
Anschauliche analytische Geometrie

Barth, Elisabeth

München, 2000

X. Vektorprodukt

urn:nbn:de:hbz:466:1-83392

https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83392


*X. Vektorprodukt

V »■

\ l

t
■■ > t ;

+ y

,r < y

■£ ?
'

&



✓

1 . Normalvektor und Parallelogrammfläche

Zwei nichtparallele Vektoren ~a und b spannen ein Parallelogramm auf . Ir sei ein

Vektor , der auf ~a" und b , also auch auf der Ebene senkrecht steht , in der das Parallelo¬

gramm liegt . Dieser Normalvektor ~n liegt bis auf einen Zahlenfaktor eindeutig fest .
Solche Normalvektoren sind in der Geometrie und in vielen Anwendungen der Physik ,
der Elektrotechnik und des Maschinenbaus sehr gefragt . Man hat deshalb eine Formel

fbi >
a2

V d )

und b = b2
b3V 6 )

schnell einen Normalvektor n2
no

K ö J
entwickelt , die zu gegebenem a =

l 33 ) l b3j
liefert . Um sie herzuleiten , könnte man das 2,3 -System n » a = 0 , n ° b = 0 lösen .

Schneller gehts mit einem kleinen Trick : n steht auf a" und b senkrecht , also auch

auf jeder Linearkombination 1 von a und b . 1 , a und b sind komplanar , also gilt

= 0 , entwickelt nach der ersten Spaltedet ( 1 , a , b ) = 0 , also

a2 1>2

L a i bx
12 a 2 ^ 2
I 3 a 3 b 3

Maabal + 1z (- l )
a i bi I , I a i |
a3 b3 I 3 I a2 b2

= 0 .
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Diese Zeile deuten wir als Skalarprodukt orthogonaler Vektoren
f I a2 h>2 I h

I a 3 1*3 I

f 3-2^3 ~ a 3^ 2 f7“
I a l bi I1 ° - „ uI a 3 b 3 I

I a i ^ I
V 1 a2 b*2 1J

= 0 und nehmen den zweiten Vektor als Normalvektor n = a3bi _ a ib3
^

a ib 2 - a 2bj

Wie wir gleich sehen werden , hat n Eigenschaften , die an ein Produkt erinnern ,
in dem ~a und b die Faktoren sind . Deshalb die

Definition
Zu zwei Vektoren lT und b heißt das Produkt

fa ( bi 7 ' a 2b3 — a 3b2 s
a2 X b2 := a 3bi — a !b3

l a 3y b3V 6 ) a ib 2 - a2bx ^
Vektorproduktoder Kreuzproduktvon a und b .
(sprich a kreuz b)

Nach dieser Definition dürfen ~a und b auch parallel sein . Als Vektorprodukt ergibt
sich dann der Nullvektor . Ist nämlich b , = pa; , dann folgt a,bv - akb; = a; pak - ak ga, = 0 .

— ä ;jbDie Koordinaten von a x b sehen et¬
was kompliziert aus , lassen sich aber
über eine Eselsbrücke leicht berech¬
nen . Man schreibt die ersten beiden
Zeilen des Produkts noch einmal unter
das Produkt .

a 5b ] — ftib ;
ajba ^ b

Die i -te Koordinate ergibt sich,
PV (2 -6 - 3 '5 \ f- 3 \ f l ]wenn man bei den (Vektor - )wenn man bei den (Vektor - )

Faktoren die i -te Zeile streicht 2 5i = 3 -4 - 1 *6 = 6 = - 3 - 2
J V.l *5 - 2*4j v-3J V 1>und die Determinante aus den \ 3

beiden folgenden Zeilen berech - 1
net. 2 5

r 1 \ / 4 \Kontrolle: - 2 ° 2 0 und - 2 o 5
r 1 \ / 4 \

238



GeometrischeEigenschaften

Jedes Vielfache des Normalvektors a x b ist auch ein Normalvektor von a und b . Die

Länge | iTx b I hat eine bemerkenswerte geometrische Bedeutung ; das erkennt man
nur mit trickreicher Algebra:
I Jtx b I 2 = (a2b3 - a3b2)2 + (a^b , - ajb3)2 + (a,b2 - aabj )2

! a x b | 2

= a2
2b3

2 + a3
2b2

2 + a3
2bj2 + a ,

2bn2 + a1
zb2

2 + a2
2bi2

- 2(a2b3a3b2 + agb^ h , + a1b2a2b1)

+ a 2b 2 + a2
2b2

2 + a3
2b3

2- (a 2b 2 + a 2b 2 + a3 b3 ) (Trick !)

= a 2 (bx
2 + b2

2 + b3
2) + a2

2 (b ,
2 + b2

2 + b3
2) + a3

2 (bj2 + b2
2 + b3

2)
- (a/bj 2 + a2

2b2
2 + a3

2b3
2 + 2a2b3a3b2 + 2a3b 1a1b3 + 2a1b2a2b1)

= (a ,
2 + a 2

2 + a 3
2)(b 1

2 + b2
2 + b3

2 ) - ( ajbj + a 2b 2 + a 3b3)2

= |
”
a

"
I 2- 1 b I 2 - ( lt ° b )2 = a 2 b2- (ab cos <p)2 = a 2 b2( l - (cos <p )2) = a 2 b2(sin cp)2

a x b I = ab sin ( a , b )

h = b sin (p

Flächeninhalt
F = ah = ab sin (p

= I a x b I
V

i a
Die Länge von "a^x b ist gleich dem Flächeninhalt des von a und b aufgespannten Pa¬
rallelogramms . Das ist eine anschauliche Erklärung dafür , daß das Kreuzprodukt
paralleler Vektoren den Nullvektor ergibt ; das zugehörige , zu einer Strecke entartete
Parallelogramm hat den Flächeninhalt 0 .
Auch der Flächeninhalt eines Dreiecks läßt sich jetzt einfach übers Kreuzprodukt der

Vektoren berechnen , die es aufspannen : FABC = \ I AB x AC I

Beispiel : A( 11 0 I 1 ) , B (2 | - 3 | 1 ) , C(01 0 I 5 )
f 'S ( 1 >1 _ ^ Ali r-12 i i / - 12 \
- 3 , AC = 0 ; AB x AC = 1- 3 X 0 = ~ 4 > FäBC = 2 - 4

1 ° J l 4 J 1 - 3 J 1 - 3 J
Zu jeder Länge gibt es zwei Normalvektoren von a und b : k a x b und - k a x b . Ar¬
beitet man in einem Koordinatensystem , dessen Basisvektoren ,

"e^ ,
"e^ ein Rechts¬

system bilden , dann bilden auch die nichtparallelen Vektoren ~a , b und ~a x b ein

Rechtssystem : Dreht man ' a ' auf kürzestem Weg in die Richtung b , so bohrt sich eine

Rechtsschraube in Richtung a x b . Insbesonderegilt: ejXe 2 =
AÖA ( ° j

=: 0 X 1 = 0
1 ° ; UJ

= e3 .
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Zusammenfassung
Für nichtparallele Vektoren if und b ist:
a x b senkrecht zu lT und b ,

I
"a"x b I der Flächeninhalt des von a" und b

aufgespannten Parallelogramms ,
a , b , a x b ein System, das so orientiert ist

wie das Basissystem ~
e^ ,

~
e^ ,

~e^ .

Das Vektorprodukt gibt es nur im dreidimensionalen Raum . Im zweidimensionalen
Raum (Ebene ) gibt es ein analoges Produkt ; es heißt nach einem der Väter der Vektor¬
rechnung Graßmann -Produkt oder Schiefprodukt . Man definiert :

"a A b = ( a 2 ) A ( b2) det( _a , b ) = ajb2 - a^
Auch für "a xb (sprich a schiefb ) gilt

I a a b I = ab sin (
~a , b ) = Flächeninhalt des Parallelogramms ,

das von a" und b aufgespannt ist .

Begründung :
<a l s /
a 2 X ^ 2 =

l ° j V

0
0

a ib 2 - a 2b:

Produkteigenschaftenvon a x b
Die Bezeichnung Produkt beruht vor allem auf der Gültigkeit des
Distributivgesetzes . Wie eine mühsame Koordinatenrechnung zeigt , gilt

^ax ( b + ^ ) = ltxb + ~ax ~c
Von den andern Produkteigenschaften bleibt kaum was übrig.Beim Vertauschen der Faktoren ändert sich das Vorzeichen:

a x b
' a 2ß3 — 33 ^ 2^

a 3bj — ajb3
a ib 2 - aabj

= - bxa Anti -Kommutativgesetz
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Das Assoziativgesetz gilt überhaupt nicht, wie man schon an einem Zahlenbeispielsieht:

2 x 2 x 0 3X0
/ - 6

- 12

( 2 \ r ( - 2 \ r 2 i ( 4 '\ /
2 X 2 X 0 = 2 X 0 =UJ l 1 J l 2 J UJ v4J \

Zahlenfaktoren lassen sich allerdings beliebig ausklammem :
(plT ) xb = a' x (nb ) = [i(

"axb )

Ein neutrales Element kann es nicht geben, weil der Produktvektor senkrecht auf den
beiden Faktoren steht und deswegen nicht mit einem der beiden identisch sein kann .
Weil es kein neutrales Element gibt, ist auch die Division nicht sinnvoll.

Das letzte Beispiel hat gezeigt , daß das Assoziativgesetz nicht gilt . GRAßMANN hat eine
Beziehung gefunden , die das Produkt ”ax ( bx “

cf ) mit dem Skalarprodukt und der
S-Multiplikation ausdrückt . Diese Beziehung heißt auch Graßmann -Identität

~a x ( bxlf ) = (
"a °

~
c ) b - (

~a ° b )
~
c ( * )

Nach Umstellung und Umbenennung ergibt sich der Reihe nach
( b x~

c ) x~a = fa » b ) c
' - (

"ä%df ) b (Anti -Kommutativgesetz )

~a b ~c
Cax b ) x~

c = (
“
c

'
o
'a ) b - (

~
cT° b )

~a ( • )

(axb ) x c =

(axb ) x c = •

-(c*b)ä : ax ( bxc ) = (a °c )b - (a ob )c

(r -a)b
(a»c)b

-(a “b)c :

ax ( bxc ) = - 4

x.

Der Vergleich von ( * ) und ( • ) zeigt , daß das Assoziativgesetznicht gilt.
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Zum Beweis von ( * ) überlegt man sich, daß der Vektor a
_
x ( b x c ) senkrecht auf dem

Lot von b und ~
c steht , also eine Linearkombination von b und ~

c sein muß:

'ax ( bx '
c

'
) = Ab + jj.

~
cT | | °

~a
0 = A

~ah b + |La "
°

~
c\

Eine Lösung dieser Gleichung ist A = ~a °
~
c , p = —

~a ° b . Damit gilt
"a x ( b x"? ) = kl? "? °

~
c

"
) b - (

"a ob )
"? ] . Die Koordinatenrechnung zeigt : k = 1 .

Als Anwendung beweisen wir einen Satz aus der Raumgeometrie :
In jedem Tetraeder ist die Summe der nach außen gerichteten
Flächenvektoren gleich dem Nullvektor .

I sb x sc = U ;5

B(- IIOIO )C(oi - no )

A(110,510 )

Mit Flächenvektor meint man einen Vektor , der senkrecht steht auf einem ebenen
Flächenstück und dessen Länge gleich ist dem Inhalt dieses Flächenstücks .

Beweis :

~
F = f SAxSB + | SBxSC + £ sc xSA + | ÄCx AB

2 "F = ( ]A -
'
s )x ( b

'
-

'
s ) + (

"
B -

'
s )x (.

~
C -

’
S ) + Cc - S )x (

~
A -

~
S ) + ( C -

~
A )x ( B - A ':

= Axß
'
- AxS - SxB + ixS + B

^
x

’
cf - l ^ x

’
S -

'
Sxc

'
+

’
Sx

’
s +

+ CxA - CxS - SxA + SxS + CxB - CxA - AxB + AxA = "o
Dieser Satz stimmt nicht nur für Tetraeder , sondern für beliebige Polyeder:

Ist 1? der nach außen gerichtete Flächenvektor der i -ten Fläche

(von insgesamt k Flächen ) , dann gilt = "
o .

i = l
Zum Beweis denke man sich das Polyeder in lauter Tetraeder zerlegt.
Flächenvektoren spielen eine große Rolle in der grafischen Datenverarbeitung . Zum
Beispiel ist eine Seitenfläche eines konvexen Vielflachs genau dann unsichtbar , wenn
ihr Flächenvektor mit dem Blickvektor OA^ einen stumpfen Winkel einschließt .

242



Aufgaben

\l ] Berechne

a)

d )

( 2
2 | X

f 5
- 15 | X
25

/ - ix fix x7 \ / 10 \
2

l 2 J
b ) 2 X

l 3 J
5

l * J
c) 8 X 11

L9 J U 2 J

f 4 > ( 5 1 ' 4 ^ ( a 1
12

{- * )

e)
(
-
i

6
)

x
l
- 12
20 J

f ) a + 1 X
va+2 J

( a + 3
a + 4
a+ 5

r 17 x r 1 > n \ _ fl \ -7 \
- 21

[ l3j

+ X 2
X3 J

+ g (!) b) X = ct

2. Berechne mit dem Vektorprodukt einen Normalvektor der Ebene :

a ) }T =

3 . ^ =

a ) Berechne (
"axb ) x~

c und ~a x ( b x~
cf ) .

b ) Stelle ( axb ) xc als Linearkombination von ~a und b dar .

( 2 X zl > f3 \
- 1 , b = 2 .

■
c = 1UJ X3 J l 3 J

4. Bestätige für ~a =
/ 4 \

3 , b = - 20
l 2 , l 5 J

die Beziehung ( a o b )
2 + I a x b 12 = a2 b2

• 5 . Zeige :
a )

~
u, v̂ linear abhängig <=> u x v = o .

b) df , V linear unabhängig <=> df , v , uxv linear unabhängig .

• 6. Welche besondere Lage haben df und v , wenn gilt :

a ) |
'u ‘xV | = uv b) | dfxv "

I = I di ° v
" I

• 7. Berechne ( v + dv"
) x (

"v - w ) und deute das Ergebnis elementargeometrisch .

8. Wo liegen die Punkte X , für die gilt :
a ) X x A = "o

c) 21 xVa | = | | = I
"
A I = 1

b) X o ( A x B ) = 0

d ) Y
"
x ( Xxl3 ) = o

9. Zeige : Die Punkte X , die der Gleichung v x AX = o genügen ( v * o ) ,
bilden eine Gerade g.

Stelle eine Parametergleichung von g auf für v
ri \

V- 2y
und A( 2 I 3 I - 1 ) .
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10 . Berechne die Fläche des Parallelogramms ABCD
a ) A(0 I 0 I 0 ) , B( 11 0 I - 3 ) , C (- 4 | 6 [ - 1 )
b) A(11 0 I - 1 ) , B( 1 | - 3 I 3 ) , C(5 I 3 I 2)

11 Berechne die Fläche des Dreiecks ABC
a ) A(- 2 I 2 | - 3 ) , B ( 0 | 0 I 0 ) , C (3 I - 2 I 0 )
b) A(3 I 2 I 1 ) , B(5 I - 2 I 1 ) , C(7 I - 2 I - 5 )

_ ( - 25 } ( - 5 \
12 . g: X = 6

l 11 J+ b 8
l 1 J

Bestimme den Abstand von Punkt P ( 11111 ) und Gerade g,
indem du den Flächeninhalt eines geeigneten Dreiecks GHP
(G und H liegen auf g) und die zugehörige Höhe h berechnest .

13 . Zeige : Der Abstand d eines Punkts P und einer Gerade AB errechnet sich
I ÄPxÄB |

mit der Formel d = - == "- .AB
Berechne mit dieser Formel den Abstand von Ursprung und

14 . Zeige : Der Abstand d der Parallelen g : X = G + Uu ' und
h : X = H + phT errechnet sich mit der Formel d = ^

Berechne mit dieser Formel den Abstand von
_ f8 \ r 6 ^ _ v flO ) f 6 A

ff X = + und h : X = 19
L 12 v

+ p 7
l~ ej

_ ( 18 (12 \
ff X = - 2

132 ,
+ h 3

l 4 J

I GHxlf I .

15 . Bestimme die Lösung von X x ( - 3 \
x

"
x i = 5Uv l 4 J, falls xx = 1 .

16 -| A(5 I 2 I 6 ), B(7 I 0 I 9) , C (0 I - 2 | 1). Bestimme die Länge der Höhe hc im Dreieck ABC .

• 17 . A(61 3 I 6 ) , B ( 4 I 8 I - 8 ) , ff X = p
f 1
- 2

12J
Bestimme C auf g so , daß das Dreieck ABC den Flächeninhalt 54 hat .

• 18 . Zeige : ( uxv ) xw = ux ( v xw "
) « Lf und w sind kollinear ,

wenn kein Nullvektor darunter ist .

>19. A( 01 01 0) , B (61 91 - 6) , C(61 3 I 6 ) , D(- 41 - 81 8 )
a ) Zeige : Das Viereck ABCD ist eben .
b) Zeige : Das Viereck ABCD ist nicht überschlagen ,

das heißt , keine Seite kreuzt eine andre .
c ) Berechne den Flächeninhalt des Vierecks ABCD.
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• 20. Begründe :
a ) Ist P 1P2P3P4P5 ein ebenes konvexes Fünfeck , dann sind die Kreuzprodukte

PjPj+i x Pj+iPj +2 aufeinander folgender Seitenvektoren gleichsinnig parallel .
Stimmt dieser Satz auch für konkave Fünfecke ?

b) I liege im Innern eines ebenen konvexen Fünfecks P1P2P3P4P6
<=> für alle Ecken Pj mit Px = P6 gilt:
PjPJ+1 x Pjl ist bis auf einen positiven Faktor gleich PXP2 x P2P3 .

Wie merkt man , daß ein Punkt auf dem Fünfeck liegt ?

J 21 . A(4 I 3 I 0 ) , B ( 6 I 0 11 ) , C (- 4 I 0 I 6 ) , D(- 8 | 61 4) , E (01 61 0)
a) Zeige : ABCDE ist ein ebenes konvexes Fünfeck .
b) P(- 8 I 3 I 6 ) , Q (- 2 | 3 I 3 ) , R(- 61 3 | 5 ) , S( 0 I 01 4 ) , T ( 0 I 3 I 2 ) ,U(- 6 I 3 I 4 ) .

Welche Punkte liegen innerhalb oder außerhalb des Fünfecks ABCDE ?
Welche liegen drauf ?

: 22. A( 11 - 2 | 0 ) , B(- 3 I - 6 I 6 ) , C (3 I 10 I 12 ) , D(5 I 61 0)
a ) Zeige : ABCD ist ein ebenes konvexes Viereck .
b) P( 0 I 2 | 9 ) , Q (- 4 I - 18 I - 9 ) , R(0 I 0 I 0 ) , S(2 I 2 I 3 )

Welche Punkte liegen innerhalb oder außerhalb des Vierecks ABCD ?
Welche liegen drauf ?

2. Spatprodukt und Spatvolumen
Das Volumen eines geraden Prismas berechnet man mit der Formel Grundfläche mal
Höhe. Schert man ein Prisma parallel zur Grundfläche , dann bleiben Grundfläche G
und Höhe h — und nach CAVALIERI - auch das Volumen V = G -h gleich.
Drei nicht komplanare Vektoren ~a , b und ~

c spannen ein Spat auf. a und b spannen
eine Seitenfläche vom Inhalt G = I

~ax b I auf ;
"a x b ist senkrecht zu dieser Seitenflä¬

che , also parallel zur Höhe h . Diese ist die Länge der senkrechten Projektion von "cf auf

^ | _^ , I (
"a' x b ) . -

c I l ( a x b ) ° c I
~
a x b : h = |

"
cf N cos cp I = I

"
c

’

VSpat = G -h = I axb

a x b I j c I

Ifa ' x b ) »
-
c I

laxb I

I a x b I

I Cax b ) °
~c
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V = I(axb ) °c I = Idet (a,b,c ) I= 30
Spatvolumen

äxb -

h = Ic I*Icos cpI

b = o

Das gemischte Produkt ( axb ) » c heißt auch Spatprodukt von a , b und ~
c ; man

schreibt es einfach ab -? . Der Ausdruck "ab "? ist eine Zahl , deren Betrag das Volu¬
men des von "a , b und “cf aufgespannten Spats angibt ,

"ab -? ist positiv , wenn coscp
positiv ist , das heißt , wenn ~

c und "a x b einen spitzen Winkel einschließen . Das bedeu¬
tet , daß -? , b und -? ein Rechtssystem bilden.

Die Schreibweise "ab -? enthält keine Klammern , läßt also nicht erkennen , wo » ° « und
wo » x « steht . Tatsächlich kommts nicht drauf an , solang man die Reihenfolge der
Vektoren nicht ändert . Es gilt nämlich:

(
"axb ) °

~
c = ( bx -? ) o

"? (andere Grundfläche ) = "a ° ( bx "? ) .
Berechnet man das Spatprodukt aus den Koordinaten von ? , b und "? , dann macht
man eine überraschende Entdeckung :

f I 32 b2 IA
I a 3 E3 |

I a i bj I

V I a 2 b 2 I )

(Entwicklung nach der 3 . Spalte )

( axb ) " C = a i
a 3 B3

r C1
^

_ 1 a 2 1*2 1 1a l b l 1a i bl I
a l bl C!

c 2 Cl l a 3 t >3 | C2 1 a 3 b 3
+ C3 1 a 2 b 2 | - a 2 b 2 C2

t c 3 , a 3 b 3 c 3

Damit gilt: Vgpat = I ( a x b ) ° c 1 = 1det ( a , b ,
"? ) | = : | a b "? I

Diese Volumenformel macht die Komplanaritätsbedingung anschaulich verständlich :
"a , b, "? komplanar » detl -? , b, "? ) = 0 .
Das Spat hat die Höhe 0 und entartet zu einem Vieleck .
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V = 11 (axb ) »c 1 = 11 det (a,b,c ) I= 5

Tetrae dervolumen

b » o a = 2

Drei nicht komplanare Vektoren ~a , b und c spannen
auch ein Tetraeder (= dreiseitige Pyramide ) auf .
^ Tetraeder ~ 3 ^ Tetraeder ' h ■— 3

'
2 ^ Spat

' h — ß ^ Spat

V Tetraeder = f I ( a X b ) ° C
*

I = fl detfa , b , c
"

Als Anwendung des Spatprodukts berechnen wir den Abstand eines Punkts und einer
Ebene in Parameterform :

P (7 ] 11110 ) , E : X
"

= fll + kf (fl + pf - lV a
"

+ Am + |Dv

_ _ _
loj l 3 J

u , V und AP spannen ein Spat au
die auf Pf und V senkrecht steht :

| ( üxv ) °APd(P,E ) =
l( uxv ) |

P(7111110)
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d(P,E ) = ^
I ( u xV ) ° AP I

I
'nx '

v
' I

_ ^ ^ f 4 ) r3 \
u X V = 0 X - 1 — 12

l 3 , l 0 ) l 4 J
Volumen V = I ( u x v ) ° AP

d(P,E ) = ~ = 13.

Grundfläche G = I u x v I = 13

3
12 169

Eigenschaften des Spatprodukts
Wegen der Eigenschaften des Skalar - und Vektorprodukts gilt :

"ab "? = Ca x b ) »
“cf = 'co ( txb ) = CcTxTt ) » b = if "a b

also it b ~
c = ~

cf
"iT b = b "a ,

das heißt , zyklische Vertauschung ändert den Wert nicht . Andrerseits gilt :
ab ^ = ( axb ) o

'
c = - ( bx "a ) »T = - b "a ~c

also a b ~
c = - bltlf ,

it b ~cf = - ~
(f b Tt

und abc = - acb , das heißt , Vertauschung zweier Vektoren ändert das
Vorzeichen .
Die Vertauschungseigenschaft des Spatprodukts führt zu einer weiteren Beziehung von
Vektor - und Skalarprodukt , der Lagrange -Identität :

(
”a"x b ) o (

“
c

’x d ) = (
~a °

"
cf ) ( b ° d ) - Ca ° d ) ( bot )

Zum Beweis setzen wir ~cx d = z . Damit ist :
( axb ) = Ccxd ) = Cax b ) °

”
zT= ~a b ~

zT = "
z

^ lt b = (
~zx ~a ) o b =

= [ (
"cfx d ) x"a ]ob

( Graßmann ) = [Cc’
°

~a'
) d - ( d °”a )

~C ]° b
= ( c ° a ) ( d ° b ) - ( d ° a ) ( c ° b )
= Ca °

~
c ) ( b o d ) - (

"a ° d ) ( b °
"
(f )

Aufgaben

[T.] Berechne das Volumen V des von u' ,V und \V aufgespannten Spats :
a) f - 4 > _ v ( ~2 \ _ ^ r 2 i

u = 0
l 2 ,

, V = - 5
l 0 ;

, w = 2
[ 3 j

b) u = 2
IsJ

, V = 5
l 4 i

, w = 2
UJ

2. | Berechne das Volumen V des Tetraeders ABCD
a ) A( 1111 1 ) , B ( 11 4 | 4 ) , C (41 11 4 ) , D(41 41 1 )
b ) A(- l I - 11 - 1 ) , B ( 0 I 0 I - 2 ) , C ( 0 I - 2 I 0 ) , D(- 2 | 0 I 0 )
c ) A(01 0 I 0 ) , B ( 11 2 I 3 ) , C (4 | 5 I 6 ) , D( 7 I 81 9)
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3 . a ) Begründe : Ein Punkt P und eine Ebene ABC haben den Abstand

ldet ( ÄB ,ÄC , AP ) l

IÄBxÄCI
b) Berechne mit dieser Formel den Abstand von P(- 411 33 I 25 ) und

der Ebene durch A (- 7 I 4 | - 17 ) , B (- 7 I 11 - 13 ) und C (- 3 I 7 I - 14 ) .

4 . A( 11 11 5 ) , B ( 5 I 11 5 ) , C ( 2 | 5 I 5 ) , D (0 | 3 I 5 ) , Spitze S (41 11 - 1 )
Berechne das Volumen der Pyramide ABCDS
a ) durch Zerlegen in zwei dreiseitige Pyramiden .
b) mit der Formel V = | Gh

• 5. Zeige mithilfe der Graßmann -Identität :
( lfx

"
q ) x (

"uxV ) = hf det ( )p ,
~
q ,V ) - ~v det ( )p )

= ~
qdet ( )p ,df ,V ) - "

p
'
detCq .

’u
'
/v )

6. Jacobi -Identität Zeige mithilfe der Graßmann -Identität
Cu

’x ’v ’
) x ’w

’
+ Cvxw

~
) x ~u + (

"w xli ) x ”
v = ~

o

7. a ) Zeige : Die windschiefen Geraden g : X = G + Ä, u und h : X = H + u V

haben den Abstand d =
u v GH

I
~
u x ~

v I

_ ^ f 4 > _ x

g X = 9
l 0 V

+ k - 1 und h : X = 4
1 4 a

+ p

b) Bestimme mit dieser Formel den Abstand von

8. Zerlegung eines Vektors V in seine Komponenten in Richtung
~a , b ,

~
c :

a ) Zeige : Sind ~
a , b ,

~
c linear unabhängig , so gilt

"v b "? ^
~a ^v

~
C - ^ abv _^

v = — is — a + . b + . . c
a b c a b c a b c

(Tip : Multipliziere die Gleichung v = aa + ß b + y c mit geeigneten

Vektorprodukten oder erinnere dich an CRAMER!)

b) Wende diese Formel an , um v = 1- 3
- 1

als Linearkombination

von a = ( 3 > f - 4 \
- 1 ,

"
b = 2 und c = 5

l- 4J 1- 2J l 1 Jzu schreiben .
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• 9. Rechtfertige die Gleichheitszeichen
( iTx b ) » (

"cxd ) = "abcxd = bTxd "a

= [ b x Cc x d )] °
"a = [( b ° d )

"c - ( b o
'
c

'
) d ] °

“a
= (

~a °
~
(f ) ( b ° d ) - (

"a ° d Kb »
-? )

S 10 . Quatemionen
William HAMILTON hat 1844 die komplexen Zahlen durch die Definition der
Quaternionen erweitert . Eine Quaternion q ist ein Term der Form

a0 + a xi + atf + a3k mit ao , a 1; a2, a3 elR , i2 = j 2 = k2 = - 1
und ij = - ji = k , jk = - kj = i , ki = - ik = j

Hamilton betrachtete eine Quaternion q als Summe einer Zahl a 0 (Skalarteil ) und

eines dreidimensionalen Vektors a = a 2

v
a3y

, also q = a0 + a

Zeige : Multipliziert man zwei Quaternionen qx = a0 + a und q ,̂ = b0 + b ,
dann entstehen alle uns bekannten Produkte :

a0b0 Zahlenprodukt
a0 b , b0Tt S -Multiplikation
~a ° b Skalarprodukt
"
aTx b Vektorprodukt und es gilt :

(a0 + ”a ) * (b0 + b ) = a0b0 + a0 b + b0lf - t » b + iTx b ,
» * « bedeutet (distributive ) Multiplikation zweier Quaternionen .
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