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Die Geometrie, mit der wir uns bisher beschäftigt haben , heißt auch affine Geometrie .
Die affine Geometrie handelt von den Lagebeziehungen von Punkten , Geraden und
Ebenen . Man nennt sie auch Inzidenzgeometrie ( incidere hineinfallen ) . Typische Be¬
griffe der affinen Geometrie sind Schnittpunkt , Schnittgerade , Parallelität und TeilVer¬
hältnis . Affine Eigenschaften bleiben bei Parallelprojektionen erhalten ; deshalb geben
unsere zweidimensionalen Zeichnungen alle affinen Verhältnisse der dreidimensiona¬
len Figuren richtig wieder . Längen und Winkel dagegen sind in diesen Zeichnungen
meistens verzerrt .
Wir wenden uns jetzt dem Teil der Analytischen Geometrie zu, der sich mit der Berech¬
nung von Längen und Winkeln befaßt . Er heißt metrische Geometrie . Für das Folgende
setzen wir zur Vereinfachung ein kartesisches Koordinatensystem voraus . Seine Basis¬
vektoren haben die Länge 1 und stehen paarweise aufeinander senkrecht .
Das wichtigste Hilfsmittel der metrischen Geometrie ist das Skalarprodukt .

1 . Länge eines Vektors

Die Länge eines Vektors a bezeichnet man mit I
~a I oder kurz mit a : |

~a | = a.

a I heißt auch Betrag von a . Die Länge von ~a = a 2

\
&z j

ist die Länge der Raumdiago¬

nale im Quader mit den Kantenlängen ] ax i , I a2 l und I a3 | . Wir finden sie mit
Pythagoras :

d2 = a:
2 + a2

2

a2 = d2 + a3
2 = a3

2 + a2
2 +a3

2
(Längenquadrat )

Länge von a : l a I = a = ^ a,
2 + a2

2 + a3
2

Zum Beispiel hat a =
v 3 ;

die Länge a = ^ 36 + 4 + 9 = 7 .
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Ein Vektor der Länge 1 heißt Einheitsvektor .

Zum Beispiel sind
\ r0 ^ ( 2/3 a

> - l und 1/3
J 1- 2/3 J

Einheitsvektoren .

Den Einheitsvektor in Richtung a bezeichnet man mit a 0 (sprich "a oben null"
).

~a 0 ergibt sich aus a , in dem man ~a durch seine Länge a teilt :

Einheitsvektor a ° = Ja

Einheitsvektorin Richtung a :

Zum Beispiel ist in Richtung
/ 6a
- 2 der Einheitsvektor f 6 y> i- 2 = 7

r 6 )- 2
l 3 J l 3 J

Streckenabtragen
Mit den Einheitsvektoren können wir im Raum Strecken bekannter Länge in vorgege¬
bene Richtungen abtragen . Als Beispiel berechnen wir den Endpunkt Z einer Wanderung

im Raum . Wir starten bei S( 11 —2 I - 2 ) , gehen 27 Einheiten in Richtung u
/ 7 \

V4 y
, dann 15

Einheiten in Richtung v =
^ - 11a

- 10
v 2 /

_ ^ ( 1 A 1 / 7 / - llA 1 / 1 ) / 13 \
z = - 2

l-2 J+ 27 - 5 4
l 4 V

+ 154- 10
l 2 >+ 18 - 5 - 4

l- 8j
— - 8

l" 4J

und schließlich 18 Einheiten in Richtung w =

. Wir landen bei Z ( 13l - 8 I - 4 ) .

( 1 A
- 4

y- 8j

Streckenlänge
Mit der Formel für die Vektorlänge berechnet man auch die Entfernung zweier
Punkte oder die Länge einer Strecke

AB = | AB
Zum Beispiel haben die Punkte A(- 4 I 11 3 ) und B (0 I - 2 I 3 )

( 4 1 ,-
= yl6 + 9 + 0 = 5 .die Entfernung AB - 3
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Dazu noch ein anspruchsvolleres Problem: Abstand Punkt -Gerade

Gegeben ist die Gerade g: X
r 7a ( 2 \
0 + p - 2

l 3 Jund der Punkt P(0 I - 2 I 1 ) .

a ) Welche Geradenpunkte haben von P die Entfernung e = a/66 ?
b) Berechne den Abstand d von Punkt P und Gerade g, das heißt,die kleinste Entfernung emin eines Geradenpunkts X von P.

Welcher Geradenpunkt F liegt P am nächsten ?
Für die Lösung brauchen wir den allgemeinen Geradenpunkt X =

7 + 2g \

( 1 + 2g A
- 2g

9 + 3g y

beschaffen wir uns das Entfernungs¬aus dem Verbindungsvektor P X = I- 2g + 2
_ l8 + 3g ,

quadrat e2 = P X 2 = (7 + 2p )
2 + (2 - 2p)2 + (8 + 3p)2 = 17p2 + 68p + 117.

a ) Bedingung : 17p2 + 68p + 117 = (a/66 )
2

17p2 + 68p + 117 = 66
17p2 + 68p + 51 = 0
p2 + 4p + 3 = 0
(p + l )(p + 3 ) = 0 , also p = - 1 oder p = - 3

G_j ( 5 I 2 | 6 ) und G_3( l I 6 | 0 ) haben von P die Entfernung ^[66 .

Abstand d =

b) Bedingung: e2 = f(p) = 17p2 + 68p + 117 muß minimal sein,
also muß f '(p ) = 0 sein: 34p + 68 = 0 , also p = - 2 .

e2 = ff—2 ) = 49 ist das Minimum von f wegen f " (- 2 ) = 34 > 0 , eroin = 7 .
F = G_2( 3 I 4 | 3 ) liegt P am nächsten .
P und g haben den Abstand d = emin = 7 ; [PF] ist die Abstandstrecke .
Wenn man a ) gelöst hat und sich an einer Skizze vorstellt , wie g , P , G_ , und G_3
liegen, dann findet man F viel schneller als Mittelpunkt der Strecke [G_1G_3 ] .
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Dasselbe Problem hätte man auch so einkleiden können :
a) g schneidet eine Kugel um P mit Radius ^ 66 . Berechne die Schnittpunkte .
b) g ist Tangente einer Kugel um P . Berechne Kugelradius und Berührpunkt .

Winkelhalbierender Vektor

Aus der Elementargeometrie wissen wir , daß die Diagonalen einer Raute die Innenwin¬
kel halbieren . Addiert man also zwei gleich lange Vektoren , so ergibt sich ein Vektor , der
den Winkel zwischen den beiden Vektoren halbiert . Man kann aber auch den Winkel
zwischen zwei verschieden langen Vektoren halbieren ; man muß dann vorher die Vek¬
toren durch geeignete Multiplikation gleich lang machen .

o + äJ- io + a 1

0 + T —4

o

Beispiel : Bestimme die beiden Winkelhalbierenden der Geraden

S + p 5S + X - 1 und h : X

3^ 3 = 3 -1 Ta I

Die Richtungsvektoren der beiden Winkelhalbierenden sind

v + 3 u

Gleichungen der Winkelhalbierenden : wp X - S + a , w2. X S + 1
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Aufgaben

\T\ Berechne die Beträge von

a ) 4 b)
f 4 >
- 12

f 12 >
C) - 15 d )

( 1 N
0 e )

f- 14)
- 2 f )

f 56 \
- 17

[l2 j 1 - 3 ) V 1® ) {- V k~23j , 56 J

2. Zeige , daß für rationales a der Vektor
/ a \

a + 1
a (a+ l )y

eine rationale Länge hat .

3. Berechne die Einheitsvektoren in Richtung

b )
( 7 \
14 c )

fO,5A
1 d ) - 2 e ) - l f )

r 8 \
- l

U4A l 1 A 1 ° , l-l J 1 4 J
f 8 a ( 1 A r - i a ^7/5 a , /

g ) 13 - l h ) 1 i} - 1 j ) 9 1/2 k ) 3
l 4 J l2 .3j \ V12J [ l/öj [

1)
f- 3a a
2,4a

\ 3 ’2aJ

4. Berechne a

a )
/ 3a \
—6a

V 2a J
= 14 b )

/ a \
2a

la_1J ll <
1 c )

, 11/5 A
a

l 2 J = 2 d )
/ a. \

a
[a - ij

e )
fa + 9 \

a
^a ~ 3 ,

= 15 f )
/ 2a >

a = 9 g ) ( a A
a + 1

l4a +10,
= 31 h )

( a 2- 5 A
a

l a2 + 3j

_ ^ r 2 r - 7 \ _ r 7 ^ ( 3 \
g X = 4 + X

( 3 )
h : X = 16 + g

Berechne die Entfernung der Punkte A auf g und B auf h ,die zu den Parameterwerten X = p. = 2 gehören .

[ & ] Berechne den Umfang des Dreiecks ABC:
a ) A(6 I 3 I - 4 ) , B (8 I 61 2 ) , C (2 | 91 8 )
b) A( 11 - 6 I - 6 ) , B (2 I 2 | - 2 ) , C (0 I - 2 I 2 )
c) A(9 I 91 0 ) , B(—61 3 I 9) , C (01 —61 - 6 ) , Umkreisradius ?

7. Zeige , daß die Punkte auf einer Kugel um den Ursprung liegen ,und berechne den Kugelradius r .
a ) A(26 I - 7 | 2) , B(25 I 10 | - 2 ) , C(2 114 | 23 ) , D(- 7 I - 14 | - 22 )
b) A( 12 I 4 I 39 ) , B(33 ! 4 | 24 ) , C (32 I 9 | 24 ) , D(311 24 | 12 ) , E (23 I 24 | 24)

8. Zeige , daß die Punkte auf einer Kugel um M(- 20 | - 20 1- 4 ) liegen ,und berechne den Kugelradius r .
A( 12 I - 12 I - 3 ) , B( 12 I - 13 I 0 ) , C (8 I - 3 I 0 ) , D ( 8 I - 41 3 ) , E (5 1 0 ) 4 ) und
F (0 I 0113 ).

3

= 13
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9. Zeige , daß die Punkte auf einer Kugel um M(30 I 20110) liegen,
und berechne den Kugelradius r.
A(- 18 I 111 6 ) , B (- 6 I - 13 I 6 ) , C(- 6 I - 12 | 1 ) , D(- ll | - 4 I - 2 ) ,
E (- 6 I - 11 | - 2 ) , F(- 10 | - 4 | - 5 ) und G(- 6 I - 4 I - 13 ) .

10. Durch A(4 | - 5 I 3 ) und B (6 I - 3 I 2 ) geht die Gerade g.
Bestimme die Punkte auf g,
a ) die von A die Entfernung 9 haben b) die von B die Entfernung 9 haben .

11. Durch P(- 2 | 5 I 1 ) und Q (- l 113 I - 3 ) geht die Gerade h , F(0 I f2 1f3) liegt auch auf h
und ist Mittelpunkt einer Kugel mit Radius 18.
Berechne die Schnittpunkte von Gerade und Kugel .

12. Berechne alle Achsenpunkte , die von A(4 I 11 7 ) und B (- 8 I - 7 I 1 ) gleich weit
entfernt sind.

13 . Berechne Mittelpunkt und Radius des Umkreises vom Dreieck
A(0 | 01 0 ) , B(7 I 11 0 ) , C (3 I 91 0 ).

14. Berechne Mittelpunkt und Radius einer Kugel durch
A( 21 01 0 ) ,

'B (- l ] 11 4) , C ( 1111 0 ) und D(- 3 | 7 I 6 ) .

15 . Berechne die Koordinaten eines Punkts S , der vom Ursprung die Entfernung a/ 50,
von A(7 I 11 0 ) die Entfernung a/ 38 und von B (3 I 91 0 ) die Entfernung V62 hat .

16. Welche Punkte der Gerade g durch A(8 I 3 110 ) und B(5 112 I —2 ) haben vom
Ursprung die Entfernung 11 ?

_ f 1 ) f 0 \
17. P(2 1 8 I 7 ) , g: X = 2 + p 2

1- lJ
a ) P ist Mittelpunkt einer Kugel K mit Radius r = 3a/ 14 .

Berechne die Schnittpunkte von K und g.
b ) Eine Kugel um P berührt g. Berechne Radius und Berührpunkt .

18. Ein Würfel hat die Ecke ( 11111 ) , seine
Kanten haben die Länge 2 und sind par¬
allel zu den Koordinatenachsen . Ihm ist
ein regelmäßiges Ikosaeder so einbe¬
schrieben , daß in der Mitte jeder Würfel¬
fläche eine Ikosaederkante parallel zu
einer Würfelkante liegt . Berechne die
Koordinaten der 6 -2 Ecken des Ikosa¬
eders.
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19 . Bestimme die Winkelhalbierenden wx und w2 von e und f und zeichne diese vier
Geraden in ein ebenes x1x2-Koordinatensystem .

_^ ( 3a / 4 > _s. r 3 ^ ( 3 ia ) e: X = - 1 + K 3 f: X = - i
1 ° ;

+ p - 4

_ ( 2 \ _ i. ( 2 \ fll \
b) e: X = 3 + x 2 f: X = 3

l ° J+ p - 2

20 . Bestimme die Winkelhalbierenden w1 und w2 von e und f._ rl > ( 2 ^ _V /16a
e: X = 2

l 3 V
+ k 3

l 6 ,
f: X = 2 + p

l 3 J 11
l 8 J

• 21 . A( 6 I 3 I 6 ) , B (- 4 | —8 I 8 ) und der Ursprung sind die Ecken eines Dreiecks .
Bestimme Gleichungen der Winkelhalbierenden des Dreiecks OAB und den
Inkreismittelpunkt I .

• 22 . Durch U( 16 I - 16 I 8 ) und den Ursprung geht die Gerade u.
a) M ( 101 ? I ? ) auf u ist der Mittelpunkteiner Kugel mit Radius 9 .

Berechne die Schnittpunkte von Kugel und Gerade u.
b)

c)

Eine Kugel mit Radius 6 hat ihren Mittelpunkt auf u und schneidet u im
Ursprung . Berechne den Kugelmittelpunkt und den zweiten Schnittpunkt .
Durch C (? I ? I - 3 ) auf u geht die Gerade f mit Richtung

v 4 yBestimme Gleichungen der Winkelhalbierenden von u und f.

2. Winkelberechnungen
Zwei Vektoren legen zwei Winkel fest , von denen einer im allgemeinen überstumpf ist .
Den andern bezeichnen wir als Winkel <p = <1 Ca

"
, b ) zwischen den beiden Vektoren ~a

und b .

b
(p = 90 °

b
0° < cp < 180 °



Weil wir Längen schon berechnen können , hegt es nahe , den Kosinussatz für die

Winkelberechnung einzuspannen . In einem Vektordreieck sieht das so aus :

Mit a =
fM

a 2 und b = b2
V a 3 /

ergibt sich

(aj - bj )2 + (a 2 - b 2)2 + (a 3 - b 3)2 = a ^ + a 2
2 + a 3

2 + bj 2 + b 2
2 + b 3

2 - 2 -| cos cp

Kosinussatz

c 2 = a 2 + b 2 - 2ab *cos y

a = | a | b = |b | c = | a - b |

a - bl = | a | + |b | - 2 | a | |b | cos <p

Nach dem Ausquadrieren fallen alle Quadrate a ,
2 und b ;

2 weg und übrig bleibt :

^ (ajbi + a 2b 2 + a 3b 3) = - 2 I
~a 11 b I cos cp

a it >i + a 2b2 + a 3b3 = I
~a 11 b I cos 9

Den Term a ^ + a 2b 2 + a 3b 3 kürzt man ab mit ~a ° b . Weil seine Eigenschaften an ein

Produkt erinnern , nennt man ihn auch Skalarprodukt von a und b .

Definition :
faA fb ^

Die Zahl "
a » b = a 2 b2 :- a |bi + a 2b2 + a 3b3

1 &3J \ b3^
heißt Skalarprodukt der Vektoren a und b .

Damit gilt
”a ° b = 1 all b I cos 9

Winkel zwischen zwei Vektoren

Ist weder ~
a noch b der Nullvektor ,

so findet man ihren Zwischenwinkel •$ ( a , b )

- a « b
cos <£ ( a , b ) =
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Die Kosinusfunktion ist für 0 °< cp < 180 ° eineindeutig ; deshalb liefert die Formel gerade
den Winkel , den wir oben als Winkel zwischen zwei Vektoren eingeführt haben .

Beispiele : a = ( - 7 ^ > < 6
- 6

l 6 , , b = - 3
1-2 J * ( a,b ) = ?

= - 42 + 18 - 12 = - 36 ; a = ^ 121 = 11 , b = ^ 49 =

cos ( a , b ) = = - ff ; => <p = 117,9 °
. Wir geben Winkel

gerundet an und schreiben aus Bequemlichkeit = statt = .

( - 7 \ ( 6 "i- 6 O - 3
l 6 J l-2 J

u = ( 2 >
5 , v = 2

1- 3; UJ
<£ ( u , v"

) = ?

u o v = 2 + 10 - 12 = 0 ; cos cp = 0
= 0 ; • cp = 90°

7 ;

immer auf 0,1°

Orthogonale und parallele Vektoren

Wegen cos cp = 0 <=> cp = 90 ° gilt a » b = 0 <=> alb

für a , b / o

Mit dem Skalarprodukt kann man also mit einem Blick überprüfen , ob zwei Vektoren
aufeinander senkrecht stehen . Zwei Vektoren a , b mit <J (

~a , b ) = 90 ° nennt man
auch orthogonal . Für parallele Vektoren gilt cp = 0° oder cp = 180 °

. Wegen cos 0 ° = 1 und
cos 180 ° = - 1 ist dann

a °b = ab 0°

oder

a b = - ab a b
<p = 180 °

Länge und Skalarprodukt
Wie bei Zahlen schreibt man beim Skalarprodukt auch lt 2 statt ~a ° ~a . Höhere Poten¬
zen als die zweiten sind allerdings sinnlos , denn zum Beispiel bei (

~a ° ~a ) ° ”a müßte die
Zahl a ° a durch ein Skalarprodukt mit dem Vektor ~a verknüpft werden .

Wegen
~a 2 = a 2 + a2

2 + a3
2 = I

~a I 2 ergibt sich |
~a I = ^

~a 2 .
Diese Formel erinnert an die Formel für Zahlen I x I = ^ x2 .
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Geometrische Deutung des Skalarprodukts
Bezeichnet man mit ab die senkrechte Projektion von b in Richtung ~a , dann kann
man der Zeichnung entnehmen :

ab = b cos cp a ° b a = a cos cp b°

b cos cp

q> < 90 °
q) < 90 °

cp > 90 °

= a coscp b1

cp > 90 °

Für 0 ° < <p < 90 ° ist das Skalarprodukt zweier Vektoren gleich dem Produkt der Länge

eines Vektors und der Länge der senkrechten Projektion des andern auf ihn.
Für 90 ° < cp < 180 ° muß man das Produkt der Längen mit - 1 multiplizieren .

Diese Interpretation verwenden die Physiker manchmal zur Formulierung von Geset-

zen , Beispiel: die mechanische Arbeit W als das Skalarprodukt des Kraftvektors F und

des Streckenvektors 's . So gilt zum Beispiel für die frei werdende Lageenergie E einer

Walze vom Gewicht G, die eine schiefe Ebene herabrollt : E = G ° s

W = F cos cp s = F °s

Lageenergie : |sMgI -cos <|/ = s ° GF cos 9
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Winkel zwischen zwei Geraden
Als Schnittwinkel zweier Geraden definiert man den nichtstumpfen Winkel der Gera¬
denkreuzung . Wegen cos c = - cos( 180 °- o ) = - cos g = I cos g | gilt

Schnittwinkel o zweier Geraden mit den Richtungsvektoren
dT und V . Der Betrag garantiert , daß o nicht stumpf ist .

Auch bei windschiefen Geraden kann man mit dieser Formel einen Winkel berechnen .
Es ist der Winkel , der sich ergibt , wenn man eine Gerade parallel so verschiebt , daß sie
die andere trifft .

Richtungswinkelund Einheitsvektor
Die Koordinaten eines Einheitsvektors a 0 entpuppen sich bei genauerem Hinsehen als
Kosinuswerte der Winkel , die a 0 mit den Richtungen der Koordinatenachsen , das heißt
mit den Basisvektoren , einschließt . Es gilt nämlich zum Beispiel

cos a

f aoli fi \
a 02 O 0

U3 , l ° J
V a 01

2 + a 02
2 + a 03

2 ‘ 1
: aoi (die Wurzel hat den Wert 1 )

Daraus folgt a 0 =
CUS (Jtj

cos a2
Vcos «3 J

mit (cos c^ )2 + ( cos a 2)2 + (cos a 3)2 = 1 .

COSdl
a = COSCX2

cos Xcos
sin Xcos
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Wir nennen cq den i-ten Richtungswinkel des Vektors a ;
oq ist also der Winkel zwischen ~a und dem i-ten Basisvektor.

Zu a =
/ 4 \

8
v- 1)

ist a 0 =
/ 4/9 n

8/9
- 1/9

( cos 63,6 ° \
cos 27,3 °

cos 96,4 °
j

Oft ist ein Richtungsvektor durch seine sphärischen Koordinaten X und (p festgelegt . I cp I

ist der Winkel zwischen dem Vektor "a
* und seiner senkrechten Projektion a ± in

die x xx 2-Ebene . Die cp-Werte liegen zwischen - 90 ° und +90 °
, <p und a 3 haben dasselbe

Vorzeichen . X ist der Winkel , um den man e x in Richtung VjT drehen muß , bis er die

Richtung von
~ä ]

*
hat . Die k-Werte liegen zwischen - 180 ° und +180 °

. <p und X entspre¬
chen der geografischen Breite und Länge auf der Erde . Zu jedem Paar ( A. I (p ) gibt es ge -

' cos X cos (|0

nau einen Einheitsvektor , für ihn gilt a sin X cos cp
sin cp

Aufgaben

[Ti| Berechne den Winkel cp zwischen ~a und b
a)

/ - 2n / iN _^ f - 3 ( - 1 / In
”a = 5

l 3 J, b = 9
L 6 J 11 4

19 /, b = - 5
l 8 J c)

~a = 5
L-10J

/ 11 N / 63 n / 17 N / 23 N / 2 N / —1 N

d)
”a = 55

1- 88 /
, b = - 70

156 /
e) a = 17

1- 17J
, b = - 23

[ 23 ,
f )

~a =
"
1
-c
4̂
CO
j

, b = 2n/3
l 1 J

[ä ] Welche Winkel schließen die Gerade g und die Koordinatenachsen ein ?

_ ^ r 4 \ _ ^ / 0 N
a ) g: X = p

"
\
1

V̂
.._

b) g. X = p - 1
l 3 J

[& ] Zeige , daß die Ortsvektoren A , B und C einen Würfel aufspannen .

a) A =
/ In

V2 /
, B =

/ 2 N _ ^ ( 2 N _ V / 10N _ / - llN _ s. ( 2 \
— 1 , c = - 2 b) A = - 5 , B = - 2 > c = 14

[~ 2 J U / l 1« /

_ ^ f a \ _ ^ / a + 1 n _ / a (a + l ) N
c) A = a + 1

a (a -fl )^
, B = - a ( a + l )

l a /
, c = a

l _ a _ 1 J

[4 ] Für welche Werte von uist aJ _ b , a±c , blc

a) a =
/ In

v2u y
14

/ 2un / u + 1n f u \ r
- 4

l 1 /

b) a = 2 - u
1 - iJ

, b = u + 2

Nu + 4 J
,

~
c =

V

/ 2- 3u
u

2+ 2u



5. Für welche Werte von u bildet jedes Vektorpaar einen Winkel von 45 ° ?

fl \ fu \ ( 7 \ fl r- l >, f - 9 \
2

l 2 J
’ ulu b) Ulu > 0lu c ) 1

l u .
y - 4

l 2uv
d) u

I 8 ,
> 2u

l 8 J

/ i > _ V
2lu , g : X = 0lu + p 1loj

K sei ein gerader Kreiskegel mit dem Öffnungswinkel 90 °
,

seine Spitze liegt im Ursprung , seine Achse verläuft in Richtung
~a .

In welchen Punkten schneiden sich g und K ? (Vergleiche 5. a ) )

7. Für welche Werte von u bildet jedes Vektorpaar einen Winkel von 60 ° ?

a)
fU \

u y
( 7 >

10 b )
f i >

l y u c) [ il .
r - 8 >

3 d)
fS

5 y
( 7 \
- 2lu l-u; l u ; l u L» J l u ) l u J lu

( U \ /"—3 V f4 > f 1 je) 4 ’ u f ) 9 u
l3U l 4 V IU ^2u + lJ

u =
/ X ' / 4 > ( 3 \

y , a
'

= 2 , b = 1
UJ lU l ° J

. Bestimme u so , daß u auf a und b senkrecht steht .

_ v r- l ') - V _^ r - 2A
a = 2 , b = l , c = s

4 1 t\ J \ ) K h )
Bestimme r , s und t so , daß a , b und ~

c paarweise orthogonal sind .

10 . Berechne die Winkel des Dreiecks ABC
a ) A(6 I 3 I - 4 ) , B (8 I 6 I 2 ) , C (2 | 91 8 )
b) A( 11 - 6 I - 6 ) , B (2 | 2 | - 2 ) , C ( 0 | - 2 | 2 )
c ) A(9 I 91 0) , B(- 61 3 I 9) , C (01 - 61 - 6)

11 Berechne den Winkel zwischen

a ) einer Raumdiagonale und einer Kante eines Würfels
b) zwei Raumdiagonalen eines Würfels .

12 . A(41 11 3 ) , B (41 —21 6 ) , C ( 1111 6 ) , D(5 I 2 I 7 ) Zeichnung im Koordinatensystem
a ) Zeige , daß ABCD ein regelmäßiges Tetraeder ist .
b) Berechne den Schwerpunkt S .
c ) Berechne a = <£ ( SA,SB ) = <£ ( SA,SC )

_ ^ ( 2 1 f 3 > _ v f 3 > ( 2 \
13. s X = 0

l- u
+ x - 4

1 <U
, h : X = - Vä

l 5 J
+ p - 2

lu
. Berechne den Winkel zwischen g und h .
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_ X ( 1 \
14 . g: X = - 3 + x 1

l 6 , l- 2j
, A(5 I 11 0 )

Verbinde den Geradenpunkt für X = 2 mit A durch die Gerade h.
Berechne den Winkel zwischen g und h und gib eine Gleichung von h an.

* r ° j __ x f 4 > r- l \
15. ff X = 0

UJ
+ x 1

loj
, h : X = - 3

l 5 )
+ ß 0

l 2 J
Zeige , daß g und h windschief sind , und berechne < (g,h ).

16 . g:
"
X

*
= f1 ^ __ ^ ( 1 \1UJ+ X 2UJ, h: X = 1UJ+ p - 5lioj

a ) Berechne den Schnittwinkel von g und h.
b) Stelle Gleichungen der Winkelhalbierenden wx und w2 von g und h auf

und zeige , daß der Schnittwinkel der Winkelhalbierenden 90 ° ist .

c ) Berechne (wt , g ) , < (wj , h ) , (w2 , g) und < (w2 , h).

17 . ^ = f 5 x X r i \= 1 , b = -l
1-iJ UJ

a) Bestimme ~ä^ , die Projektion von b in Richtung a .

b) Bestimme ba , die Projektion von ~a in Richtung b .

c) Welche Besonderheit haben ~a und b , wenn gilt ba = b ?

_ v
~a ° b

d) Zeige allgemein : ab = — 2
— • a

3 .

18. Deute geometrisch
a) AB oÄC = 0

c ) AB ° AC = - AB • AC

b)

d)

AB o AC = AB • AC

AB » AC I * AB • AC

19 . Welche Winkel bilden der Vektor ~a und die Richtungen der Koordinatenachsen ?

( 1 j (<2 ) - X f ° j
a)

~
& = l b) a = 0 c) a = 1kJ kJ UJ

20. Bestimme die fehlenden Richtungswinkel eines Einheitsvektors , von dem bekannt
ist:

b) <Xj = 90 ° c ) et! = ? d) ctj = 02 = a3a) otj = 60°
a 2 = 120 °

a3 = ?
« 2 = l
a 3 = 30°

«2 = ?
a3 = 180°

wie groß ist ctx ?
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21 . Will man die Richtung eines Vektors mit den Richtungswinkeln festlegen , so sind
diese nicht beliebig wählbar .
a ) Für welchen Wert von a x liegen a 2 und a 3 schon fest ?
b) Welche Beziehung besteht zwischen ttj und a 2 , wenn durch sie a 3 eindeutig

bestimmt ist ? Wie groß ist a3 dann ?
c ) Welche Beziehung müssen otj und a2 erfüllen , damit für a3 mehr als ein Wert

existiert ? Wie liegen dann die zugehörigen Einheitsvektorren ?

In Aufgabe22. bis 26. bedeuten X und (p sphärischeKoordinaten .

22 . Zeige , daß der Vektor a 0
^cos X cos (p

^

sin X cos (p die Länge 1 hat .
sin cp J

23 . Bestimme einen zu X und cp gehörigen Richtungsvektor
a ) ^. = 90 °

, cp = 60 ° b) X - 120 °
, cp = 45°

c ) X = - 11,5 °
, cp = 48,1 ° d) cp = — 90°

24. Wie muß man X und cp wählen , damit die drei Richtungswinkel , 0C2 und a 3 gleich
groß sind ? ( ^. I cp) ist die Blickrichtung (=Projektionsrichtung ) fürs Normalbild in
Isometrie (gleiches Maß auf allen Achsen).

25 . Der Vektor p =
/ 8

4 erscheint in einem geeigneten Koordinatensystem als Punkt .

In welcher Richtung ( X I cp) schaut man aufs Koordinatensystem ?

26. Bei der Dimetrie (gleiches Maß auf x2- und x3-Achse ) ist der Projektionsvektor

In welcher Richtung (X I cp) schaut man aufs Koordinatensystem ?P = 1
v 1 x

3. Eigenschaftendes Skalarprodukts

Die Körperaxiome [e ] [k ] [A N 7][d ] legen fest , wie man mit reellen Zahlen rechnet .

ADDITION MULTIPLIKATION

E xistenz

a + b a-b
für alle a,b elR existiert



[K | ommutativität
für alle a,b elR gilt

[Ajssoziativität
für alle a,b,c elR gilt

a + b = b + a

(a + b ) + c = a + (b + c)

es gibt eine Zahl Oe IR ,
so daß für aelR gilt

a + 0 = a

[Njeutrales Element
es gibt eine Zahl lelR ,

so daß für aelR gilt
a *l = a

zu jeder Zahl aelR gibt
es eine inverse Zahl - a ,

a + (- a ) = 0

nverses Element
zu jeder Zahl aelR , a* 0

gibt es eine inverse Zahl ^ ,

so daß gilt

[plistributivität
für alle a,b,c elR gilt
(a + b ) -c = a -c + b -c

Die Gesetze [e ] [k ][A N i ] gelten für Addition und Multiplikation in gleicher Weise . Der

Unterschied dieser beiden Verknüpfungen zeigt sich erst im Gesetz [d ], In [d ] kommt
die charakteristische Eigenschaft der Multplikation im Vergleich zur Addition zum
Ausdruck . Man wird also einer Verknüpfung den Namen Produkt nur dann
zugestehen , wenn zumindest dieses Gesetz gilt .
Beim Skalarprodukt gilt

( lt + b ) ° ~c
Y a i > fa 1 + f Clj

a 2 + ^ 2 o C2 = a 2 + b 2 O c2

-v
a 3 >

b 3^ öJ- ^ a 3 + b 3 V
C3J

= ( a x + bjlcj + (a 2 + b 2)c2 + ( a 3 + b 3)c3 =

= ajCj + b ^ j + a2c2 + b2c2 + a3c3 + b 3c3 =

= ajCj + a2c2 + a3c3 + bjCj + b 2c2 + b3c3 =

= ~a ° ~
c + b ° c .= a 2 o c 2 + b2 O c2

V. a ) CqV. ö ) b 3^ ö) ,
C3y

Also gilt das Distributivgesetz für das Skalarprodukt — was seine Bezeichnung nach¬

träglich rechtfertigt . Wie schauts mit den andern Gesetzen aus ? Man findet schnell ,
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daß nur das Kommutativgesetzjplt : a ° b = b ° a . Beim Assoziativgesetz gilt wenigstens
eine schwächere Form : (p-

”a ) ° b = pCa
"

° b ) ; in ihm kommen drei Multiplikationsarten
vor

Zahl mal Vektor p-
”a S-Multiplikation

Vektor mal Vektor ~a 0 b Skalarprodukt
Zahl mal Zahl pO^ ° b ) Zahlenprodukt .

Man kann also mit Vektoren fast genau so rechnen wie mit Zahlen ; einige Ausdrücke
haben keinen Sinn , so zum Beispiel Produkte aus mehr als zwei Vektoren wie a 3 und

1 b
Quotienten mit Vektoren im Nenner wie oder — . Es gelten aber zum Beispiel die bi-a a
nomischen Formeln : ( li + b )2 = ~a 2 + 2~a ° b + b 2

(
"a - b ) ° Ca + b ) = ~a 2 - b 2

Bei der Untersuchung abstrakter Vektorräume ( zum Beispiel mehr als Dimension 3 )
stellt sich die Frage , wie man die Begriffe Länge und Winkel verallgemeinern kann .
Ein Weg besteht darin , ein Skalarprodukt zu definieren , indem man bestimmte Eigen¬
schaften fordert und sie im Axiomensystem eines verallgemeinerten Skalarprodukts
zusammenstellt . Dabei orientiert man sich an den Gesetzen , die fürs Skalarprodukt im
IR 3 gelten:
Sind a , b beliebige Elemente des abstrakten Vektorraums V, dann ist » * « mit a*beIR ein
Skalarprodukt von a und b , wenn die Axiome gelten :

jTj für alle a,b,c eV gilt (a + b )*c_=: a*c+ b*c
| II | für alle a,b eV gilt a*b = b*a

| III | für alle peIR , a,b eV gilt (p-a )*b = p -(a*b )
| IV | für alle aeV, a * 0 gilt a +a > 0

Das IV. Axiom braucht man , um die Länge I a I eines Vektors a
mit der Formel I a I = •\/a *ä zu definieren.

Einen Überblick über die möglichen Skalarprodukte erhält man , wenn man im Vektor¬
raum eine Basis ( &! , e2 , . . . ) und damit eine Koordinatendarstellung hat . Wir zeigen das
für einen dreidimensionalen Vektorraum :

cl — + OC2G2+ CC363
b = ßxfi! + ß2Ä2 + ßa£,3

a * b = ( axfix + a.?e2 + a& ) * (ß^ j + ß^ + ß3e3 )
= otxßx fix+ej + cc2ß2e 2*e2 + a 3ß3 £3* 193 +

+ aiß2Si *S2 + a iß3 fix*£3 + a 2ßx £2+0 , + a 2ß 3 £2*£3 + a 3ßx £3 *£ x + ot3ß2 £3*e2
Die Produkte der Basisvektoren heißen Strukturkonstanten . Kennt man sie , dann liegtdas Skalarprodukt fest . Allerdings muß man sie so wählen , daß die Axiome erfüllt sind.
Ein Vektorraum mit einem so definierten Skalarprodukt heißt Euklidischer Vektor -



raum . Das einfachste Beispiel ist das uns vertraute Skalarprodukt . Man nennt es auch
Standard -Skalarprodukt . Seine Strukturkonstanten sind:

= ~
C2 ° = ~

e3
‘
° ‘e3

l = 1

e^ ° "
ej = "

e^ ° "e^ = '
e^ ° '

e^ = 0
Das führt zu ~a ° ~a = a 2 + a2

2 + a3
2 > 0 für ~a ?cLr .

Es gibt aber auch ungewöhnliche Skalarprodukte mit Strukturkonstanten wie £;*% = 2
und Cj+gj = 1 für i ^ j . Dann gilt
a * a = 2(a !

2 + c^ 2 + cc3
2) + (a 1a 2 + a 2a i + + cc3a 2 + a 3a i + otiOt3) =

= (a 3 + CC2 )2 + (aj + a 3)
2 + (02 + a 3)2 > 0 für a * 0 .

Bei diesem Skalarprodukt gilt zum Beispiel
1 A
1 = 1 - 1 -2 + (- 11-1 -2 + l -(—1 )-2 +
- ij

+ 1 - 1 -1 + l -(—1 ) 1 + (- 1 ) 1 -1 + (—! ) •(—1 ) -1 + 1 -1 -1 + 1 -1 -1 = 0

Der Vektor a =
( 1 A

v 1 ;
f 1 A2 ( 1 > ( 1 A-1 = - 1 * - 1UJ ( U UJ

hat in diesem Skalarprodukt die »Länge « I a I * mit

= 1 -1 -2 + (- 1M- D -2 + 1 -1 -2 +* 2 ,

+ l -(—1 ) 1 + 1 -1 -1 + (- l ) -l -l + (- 1 ) 1 -1 + 1 -1 -1 + l -(- l ) -l = 4
also ist I a I * = 2 . (Beim Standard -Skalarprodukt hätte a die Länge a/3 . )

Auch einen »Winkel « könnte man mit diesem Skalarprodukt bestimmen ,
wenn man den Winkel cp

* zwischen den Vektoren a und b definierte mit
a * b

cos qr lal - lbl

Als Beispiel nehmen wir a = | - 1
\ f 1 )

, b = 1

J UJ
a * b = ( 1 ) r 1 )-1* 1UJ UJ 1 -1 -2 + (- D -1 -2 + 1 -0 -2 +

+ 1 -1 -1 + 1 -0 -1 + (- 1 ) 1 -1 + (- l ) -O -l + 1 -1 -1 + 1 -1 -1 = 2
I a | * = 2 , für b ergibt sich | b I * = a/ 6 , also cos cp

* = , => cp
* = 65,9° .

(Beim Standard -Skalarprodukt würde sich ergeben cos cp = 0 , =» cp
* = 90 °

. )

a * b a * b
Die Definition cos cp

* =
| |

hat nur einen Sinn , wenn - 1 < ^ 1 garantiert

ist . Tatsächlich gilt für jedes Skalarprodukt die Ungleichung von CAUCHY-SCHWARZ:

(a * b )2 < (a * a )(b * b)
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Beweis : Für b = 0 stimmt die Beziehung .
Nun sei b *■0 - Wegen IV gilt für ge IR

0 < (a + p b ) * (a + p b)

0 < a * a + 2pa * b + p2b * b ; setzt man p
(a*^)2 (ai-b )2

so ergibt sich

0 < a * a - 2

0 < a * a

0 < (a * a )(b * b ) - (a * b )2
, q .e .d.

Baron Augustin Louis CAUCHY (Paris 1789 bis 1857 Sceaux ) hat diese Ungleichung
formuliert und für endliche Folgen in seinem Cours d 'analyse 1821 bewiesen .
Hermann Amandus Schwarz (Hermsdorf 1843 bis 1921 Berlin ) hat sie 1885 im Zusam¬
menhang mit der Untersuchung von Minimalflächen verallgemeinert .

Aufgaben

1 . Begründe : Die Axiome [A Tj gelten für kein Skalarprodukt außer in
Y'ektorräumen der Dimension 1 .

Welche der folgenden Terme beziehungsweise Gleichungen sind mathematisch
sinnlos , welche Umformungen sind gültig ?
a , b und c seien Vektoren , a , ß und y seien Zahlen , außerdem sei a * b ein Skalarpro¬
dukt , a ■a eine S-Multiplikation und a ß eine Zahlenmultiplikation .
a ) (a * b) * b = a * b2 b) (a * b ) ■b = a • b2

c) a * b = Y, => a = k d) a -(a * b ) = ß , => a =
e ) (a * b) -c + a -(b * c ) = a -(b * c + b * c ) = 2a -(b * c )

a
a * .h

3. Beweise : 0 * c = 0

• 4. Untersuche , ob mit folgender Definition ein Skalarprodukt im IR 3 festliegt :
a) a * b — a^bj — 3a xb2 — 3a2bx a3b3
b) a * b = 3a1b1 — 4a xb2 - 4a2b x + 8a2b2 - axb3 - a3bj + 4a3b3
c ) a * b = ax

2 + a2
2 + a3

2 + b x
2 + b2

2 + b3
2
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• 5. Liegt überhauptein Skalarprodukt vor ? Bestimme gegebenenfallsdie
Strukturkonstanten des Skalarprodukts im IR 3 :
a) a * b = 2a1h1 ■+■ 5 (a b̂2 4"a2b^) + 5a2b2
b) a * b = 2a^bj 3 (a^b2 "4* a2b ^) + 5u2b2
c) & * b — 4ajb ^ + öla^ — a2b^) + 3a2b2

• 6. Bestimmen die Strukturkonstanten ein Skalarprodukt ?
a ) e;

2 = cq und oq > 0 , g; * gj = 0 für i
b) gj

2 = 1 , £i * e2 = a und 1a 1< 1 , £ 2 * £ 3 = £ 3 * £ i = 0

c) - 1 , £2
2 = 2 , £3

2 = 3 , g; * ej = 1 für i j
d) e 2 = 1 , £i * £2 = 2 , £2 * 23 = e3* gx = 0

• 7. Ist in einem n-dimensionalen Vektorraum durch den Term
- + x2y2 - x3y3 + . . . + (- DXYn
die Koordinatendarstellung eines Skalarprodukts gegeben ?

• 8. In einem Vektorraum mit der Basis {gx , g2 , £3) sei ein Skalarprodukt bestimmt
durch die Strukturkonstanten
£i

2 = 1 , e2
2 = 2 , eg

2 = 3 , e1 * e2 = l , g2 * e<, = £3 * gx = 0
a ) Gib die Koordinatendarstellung eines Skalarprodukts an.
b) Zeige: a2 > 0 für a > 0.

c)
d)
e)

Berechne damit das Skalarprodukt der Vektoren
Berechne die »Längen« von a und b .
Berechne den »Winkel« von a und b .

/ 4 > f 1 N
a = - 3 , b = 2Ix

• 9. Berechne im IR 3 einen Vektor n der »Länge« 5 , für den gilt a * n = b * n = 0 ;
verwende das Skalarprodukt von 6. c) . (n ist »Lotvektor« von a und b .)

( 1 > ( 3 ^a = 0
l- b

, h = - 4
l 4 J

• 10 . Zeige die Gültigkeit der CAUCHY-SCHWARZ -Ungleichung für das
a ) Standard -Skalarprodukt b) Skalarprodukt von 6 . c ) .

4. Anwendungen der Orthogonalität

Vektor, der auf h senkrecht steht: Normalvektorvon a
Vor gut 200 Jahren ist das Wort »normal « aus dem Lateinischen übernommen worden.
Es leitet sich ab von normalis = der Norm entsprechend , im rechten Winkel gemacht .
Die Bedeutung normal = senkrecht findet man zum Beispiel in »Normalprojektion « ,
»Normalbild « , »Normalkraft « und »Normalvektor « .
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n, . . . n 5 sind Normalvektoren von a

na = 0

Die Aufgabe, Vektoren zu finden , die auf senkrecht stehen , ist nicht eindeutig
lösbar . Normalvektoren ~n ‘

( *~
o ) von ~a müssen die Gleichung "xf o

"a = 0 erfüllen :
n^ j + n2a2 + n3a3 = 0 . Weil man zwei Koordinaten von "n frei wählen und dann die

dritte daraus bestimmen kann , gibt es °°2 Lösungen. Zum Beispiel ergibt sich für ä' =

die Gleichung n x+ 2n2 + 3n3 = 0 ; mögliche Lösungen sind

( 1 \

( 0 > ( - 3 ( 2 \ f - 2 \
- 3 0 - 1 , - 2

l 2 ; { 1 J l 0 J l 2 J
und

( 1
2,5 . Besonders leicht findet man Normalvektoren zweidimensionaler Vektoren .

a± =
^ S |

2
j ist ein Vektor , der senkrecht ist zu"a = und genau so lang ist . Die Koor¬

dinaten von a und aL lassen die Bedingung aus der Analysis fürs Senkrechtstehen von
Geraden erkennen : Geraden parallel zu "a haben die Steigung m = ^ , und die parallel
zu a± haben die Steigung m = — ^ , aber nur , wenn keine Koordinate gleich 0 ist .
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Vektor , der auf a und b senkrecht steht : Normalvektor von a' und b
Sind "a und b linear unabhängig , dann ist der Normalvektor lT bis auf einen Faktor
eindeutig bestimmt . Um li zu finden , muß man das Gleichungssystem :

"rT °
”a = 0

~n ° b = 0 lösen . Dieses 2,3-System hat Lösungen .

Beispiel:

nj + 2n 2 + 3n 3 — 0

—n x+ 3n 2 + 2n 3 = 0 Lösung n.

Normalvektoren von a und b

rfs a = 0

Abstand von Punkt und Gerade ; Lotfußpunkt
Der Abstand d ist die Länge des Lots von P auf g . Ist X allgemeiner Punkt der Gerade g:
X = G + gfiT , dann bestimmt man den Lotfußpunkt F aus der Gleichung PX » u = 0 .
Der Abstand ist dann d = PF .

PF °u = 0

5 + 2[i
PX = 4 - 2(1 d (P,g ) = PF = 7

G (51216 )

P (0I - 2I1 ) ä \ F (31413 )

g : X = 2 UN - 2
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Beispiel : g: X =

jf =

f5 ( 2 \
2

V6 V
+ p - 2 , P (0 I - 2 | 1 )

/ 5 + 2p > V f5 + 2p a
2 —2p PX = 4 - 2p

l6 + 3pj 5 + 3p J
PX ° u = 0 : 2(5 + 2p ) - 2 (4 - 2p ) + 3 (5 + 3p ) = 0

PX = PF

17p + 17 = 0 => p = - 1 eingesetzt in PX :

v 2 y
, Abstand d(P,g ) = I PF I = 7

zu p = - 1 gehört der Lotfußpunkt F (3 I 4 I 3 ) .
F ist derjenige Geradenpunkt , der P am nächsten liegt .

Der Abstand läßt sich auch trigonometrisch berechnen . Man bestimmt cos cp :
u » GP _ . _ ._cos <P = >und aus d = GP • I sin (p [ ergibt sich : d = GP y 1 — ( cos cp)2 .U * Cxr

Im Beispiel von oben sieht das so aus :

GP = Vßfh

V66a/I7 ^ 66
’

^ 66 - 17 = 7

Abstandzweier Parallelen
Man führt das Problem zurück auf die im letzten Abschnitt behandelte Aufgabe :
Man berechnet den Abstand eines Punkts der einen Gerade von der andern Gerade .

H (- 6i2l5 )

+ X —2

h :X = 2

G (01212 )

F (- 2 1411)
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Abstand zweier windschieferGeraden
Der Abstand d(g,h ) zweier windschiefer Geraden g und h ist die Länge der kürzesten
Strecke , die einen Punkt von g mit einem Punkt von h verbindet . Legt man durch jede
der beiden Geraden eine Ebene , die parallel ist zur anderen Gerade , dann haben diese
Ebenen den Abstand d(g,h ) . Die Normalprojektion g von g in F schneidet h im Fuß¬
punkt V des gemeinsamen Lots n . (g ' und h sind nicht parallel , weil g und h windschief
sind .)

Also gilt : Zu zwei windschiefen Geraden g und h gibt es genau eine Gerade n , die beide
senkrecht schneidet . Die Entfernung der beiden Schnittpunkte ist der Abstand von g
und h . Die Gerade n heißt Normale oder gemeinsames Lot von g und h .

Es gibt mehrere Verfahren , die Schnittpunkte U und V, den Abstand d und die Normale
n zu bestimmen . Zunächst führen wir zwei vor .

h :X = U + H ?
$S U(1

H(81414 ) =

g : X = 9 \+ X \- i

+ V 4
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T
Methode »Allgemeiner Punkt «

g: f - 3 '' f 4 > /
9 + k - 1 , h : X = 4 + \i

\l 0 y V 8 J l 4 y

f - 3 + 4U ^ 8 + 4g ^
x g = 9 - k xT = 4 + 3g

l ^ J v4 + 4g y

Allgemeiner Verbindungsvektor X gXh
f ll + 4g - 4k>

- 5 + 3g + X

v 4 + 4g - 8k j
g und k muß man so berechnen , daß X gX h auf den Richtungsvektoren von g und h
senkrecht steht :

XgXh » u ^ O: 4( 11 + 4g - 4k ) - (- 5 + 3g + k ) + 8(4 + 4g - 8k ) = 0
X gXh

'
° v

" = 0 : 4( 11 + 4g - 4k ) + 3(— 5 + 3g + k ) + 4(4 + 4g - 8k ) = 0
Das Gleichungssystem 81 + 45g - 81k = 0

45 + 41g - 45k = 0 hat die Lösungen k = 1 , g = 0 .
k = 1 in g eingesetzt liefert U( 11 81 8 ) , g = 0 in h eingesetzt liefert V( 81 41 4 ).

Abstandvektor UV =
y 7 \
- 4

v~ 4y
, Abstand d(g,h ) = I UV

Gleichung der Normale n : X ( * )4 + VUJ

= 9

Methode »Vektorkette «
Zuerst bestimmt man den Richtungsvektor ~n der Normale , 1? steht senkrecht auf u
und V :
li ° ~u = 0 : 4nj - n 2 + 8n 3 = 0
n “ V = 0 : 4nj + 3n 2 + 4n 3 = 0

Das Gleichungssystem hat die Lösung v 4
l 4

Geschlossene Vektorkette

\ (- 7 \
; wir wählen n = 4

/ l 4 y

GH + HV + VU + UG

GH + gv + on + ku

o
~
o

n ° GH + n ° g v + n ° g n + n ° k u = 0

= 0

r ln ° GH
G =

81

= 0

r 11 N
- 5

v 4 y

Abstand d (g,h ) = I VU I I g n

U/S

HV = |xv
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Braucht man auch noch die Punkte U und V, dann setzt man a und n in die Vektor¬
kette ein und löst das Gleichungssystem für |i und X :

( U \ r 4 ^ f- l 's r ° )- 5 + p 3 + 4 + k 1 ZZ 0UJ 4J Ui l-8y loj

4 |i - 4k = - 4
3p + X = 1
4p - 8X = - 8 Lösungen X = 1 , P = 0 (Zwei Gleichungen genügen !)
ÜG = Xu => U

“
=

~
G - Xu , U( 1 I 8 I 8 )

HV = pV =>
"
v =

~
H + pT , V(8 | 4 | 4)

Diese Aufgabe hätte man auch so einkleiden können :
g und h sind Tangenten einer möglichst kleinen Kugel K.
Bestimme die Berührpunkte sowie Radius und Mittelpunkt von K.
Die Berührpunkte sind U und V.
Die Kugel hat den Durchmesser [UV] ; der Radius ist r = | d (g,h ) = 4,5 .

Der Mittelpunkt halbiert [UV] : M = | ( U + V ) , M (4,5 I 6 I 6 ) .

Aufgaben

[l | Bestimme drei Normalvektoren von ~a , von denen jeder zu einer
Koordinatenebene parallel ist :

a ) a =
f - 2

3 b ) a =
( 1 >

0 c ) a = 0
l 4 ; Uv UJ

2. Bestimme einen Normalvektor von “a und b mit teilerfremden ,
ganzzahligen Koordinaten :

( 6 1 r3 > r V- 3a r \9 \ _^ f13 \
ii1«'S - 1 , b = l b)

’t = - 2 o" II Oi II 0 , b = 0
l 3 J UJ \ % ) Ö~7 J l99j

[& ] Zeige : Sind u und v linear unabhängige Normalvektoren von a ,
dann ist auch jede Linearkombination von Tf und v ein Normalvektor von ~a .

4. Bestimme alle gleichlangen Normalvektoren von a =

Koordinaten .

' 2 \
- 2 mit ganzzahligen

5. Bestimme einen Vektor , der senkrecht ist zu u und v , und untersuche ,

welche der Vektoren ~a , b ,
~
c und d komplanar sind zu Lf und V" :

( 3 1 / 2 \ ( 1 ^ — f 1 > _ ^
u = 4

Uj 4 II , a = 0 b = - 2
Ui

~
c = - i d
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ff X = P(4 I 8 I - 8 )
y 20 y ( 1

1 + p - 4
U2 J l 3 J

a ) Berechne den Fußpunkt F des Lots von g durch P und den Abstand von P und g
b) Berechne den Abstand von g und Ursprung .

Gib die Gleichung einer Ursprungsgerade u an,
_ ^ r 3 ) / 2 \

die g: X = 5UJ+ p 1
l 3 Jsenkrecht schneidet .

&
- f 3 ) f ° j

g: X = 1 + p lUy l 2 J P( 1 1 - 1 I 1 ) Zeichnung im Koordinatensystem !

a) Berechne den Fußpunkt F des Lots von g durch P.
b) Gib eine Gleichung der Normale n von g durch P an.
c) Berechne den Abstand von P und g.
d) P ' und P sind symmetrisch bezüglich g . Berechne P '.

9. Berechne den Abstand d (P,g) und die senkrechte Projektion F von P auf g:
_ * y - 20 \ / 0 \

a) g: X =

b) g: 2f =

- 10
V 25 ,

I y
II
111

+
Tl
yllly

11
v 1 y

, P(50 I 55 I 51 )

, P(1000 I 110 I 120 )

_v _^ r3 \
• 10 . g: X = ji 1 , h: X = 2UJ UJ+ x

(- i
P( 11 2 I 3 )

a ) g an P gespiegelt ergibt g'
. Gib eine Gleichung von g an.

b) P an g gespiegelt ergibt P '
. Berechne P '.

c) h an g gespiegelt ergibt h’
. Gib eine Gleichungvon h ' an.

f 2 ) ( 2 y _ ^ f 5 n ( 1 >• 11 , g: X - 5
UJ

- 2
Uy , h: X = 3

l+ ^ [o,5v
. Berechne d(g,h).

• 12 . A (29 I - 5 I - 4 ) , B (- 3 I - 27 I 12 ) , M ( 16 I 11 1- 8 ) , P ( 4 | 8 I 19 ) , Q( 1 1- 19 I 31 )
g ist die Gerade durch A und B.
a ) Bestimme den Punkt N auf g , der P am nächsten liegt.
b) g ist Tangente einer Kugel um M .

Berechne den Berührpunkt T und den Kugelradius rb .
c) Berechne Radius rc und Mittelpunkt Mc der kleinsten aller Kugeln,die durch M gehen und deren Mittelpunkte auf g liegen.
d) Berechne Radius rd und Mittelpunkt Md der kleinsten aller Kugeln ,die durch M gehen und g berühren . Berechne den Berührpunkt T .
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e ) Berechne Radius r e und Mittelpunkt Me der kleinsten aller Kugeln ,
die durch Q gehen und g als Zentrale haben .
Berechne die Schnittpunkte von g und dieser Kugel ;
was für ein Dreieck bilden der Ursprung und die Schnittpunkte ?

f ) Bestimme eine Gleichung der Normale n von g durch Q .

g ) Q an g gespiegelt ergibt Q '
. Berechne Q ' .

• 13 . g ist die Gerade durch A(81 13 I 3 ) und B ( 141 201 - 3 ),
h ist die Gerade durch C( 10 I 19 I 12 ) und D (- 81 - 2 I 30 ) .
a ) Berechne den Abstand d(g,h ) von g und h .
b) Bestimme eine Gleichung der Mittelparallele m von g und h.
c ) g an h gespiegelt ergibt u , und h an g gespiegelt ergibt v.

Bestimme Gleichungen von u und v.
d) Wo liegen die Mittelpunkte der Kugeln , die g und h berühren ?

e) Wo liegen die Mittelpunkte der kleinstmöglichen Kugeln ,
die g und h berühren ?

_ ^ rl \ f 1 \
• 14 . ga : X = 1 + p - 2

l ° J
, aeZ , M(- 5 I 5 I 5 ) , V(6 I 18 I 6 ) , W(- 6 I 12 I 0 )

a ) Beschreibe die Schar ga , welchen Abstand haben benachbarte Schargeraden ?
Welche besondere Lage im KOSY hat die Mittelparallele von g7 und g_7 ?

b) Welche Schargeraden haben vom Ursprung den Abstand 7 ?

c ) Welche Schargeraden berühren die Kugel um M mit Radius 9 ?

d) Bezüglich welcher Schargerade sind V und W symmetrisch ?

>15 . | Untersuche , ob g und h windschief sind , berechne gegebenenfalls den Abstand
d(g,h ) und die Endpunkte der gemeinsamen Lotstrecke .

a ) g; X =
\ _ ^ f 4 \

)
- 1

l 4 V, h : X = 1
v °J+ V 3

^- 2 )

_ v ( 1 > fl > _ ^ f0 ^ { 0 \
b) g: X = - 2

l 3 J
+ x 1 , h : X = 5 + p 0

v ( 7 ) _ /■h
0 g: x = 8 + X 5

Iß ;
h: X = p 2

l 3 J

d) g: X =
v 3 y

+ X
r 2 \

v 1 ;
h : X + p

( - 2 \

V 2 7

_^ ( 2 ^ _v f —5 ( - 3 \

e ) g: X = 16 + X 8
, 4 )

, h : X = 8 + M- 4
l 4 J

f) g: X
\ f 3 ) _ ^ r 6 ) (~2 \

+ x
J

- 1
l 7 J

h : X = 15
[l?J

+ p 4
l - 4 J
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_ ^ ( 6 > _ r- l >
: 16 . g: X = k - 10 , h: X = 16 + p 10

l 3 V l 1 J

g ist die Achse eines Zylinders Z mit Radius 11 .
Berechne die Schnittpunkte von Z und h.

_^ _v ( - 7 r - 3 \• 17 . g: X = 17 + 1 8
l 4 J, h : X = 9

ll6 J+ p 4
l 4 J

• a) Die Kugel hat ihren Mittelpunkt auf h und berührt g.
Bestimme ihren Mittelpunkt M und Radius r in Abhängigkeit von p.
Für welchen Wert von p ist der Radius minimal ?

b) Bestimme MittelpunktM und Radius r der kleinsten Kugel ,deren Mittelpunkt auf h liegt und die g als Tangente hat .
c) Bestimme Mittelpunkt und Radius der kleinsten Kugel ,

die h und g als Tangenten hat .

5. Beweise
Mit dem Skalarprodukt ist es auch möglich, geometrische Sätze durch Rechnung zu
beweisen. Drei Beispiele sollen das zeigen .

1 . Beispiel: Hat ein Tetraeder zwei Paare orthogonaler Gegenkanten ,dann sind auch die beiden restlichen Kanten orthogonal.
Vor . : a o ( c - b ) = 0 ( 1 )

b ° Ca - ~
c ) = 0 ( 2 )

Beh. :
~
cT° ( b - ~a ) = 0

Bew . :
"a °

"
c

"
—

~a ° b = 0 ( 1 )
b °

~a — b o c = 0 ( 2 )
( 1 ) + (2) :

‘a'
o
'
c
' - b o

“
c
" = 0

Genauso elegant lassen sich viele bekannte Sätze aus der Planimetrie mit dem Skalar¬
produkt beweisen.
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2 . Beispiel : Ein Parallelogramm -Satz und seine Verallgemeinerung :
In einem Parallelogramm sind die beiden Quadrate über den Diagonalen
zusammen genau so groß wie die Quadrate über den Seiten zusammen .

® + © + ® + ®
Vor . : OA =

~
CB = ~a

Beh . : OB 2 + ÄC 2 = ÖA 2 + AB 2 + ESC
~

2 +
~
C <J 2

Bew . : OB 2 + AC 2 = (
~a +

"? )2 + (
~c - ~a )2 = 2~a 2 + 2~c 2

OA 2 + AB 2 + BC 2 + CO 2 =
~
&

2 +
~
c 2 +

~a 2̂ + 2 q.e .d.

Jetzt verallgemeinern wir den Satz auf beliebige Vierecke :
Summe der Seitenquadrate :
~a 2 + b 2 +

"
c

"2 + Ca + b + "
cT )2 =

2 ~
&

2 + 2 b 2 + 2 ”
c

" 2 + 2( o b + b ° c + a ° c )
Summe der Diagonalquadrate :

Ca ’+
"
b )2 + ( 1b + ~

cT )2 = ^a 2 + 2 b 2 +
~
c 2 + 2 (

~a o b + boT )
Diese beiden Summen sind im allgemeinen nicht gleich groß ,
sie unterscheiden sich um den Term a 2 + c 2 + 2a ° c = ( a + c )

2.
Dieser Korrektur -Summand hat eine geometrische Bedeutung :
Sind M und N die Mitten der Diagonalen , dann gilt

NM = Ivf - = | (2
"a + b +

"? ) - | (
"a + b ) = lCa +~

c ) .
Damit haben wir einen Satz gefunden und bewiesen :
Die vier Quadrate über den Seiten eines Vierecks sind zusammen so groß wie
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die Summe der beiden Diagonalquadrate und des vierfachen Quadrats über
der Verbindung der Diagonalmitten .

3 . Beispiel: Die Euler -Gerade:
In jedem Dreieck ABC liegen der Schwerpunkt S , der Höhenschnittpunkt H
und der Umkreis -Mittelpunkt M auf einer Gerade . S teilt die Strecke [HM]
im Verhältnis 2 : 1 .
Wegen S = f ( A + B + C ) wird A + B + C = ’

o
'

(I ) ,
wenn wir S zum Ursprung machen .
M ist von A, B und C gleich weit weg : AM = BM = CM
Für zwei gleich lange Vektoren Tf und ~v gilt ~u 2 - v 2 = 0
beziehungsweise Cu ' - '

v ) ° ( üf + U ) = 0 ; damit folgt aus (II ):
( AM - BM ) ° ( AM + BM ) = ( B - A ) ° (2M - A - B ) = 0 ( III )

und (
~
cf - l3 ) ° ( 2lvf - l3 - cf ) = 0 ( IV)

und ( A -
_
C ) o ( 2Är - c

'
- A ) = 0 (V )

Wir setzen G := —2 M ; aus (I) folgt: — A — B = C . Damit wird
aus (III ) : ( B - A ) ° ( C - G ) = AB ° GC = 0
aus (IV): ( C - B ) ° ( A - G ) = BC ° GA = 0
aus (V) : ( A - C ) ° ( B - G ) = CA ° GB = 0
Demnach liegt G auf allen Höhen, ist also identisch mit H : G = H.
Aus H = —2 M folgen beide Behauptungen .

o =s
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Aufgaben
Beweise folgende Sätze mit dem Skalarprodukt

@ jeder Raute stehen die Diagonalen aufeinander senkrecht .

[2] Thales -Satz : Wenn ein Dreieck OVTJ rechtwinklig bei 0 ist ,
dann liegt O auf dem Kreis mit Durchmesser [UV] .

[&1 Umkehrung des Thales -Satzes :
Wenn 0 auf dem Kreis mit Durchmesser [UV ] liegt,
dann ist das Dreieck OVU rechtwinklig bei 0 .

4. Satz über die Höhen im Dreieck:
Die drei Höhen eines Dreiecks schneiden sich in einem Punkt .

5. Satz über die Winkelhalbierende im Dreieck:
Jede Winkelhalbierende teilt die Gegenseite innen im Verhältnis
der anliegenden Seiten.

6. MITQUADRATEN
[CP] und [CQ] sind gleich lang und stehen aufeinander senkrecht .

QUADRATMITTEN
XY= CZ und XY± CZ

Quadrat

Quadrat

Quadrat

MITQUADRATEN
\ CP = CQund CPXCQ

Quadrat
Quadrat

— Quadrat - -

7. QUADRATMITTEN
X, Y und Z seien die Mitten der Quadrate über den Seiten eines bei C
rechtwinkligen Dreiecks ABC.
[XY] und [CZ] sind gleich lang und stehen aufeinander senkrecht .

8. Der geometrische Ort der Punkte , deren Entfernungsverhältnis zu zwei festen
Punkten 0 und P gleich x Ol ) ist , ist ein Kreis. (Apollonios -Kreis)

9. In jedem Spat sind die Quadrate über den vier Raumdiagonalen zusammen
genauso groß wie die Summe der Quadrate über den zwölf Kanten .

10 . Die Höhen eines Tetraeders treffen sich genau dann in einem Punkt ,
wenn je zwei Gegenkanten senkrecht stehen .
(Eine Höhe ist das Lot von einer Ecke auf die gegenüberliegende Seitenfläche .)
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