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1. Definitionen

Sind zwei Vektoren @ und b gegeben, so lassen sich damit beliebig viele Vektoren v
der Form

v =Aa +pub, AuelR erzeugen.

Man nennt jeden solchen Vektor v Linearkombination von a und b. Das fiihrt zur

Definition
v heift Linearkombination der Vektoren a, , a,,..., a,,

wenngilt v = A,a; +As 8, +...+A 48, relR

AT

AT,

v ist Linearkombination

von a,, a,, a, und a,
Eine Linearkombination von Vektoren ist also eine Summe von Vielfachen dieser Vek-
toren.
Ein Vektor
Hat man nur einen einzigen Vektor a # 0, dann sind seine Linearkombinationen alle

seine Vielfachen, das heift, alle zu ihm kollinearen Vektoren.

{ Kollineare Vektore:]

0& P2

Linearkombinationen von a
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Zwei Vektoren :

Zwei nicht kollineare Vektoren a und b legen im Raum (bis auf Parallelverschiebung)
eine Ebene fest. Jede Linearkombination von @ und b ist parallel zu dieser Ebene.
Vektoren, die alle parallel zu einer Ebene sind, heiflen komplanar (planum(lat.) =
Ebene). 3

Also ist die Menge der Linearkombinationen von a und b gleich der Menge der zu a
und b komplanaren Vektoren.

””c{ —

"fa-,,(‘_
Sind a und b nicht kollinear, so ist jeder zu a und b komplanare Vektor v eindeutig
als Linearkombination von a und b darstellbar.

A=72

W=

G

Geometrisch ist das leicht einzusehen: Man konstruiert ein Parallelogramm, von dem
eine Diagonale und die Richtungen der Seiten bekannt sind.

Algebraisch ists nicht viel schwieriger:

Vor: @ und b sind nicht kollinearund V' =2@ +pb, ApuclR

Beh.: A und p liegen eindeutig fest
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Bew.: Annahme V =)\a -l-LLlT)\

Subtraktion der Gleichungen ergibt © = (A, —kg)a + (4, — uﬂ;{)-g
Wire zum Beispiel A, — A, # 0, so wiirde folgen a = :L_ 'f:fl' T;,
| i

a und b wiren somit kollinear, im Widerspruch zur Voraussetzung.

Deshalb gilt A; = A, und i, = i, , es gibt also nur eine Darstellung fiir v .

Drei Vektoren

Zwei Vektoren des Raums sind immer komplanar, drei Vektoren im allgemeinen nicht.
Drei nicht komplanare Vektoren heifien Dreibein. Mit einem Dreibein 148t sich jeder
Vektor des Raums eindeutig als Linearkombination darstellen. Mit etwas Raumvorstel-
lung kann man sich das so klarmachen: Man zeichnet ein Spat, von dem eine Raum-

diagonale und die Richtungen der Kanten bekannt sind. Je nach Lage des Vektors Vv
kann das Spat aber auch zu einem Parallelogramm oder sogar zu einer Strecke

verkiimmern. e
+ib+ic
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Die Eindeutigkeit der Darstellung beweist man wie bei Zwei Vektoren durch einfache
Rechnung:
Vor: &,bund C sind nicht komplanarund v =Aa+pb+ve, A velR

Beh.: A, pund v liegen eindeutig fest

S

vV =ha +lbb+vse

%
S

Bew.: Annahme VvV =Aa +ihb+v;¢
—)a +( )b + (v —vy)e
do—Ki o Me— =

ZAT oo oy as wiirde fole S a ' b
Wiire zum Beispiel v, — v, # 0, 50 wiirde folgen ¢ =5 ot Yy Vg

Subtraktion der Gleichungen ergibt 0 =,

Damit wire ¢ komplanar zu a und b, im Widerspruch zur Voraussetzung.
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Die eindeutige Darstellung eines Vektors durch ein Dreibein verwenden wir stindig bei
der Koordinaten-Schreibweise von Vektoren:

(3
V= ‘ 231 ist ja nur die Abkiirzung fiir v=38e, +2e, —3 e,
L,

v ist eine eindeutige Linearkombination des Basis-Dreibeins e, , e, und e, .

Beispiele zur Berechnung von Koeffizienten in Linearkombinationen:

: : 3% o2 PO
11| Stelle v :[ 2 |als Linearkombination von a=| 1 |und b=| 0 |dar.
— =) -1 1)

3 " i 2 Les P f
N (i e .
Der Ansatz: [ 2 |=A| 1 J+ I l ? | liefert das 3,2-Gleichungssystem
| = g

| J

3
INEY e

IIl =3 =-A+y mitder Losungh=2undp=—-1,also v=2a-b.

[T
]
>
+

=

Nehmen wir anstelle von v den Vektor ¢ = [é J , gehts schief.

o b O

(3 2y 1
Der Ansatz: l } [ 1 |+ u{ ]lmﬁ,ﬂ; das unlosbare 3,2-Gleichungssystem

2L+
]I 2 =?u
IIT 2 =—A+p

Der Vektor Vv ist nicht parallel zu der von a und b aufgespannten Ebene,

a, bund¢ sind also nicht komplanar.

= (2 ‘]I - = il 25 — r1 \ I’B'\
2| Stelle w = L{”als Linearkombination von a :t 1 J b= [ QJ und ¢ = | 2 | dar.
= L1 L2
¢ 2 25 rl a3 ;
Der Ansatz: |-1|=A| 1 |+ p.l U]+ v| 2 | fiihrt zum 3,3-Gleichungssystem
L0 == 1 R 1) \2)
I 2 =2k+p+3v
IT -1 =" X + 2v
I 0 =-A +pu +2v

mit der LosungA=1,p=3undv=-1,also w=a +3 b-T¢.

Versucht man, w als Linearkombination der komplanaren Vektorena , bundv

(aus l|] darzustellen, so st6ft man auf das unlésbare Gleichungssystem

I 2 =2k+pn+3v
I =1 = X g Dy
IIT 0 =—-A +p—3v
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Dagegen laft sich z = [—%3 als Linearkombination der komplanaren Vektoren a,

bund v darstellen, allerdings nicht eindeutig.
Das Gleichungssystem I —4 =2k +p+3v
II1-3= A + 2v
III 5 =-A+p-—3v
hat die «' Losungen A=—3-2t, pn=2+t,v=1t mit telR.
Mogliche Linearkombinationen:

{20 =3 E42b+ 0% odert=-1= Z =—8+b-7
Komplanaritits-Kriterium

Wir haben gesehen, da man mit einem Dreibein a’f,?:) und ¢ jeden Vektor v des

Raums eindeutig als Linearkombination darstellen kann. Sind a,b und ¢ aber kom-

planar, so ist eine solche Darstellung entweder gar nicht oder nur mehrdeutig maglich.
Um das zu sehen, miissen wir einige Félle unterscheiden.

I a,b und ¢ sind paarweise nicht kollinear.

a) V ist nicht parallel zu der von @ und b (und ¢ ) aufgespannten Ebene.

Fiir v gibt es keine Darstellung.

b) v ist parallel zu der von a und b aufgespannten Ebene.

Da sich v zum Beispiel durch a und b, aber auch mit a und ¢ darstellen
148t, gibts mehr als eine Linearkombination.

-
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II a und ¢ sind kollinear, a und b nicht.

—
N

a) v ist nicht parallel zu der von a und b (und ¢ ) aufgespannten Ebene.
Fiir v gibt es keine Darstellung.

b) Vv ist parallel zu der von a und b aufgespannten Ebene.

Da sich v zum Beispiel durch a und b , aber auch mit a und ¢ darstellen
148t, gibts mehr als eine Linearkombination.

b = /.'
& 7 P
III a, bund ¢ sind kollinear.
a) v ist nicht kollinear zua.
Fiir v gibt es keine Darstellung.
-\-é o
iy -
— w
Vo [ .

b) v ist kollinearzua.

Da sich v als Linearkombination (Vielfaches) von & oder k; oder ¢ darstellen
14f3t, gibts mehr als eine Linearkombination.

=R
+ i
B 5 % as
V= =3 i T -E
LA Y a
h .‘_N

IV Ist mindestens einer der Vektoren a,b oder ¢ der Nullvektor, so 148t sich v

entweder nicht als Linearkombination schreiben oder auf unendlich viele Arten,
weil der Koeffizient des Nullvektors beliebig wihlbar ist.
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Zusammenfassung
@ b ¢ nicht komplanar. fiir v gibt es eine eindeutige
v beliebig Linearkombination vona, b, ¢

Die Bestimmung der Koeffizienten A, i1 und v der Linearkombination
v = Aa +ub+ve fithrt auf ein 3,3- Gleichungssystem fiir A, i und v:
I v, = Aa; + pby + vey

11 Vo = Aag + pb, + ve,
III vy = Aag + pbs + veg

Es hat nach der Cramer-Regel genau dann eine eindeutige Losung, wenn die Determi-

a; b, ¢ W
nante D = | @, by ¢, | ungleich 0 ist. Die Spalten von D sind die Vektoren a,b und ¢.
ag by ¢y

Wir schreiben deshalb D = det,{_ef,g,_c\).

Komplanaritits-Kriterium

det(a,b,C)#0 < . b, ¢ nicht komplanar

det{'z'ih,?)‘,_cthﬁ = E'.I.L,-i-)\,? komplanar

Als Testobjekte nehmen wir die Vektoren aus unserem Beispiel:

e 213 =h,
det(a,b.,v)=|102|=0 & a,b,v komplanar
-11-3
213 e N
det{a,b,'é):‘ 102|=-5 < a,b,c nicht komplanar
—Heqeo

Die Reihenfolge der Vektoren hat keinen EinfluB} auf die Komplanaritat.
Deshalb kommt es nicht drauf an, wie man die Spalten in der Determinante anordnet:

det(a,b,v)=0 & det(b,a,v)=0 & ...
Ist die Determinante ungleich null, dann 4ndert das Vertauschen zweier Spalten nur
das Vorzeichen, wie Satz ﬁq in Kapitel IL.6 lehrt. Auch die Nachbarséatze ﬂ und ‘5
lassen sich jetzt geometrisch deuten:
Eine Nullspalte macht die Determinante zu null, weil drei Vektoren komplanar sind,
wenn einer davon der Nullvektor ist.

Zwei proportionale Spalten machen die Determinante zu null, weil drei Vektoren kom-
planar sind, wenn zwei von ihnen kollinear sind.
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Lineare Abhiingigkeit

Die Begriffe »kollinear« und »komplanar« sind Sonderfélle der »linearen Abhéngig-
keit«. Allerdings ist sie erst dann wichtig, wenn man die Vektorrechnung verallgemei-
nert. Die entscheidende Frage ist, ob der Nullvektor als Linearkombination der gegebe-

nen Vektoren, zum Beispiel a,bund ¢ , darstellbar ist. Eine Darstellung ist natiirlich

immer méglich: © =0-a +0-b + 0-C ; man nennt sie triviale Nullsumme, bei ihr sind
alle Koeffizienten 0. Manchmal gibt es aber auch Nullsummen, bei denen mindestens
ein Koeffizient von 0 verschieden ist, sie heillen nichttriviale Nullsummen — Beispiel:

0 =2a + b —3¢. Multipliziert man diese Gleichung mit einer Zahl, dann ergibt sich

zum Beispiel: 0 =4a +2b —6¢c. Hat man also eine nichttriviale Nullsumme, dann
gibts unendlich viele. Geometrisch gesehen ist eine nichttriviale Nullsumme eine ge-
schlossene Vektorkette. Die Multiplikation mit einer Zahl wirkt wie eine zentrische
Streckung.

Definition
Eine Nullsumme von n Vektoren a,, a,,..., a, isteine
Linearkombination dieser Vektoren, die gleich dem Nullvektor ist:

T

AMa; +A,a; +...+A 8, =0 nelN, LelR

Sind alle Koeffizienten gleich 0,

dann heifit die Linearkombination triviale Nullsumme.

Ist mindestens ein Koeffizient ungleich 0,

dann heifit die Linearkombination nichttriviale Nullsumme.

Der Sonderfall n = 1 ist auch zugelassen,
obwohl man dann nicht mehr von Summe spricht.
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Mit dem Begriff Nullsumme konnen wir jetzt endlich sagen,
was man unter »linear abhéngig« versteht:

| Definition i

Eine Menge von Vektoren (&, a,,..., a, }, nelN, heifit linear abhiingig,

wenn sich mit ihren Vektoren eine nichttriviale Nullsumme bilden 148t.
Andernfalls heifit die Menge linear unabhingig.

Statt »eine Menge von Vektoren {@; , .., a, | ist linear abhangig«

sagt man auch »die Vektoren &, , @;,..., a, sind linear abhéngig«

Satzz  Zwei Vektoren &, b sind genau dann linear abhiingig,
wenn sie kollinear sind.
Beweis: Falls a und b linear abhéingig sind, dann gilt Aa +ub =70 mit(Alp)=(010).

7 . ; o , s W= - o T i
Sei beispielsweise A # 0, dannist a = =5 b, das heifit, @ und b sind kollinear.

Falls a und b kollinear sind, dann gilt zum Beispiel a = (T-b‘, das heifit,

1.2 + (= 0}-1; - 0,alsosind a und b linear abhéngig.

Satzz  Drei Vektoren a, _lr:;, ‘¢ sind genau dann linear abhiingig,
wenn sie komplanar sind.
Beweis: Falls a, bund © linear abhiingig sind, dann gilt A& +jt b +vC=0 mit
(A lulv) #(01010). Sei beispielsweise jL# 0, dann ist B E_‘? - ;T
t; ist eine Linearkombination von a und ¢, das heifit a, T:-‘ und ¢ sind
komplanar. Falls a und b und © komplanar sind, dann gilt zum Beispiel
2 =ob+1c ,dasheift, 1.2 + (- )b +(1)¢ =0,

also sind @, bund ¢ linear abhingig.

Satz  VierVektoren &, b, ¢, d im Raum sind immer linear abhiingig.

Beweis: Falls a, b und © nicht komplanar sind, dann la8t sich d\ eindeutig schreiben
als d =23 + _u_l; +v¢, das heiBt, es gibt die nichttriviale Nullsumme
o =\a + u"b\ +ve =1 d alsosind a, k; ¢ und d‘ linear abhéngig.
Falls &, bund ¢ komplanar sind, dann gibt es eine nichttriviale Nullsumme

Aa +ub +ve = o und damit auch die nichttriviale Nullsumme

F
P
= N
'8
i
i
i
!
i
i

2% +ub +ve +0-d = 0, alsosind auch dann a, b, ¢ und d linear abhin-

2ig.

=
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Zusammenfassung (Bild)

\

A'_.
hnf‘ n ]'1

-‘nl{I;‘
linear unabhiingig

p— 1

|1n
Qar
Uny ll'h*"lp;

i

linear abhiingig

Aufgaben

Iﬂ Stelle ¢ als Linearkombination von a und b dar

a £ 5 I/_]\ | e s ]]\

a) = :[1 | b= 2 e
2) (1) 8

2 l/'-z‘ = By ¥ rl
b) El:-—lJ b =|-2 c =0
s 4 1
. ( 25 - 8

¢) B =|: -3| T = u
L 4 m

Ny

ol

]
T
L = b
e
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< 2y e 1y ~1 = 0~

ﬂ) a = —1 = 3|| Ei: 2 d = [—]
3 0) 1 (13

o 1 iy -1 " (1‘] o ;2
b) a =(1} b :| 1 ] = |—1 d = |=12
=1 W L1) 6
= 3 — 57 iy S A

c) a:—l] b=|21 o =il d= =1
4 = 3 {10{.

. (2 day —4y . 1

d} a = l"’s} b —= (0 C\.:! g d — 11
1 k2 b lj
L 2 1L -3 r—d] Sy R
e) a=[--1] b:[ﬂw T =|-1 d = |-5]
4 1) 6 ) L2t

LB \ /

(1 =i il g ihoaey

d a-= 4} b =|1 c:[2
\1) LU 3J

- 3y P 70y & 2

e) ‘5:'1J e c:[1|
0 l:z, 2 )

Untersuche, ob die Punkte A, B und C auf einer Gerade liegen:

a) AR/0[1) B(3/2]0) g =212)
b A4|4]-1) B(1|2|-1) calolo)
c) A@BI1l1D) B(71313) c1lolo
d A(l-2]2) B-1l21-2) cololo)

pREyE

1]




_5_. Untersuche, ob die Punkte A, B, C und D in einer Ebene liegen:
(Tip: Verbindungsvektoren!)
a) A0]0]2) Bt |=1]1) ce|-210 D(313]1)
b A©|0|0) B(1l1l1) C-3lol-1) D@Elol1)
¢ Aol B2|3|4) C(-111]0) D(2]1]2)
6. a=3u-2v b= T=2u-v
Zeige: a, b und ¢ sind komplanar.
T?_ Bestimme t bis z so, daf} die Vektoren kollinear sind:
A 763 i £ gy
| 2 y | -2 | v | w ()
| I J X Z A \, ! rl L8 [‘} / | ‘) J

8| Bestimme a bis f so, dal} die Vektoren komplanar sind:

el s -3y 0 b \1 4y =3 fy

4 {a|d m| 1|2 ,fs ) H ! dof)| e[l

-1)’\-6)’\ 5 2 I’l-1)°l1 i Lz 1 k=1
9. Bestimme a so, daf} die Vektoren komplanar sind:

) ) \ 2)\d)

Fay ra fO a—-1y ¢ 1 e a—1y.r 1 y ¢ 1
1 ] b) 1 ]‘._a+]\|, 1 c) | s ] ]
i 1 JL1 )\1-a 1 1 Jla-1

s,

a)

i G ot - I N ‘ay say 0y a—1n r I8 e il
(1}‘ ~2 _'[a—5js| -7 e) [l HE __Ln f}[ 1 |Ja+1|,[ 1
\ 2 )I \ 1 .\E.i+ az'i G) ' 1 ! 2)’ a A :\ 1 I'\l —El),

gl 04 an 1l | g
JL],1a ]1}[1|'a+2, 1] i)

1 1 1) 1 J\a; |
— Ilr_a -“4 — 3

1, b = 0 J, _C\z [_]], v = (‘3]
y | 1 6 13

a) Zeige: a, b, ¢ und a, b, v sind komplanar.

. (2
10. a = {—'

b) Zeige: Mit a und b 1263t sich nur die triviale Nullsumme bilden.

Gib je eine nichttriviale Nullsumme der Vektoren a, b, ¢
beziehungsweise a, b, v an.

¢) Schreibe v auf zwei Arten als Linearkombination von a,bundc.

11. Zeige:
a) Eine Vektormenge, die den Nullvektor enthilt, ist linear abhingig.

b) Eine Vektormenge, die zwei kollineare Vektoren enthilt, ist linear abhéngig.
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12.

* 13.

* 14.

15.

* 16.

Was kann man vom Vektor X sagen, wenn

a) {x} linear unabhingig ist ? b) {x} linear abhiingig ist ?

a und b seien linear unabhingig.

Untersuche 1 und v auf lineare Abhéingigkeit:

—a+b, v=a-b b uw=2a-
At \.2{1

ot UeE = ot Sy

a) u a
¢ u a

+

—= o
o

<|

Il

-

|,

+

(7

ol

a, b und ¢ seien linear unabhéngig.

Untersuche @, v und w auf lineare Abhéngigkeit:

5

a) u=a+b, v=b+ec, w=a+¢
b) u=c¢c-a,v=b—t¢, w=bhbh-a
¢) m=a+b+c,v=a+h, w=a-—-¢

—_—
e —
X

_AB, 7 = AD und Z = AE spannen das Spat ABCDEFGH auf mit A(1]10),
B(513]0), D(=1]/3]|0) und E(-3]112). P, Q, R, S, T und U sind Kantenmitten.

Berechne diese Kantenmitten und den Spatmittelpunkt M.
Zeige, daf} die folgenden Punkte in einer Ebene liegen, und untersuche, ob der

Spatmittelpunkt M in dieser Ebene liegt.

a) GT,AQ b ACST
e) P05 E d P,QR,STU

x, y und z spannen das Spat ABCDEFGH auf. P, Q, R, S, T und U sind Kanten-
mitten. Zeige, daf} die folgenden Punkte in einer Ebene liegen, und untersuche,
ob der Spatmittelpunkt M in dieser Ebene liegt. (Bild wie Aufgabe 15.)

a) GTAQ b ACST
e) PCS5E d P,QRSTU
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17.

18.

%

T = AB,V = ADund W = AE spannen die Pyramide ABCDE auf mit
A2|-3]0), B2|5/0), D(-2|-1|0)und E(0| 2| 7). ABCD ist ein Parallelogramm.
Die Kanten, die durch E gehen, sind jeweils durch drei Punkte gleichmiflig unter-
teilt. Untersuche, ob das Viereck PQRS eben ist.

u, v und w spannen die Pyramide ABCDE auf. ABCD ist ein Parallelogramm.

Die Kanten, die durch E gehen, sind jeweils durch drei Punkte gleichmifig unter-
teilt. Untersuche, ob das Viereck PQRS eben ist.

2. Anwendungen

Mit

der linearen Unabhéngigkeit kann man Teilverhéltnisse in ebenen und rdumli-

chen Figuren bestimmen und auBlerdem untersuchen, ob sich Geraden im Raum
schneiden. Dazu zwei Beispiele.

]
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Die Seitenhalbierenden im Dreieck teilen sich im Verhiltnis 2 : 1 von der Ecke aus.

Vektorbeweis
Die linear unabhéngigen Vektoren u und v spannen das Dreieck ABC auf.

Geschlossene Vektorkette mit S als Ecke: AP‘ + PS + ﬁ =0
Wir driicken die drei Vektoren der Vektorkette mit u und v aus:

AP = ﬁ'u‘
PS =0 PC =al-50 +7)
SA =PAQ =B(3T +3V) (B ist negativ!)
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