
T = | - i

a =

71a
3
0

7- 1
1
1

- 5 a
1

- 2

\
c =

7- 1 A
2

"
d =

7 0 A
- 1

) A 1 J ^ 3 J
7 1 \~

C = - 1

[&| Untersuche auf Komplanarität :

a )

b)

c)

d)

e)

a =

a =

a =

7 1 a
- 2

,
5 y

7 4 A
- 2

V 3 y

7 4 A
- 7
3

b =

b =

b =

72a

A* y
7 - 7 \

0
2

7 - 12 a
21

- 9

C -

C =

C =

( 3
8

1- 3

7 3a

v- 6y

7 8a
- 14

6

7 IA
4

"
b =

7 ° A
1 c = 2

a 1 ; l 3 J
( 3 A _^ r° i 72a

= 1 b = 3 ~
c = 1

K l 2 J l 2 J

d =
7 2
- 12

6

7- 3a
d = I - 1

10

7 2 _^ 7l > f - 4 > f i \
- 3
l 1 ,

b = 0
l 2 J

~
C = 9

l 1 y d = 1UJ
7 2 a 7 - c A f - 4 > 7 7

-1
l 4 J 1> = 0

A 1 ) ' * -1
l 6 j

"
d = - 5

l21

[X ] Untersuche , ob die Punkte A, B und C auf einer Gerade liegen :

a ) A( 2 I 01 1 )

b) A(4 I 4 1- 1 )

c) A(3 I 11 1 )

d ) A( 11 - 2 I 2)

B(3 I 2 | 0)

B(11 2 I - 1 )

B ( 7 I 3 I 3 )

B(- l I 2 I - 2)

C ( 1 1- 2 I 2 )

C ( 11 0 I 0 )

C ( 11 0 I 0 )

C (OlolO )
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Untersuche , ob die Punkte A, B , C und D in einer Ebene liegen:
(Tip : Verbindungsvektoren !)
a ) A(0 I 0 I 2 ) B ( l | - l | l ) C ( 2 | - 2 I 0 ) D(3 I 3 I 1 )
b) A(0 I 01 0) B( l | l | l ) C(— 3 I 01 —1 ) D(3 I 0 I 1 )
c) A( 11 01 1 ) B (2 I 3 I 4 ) C (- l I 11 0 ) D(2 I 11 2)

6. a = 3 u — 2 v b = u + v ~c
Zeige :

~a\ b und ~
c sind komplanar .

: 2u

[7^ Bestimme t bis z so, daß die Vektoren kollinear sind:

y l
( x '

] r 4 \
- 2 V w
U J l 2 J( !)

8. | Bestimme a bis f so , daß die Vektoren komplanar sind:
( 2 ( 1 ) fU f - 3 \ f0 r 1 ) ( c \ r 1 ) ( 4 ) r - 3 > ff \

4 y a y 3 b) 1 , 2 8 c) 2 1 2 d) 0 e 0
Hi r 6 , Ui 2 J UU UJ UJ v4 J UJ ^ 1 J HJ

9. Bestimme a so , daß die Vektoren komplanar sind:
( Qi> / £l \ r ° ) / a - 1 \ 1 \ ( 1 \ f a - 1 ^ 1 \ l \

a) 1 y ,
- 1 b) 1 , a + 1 , 1 c) 1 a + 1 1uu UJ l 1 i 1 J u a , l 1) l 1 ) b

/ a + 5 > ( 8 f 7 > fa ^ ( a —1 \ ( 1 \ f 1 \
d) - 2 y a - 5 ’

~ 7 e) 1 1 0 f ) 1 a + 1 1
l 2) l 1 va + 3 J Uj u , a J 1 > “ aJ

g) 1
- 1

f 1 )1
rOA

1
V 1 /

( 1 > r 1 )
h ) 1Ui> a + 2

l 1 i
> 1
l a J

f 3, ^ r - l > fa - 1 % fa + 1 4 \
i) 1 0 - 1 j ) a - 2 a + 2 1UJl a ) i 4 i ka 3 J a + 3 ^ UJ

10 . a

a)
b)

c)

f 2 ^ _^ f - 4 ^ f 3 \
- 1

l 4 i
, b = 0

l 1 J, c = - 1
l 6 ), v = - 3

[ 13 J
Zeige : a , b , c und a , b , V sind komplanar .
Zeige : Mit ”a und b läßt sich nur die triviale Nullsumme bilden.
Gib je eine nichttriviale Nullsumme der Vektoren "a ”

, b , c
beziehungsweise ~a , b , V an.
Schreibe ~v auf zwei Arten als Linearkombination von ~a , b und ~

c .

11 . Zeige :
a) Eine Vektormenge , die den Nullvektor enthält, ist linear abhängig .
b) Eine Vektormenge , die zwei kollineare Vektoren enthält, ist linear abhängig .
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12 . Was kann man vom Vektor kt sagen , wenn

a ) { kt} linear unabhängig ist ? b) {kt } linear abhängig ist ?

• 13 . if und b seien linear unabhängig .
Untersuche kt und kt auf lineare Abhängigkeit :

a) tt = ~a + b , kt = ka - b b)
~
u = 2"a - b , kt = b - 2~a

c) kt = 2"a + 6 b , kt = - ~a - 3 b d) kt = a~a + ß b , V = y
~a + 5 b

• 14 .
~a , b und c seien linear unabhängig .
Untersuche kt ,

"v und kV auf lineare Abhängigkeit :

a) kt = ~
a + b,kt = b + kT ,

~
w

*
= kt + kf

b) kt = kt - ~a ,
~v = b - kt ,

”vt = b - "a

c ) kt = 'a + b + ^t ,
'v ' = ~a + b , =

~a - ~c

15 . kt = AB ,
"
y = AD und ~

z = AE spannen das Spat ABCDEFGH auf mit A( 11 11 0 ) ,
B(5 I 3 I 0 ) , D(- l I 3 I 0 ) und E (- 3 111 2 ) . P , Q , R , S , T und U sind Kantenmitten .

Berechne diese Kantenmitten und den Spatmittelpunkt M.

Zeige , daß die folgenden Punkte in einer Ebene liegen , und untersuche , ob der

Spatmittelpunkt M in dieser Ebene liegt .

a ) G, T , A, Q b) A,C,S,T
c ) P , C , S, E d) P,Q,R,S,T,U

• 16 .
~x ,

~
y und kt spannen das Spat ABCDEFGH auf . P , Q , R , S , T und U sind Kanten¬

mitten . Zeige , daß die folgenden Punkte in einer Ebene liegen , und untersuche ,

ob der Spatmittelpunkt M in dieser Ebene liegt . (Bild wie Aufgabe 15 . )

b) A, C , S , T

d ) P , Q , R , S , T , U
a ) G , T , A, Q
c ) P , C , S , E
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17 . u = AB , v = AD und w = AE spannen die Pyramide ABCDE auf mit
A( 2 | — 3 I 0 ) , B(2 I 5 I 0 ) , D(- 2 | —11 0 ) und E ( 0 I 2 I 7 ) . ABCD ist ein Parallelogramm .
Die Kanten , die durch E gehen , sind jeweils durch drei Punkte gleichmäßig unter¬
teilt . Untersuche , ob das Viereck PQRS eben ist .

18 . u , v und w spannen die Pyramide ABCDE auf . ABCD ist ein Parallelogramm .
Die Kanten , die durch E gehen , sind jeweils durch drei Punkte gleichmäßig unter¬
teilt . Untersuche , ob das Viereck PQRS eben ist .

2 . Anwendungen

Mit der linearen Unabhängigkeit kann man Teilverhältnisse in ebenen und räumli¬
chen Figuren bestimmen und außerdem untersuchen , ob sich Geraden im Raum
schneiden . Dazu zwei Beispiele.

[T] Die Seitenhalbierenden im Dreieck teilen sich im Verhältnis 2 : 1 von der Ecke aus .

Vektorbeweis
Die linear unabhängigen Vektoren li und v spannen das Dreieck ABC auf.
GeschlosseneVektorkette mit S als Ecke: AP + PS + SA = ’

o
'

Wir drücken die drei Vektoren der Vektorkette mit Tf und ~
v aus:

ÄP = £ u
PS = a PC = a (- 1li + v1)
SA = ß AQ = ß( | ”u + f "v ) (ß ist negativ !)
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