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21 . Will man die Richtung eines Vektors mit den Richtungswinkeln festlegen , so sind
diese nicht beliebig wählbar .
a ) Für welchen Wert von a x liegen a 2 und a 3 schon fest ?
b) Welche Beziehung besteht zwischen ttj und a 2 , wenn durch sie a 3 eindeutig

bestimmt ist ? Wie groß ist a3 dann ?
c ) Welche Beziehung müssen otj und a2 erfüllen , damit für a3 mehr als ein Wert

existiert ? Wie liegen dann die zugehörigen Einheitsvektorren ?

In Aufgabe22. bis 26. bedeuten X und (p sphärischeKoordinaten .

22 . Zeige , daß der Vektor a 0
^cos X cos (p

^

sin X cos (p die Länge 1 hat .
sin cp J

23 . Bestimme einen zu X und cp gehörigen Richtungsvektor
a ) ^. = 90 °

, cp = 60 ° b) X - 120 °
, cp = 45°

c ) X = - 11,5 °
, cp = 48,1 ° d) cp = — 90°

24. Wie muß man X und cp wählen , damit die drei Richtungswinkel , 0C2 und a 3 gleich
groß sind ? ( ^. I cp) ist die Blickrichtung (=Projektionsrichtung ) fürs Normalbild in
Isometrie (gleiches Maß auf allen Achsen).

25 . Der Vektor p =
/ 8

4 erscheint in einem geeigneten Koordinatensystem als Punkt .

In welcher Richtung ( X I cp) schaut man aufs Koordinatensystem ?

26. Bei der Dimetrie (gleiches Maß auf x2- und x3-Achse ) ist der Projektionsvektor

In welcher Richtung (X I cp) schaut man aufs Koordinatensystem ?P = 1
v 1 x

3. Eigenschaftendes Skalarprodukts

Die Körperaxiome [e ] [k ] [A N 7][d ] legen fest , wie man mit reellen Zahlen rechnet .

ADDITION MULTIPLIKATION

E xistenz

a + b a-b
für alle a,b elR existiert



[K | ommutativität
für alle a,b elR gilt

[Ajssoziativität
für alle a,b,c elR gilt

a + b = b + a

(a + b ) + c = a + (b + c)

es gibt eine Zahl Oe IR ,
so daß für aelR gilt

a + 0 = a

[Njeutrales Element
es gibt eine Zahl lelR ,

so daß für aelR gilt
a *l = a

zu jeder Zahl aelR gibt
es eine inverse Zahl - a ,

a + (- a ) = 0

nverses Element
zu jeder Zahl aelR , a* 0

gibt es eine inverse Zahl ^ ,

so daß gilt

[plistributivität
für alle a,b,c elR gilt
(a + b ) -c = a -c + b -c

Die Gesetze [e ] [k ][A N i ] gelten für Addition und Multiplikation in gleicher Weise . Der

Unterschied dieser beiden Verknüpfungen zeigt sich erst im Gesetz [d ], In [d ] kommt
die charakteristische Eigenschaft der Multplikation im Vergleich zur Addition zum
Ausdruck . Man wird also einer Verknüpfung den Namen Produkt nur dann
zugestehen , wenn zumindest dieses Gesetz gilt .
Beim Skalarprodukt gilt

( lt + b ) ° ~c
Y a i > fa 1 + f Clj

a 2 + ^ 2 o C2 = a 2 + b 2 O c2

-v
a 3 >

b 3^ öJ- ^ a 3 + b 3 V
C3J

= ( a x + bjlcj + (a 2 + b 2)c2 + ( a 3 + b 3)c3 =

= ajCj + b ^ j + a2c2 + b2c2 + a3c3 + b 3c3 =

= ajCj + a2c2 + a3c3 + bjCj + b 2c2 + b3c3 =

= ~a ° ~
c + b ° c .= a 2 o c 2 + b2 O c2

V. a ) CqV. ö ) b 3^ ö) ,
C3y

Also gilt das Distributivgesetz für das Skalarprodukt — was seine Bezeichnung nach¬

träglich rechtfertigt . Wie schauts mit den andern Gesetzen aus ? Man findet schnell ,
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daß nur das Kommutativgesetzjplt : a ° b = b ° a . Beim Assoziativgesetz gilt wenigstens
eine schwächere Form : (p-

”a ) ° b = pCa
"

° b ) ; in ihm kommen drei Multiplikationsarten
vor

Zahl mal Vektor p-
”a S-Multiplikation

Vektor mal Vektor ~a 0 b Skalarprodukt
Zahl mal Zahl pO^ ° b ) Zahlenprodukt .

Man kann also mit Vektoren fast genau so rechnen wie mit Zahlen ; einige Ausdrücke
haben keinen Sinn , so zum Beispiel Produkte aus mehr als zwei Vektoren wie a 3 und

1 b
Quotienten mit Vektoren im Nenner wie oder — . Es gelten aber zum Beispiel die bi-a a
nomischen Formeln : ( li + b )2 = ~a 2 + 2~a ° b + b 2

(
"a - b ) ° Ca + b ) = ~a 2 - b 2

Bei der Untersuchung abstrakter Vektorräume ( zum Beispiel mehr als Dimension 3 )
stellt sich die Frage , wie man die Begriffe Länge und Winkel verallgemeinern kann .
Ein Weg besteht darin , ein Skalarprodukt zu definieren , indem man bestimmte Eigen¬
schaften fordert und sie im Axiomensystem eines verallgemeinerten Skalarprodukts
zusammenstellt . Dabei orientiert man sich an den Gesetzen , die fürs Skalarprodukt im
IR 3 gelten:
Sind a , b beliebige Elemente des abstrakten Vektorraums V, dann ist » * « mit a*beIR ein
Skalarprodukt von a und b , wenn die Axiome gelten :

jTj für alle a,b,c eV gilt (a + b )*c_=: a*c+ b*c
| II | für alle a,b eV gilt a*b = b*a

| III | für alle peIR , a,b eV gilt (p-a )*b = p -(a*b )
| IV | für alle aeV, a * 0 gilt a +a > 0

Das IV. Axiom braucht man , um die Länge I a I eines Vektors a
mit der Formel I a I = •\/a *ä zu definieren.

Einen Überblick über die möglichen Skalarprodukte erhält man , wenn man im Vektor¬
raum eine Basis ( &! , e2 , . . . ) und damit eine Koordinatendarstellung hat . Wir zeigen das
für einen dreidimensionalen Vektorraum :

cl — + OC2G2+ CC363
b = ßxfi! + ß2Ä2 + ßa£,3

a * b = ( axfix + a.?e2 + a& ) * (ß^ j + ß^ + ß3e3 )
= otxßx fix+ej + cc2ß2e 2*e2 + a 3ß3 £3* 193 +

+ aiß2Si *S2 + a iß3 fix*£3 + a 2ßx £2+0 , + a 2ß 3 £2*£3 + a 3ßx £3 *£ x + ot3ß2 £3*e2
Die Produkte der Basisvektoren heißen Strukturkonstanten . Kennt man sie , dann liegtdas Skalarprodukt fest . Allerdings muß man sie so wählen , daß die Axiome erfüllt sind.
Ein Vektorraum mit einem so definierten Skalarprodukt heißt Euklidischer Vektor -



raum . Das einfachste Beispiel ist das uns vertraute Skalarprodukt . Man nennt es auch
Standard -Skalarprodukt . Seine Strukturkonstanten sind:

= ~
C2 ° = ~

e3
‘
° ‘e3

l = 1

e^ ° "
ej = "

e^ ° "e^ = '
e^ ° '

e^ = 0
Das führt zu ~a ° ~a = a 2 + a2

2 + a3
2 > 0 für ~a ?cLr .

Es gibt aber auch ungewöhnliche Skalarprodukte mit Strukturkonstanten wie £;*% = 2
und Cj+gj = 1 für i ^ j . Dann gilt
a * a = 2(a !

2 + c^ 2 + cc3
2) + (a 1a 2 + a 2a i + + cc3a 2 + a 3a i + otiOt3) =

= (a 3 + CC2 )2 + (aj + a 3)
2 + (02 + a 3)2 > 0 für a * 0 .

Bei diesem Skalarprodukt gilt zum Beispiel
1 A
1 = 1 - 1 -2 + (- 11-1 -2 + l -(—1 )-2 +
- ij

+ 1 - 1 -1 + l -(—1 ) 1 + (- 1 ) 1 -1 + (—! ) •(—1 ) -1 + 1 -1 -1 + 1 -1 -1 = 0

Der Vektor a =
( 1 A

v 1 ;
f 1 A2 ( 1 > ( 1 A-1 = - 1 * - 1UJ ( U UJ

hat in diesem Skalarprodukt die »Länge « I a I * mit

= 1 -1 -2 + (- 1M- D -2 + 1 -1 -2 +* 2 ,

+ l -(—1 ) 1 + 1 -1 -1 + (- l ) -l -l + (- 1 ) 1 -1 + 1 -1 -1 + l -(- l ) -l = 4
also ist I a I * = 2 . (Beim Standard -Skalarprodukt hätte a die Länge a/3 . )

Auch einen »Winkel « könnte man mit diesem Skalarprodukt bestimmen ,
wenn man den Winkel cp

* zwischen den Vektoren a und b definierte mit
a * b

cos qr lal - lbl

Als Beispiel nehmen wir a = | - 1
\ f 1 )

, b = 1

J UJ
a * b = ( 1 ) r 1 )-1* 1UJ UJ 1 -1 -2 + (- D -1 -2 + 1 -0 -2 +

+ 1 -1 -1 + 1 -0 -1 + (- 1 ) 1 -1 + (- l ) -O -l + 1 -1 -1 + 1 -1 -1 = 2
I a | * = 2 , für b ergibt sich | b I * = a/ 6 , also cos cp

* = , => cp
* = 65,9° .

(Beim Standard -Skalarprodukt würde sich ergeben cos cp = 0 , =» cp
* = 90 °

. )

a * b a * b
Die Definition cos cp

* =
| |

hat nur einen Sinn , wenn - 1 < ^ 1 garantiert

ist . Tatsächlich gilt für jedes Skalarprodukt die Ungleichung von CAUCHY-SCHWARZ:

(a * b )2 < (a * a )(b * b)
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Beweis : Für b = 0 stimmt die Beziehung .
Nun sei b *■0 - Wegen IV gilt für ge IR

0 < (a + p b ) * (a + p b)

0 < a * a + 2pa * b + p2b * b ; setzt man p
(a*^)2 (ai-b )2

so ergibt sich

0 < a * a - 2

0 < a * a

0 < (a * a )(b * b ) - (a * b )2
, q .e .d.

Baron Augustin Louis CAUCHY (Paris 1789 bis 1857 Sceaux ) hat diese Ungleichung
formuliert und für endliche Folgen in seinem Cours d 'analyse 1821 bewiesen .
Hermann Amandus Schwarz (Hermsdorf 1843 bis 1921 Berlin ) hat sie 1885 im Zusam¬
menhang mit der Untersuchung von Minimalflächen verallgemeinert .

Aufgaben

1 . Begründe : Die Axiome [A Tj gelten für kein Skalarprodukt außer in
Y'ektorräumen der Dimension 1 .

Welche der folgenden Terme beziehungsweise Gleichungen sind mathematisch
sinnlos , welche Umformungen sind gültig ?
a , b und c seien Vektoren , a , ß und y seien Zahlen , außerdem sei a * b ein Skalarpro¬
dukt , a ■a eine S-Multiplikation und a ß eine Zahlenmultiplikation .
a ) (a * b) * b = a * b2 b) (a * b ) ■b = a • b2

c) a * b = Y, => a = k d) a -(a * b ) = ß , => a =
e ) (a * b) -c + a -(b * c ) = a -(b * c + b * c ) = 2a -(b * c )

a
a * .h

3. Beweise : 0 * c = 0

• 4. Untersuche , ob mit folgender Definition ein Skalarprodukt im IR 3 festliegt :
a) a * b — a^bj — 3a xb2 — 3a2bx a3b3
b) a * b = 3a1b1 — 4a xb2 - 4a2b x + 8a2b2 - axb3 - a3bj + 4a3b3
c ) a * b = ax

2 + a2
2 + a3

2 + b x
2 + b2

2 + b3
2

9.99.



• 5. Liegt überhauptein Skalarprodukt vor ? Bestimme gegebenenfallsdie
Strukturkonstanten des Skalarprodukts im IR 3 :
a) a * b = 2a1h1 ■+■ 5 (a b̂2 4"a2b^) + 5a2b2
b) a * b = 2a^bj 3 (a^b2 "4* a2b ^) + 5u2b2
c) & * b — 4ajb ^ + öla^ — a2b^) + 3a2b2

• 6. Bestimmen die Strukturkonstanten ein Skalarprodukt ?
a ) e;

2 = cq und oq > 0 , g; * gj = 0 für i
b) gj

2 = 1 , £i * e2 = a und 1a 1< 1 , £ 2 * £ 3 = £ 3 * £ i = 0

c) - 1 , £2
2 = 2 , £3

2 = 3 , g; * ej = 1 für i j
d) e 2 = 1 , £i * £2 = 2 , £2 * 23 = e3* gx = 0

• 7. Ist in einem n-dimensionalen Vektorraum durch den Term
- + x2y2 - x3y3 + . . . + (- DXYn
die Koordinatendarstellung eines Skalarprodukts gegeben ?

• 8. In einem Vektorraum mit der Basis {gx , g2 , £3) sei ein Skalarprodukt bestimmt
durch die Strukturkonstanten
£i

2 = 1 , e2
2 = 2 , eg

2 = 3 , e1 * e2 = l , g2 * e<, = £3 * gx = 0
a ) Gib die Koordinatendarstellung eines Skalarprodukts an.
b) Zeige: a2 > 0 für a > 0.

c)
d)
e)

Berechne damit das Skalarprodukt der Vektoren
Berechne die »Längen« von a und b .
Berechne den »Winkel« von a und b .

/ 4 > f 1 N
a = - 3 , b = 2Ix

• 9. Berechne im IR 3 einen Vektor n der »Länge« 5 , für den gilt a * n = b * n = 0 ;
verwende das Skalarprodukt von 6. c) . (n ist »Lotvektor« von a und b .)

( 1 > ( 3 ^a = 0
l- b

, h = - 4
l 4 J

• 10 . Zeige die Gültigkeit der CAUCHY-SCHWARZ -Ungleichung für das
a ) Standard -Skalarprodukt b) Skalarprodukt von 6 . c ) .

4. Anwendungen der Orthogonalität

Vektor, der auf h senkrecht steht: Normalvektorvon a
Vor gut 200 Jahren ist das Wort »normal « aus dem Lateinischen übernommen worden.
Es leitet sich ab von normalis = der Norm entsprechend , im rechten Winkel gemacht .
Die Bedeutung normal = senkrecht findet man zum Beispiel in »Normalprojektion « ,
»Normalbild « , »Normalkraft « und »Normalvektor « .
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