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VIII . Ebenen



1 . Ebenengleichungen
Eine Ebene im Raum ist eindeutig bestimmt durch
- drei Punkte , die nicht auf einer Gerade liegen
- eine Gerade und einen Punkt , der nicht auf der Gerade liegt
- zwei echt parallele Geraden
- zwei sich schneidende Geraden
- einen Punkt und zwei verschiedenene Richtungen

(nicht kollineare Vektoren )

0
Eine Gleichung einer Ebene beschreibt die Ortsvektoren X aller Ebenenpunkte . Für
diese Beschreibung eignet sich die Festlegung durch einen Punkt und zwei Richtungen
am besten . Man wählt einen Punkt A der Ebene E als Aufpunkt und zwei nicht kolline¬
are Vektoren u und v als Richtungsvektoren , die parallel zur Ebene liegen. Der Orte¬
vektor X eines beliebigen Ebenenpunkts läßt sich dann darstellen als Summe von A
und einer Linearkombination von u und v : X = A + Ä,u + p v . X , p heißen Parame¬
ter des Punkts X . Die Gleichung heißt Parametergleichung oder Punkt-Richtungs-
Gleichung der Ebene.
Jeder Punkt der Ebene ist eindeutig durch das Parameterpaar ( X I p ) festgelegt . A , u
und V bestimmen in der Ebene also ein (meist ) schiefwinkliges Koordinatensystem mit
A als Ursprung und ( X, I p ) als Punktkoordinaten .
Zusammenfassung

Ist A irgendein Punkt der Ebene E und sind u und V zwei zu E parallele ,
nicht kollineare Vektoren , dann nennt man E : X = A + Xu + p

~v X, pelR
eine Parametergleichung von E .
A heißt Aufpunkt , Ji und V heißen Richtungsvektoren ,
X und p heißen Parameter der Ebenengleichung .

Die Bedingung X , pelR läßt man aus Bequemlichkeit meist weg.
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Beispiel : E : X =

, P(517 | 2 ) liegt in E .zu X -

Je nach Wahl von Aufpunkt und Richtungsvektoren gibt es für eine Ebene (wie bei ei¬
ner Gerade ) verschiedene Parametergleichungen . Bei zwei Parametergleichungen , die
ein und dieselbe Ebene beschreiben , müssen die Richtungsvektoren komplanar sein .
Komplanarität sieht man gewöhnlich nicht auf den ersten Blick: Bei Ebenen erkennt
man Parallelität oder Identität erst nach Rechnung (im Gegensatz zur Gerade ) . Die
Ebene E (oben) kann zum Beispiel auch die Gleichung haben

_ ^ f 5 ) ^4 's r ° > ( 2 > /
E : X = 7

l 2 J+ o 2
Uv+ T 4

Uv, es gilt nämlich: 2
UJ= i -

(U
1 - 3Uvund 4

Uv= (- ! )• - 1
Uv+ 1 -

V

Ebene durch drei Punkte
Als Aufpunkt wählt man einen der drei Punkte . Als Richtungsvektoren wählt man zwei
linear unabhängige der 6 möglichen VerbindungsVektoren ,
zum Beispiel: X = C + X CA + p CB .
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Ebenedurcheine Gerade und einen Punkt
Als Aufpunkt wählt man zum Beispiel den Aufpunkt G der Gerade g, als Richtungsvek¬
toren zum Beispiel den Richtungsvektor der Gerade und den Verbindungsvektor
GP : x

"
=

"
G + X

~r + pGP .

Ebenedurchzwei Parallelen
Als Aufpunkt wählt man zum Beispiel den Aufpunkt G der Gerade g , als Richtungsvek¬
toren zum Beispiel den Richtungsvektor T der Gerade g und den Vektor GH , der die
Aufpunkte der Geraden g und h verbindet : X = G + X

~r + p GH .

Ebenedurchzwei sich schneidendeGeraden
Als Aufpunkt wählt man zum Beispiel den Aufpunkt G der Gerade g , als Richtungs¬
vektoren am besten gleich die der Geraden : X = G + X

~r + p
"s .
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Koordinatengleichung
Die Parametergleichung einer Ebene ist zwar recht anschaulich , aber sehr unhandlich
beim Rechnen . Gottseidank gibt es eine einfachere Beschreibung mit einer Gleichung,
man sollte sie normalerweise immer verwenden : die Koordinatengleichung . Zu ihr füh¬
ren verschiedene Wege :

Elimination der Parameter aus der Parametergleichung

Beispiel :
_ ^ ( 2 ) r 1 1 / 3a

E : X = - 2
1 ° )

+ X - 1 + h 3UJ
I Xi — 2 + % + 3g

II x2 = — 2 - K + 3(x
III x3 = 0 + X + g

I '
Xj = 2 + x3 + 2g

II ' x2 = - 2 - x3 + 4g
II " x2 = - 6 - 3x3 + 2x:

X = x3 - g
2g = x: - 2 ~ x3

II ” ist die Beziehung zwischen den Koordinaten des allgemeinen Ebenen¬
punkts X(xj I x2 1x3 ) . Wir ordnen um und bekommen die Koordinatenglei¬
chung : E : 2xj - x2 - 3x3 - 6 = 0

Man kann zeigen, daß jede solche lineare Koordinatengleichung (bei der nicht alle Koef¬
fizienten zugleich null sind ) eine Ebene beschreibt . Zum Beweis braucht man nur zwei
der Koordinaten als freie Parameter zu nehmen . Wir führen es an unserm Beispiel vor:

E: 2xj - x2 — 3x3 - 6 = 0,
Xi = o,
x3 = x,
x2 = - 6 + 2o - 3x oder vektoriell geschrieben:
' Xi ^

f a A f 0 r 0
x2 - - 6 + 2o - 3t —- 6 + G 2 + x - 3

l X3 ) T j l 0 J lo , l 1 J
das ist eine der unendlich vielen Parametergleichungen von E .

Satz
Jede lineare Gleichungder Form n,x t + n<2x2 + n3x3 + rg, = 0,
bei dermindestens einer der Koeffizienten n, , m2 , n3 ungleichnull ist,
beschreibt eine Ebene .
Ein Punkt P(pj I P2 1P3) hegt genau dannin dieser Ebene ,
wenn seine Koordinatendiese Gleichungerfüllen : n,pj + n^Pz + n:iP:i + n,, = 0.
Eine solche GleichungheißtKoordinatengleichung der Ebene .

Mit der Koordinatengleichung ist es viel leichter zu entscheiden , ob ein Punkt in einer
Ebene liegt. Zum Beispiel liegt ( 21 —2 I 0 ) in E : 2x , — x2 — 3x3 — 6 = 0 ,
denn es gilt 2 -2 - (- 2 ) - 3 -(0 ) - 6 = 0.
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Multipliziert man eine Koordinatengleichung mit einer Zahl (*0 ) , so ändert sich die Lö¬
sungsmenge nicht , die beiden Gleichungen beschreiben dieselbe Ebene . Man vereinfacht
eine Koordinatengleichung so , daß die Koeffizienten teilerfremde , ganze Zahlen sind ,
Beispiel : E : 6xx - 9x2 + 12x3 — 36 = 0 | | : 3 F : - f xx + f x2 - 3x3 + 9 = 0 | | • (- f )

E : 2x1 - 3x2 + 4x3 - 12 = 0 F ; 2xi _ 3Xz + 4x3 - 12 = 0 (E = F !)

*Determinantenmethode
Ein Punkt X liegt genau dann in der Ebene , wenn die Vektoren AX , df und V kom -
planar sind , das heißt det ( AX , u\ V ) = 0 . Rechnet man diese Determinante aus , dann
steht die Koordinatengleichung da .

Beispiel (von oben ) : E : X = AX = X

det ( A X , u , v ) =
Xj - 2 1 3
x2 +2 - 1 3

x3 1 1
= 0

A =
r xx - 2 ^

x 2 + 2

V X3 )

(XJ - 2M- 4 ) - (x2 +2 ) -(- 2 ) + x3 -6 = 0
- 4xj + 8 + 2x2 + 4 + 6x3 = 0
- 4xj + 2x2 + 6x3 + 12 = 0 | | : (- 2 ) E : 2x : - x2 - 3x3 - 6 = 0

Sind von einer Ebene drei Punkte bekannt , so findet man die Koordinatengleichung
direkt mit der Determinantenmethode (ohne Umweg über die Parametergleichung ) ,
Beispiel : A( 0 I - 2 I 0 ) , B (2 | 2 I 4 ) , C (- 6 I - 5 I 6 )

_ ^ ( 2 \ f 1 ) . f- 6Ni ( 2 ^ Xj 1 2
AB = 4 = 2 2 > a n - 3 = - 3 1 x2+2 2 1

j l 6 J l- 2 > x3 2 - 2
(xjM - 6 ) - (x2 +2M- 6 ) + x3 -(- 3 ) = 0
E : 2xj — 2x2 + x3 - 4 = 0 AX

Zur Kontrolle empfiehlt es sich , den einen oder andern Punkt einzusetzen .
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Aufgaben

\l \ Gib eine Parametergleichung der Ebene E an , die den Punkt P(- 2 I 11 7 ) enthält

aufgespannt wird .
f - 3 \

und von den Vektoren u = 1 und v = 5
l 1 J

_ ^ ( ! ) f - 2 \
X = 1

l 3 J
+ x 7

l 2 V
+ p 0

L 5 J|2. | Gib die Punkte A, B , C und D an , die in der Ebene E : X =

liegen und die Parameterwerte haben
A(X = 01 p = 0 ) , B(k = 01 p = 1 ) , C (X = 11 (j. = 0) , D (k = 11 ja. =

[&| Untersuche , ob die Punkte A( 11 41 6 ) , B (5 I —7 | 0 ) und C ( 141 2 | 7 )

liegen , und nenne gegebenenfalls
—- ( 2 > f - 2 \

in der Ebene E : X = 0 + X 1 3
V3 J UJ l 2 J

die zugehörigen Parameterwerte . Zeichnung im Koordinatensystem !

[4 ] Stelle eine Parametergleichung der Ebene E (ABC ) auf mit den Punkten

a ) A(2 | 11 3 ) , B (- l | 01 5 ) , C(2 | - 7 I 3 )
b) A(2 I 11 - 3 ) , B(7 I - 11 5 ) , C (- 3 I 3 | - 11 ) ( !)

5, Gib eine Parametergleichung der Ebene an , die festgelegt ist durch
a ) U ( 11 0 I - 1 ) , V( 0 I 0 | 0 ) , W(- 2 I — 4 | 1 )

b) P( l | 2 | - l ) ,g : X
*

=

11
2
- 1

( 2 \
X = 0 + x - 2

7 ° J
_ ^ _ v f

c) g : X = 0
LoJ

+ x - 2UJ
( 2 \

, h : X = 0
Uj

( 3 ^

+ M-
V
f

d ) g : X
^

= 0
loj

+ X - 2Uj, k : X
*

= 4
^ oj

+ |i
V

N /■- 8 ^ ( 6 \
1+ , f : X = - 2 + k 3

J 1-12J Uj I- 9J6J g : X =
^
- 2

Bestimme eine Parametergleichung der Ebene E , die g enthält und parallel ist zu f.

. Gib eine Parametergleichung_ ^ ( 2 \ r 3 )
, a : X = l \ + X

v7 J
5 , b : X = 8 + p 1

UJ
der Ebene E an , die A enthält und parallel ist zu a und b.

• 8 . Welche Punktmenge beschreibt die Gleichung X =

wenn gilt : - °o < X < + 00 und - 1 < p < 1 ?

( 2 '\ f2 \
5 + k 1 + pUJ UJ
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: 9 . Welche Punktmengen beschreiben die Parametergleichungen ( u , v * o )
1

a ) X = P + ~ u , g. ^ 0

c ) X = Ä/u + g
~
v , k + g = l

10 . A(31 0 I 2 ) , g : X

b ) X = u , M- * 1

M 'n yl ;
X = 1 + k 0IsJ UJ

d ) X = k u + g v , k + g < 1

Bestimme eine Parametergleichung der Halb¬
ebene H , die den Punkt A enthält und von der
Gerade g begrenzt ist ?
Zeichnung im Koordinatensystem !

11 Führe die Parametergleichungen über in Koordinatengleichungen :

r0 \ _ ^ y- l > /
a ) X = l

1 ° ;
+ x 6UJ+ h 3

l o J b ) X = 4
l 2 ;+ x

\

c ) X
/ l \

v 2 /
+ k

y0 \
1
4

\ ( 2 \ _ ^ ( l a f

J
- 1 d ) X = 2

1- 3;
+ x

V

( 1 A
- 1
3

( \ \
1

- 2

/ 3 \
+ g

+ g

v ° y
( 1 A
- 2

v 1 y
_ ^ y 10 y f 8 > yl ; _ ^ r l ) f z6 \

e ) X = 5 + k - 5
l- 2 y

+ g 15
l 6 y

f ) X = 2
v3j

+ X 0
löy

+ g 0
l 7 J

12 . Prüfe , welche der Punkte A ( 11 21 —2 ) , B (0 I 01 0 ) und C (2 | 0 I 1 ) in der Ebene liegen
a ) E : Xj + 2x 2 - 2x 3 = 0 b ) F : 3x 3 - x3 = 5 c ) G : x2 = 0

13 . | Bestimme den Parameter so , daß P ( 11 21 —5 ) in der Ebene liegt
a ) E : Xj - 2x z + x 3 - a = 0 b ) F : ax 3 + x2 = 0
c ) G : 2x 3 - 3x2 + ax 3 = 2a

14 . Gib Koordinatengleichungen der Koordinatenebenen an .

15 . | Gib eine Koordinatengleichung der Ebene an , die festgelegt ist durch
— f 1 ! ( 2 > y- 5 ; _ ^ y 0 \

a ) X = 2 + k - 1 + ß 1 b ) P (- l | 3 I 3 ) , g : X = 2
l 6 y l - 2 y l 3 y l 6 J

+ A, | 2

c ) A ( 11 11 - 4 ) , B ( 0 I 2 | 1 ) , C (- 3 I - 11 - 2 )

d ) g: 3f =

e ) g: X =

fOl zl > _ v y (h f2 + X 2 , h : X = 2 + JI6 3 6V J v y i ° y V

r 0 ^ y (H f
2 + X 2 , k : X = 0 + o

l6y \ 3y Uy V

( 2 \
0
1

* r 2 ^ r 5 ^ fl4 > r 2 "i16 . s X = i + k- 3j
- 2

v 8 y, h : X = - 8
l 17 y

+ T
‘

Zeige , daß sich g und h schneiden , und gib eine Koordinatengleichung der Ebene an ,in der g und h liegen .
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17 . Die Würfelecken A, C , F und H sind die Ecken eines regelmäßigen Tetraeders .
Bestimme Koordinatengleichungen der Ebenen , in denen die Seitenflächen des
Tetraeders liegen.

• 18 . In einem Würfel liegt eine regelmäßige sechsseitige Pyramide . Die Ecken ihrer
Grundseite P , Q, R , S , T und U sind Kantenmitten des Würfels. Bestimme Koordi¬
natengleichungen der Ebenen , in denen die Grundfläche und die Seitenflächen der
Pyramide liegen.

• 19 . Die oberen vier Ecken des Sechsflachs liegen gleich weit über der x1x2-Ebene.
a) Begründe , daß das Sechsflach ein Pyramidenstumpf ist,

und berechne die Pyramidenspitze S .
b) Bestimme Koordinatengleichungen der Ebenen , in denen die Seitenflächen des

Sechsflachs liegen.

20. Die Ebenen E und F haben eine besondere Lage im Koordinatensystem.
Beschreibe diese und stelle Koordinatengleichungen der Ebenen auf.

f 1 !
E : X = 2 0

1- 1J l ° J
f o > ( 0 1

F : X = 3 1 + ß l
- 2 v V
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21 . Gib eine Koordinatengleichung der Ebene an , die
a) durch P( 11 2 | - 2 ) geht und parallel ist zur x1x3-Ebene

_ f 4 > ( 2 \
b) die Gerade g: X = 1 + x 3

l- 3 ;
enthält und parallel ist zur x3-Achse

c ) durch den ILOktanten geht und den (rechten ) Schnittwinkel der
x1x3-Ebene und x2x3-Ebene halbiert .

Zeichnung im Koordinatensystem !

22. Gib Parametergleichungen an von:
a) E : 2x3 - x2 + 3x3 - 6 = 0 b) F : xx = x2 c) F: x3 = 5

( Ha \ ( ~2 \
•23. fa : X = 3 + 3a + k 1

l a ~ a J L_ J-J (siehe Bild Seite 157)
a) Zeige, daß die Geradenschar eine Ebene E bildet .
b) Gib eine Parameter- und Koordinatengleichung dieser Ebene E an .

: 24 . ga : X
( 2 \

v 2 ;

a - l 's
+ p | 2a + 2

a
(siehe Bild Seite 158)

a) Zeige , daß alle Geraden der Schar in einer Ebene F liegen.b) Gib eine Parameter- und Koordinatengleichung dieser Ebene F an .
c) Welche Ebenenpunktekommen in der Geradenschar nicht vor ?

_ ^ ( 0 ) f l - a \
25 . ja: X = 5 - 5a + o a - l

l o , l 1 J (siehe Bild Seite 159)

Zeige , daß die Geraden der Schar nicht in einer Ebene liegen.

2 . Lage im Koordinatensystem

Ursprungsebene
Der Ursprung 0 (0 I 01 0 ) liegt genau dann in der Ebene
E : n3Xi + n2x2 + n3x3 + n0 = 0 , wenn n0 = 0 ist .
Zum Beispiel geht die Ebene U : 3x : + x2 - 2x3 = 0 durch den Ursprung .
Der Parametergleichung sieht man das nicht so ohne weiteres an ,
außer der Ursprung ist Aufpunkt , U : X = X

~u + p
"v .

Parallelitätzu einerKoordinatenebene
Liegt E im Abstand 4 über der x1x2-Ebene , so erfüllen ihre Punkte die Gleichung x3Ihre Koordinatengleichung lautet x3 - 4 = 0 , oder ausführlicher 0 -Xj + 0 -x2 x3 - 4
Allgemeingilt : Sind die Koeffizientennj und Uj gleich null ,

so ist die Ebene parallel zur XjXj -Ebene.
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In der Parametergleichung erkennt man diese Parallelität daran , daß in beiden Rich¬
tungsvektoren dieselbe Koordinate null ist , Die Ebene E : x3 — 4 = 0 hat zum Beispiel die

Parametergleichung E : X = f-2 ^ ( 6 > f - 1 \
2 + x - 1 + b - 4

U V l o J
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Parallelitätzu einer Koordinatenachse
Ist der Koeffizient iij null , dann ist die Ebene parallel zur Xj-Achse .
Wir erläutern das am Beispiel E : 2xj - x2 + 6 = 0 . Der Punkt P(0 I 6 I 0 ) liegt in E , aber
auch alle Punkte P>(01 6 I X) mit beliebiger x3-Koordinate X . Diese Punkte liegen auf der

, g liegt parallel zur x3-Achse. Also ist E parallel zur x3-Achse .
Die Gleichung 2xx - x2 + 6 = 0 beziehungsweise x2 - 2xx + 6 beschreibt im ebenen xxx2-
Koordinatensystem eine Gerade s3 , in der E die xxx2-Ebene senkrecht schneidet .

r ° "i f 0 \
X = 6 + x 0

1 ° , UJ

In der Parametergleichung erkennt man diese Parallelität auf Anhieb nur dann , wenn
einer der Richtungsvektoren parallel zu einer Koordinatenachse ist . Die Ebene E :

2xj - x2 + 6 = 0 hat zum Beispiel die Parametergleichung E : X = f0 \ ( 2 \
X = 2

l 1 V
+ X 0UJ+ h 4

1-iJ
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Achsenpunkte , Achsenabschnittsform , Spurgeraden
Die Schnittpunkte einer Ebene und der Koordinatenachsen heißen Achsenpunkte der
Ebene . Man bestimmt sie aus der Koordinatengleichung , indem man jeweils zwei Koor¬
dinaten null setzt .

Beispiel : H : 2x l + 3x2 + 6x3 — 6 = 0
Schnitt mit der xr Achse : x2 = x3 = 0 , Xj = 3 , S23(31 01 0)
Schnitt mit der x2-Achse : Xj = x3 = 0 , x2 = 2 , S13(01 21 0)
Schnitt mit der x3-Achse : Xj = x2 = 0 , x3 = 1 , S12(01011 )

Die Schnittstellen von Ebene und Koordinatenachsen heißen Achsenabschnitte der Ebe¬
ne . Die Koordinatengleichung der Ebene läßt sich schnell so umformen , daß diese Ach¬
senabschnitte direkt ablesbar sind .
Beispiel : H : 2x 1 + 3x2 + 6x3 - 6 = 0

2xj + 3x2 + 6x3 = 6 | | : 6
Xi x2 x3

Achsenabschnittsform von H : g
" + ^ + y = 1 ,

H hat die Achsenabschnitte a ! = 3 , a2 = 2 und a3 = 1 .

Allgemein :
Xj x 2 x 3Achsenabschnittsform ~ ~
“ i a.2 a3

= 1

die Achsenpunkte sind (aj 0 I 0) , (01 a 2 l 0) und (0 ! 01 a3 ) .
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Die Schnittgeraden einer Ebene und der Koordinatenachsen heißen Spurgeraden . Mit
s3 bezeichnen wir die Spurgerade in der x1x2-Ebene , s2 ist die Spurgerade in der xxx3-Ebene und Sj ist die Spurgerade in der x2x3-Ebene.

Wir verwenden die Achsenpunkte (mindestens einer ist immer da !) , um eine Gleichungeiner Spurgerade aufzustellen . Im allgemeinen hat eine Ebene 3 Achsenpunkte , je zweidavon legen eine Spurgerade fest . Im Beispiel ergibt sich:
ist die Spurgerade von H in der x^ -Ebene ,

ist die Spurgerade von H in der x^ -Ebene ,

ist die Spurgerade von H in der x2x3-Ebene .

_ v r 3 ) ( 3 \
IIX!'ä 0 + P - 2

loj

_ ^ f 3 \
% : X = 0 + o 0

1 - 1y V )
_ ^ < 0 \

Sj : X = 2 + T - 2
1 ° ,

Im allgemeinen bilden die Spurgeraden ein Dreieck mit den Achsenpunkten als Ecken .Dieses Dreieck heißt Spurdreieck . Mit ihm läßt sich die Lage einer Ebene im Koordina¬
tensystem besonders gut veranschaulichen .

Ist eine Ebene echt parallel zur x-Achse, so entartet das Spurdreieck zu einer Doppel¬kreuzung mit einem Parallelenpaar : Jetzt gibts nur 2 Achsenpunkte , 2 Spurgeradensind parallel zur xr Achse und stehen senkrecht auf der 3 . Spurgerade . Enthält eineEbene die Xj-Achse, so entartet das Spurdreieck zu einer senkrechten Geradenkreu¬
zung: die eine Spurgerade ist die xr Achse , die andre liegt in der XjXk-Ebene . Zum Beispielenthält die Ebene K: xx + 2x3 = 0 die x2-Achse .
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s2: X = o + G o

ss : X =

Ist eine Ebene parallel zur x,Xj -Ebene , so entartet das Spurdreieck zu einer senkrechten

Geradenkreuzung : Jetzt gibts nur 1 Achsenpunkt , von den beiden Spurgeraden ist die
eine parallel zur xr Achse , die andre parallel zur Xj-Achse .

Am schwierigsten zu veranschaulichen und im Bild wiederzuerkennen sind Ebenen ,
die durch den Ursprung , aber nicht durch eine Koordinatenachse gehen : Die drei
Achsenpunkte fallen im Ursprung zusammen , das Spurdreieck entartet zum
Ursprung . Auch die Spurgeraden gehen durch den Ursprung ; ihre Gleichungen findet
man durch Lösen eines Gleichungssystems .
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Beispiel : U : 3xx + x2 - 2x3 = 0
Für die Punkte der Spurgerade s3 in der x1x2-Ebene gilt zusätzlich x3 = 0,
in U eingesetzt liefert das 3xx + x2 = 0 , also x2 = - 3xj .
Nimmt man xx als Parameter v , so ergibt sich

Spurgerade s3 : X
/ 1 \

fiäl
zi.IIX 0

IsJ

s- X = V(-o
3)

vr \y

Sl : X = X2

Aufgaben

\l ] Welche besondere Lage im Koordinatensystem hat die Ebene
A: xj + 2xz + 3x3 = 0 B : Xj + 2x2 = 0 C : Xj = 0
D: x2 - 2 = 0 E : x2 + 2x3 - 4= 0 F : xx = x2

[& j Bestimme eine Koordinatengleichung der Ebene E :
a ) E ist parallel zur x1x2-Ebene und geht durch den Punkt P ( 11 2 I - 3 ) .
b) E ist parallel zur x2-Achse und geht durch P ( 1 ] 01 0) und Q(01 01 1).
c ) E ist senkrecht zur x2x3-Ebene und geht durch O und P (0 I 111 ).
d) E ist parallel zur x2-Achse und hat die Spurgerade s2 : X =

e ) E ist senkrecht zur x3-Achse und geht durch P (x | V17 I 4 ) .

[& ] Welche besondere Lage im Koordinatensystem hat die Ebene

n \0 + p 0
l 2 > UJ

A ] _ S. r 3 1 ( r0 \ _ v ro ( 0 \ rO \
jj i!

'
A X =

1! ■
2

)
+

0
0 + p 0

UJ
B: X = 3

1- 2 j
+ X 1 + p - 1

l 1 J
C : X =

^ ol + kfi
3 J l0y

r 1 \
+ p D: X = X ( 3 \ f4 \ r3A a0 \- 1 + p 1 E : X = 0 + k 1 + H 1

l 2 J l 3 J W loj
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[4 ] Bestimme die Achsenpunkte und gib Gleichungen der Spurgeraden an
A : 7x x - 14x 2 - 6x 3 - 42 = 0 B : x x + 3x 2 - 5x 3 + 15 = 0 C : 2x x + x2 - x 3 = 0
D : 2x , - x9 + 4 = 0 E : 2x x = x2 F : x, + 2 = 0

5.

6.

Zeichnung im Koordinatensystem !

Bestimme die Achsenpunkte und gib Gleichungen der Spurgeraden an
_ ^ r9A (- 3 a ( 3 > _ v flA f - 2 \

A X = - 2
{-v+ x - 2

l 14 J+ b - 4
l 1 J B : X = 4 + X - 2

l 3 J+ p 1

Bestimme die Achsenabschnittsform und die Achsenpunkte
A : 3x x - 7x2 + 6x 3 - 42 = 0 B : x1 - 7x2 - 3x s + 21 = 0

C : 2xj + 3x2 + 1 = 0
E : x 1 + x2 + x3 = 0 ( ! ) F : 17x2 + 10,2 = 0
Zeichnung im Koordinatensystem !

TA 1 1 i InD . 2 X1 + 3 x2 + 4 x3 + 5 ~ 0

• 8.

Bestimme eine Koordinatengleichung der Ebene mit den Achsenpunkten :
a ) ( 11 01 0 ) , (01 21 0 ) , (01 01 3 ) b) (- 2 I 0 I 0 ) , ( 0 I 2 | 0 ) , ( 0 I 01 - 2 )
c ) nur ( 0 I - 3 I 0 ) und ( 0 I 0 I 5 ) d) nur (0 I 0 I 7 )
Zeichnung im Koordinatensystem !

Die Ebenen E , F und G sind festgelegt von zwei Spurgeraden :

E:

F :

r - l > fl -. _^ / - 1a / 1a
X = 0 + a 2 4P X II 0 + ß 0

1 ° V lo . 1 ° / l 2 J
( ~ 2 '\ ' h _ 5. ( - 2 A / 1a

}T = 0 + y 2 IIX£ 0 + 5 0
1 ° > v 2 J

_ ^ / lA / 1a _ ^ / lA / 1a
G: 33: X = 0 + e 2 4P X II 0 + C 0

loj 1 ° ; l 2 J
a ) Beschreibe die Lage von E und F aufgrund der Spurgeraden .
b) Beschreibe die Lage von E und G aufgrund der Spurgeraden .
c ) Stelle von E , F und G Koordinatengleichungen auf .
d) Veranschauliche E , F und G als Spurdreiecke in unserm üblichen KOSY .

• 9. 83 : X = X
f a \ ( C A

b und s^ X = p 0
loj AdJ

mit a , b , c , d * 0

seien Spurgeraden einer Ebene U .

Bestimme eine Gleichung der Spurgerade s x in Abhängigkeit von
a , b , c und d .
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10. Eine Ebene sei so festgelegt , daß ihre drei Achsenpunkte vom Ursprung
die Entfernung e (>0 ) haben .
a ) Wieviel solcher Ebenen sind möglich ?

Beschreibe sie mit Koordinatengleichungen .
b) Welchen Körper begrenzen diese Ebenen ?

Berechne sein Volumen V und seine Oberfläche F.

3. Ebene und Gerade

Eine Gerade g kann eine Ebene E in einem Punkt schneiden , echt parallel zu E sein oder
in E liegen .

J/yAla
etTTA

gnE = { }

g und E sind echt parallel g n E = {SJ

g und E schneiden sich in S

lEEEJ

Um den richtigen Fall herauszufinden , nehmen wir zunächst immer an , daß sich
Gerade und Ebene schneiden , und suchen den Schnittpunkt .

gnE = g

g liegt in E

Parametergleichung der Ebene
Für die Berechnung des Schnittpunkts setzt man die Ortsvektoren der allgemeinenPunkte von Gerade und Ebene gleich. Es ergibt sich ein 3,3 -Gleichungssystem für die
drei Parameter .



1 . Beispiel : _ ^ f 8 ' rl \ >
f : X = 3 + o 0

fi iJ v -v >
- 2 ( 0

E : X = 0 + X - i + p - 1
0 10 >

» Gleichsetzen «

Das System I 2X -
II - X - p

III p - o
hat die eindeutige Lösung o

o = 0
: 3
: 6

6 , p = 0 , X = - 3 .
Durch Einsetzen , zum Beispiel von o in die Geradengleichung bekommt
man den Schnittpunkt S(21 31 0) .

2 . Beispiel : S • X -

Ä. = oDas System I 2Ä. - 2o = 0
II - X - p + 2o = 3

III p - o = 6
führt zu dem Widerspruch :

II ' p - o = - 3
III ’ p - o = 6

Es gibt also keinen Schnittpunkt : g und E sind echt parallel .
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3 . Beispiel :
_ ^ f 2 f 2 \

h : X = 3 + o - 2
k

_ ^ r2 \
W II 0 + X - 1

Das System I 2k - 2g = - 6
II - X - p + 2o = 3

III p - o = 0
wird gelöst von |i = g , /t = - 3 + o ; es hat also oo1 Lösungen :
zu jedem Wert o gibt es passende Werte X, p , das heißt ,
jeder Geradenpunkt ist Schnittpunkt : h liegt in E .

Koordinatengleichung der Ebene
Wesentlich einfacher ist die Schnittpunkt -Berechnung , und damit die Lagebestim¬
mung , wenn man mit einer Koordinatengleichung der Ebene arbeitet . Man setzt die
Koordinaten des allgemeinen Geradenpunkts in die Koordinatengleichung ein .

1 . Beispiel :
_ v rl \ xt = 8 + a

f : X = 3 + o 0 , x2 = 3k UJ x3 = 6 + a
E : Xj + 2x2 + 2x3 - 8 = 0

(8 + o ) + 2 ( 3 ) + 2(6 + o ) - 8 = 0
hat die eindeutige Lösung o = - 6 , also schneiden sich f und E in S(21 3 I 0 ) .

2 . Beispiel : _ v fS \ f 2 \
g : X = 3 + o - 2

l 6 V l * J
E : Xj + 2x2 + 2x3 - 8 = 0

8 + 2c + 2(3 — 2g ) + 2(6 + g ) — 8 = 0 => 18 = 0 . Wegen des Widerspruchs
gibt es keinen Schnittpunkt : g und E sind echt parallel .
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3 . Beispiel :
h : X

/ 2 ^ ( 2 \
3 + o - 2

E : x x + 2x2 + 2x 3 - 8 - 0

2 + 2g + 2(3 - 2g ) + 2(g ) - 8 = 0 => 0 -g = 0
Für o ist alles erlaubt , jeder Geradenpunkt ist Schnittpunkt : h liegt in E .

Wenn man bloß wissen will , ob sich eine Gerade und eine Ebene (Parametergleichung !)
in einem Punkt schneiden oder parallel sind , dann empfiehlt sich der Determinanten¬
test :

Parallelität\ Schnittpunkt

In den drei Beispielen sieht das so aus :

1 . Beispiel :
12 0
0 - 1 - 1
10 1

: - 3 * 0 , also schneiden sich f und E in einem Punkt .

2 . Beispiel •
3 . Beispiel

2 2 0
- 2 - 1 - 1
10 1

: 0 , also sind g und h parallel zu E .

Aufgaben

_ ^ f 4 1 z 1 > ( 1 j
E : X = 2 + A. 0 + P - 1W UJ

rl > rl > _ ^ ( 1 > I
' 0 '

! — f 2
, l

g : X = 2
UJ

+ o O
OC

_

V
tr n 0

V- 2J
+

iJ
j : x =

b )
+ P - r

Bestimme die Lage von Ebene und Gerade .
Berechne gegebenenfalls den Schnittpunkt .
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[2Ü| Gegeben sind die Ebenen und Geraden:
E : Xj - 2x2 + x3 - 1 = 0 , F : 2x2 - x2 - x3 - 8 = 0

_ ^ f 0 ) r - i _ ^ ( 2 N _ ^ /
a : X = 4

Ui
+ a 3

l 4 ,
, b : X = - 1

l ° i
+ ß 2

Ui
, c : X = 7

V
_ ^ _ v r 5 > ( 1 ^ _ v ^ 4a C1 ')d : X = 2 + 5 l

UJ , e : X = 2
V° J

+ e 1
Uj

f : X = 9-+
oo

0
V2j

Bestimme von jeder Gerade ihre Lage zu E und F.
Berechne gegebenenfalls den Schnittpunkt .

• 3. Parallelprojektion (Siehe Kapitel IV)
Gegeben sind die Ebene E : x1 + 2x3 - 6 = 0 und das Tetraeder ABCD mit
A(2 I 0 I 5 ) , B (- l I 2 | 0 ) , C (—11 4 I 8 ) und D( 2 I 0 I 8 ) . Das Tetraeder wird in Richtung
1? =

^
2 j in E projiziert, dabei entsteht das Bild A'B 'C ’D’.

Berechne A’
, B '

, C ' und D ' und zeichne die Anordnung in ein KOSY .

• 4. Zentralprojektion (Siehe Kapitel IV)
Gegeben sind die Ebene E : 2xx + x2 - 6 = 0 , das Projektionszentrum
Z( 11 j 81 0 ) und das Tetraeder ABCD mit A(91 61 0 ) , B (5,5 I 71 3 ) ,
C ( 61 611 ) und D(81 61 2 ) . Das Tetraeder wird zentral in die Ebene E projiziert ,
dabei entsteht das Bild A'B 'C 'D '.
Berechne A'

, B '
, C ’ und D ' und zeichne die Anordnung in ein KOSY .

[&] Die Würfelecken A, C , F und H sind die Ecken eines regelmäßigen Tetraeders .
(Siehe Aufgabe 17 . auf Seite 177)
a) In welchem Punkt schneidet die Raumdiagonale HB die Ebene ACF?

b) In welchen Punkten schneidet die Gerade durch die Kantenmitten
von [GC] und [AE] das Tetraeder ?



_x f - 2 ^ ( 2 1 _^ ( 3 > (—2 \
• 6. A(2 I - 11 0 ) , g : X = 6

l 1 ;+ X - l
l 3 l, h : X = 0

l- 4;+ b 4
l 3 J

Stelle eine Gleichung der Gerade k auf , die durch A geht und g und h schneidet .
Berechne die Schnittpunkte .
Ein möglicher Lösungsweg führt über eine Hilfsebene H zum Ergebnis .
(Tip : H geht durch A und eine der beiden Geraden , Skizze hilft !).

_ x r3 r 1 ) ( 1 ) _ ^ ^ l + a \
7. E : X = 2

1-iJ+ X iloj+ h - i
l 3 J. ga : X = o 1- a

l 1 J
Welche Schargerade ist parallel zu E ? Ist sie echt parallel ?

_ ^ ( 2- a >
* 8. Eb: 2xj - x2 + b = 0 , ha : X = 4- 2 a + p 0

l 2 ^ l 2 J
a ) Für welche Werte von a und b gibt es genau einen Schnittpunkt ?
b) Für welche Werte von a und b sind Eb und ha echt parallel ?
c) Für welche Werte von a und b liegt ha in Eb ?

4. Mehrere Ebenen

Zwei Ebenen
Zwei Ebenen können sich in einer Gerade schneiden , echt parallel oder identisch sein .

E n F = sE n F = { }

E und F schneiden sich in sE und F sind echt parallel

I£ = F
E und F sind identisch
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Um den richtigen Fall herauszufinden , nehmen wir zunächst immer an , daß sich beide
Ebenen schneiden , und suchen die Schnittgerade . Die Berechnung der Schnittgerade ist
mit Koordinatengleichungen am einfachsten .

Koordinatengleichung- Koordinatengleichung
Die Koordinaten der Punkte , die in beiden Ebenen liegen, müssen beide Koordinatenglei¬
chungen erfüllen , also Lösungen eines 2,3-Gleichungssystems sein .

x = (Hi ) U

| x, + + 4x .t= 121

E : Xj + 2x2 + 4x3 = 12
F : 6xx - 3x2 + 4x3 = 12

I xx + 2x2 + 4x3 = 12 Xj = 12 — 2x2 — 4x3
II 6xx - 3x2 + 4x3 = 12
II ' - 15x2 - 20x 3 = — 60 x3 = 3 - | x2

^X1 r 4p \
Bei Wahl von x2 = 4g ist x3 = 3 - 3g und xx = 4g, oder * 2 = 4g

f X3 J l3 - 3g,
Gleichung der Schnittgerade s von E und F:

Die Parallelität zweier Ebenen erkennt man bei Koordinatengleichungen mit einem
Blick : Die Koeffizienten der xs der einen Gleichung sind bis auf einen gemeinsamen
Faktor identisch mit den Koeffizienten der andern Gleichung:

F : 6x x - 3x2 + 4x3 = 12
H : 12xx - 6x2 + 8x3 = - 36

Es gibt keinen Punkt , dessen Koordinaten beide Gleichungen erfüllen .
H und F sind echt parallel .
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Ist die ganze Gleichung der einen Ebene ein Vielfaches der andern , so sind beide Ebenen
identisch:

F : 6xj - 3x2 + 4xg = 12
G: - 3xj + 1,5x2 - 2x3 = - 6

Die Gleichung von F ist das (- 2 )-fache der Gleichung von G .
F und G sind identisch.

Aus der Theorie der Gleichungssysteme wissen wir , daß ein 2,3-System , in dem minde¬
stens ein Koeffizient * 0 ist , entweder keine oder oder °°2 Lösungen hat . Jetzt haben
wir dafür eine anschauliche geometrische Erklärung .
Bevor man Vektoren in der Analytischen Geometrie verwendete , beschrieb man eine
Gerade mit einem 2,3-Gleichungssystem (mit zwei Ebenen also ! ) . Suchte man den
Schnittpunkt zweier Geraden , so mußte man ein System von 4 Gleichungen mit 3 Un¬
bekannten lösen . Erst in den 60er-Jahren hat sich die Vektorrechnung in der Schule
durchgesetzt .

Koordinatengleichung - Parametergleichung
Umständlicher ist die Bestimmung der Schnittgerade , wenn eine Ebene in Parameter¬
gleichung vorliegt . Man setzt die x; der Parametergleichung in die Koordinatenglei¬
chung ein:

E : Xj + 2x2 + 4x3 = 12

( 2 -\ f 1 ^
rx 1

' ( 2 + X - p A
F: jf = 4 + X 2 + p 2 * 2 - 4 + 2X + 2p

l 3 J 13 ) l X3 ) v 3 + 3p ,
in E eingesetzt ergibt

(2 + X — p ) + 2 (4 + 21 + 2p ) + 4 (3 + 3p ) = 12 , 51 + 15p = - 10 ,
aufgelöst nach einem der beiden Parameter X = - 2 - 3p
und in F eingesetzt liefert die Gleichung der Schnittgerade

r = fol + kf— " ( 2 \ / - 1 \
X = 4 + (—2 — 3p ) 2 + M 2UJ loJ l 3 J

4
4

- 3
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Parametergleichung - Parametergleichung
Noch langwieriger wird die Berechnung der Schnittgerade , wenn man zwei Parame¬
tergleichungen verwendet . Durch Gleichsetzen der rechten Seiten bekommt man ein
3,4 -System :

_ ( 2 \ _ f 2 ^ f - 1 \
E : X = 1Id+ G l

l 1 J+ x U ) F : X = 4
l 3 y+ X 2 + p 2

l 3 J

o = 2 + x + 3p (HD

I - 6o + 2x - X + p = - 4
II o + x — 2X — 2p = 3

III g - x - 3p = 2
Wir brauchen eine Beziehung zwischen X und p (oder zwischen o und x) .
Deshalb muß man o und x (oder X und p ) eliminieren .
III ' in I 4x + A. + 17p. = - 8 ( I ' )
III ' in II 2x - 2X + p = 1 ( II ' ) 2x - 1 - p + 2X \ (II " )

II " in I ' 5?i + 15p = - 10 , X = - 2 - 3p eingesetzt in F liefert wieder
die Gleichung der Schnittgerade .

Kennt man die Spurgeraden zweier Ebenen , so geht die Zeichnung der Schnittgerade
leicht von der Hand : Die Schnittgerade verbindet nämlich die Schnittpunkte von je zwei
Spurgeraden in derselben Koordinatenebene .
Beispiel : H : 2xx - x2 + x3 - 4 = 0

hat die Achsenpunkte H 12(0 I 01 4 ) , H 13(0 I - 4 I 0 ) und H 23(2 j 0 1 0 ).
K : xx + x2 + 4x3 - 8 = 0
hat die Achsenpunkte K12( 01 01 2 ) , K13( 01 8 I 0 ) und K23(81 0 I 0 ) .

_ ^ i" 4 \ r 5 \
H und K schneiden sich in s : X = 4

1 <D
+ x 7

l- 3j



/

Drei Ebenen

Für die Lage dreier verschiedener Ebenen gibt es fünf charakteristische Fälle :

[l ] die drei Ebenen sind parallel [2] genau zwei Ebenen sind parallel ;

es gibt genau zwei parallele Schnittgeraden

[3 ] es gibt drei parallele Schnittgeraden [4] es gibt genau einen gemeinsamen Punkt

[5] es gibt genau eine gemeinsame Schnittgerade
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Sind die drei Ebenen durch Koordinatengleichungen gegeben (wir betrachten nur diesen
Fall ) , dann müssen gemeinsame Punkte das zugehörige 3,3 -Gleichungssystem erfüllen .
Die fünf Fälle veranschaulichen die möglichen Lösungsmengen , die wir vom 3,3-
System kennen :

keine Lösung in den Fällen [T] , [2 ] und [3]
genau eine Lösung im Fall [4]
o« 1 Lösungen im Fall [ö]

Aufgaben

\r \ Beschreibe die Lage von E und F und stelle gegebenenfalls eine Gleichung
der Schnittgerade s auf . Zeichnung im Koordinatensystem !
a ) E : 2xj + x2 — 2x3 — 3 = 0

F : xx — x2 + 3x3 - 3 = 0
b) E : 2xx - x2 = 0

F : 2x3 - x2 + 2x3 — 12 = 0

c) E : 2xx - x2 - x3 + 6 = 0
F : 2x3 — x2 + 2x3 - 12 = 0

d) E : 2xx - x2 + 2x3 - 12 = 0
F : 2xj - x2 + 2x3 + 8 = 0

e ) E : 2x3 - x2 + 2x3 = 0 f) E : 2xj - x2 - x3 = 0
F : 2x3 - x2 - x3 + 6 = 0 F : 2x1 — x2 = 0

g ) E : 2x 3 - x2 - x3 + 6 = 0
F : xx + x2 - 3 = 0

Bestimme eine Gleichung der Schnittgerade von E und F :
a ) E : xx + x2 = 0

F : x2 + x3 = 0
b ) E : Xj = 0

F : 2x2 + x3 = 1
c ) E : xx + x2 + x3 = 1

F : Xj + x2 = 1
f ) E : Xj = 1

F : x2 = 2
d) E : Xj = x2

F : x2 = x3
e ) E : Xi = x2

F : xj = x3
Zeichnung im Koordinatensystem !

3. E : Xj + x2 + x3 = 0
F : 2xj + x2 + x3 + 4 = 0
Wähle der Reihe nach xx , x2 und x3 als Parameter und versuche ,
jeweils eine Gleichung der Schnittgerade zu bestimmen .

4 . Beschreibe die Lage von E und F und stelle gegebenenfalls eine Gleichung der
Schnittgerade s auf .
a ) E : 2xj - x2 + 2x3 - 4 = 0 b ) E : Xj + x2 + 3x3 - 6 = 0

2 + X 0 + |J. l 1 + X 0 + 1+



5. Bestimme eine Gleichung der Schnittgerade von E und F
_ vD f0 ' _ ^ r0> ( 2 \

E : X = 0
Uv
v (G

+ X 0
UJ
vi %

+ h 1
1 ° ,
v0 \

b ) E : X = 0
U;

+ X - l
Uv
( 1 >

+ p
( 3 )
r2 \

F : X
"
= 1

Uv+ G l
UJ+ X 0

U
F : X

"
= 0

Uv+ a - l
Uv+ x - 1

, 2 J
_ ^ ( 1 1 ( 2 ^ v - i > —^ ^ f 1 i

c ) E : X = - 1UJ+ x - 2
Uv+ R 1

Uv, F : X = 0 2 + x 2
UJ

Beschreibe die Lage von E und F und stelle gegebenenfalls eine Gleichung der
Schnittgerade s auf .

_ ^ ( 1 > ( -2 \ f 4 A —^ f 2 ' ' - D
a ) E : X = - 3 + x 3 + )X 4 b) E : X = 0 + x \ 1 + pUv U j UJ UJ 1 J

- =» / Ov f 2 '' ( 6 ^ — / 3v ( 1 ( 1 i
F : X = 3 + 0 1 + X 1 F : X = - 3 + 0 1 + x —3

Uv U; U ; Uv Uv UJ
_ f2 ~\ v- 3 > ( 1 > _ ^ ( 2 \ v - 1 ^ f - 2 \

c) E : X = 3UJ+ x 1
t 1 )

+ p - 1UJ, F : X = 2 + 0 1
i 1 V

+ X 1
U J

7. In einem Aufgabenbuch zur Höheren Mathematik aus dem Jahr 1960:
» Man ermittle die Ebene , in der die Geraden

J 2xj + 3x 2 - x3 - 1 = 0 / Xj + 5x2 + 4x 3 - 3 = 0
[ Xj + x2 - 3x3 = 0 { Xj + 2x2 + 2x 3 - 1 = 0 ^ e&en -Ä

8. F : 2x3 + x2 - 2x3 = 0 , G: 2x1 + x2 - 2x3 = 10 . Bestimme eine Gleichung der
a ) Symmetrieebene A von F und G.
b ) Ebene B an , die entsteht , wenn man F an G spiegelt .
c) Ebene C an , die entsteht , wenn man G an F spiegelt .
d ) Ebene D an , die entsteht , wenn man F an der x1x2-Ebene spiegelt .
e ) Ebene E an , die entsteht , wenn man G an der x2-Achse spiegelt .

9. E : 3xj + 2x2 — x3 + 18 = 0
Bestimme Gleichungen der Spurgeraden von E , indem du E zum Schnitt mit den
Koordinatenebenen bringst . Zeichnung im Koordinatensystem !

10 . E : 2xj - x2 + 2x 3 = 6 Zeichnung im Koordinatensystem !

a ) Bestimme die Höhenlinien von E in den Höhen - 1 , 0 und 5 über der XjX2-Ebene .

b) Bestimme die Schnittgeraden von E und Ebene F c : x 3 + 2x 2 + c = 0
mit c = —1 , 0 und 5 .

c) Zeige : Die Spurgeraden von Fc in der XjX 2-Ebene stehen senkrecht auf den
Höhenlinien der Ebene E.

(Betrachte die Spurgeraden im ebenen XjX 2-Koordinatensystem . )

Die Schnittgeraden von F c und E heißen auch Fall -Linien der Ebene E .
Eine Kugel rollt auf einer Fall -Linie hinab in die x ^ -Ebene .



• 11 A(2 I - 11 2 ) , B (0 I - 2 I - 1 ) , C ( 6 I 11 1 )
R(- 3 I 11 - 3 ) , S(—2 I 2 I - 1 ) , T(—4 I 2 I - 2 )
Die Abhänge eines Bergs seien angenähert die Ebenen ABC und RST .
Wegen der langen Verwitterung ist der Grat g nicht mehr vorhanden .
Dank Analytischer Geometrie läßt sich sein Verlauf rekonstruieren :
Bestimme eine Gleichung von g.
Berechne die Gratpunkte in den Höhen 0 und 9 über der x1x2-Ebene .
Zeichnung im Koordinatensystem !

12 . Deute das Gleichungssystem 3x x + 2x2 - x3 = 0
2x x + x2 + 4x3 = 0

x i - x2 + 2x3 = 0
geometrisch (zwei Möglichkeiten! ) . Zeige , daß es nur die Lösung ( 0 I 01 0 ) hat .
Was bedeutet das in den beiden Interpretationen ?

13 . Deute das Gleichungssystem 3x x + 2x2 - x3 = 13
2xj + x2 + 4x3 = - 2

Xj - x2 + 2 x3 = - 7
geometrisch ( zwei Möglichkeiten ! ) .
Welche geometrische Bedeutung hat die Lösung ?

14 . A 2xx - x2 + 2x3 - 12 = 0 Bestimme eine Gleichung der Ebene F,
B Xi + x2 3 = 0 die durch die Schnittgerade von D und E geht
C 2xj - x2 - x3 + 6 = 0 und den Schnittpunkt von A, B und C enthält .
D 2xj - x2 = 0
E 2xj - x2 + x3 - 6 = 0

15 . A 2x x — 3x2 + x3 - 3 = 0 Zeige , daß sich die vier Ebenen in einem Punkt
B 5x i — x2 - 5 = 0 schneiden , und berechne diesen Punkt .
C 3x2 — 2x3 + 2 = 0
D Xj + x2 - x3 = 0

5. Ebenenscharen

Enthält eine Koordinatengleichung auch Parameter , dann beschreibt diese Gleichungeine Ebenenschar . Die Parameter heißen Scharparameter . Wir behandeln nur Scha¬
ren , bei denen die Parameter linear Vorkommen, zum Beispiel

Ea : xx + (2 - a)x2 + (a- l )x3 - 4 = 0 , aelR
Um die Lage der Scharebenen besser zu überblicken , sortieren wir:

Ea : [xx + 2x2 - x3 - 4] + a [- x2 + x3] = 0
Eine Kurzschreibweise der Koordinatengleichung macht die Darstellung übersichtli¬
cher . Die linke Seite einer Gleichung E : njXj + n2x2 + n3x3 + n0 = 0 bezeichnen wir mit
E(X). Eine Ebene E ist damit festgelegt durch E(X) - 0 , die Schar E a durch Ea(X) = 0 . In
der Gleichung der Schar E a erkennen wir jetzt zwei Ebenen E 0 und F

E0: xx + 2x2 - x3 - 4 = 0 und F : - x2 + x3 = 0 .
Kurzschreibweise für Ea : E0(X) + a -F (X) = 0 .
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Für einen gemeinsamen Punkt S von E 0 und F gilt : E0( S ) = 0 und F( S ) = 0 . Damit ist
auch Ea(S ) = 0 . Also liegt jeder Schnittpunkt von E0 und F auch in jeder Scharebene E a .
Zwei Ebenen mit einem gemeinsamen Punkt haben immer eine Gerade gemeinsam .
Das heißt , alle Ebenen der Schar E a gehen durch die Schnittgerade von E 0 und F.

Die Menge der Ebenen , die sich alle in ein und derselben Gerade schneiden , heißt Ebe¬
nenbüschel . Die gemeinsame Schnittgerade heißt Trägergerade.
Um die Trägergerade t zu berechnen , bringt man E0 und F zum Schnitt . In unserm

Beispiel ergibt sich
_ * /4a f - 1 \

t : X = 0 + x 1
l 1 J

Wie wir wissen , geht jede Scharebene mit der Gleichung E0(X ) + a -F(X ) = 0 durch die
Trägergerade t . Es gilt aber auch (fast ) die Umkehrung :
Jede Ebene (außer F ) ist in der Schar vertreten , die die Trägergerade enthält .
Beweis : T * F sei eine beliebige Ebene durch t und P einer ihrer Punkte ,

der nicht auf t liegt.
Wir hätten gern : T(X ) = E „ (X) + atF(X ) .
Setzen wir P ein, dann ergibt sich

E (P)
T(P ) = 0 = E0(P) + atF(P ) , => at = -
Der Nenner ist ungleich null , weil P nicht auf F liegt. Eat = T , qed .

Zusammenfassung

Schneiden sich E 0 und F in t , so besteht die Schar Ea : E 0(X ) + a -F(X ) = 0
aus allen Ebenen (bis auf F ) , die die Trägergerade t enthalten .
Sind E 0 und F echt parallel , so besteht die Schar Ea : E 0(X ) + a -F(X ) = 0
aus allen Ebenen (bis auf F) , die parallel zu E0 sind.
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Als Begründung für den zweiten Teil überlegen wir uns :
Hätten zwei Ebenen Eai * E a2 der Schar einen gemeinsamen Punkt G , dann würde
gelten

E 0( G ) + SlF ( G) = 01 „ „
E „( G ) + a2F( G) = 0 } => F(G) ~ 0 =* Eo(G) ~ 0 2

im Widerspruch zur Voraussetzung , daß E 0 und F echt parallel sind .

Die Schar E a mit Ea(X) = E0(X) + a -F (X ) besteht aus allen Ebenen des von E0 und F
erzeugten Büschels , bis auf F . Will man diese ärgerliche Ausnahme beseitigen , dann
muß man zwei Parameter in Kauf nehmen :
Setzt man a = E

, so ergibt sich E 0(X ) + ^ -F(X) = 0 , pelR , k * 0
A A

beziehungsweise k -E 0(X) + p -F(X ) = 0
Läßt man in der Schar E^ p mit E^^ IX ) = k -E 0(X ) + p -F(X ) auch den Fall k = 0 zu , so
ergibt sich E0>|i = F für alle p 0 , und F ist jetzt auch dabei.

Außer dem Nachteil des zusätzlichen Parameters müssen wir uns jetzt auch noch da¬
mit abfinden , daß jede Ebene Ea durch unendlich viele Paare k,p von Parametern be¬
schrieben wird , von denen mindestens einer ungleich 0 sein muß . Es gilt nämlich
a = F mit k ^ 0 . Das Ebenenbüschel des Beispiels hat die GleichungA kA

E^ : kx3 + (2k - p)x2 + (p - k)x3 - 4k = 0 (k I p) * (01 0)
Die Menge der Ebenen , die genau einen Punkt T gemeinsam haben ,
heißt Ebenenbündel ; der gemeinsamePunkt T heißt Trägerpunkt .
Schneiden sich die Ebenen E , F und G im Punkt T , dann enthält jede Ebene der Schar
E ab mit Eab(X) = E (X ) + a -F(X ) + b -G(X) diesen Punkt , sie gehört also zum Bündel . Es
gilt nämlich Ea b(T ) = E(T) + a -F(T ) + b -G(T ) = 0 + a -0 + b -0 = 0.
Die Ebenen F und G des Bündels fehlen in der Schar . Mit einem zusätzlichen Parame¬
ter können wir auch sie aufnehmen . Setzt man a = F und b = -

, so ergibt sich
= k -E(X) + p -F(X) + v -G(X) , wobei mindestens ein Parameter ungleich null

sein muß. So gilt zum Beispiel E 0 ß 0 = F für p * 0 .
1 . Beispiel : Die drei Koordinatenebenen Ej : x; = 0 ( i = 1,2,3 ) erzeugen das Bündel

Ex,n,v : + Px2 + vx3 = 0 mit dem Trägerpunkt T(01010).
2 . Beispiel : E ^ jV: (2k+p+2v )x1 + (p- k- v )x2 + ( 2k- v )x3 - (3p+ 12k- 6v ) = 0

Um die erzeugenden Ebenen zu erkennen , sortieren wir nach k , p und v :
k(2xj - x2 + 2x3 - 12 ) + p(xj + x2 - 3 ) + v(2x x - x2 - x3 + 6 ) = 0
E : 2xj - x2 + 2x3 — 12 = 0
F : Xj + x2 - 3 = 0
G: 2xj - x2 — x3 + 6 = 0
E , F und G erzeugen das Bündel ; ihr Schnittpunkt T( 11216) ist der Träger¬
punkt (siehe Bild [4] im Abschnitt 4 ) . Dasselbe Bündel läßt sich auch
einfacher darstellen , wenn man erzeugende Ebenen wählt , die parallel sind
zu den Koordinatenebenen : E p <J T : p (Xj - 1 ) + o(x2 - 2 ) + t (x3 - 6 ) = 0

• Pxi + gx2 + rx3 — (p + 2g + 6x) = 0
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Wenn der Parameter nicht linear vorkommt , dann läßt sich - außer in Sonderfällen -
die Ebenenschar nicht mehr so leicht überblicken, zum Beispiel Euv : ux: + vx2 = 25 mit
u2 + v2 = 25 . Diese Schar umfaßt alle Tangentialebenen eines Zylinders um die x3-Achse
mit Radius 5 .

Aufgaben

[e | Bestimme eine Gleichung der Trägergerade t der Schar Ea . Gib eine Gleichung der
Ebene des zugehörigen Büschels an , die nicht in der Schar ist .
a ) Ea : axj + ( 1+ a )x 2 - 2x 3 = 6
b) Ea : ( 1 - alxj + ( l + a )x2 = a
c) Ea : x1 + (2- 3a )x2 - (3 - 2a )x3 = 0

2 . Die Schar Ea werde aufgespannt von den Ebenen E 0 und F.
Bestimme in der Schar Ea die Ebene , die den Punkt P( 11 —11 1 ) enthält .
a ) E0: Xj + x2 + x3 — 2

F : x1 + x2 = 2
b) E0: 2xj + x2 - x3 = 0

F : + 2x 9 + x3 = 0

c) E0: 2xx = 2
F : x2 = 1

d ) E0: 3xj + 4x 2 + 2x 3 = 2
F : Xj - 3x2 - 2 x3 = 2

3. Stelle eine Gleichung des Ebenenbüschels E^ auf

a ) mit der Trägergerade t : X = | 2
\ f 1 ^

+ G 0

J L-v
b) mit der Trägergerade t : X = x

rU
0

v ° y
c ) das alle Ebenen enthält , die parallel sind zur Ebene x1 + 3x2 + 2x3 = 1992

( 1 A
d) das alle Ebenen enthält , die parallel sind zur xr Achse und

^
rn Vektor

v3y
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6.

Von Ebenen , die in Parameterform vorliegen , findet man die Schnittgerade , wenn
auch mühsam , durch Gleichsetzen (Seite 194 ) . Jemand will dieses Verfahren auf die
Koordinatengleichungen anwenden und setzt die beiden linken Seiten der Glei¬
chungen gleich:
E : xb - x2 + 2x3 - 4 = 0
F : 2xj - x3 + 4 = 0
Gleichsetzen: xb - x2 + 2x3 - 4 = 2xj - x3 + 4
a) Was hat er wirklich bekommen ?
b) Stelle eine Gleichung der Schnittgerade von E und F auf.
c ) Bestimme eine Gleichung des Ebenenbüschels , das von E und F aufgespannt

wird . Für welchen Parameterwert ergibt sich die Ebene
H : xx + x2 - 3x3 + 8 = 0 . Welcher Zusammenhang besteht zu a) ?

d) Zeige durch Rechnung , daß die Schnittgerade von b) in jeder Ebene
des Büschels liegt.

Ea : xx + ax2 + (2- a)x3
a)

2a + 4

r u f 2 \
0 + ■P 1

l 2 v

7.

Welche Scharebene geht durch den Ursprung ,
welche durch ( lllll ) ?

b) Welche Scharebene ist parallel zur x3-Achse ?
c) Welche Scharebene hat ein gleichseitiges Spurdreieck ?
d) Welche Scharebene steht senkrecht auf der XjXg -Ebene ?

e) Welche Scharebene ist parallel zur Gerade X =

Ea : Xj + ( l - 2a)x2 + ax3 = 1
Fb : Xj + bx2 + ( l - 2b )x3 = 1
a) Begründe , daß keine Scharebene Ea durch den Ursprunggeht.
b) Bestimme die Trägergerade von E a. Welche Ebene fehlt in der Schar?
c ) Die Schnittgeraden sa von Ea und Fa bilden eine Schar mit dem Parametera.

Bestimme eine Gleichungvon sa . Was ist los bei a = § ?
d) Für welche Werte von a und b ist die Schnittgerade von Ea und Fb parallel zur

x2-Achse ?
e) Kann die xrAchse Schnittgerade von Ea und Fb sein ?

E : xb + x2 = 0
F : x2 + x3 = 0
G: 2xx — x2 - x3 = 4
a) Stelle eine Gleichung des Ebenenbündels H^ v auf, das von E , F und G

aufgespannt wird . Gib den Trägerpunkt T an .
b) Stelle eine Gleichung des Ebenenbüschels K^ auf, das im Bündel v steckt

und den Ursprung enthält .
c ) Bestimme eine Gleichung der Trägergerade t des Büschels Hx 0 v .
d) Bestimme eine möglichst einfache DarstellungLa>ßy von H>ylv .
e) Welche Scharebene von H^ v ist parallel zur x^ -Ebene ?

Welche Scharebenen sind parallel zur xr Achse ?
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