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XI . Normalformen



1 . Normalform der Ebene

Bisher haben wir die Lage einer Ebene im Raum durch Elemente wie Punkte , Geraden
und Vektoren festgelegt — also durch Bestimmungsstücke , die in der Ebene liegen . Es gibt
aber auch noch eine andere einfache Möglichkeit : Man gibt einen Punkt A (Aufpunkt )
der Ebene an und fixiert die Richtung der Ebene mit einem Normalvek tor n , mit einem
Vektor also , der senkrecht auf der Ebene steht . Alle Vektoren AX , die einen
Ebenenpunkt X mit dem Aufpunkt A verbinden , stehen senkrecht auf ~n '

. Die Ebenen¬
punkte X werden beschrieben durch :

~n o AX = 0
n ° ( X - A ) = 0

n ° X — n ° A = 0
np^ + n 2x2 + n 3x3 + n0 = 0

Die letzte Gleichung kennen wir schon als Koordinatengleichung der Ebene .Ihre Koeffizienten n 3 , n2 , n3 sind also die Koordinaten eines Normalvektors .

Definition
Ist A Aufpunkt und 1a Normalvektor einer Ebene E , dann heißt

noOt - A ) = 0
vektorielle Normalform der Ebenengleichung

beziehungsweise
n X̂j + 113X3 + n3x3 + % = 0 mit n0 = - nlA
skalare Normalform der Ebenengleichung.

Die skalare Normalform der Ebenengleichung ist identisch mit der Koordinatenglei¬
chung der Ebene .
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Beispiel : Gesucht ist eine Gleichung der Ebene E , die durch A(21 - 3 I 4) geht und

senkrecht steht auf der Gerade g : X

Als Normalvektor nehmen wir den Richtungsvektor der Gerade und stellen
sofort die vektorielle Normalform der Ebenengleichung auf:

( 1 > (
- 1

l 2 > V

E :
4 -\
3
- 5

X
2

- 3 = 0 . Ausmultiplizieren liefert die

skalare Normalform E : 4xj + 3x2 - 5x3 + 21 = 0

Der Normalvektor zeigt einen neuen Weg , die Parameterform der Ebenengleichung in
die Koordinatenform umzurechnen : Man sucht einen Vektor ~n , der auf den beiden
Richtungsvektoren Ir und v

^ der Ebene senkrecht steht . In ist Lösung des 2,3-Glei-
chungssystems 1? = 0

n o v = 0
oder ein Vielfaches von u' x v . Dann gehts weiter wie im vorigen Beispiel. Vier Beispiele
zeigen die Nützlichkeit der Normalform beim Lösen geometrischer Grundaufgaben .

Abstand d(P,g) von Punkt P und Gerade g
Lösungsidee: Man legt eine Hilfsebene H durch P senkrecht zu g . H schneidet g im

Lotfußpunkt F . F heißt auch senkrechte Projektion des Punkts P auf
(oder in ) die Gerade g . Der gesuchte Abstand ist d(P , g ) = PF .

Beispiel : P( 0 I —2 | 1 ) , g: X = 2

g in H eingesetzt : 2(5 + 2p ) - 2 (2 - 2p)

Lotfußpunkt : F =

Abstand: PF =

_ ^ z 2 \
F = 2

l 6 J—- 2
l 3 J

x3 \

v 2 x

, F(3 I 41

d(P , g ) = I PF

+ 3(6 + 3p ) - 7 = 0 =>

3)

I = 7

p = - l
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Spiegelung eines Punkts P an einer Ebene E

Lösungsidee : Man legt durch P eine Normale der Ebene E . Diese Lotgerade schneidet E
im Lotfußpunkt F (Parameter pF) . F heißt auch senkrechte Projektion
des Punkts P in (oder auf ) die Ebene E.
Für den Spiegelpunkt P ' gilt P ' = P + 2pFkf

Beispiel : P ( 11 0 I - 2 ) , E : 2xx + x2 + 3xa + 32 = 0

Lotgerade h : X ( 1 ) /
0

l- 2 ; V
1
3

h in E eingesetzt : 2 ( 1 + 2p ) + p + 3(- 2 + 3p ) + 32 = 0 pF = - 2
( 2 -

Spiegelpunkt P ' = r 1 >
0 - 4

1- 2 ,
P '

(—7 1- 4 1- 14 )

Setzt man pF = —2 in die Lotgeraden - Gleichung ein , so bekommt man den
1

Lotfußpunkt F = 0 | — 2 1 | , F ( — 3 1- 2 1— 8 )
3

PF ist der Abstand d(P , E ) von Punkt P und Ebene E :

PF = ( - 2 ! d (P,E ) = | PF | = a/56
"

= 2^[ U
- 6

Schnittwinkel von Ebenen
Schneiden sich die Ebenen E x und E 2 in der Gerade s , dann versteht man unter dem
Schnittwinkel 9 den nichtstumpfen Winkel zweier Lotgeraden 1p und h 2 dieser Schnitt¬
gerade s , wobei hj in E x und h 2 in E 2 liegt . Parallele Ebenen haben den »Schnittwinkel «
0 °

. Weil die zugehörigen Normalvektoren "n ^ und 1p auf 1p und h 2 senkrecht stehen ,
bilden auch sie den Schnittwinkel 9 oder 180 °— 9.
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cos cp =
360 - 90 - 90 - cp 180 -

Blick auf die Ebenen in
Richtung der Schnittgerade s

Sind nj und Normalvektoren der Ebenen Ej und E2
IWT ° ^ 2 I

und <£ (Ej , E2) = (p , dann gilt cos (p = , _ ,, :_ ry

Beispiel : Berechne den Winkel, den zwei Seitenflächen eines regelmäßigen Tetraeders
bilden.
Weil alle regelmäßigen Tetraeder ähnlich sind , überlegen wir uns die Lösung
an einem , der in einem günstig liegenden Würfel verpackt ist : die Koordinaten
der Seitenflächenecken sind Würfelecken, das Tetraeder steht auf einer Kan¬
te.
Seitenflächei : E x = E(A, D , C ) : x1 + x2 - x3 = 0
Seitenfläche 2 : E2 = E (B , C , D ) : xx + x2 + x3 - 2 = 0

n , o n9 = ( 1 1 / 1 \
1 0 1

1-iJUJ= 1,1 nx n 2 1= a/3 ; cos cp = | , cp = 70,5 °.

c (oini )

Kl 1011)'

B (llllO )
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cp ist der Winkel zwischen den Ebenen E x und E 2 , nach Definition ist er nicht
stumpf ; er stimmt deshalb nicht bei jedem Körper überein mit dem Winkel o ,
den die Seitenflächen bilden . Für konvexe Körper gilt : o = cp oder a = 180 °- cp.
Um o zu berechnen , projiziert man je einen Punkt (A, B ) der betreffenden Flä¬
chen senkrecht auf die Schnittgerade . Die Projektionen seien FA und FB . Die

_ 5k _ V
Vektoren FaA und FbB bilden den Winkel o . Beim regelmäßigen Tetraeder
ist aus Symmetriegründen FA = FB = MCD( | 11 I 1 ) . So ergibt sich

F aA ( - 0,5 } X r °,5A
- 0,5 , FbB = 0,5

l -1 J l- l J
0 5 1und cos g = yir = g , also o = cp = 70,5°.

cp ist übrigens auch der Winkel zwischen zwei Raumdiagonalen des Würfels .

Jetzt noch ein anspruchsvolleres Beispiel :
Verbindet man die Kantenmitten der Deckfläche eines Würfels mit den Ecken
A(5 I 5 I 0 ) , B (— 5 I 5 I 0 ) , C (—5 I - 5 I 0 ) und D(5 I — 5 I 0 ) der Grundfläche , so ent¬
steht ein Würfelstumpf ABCDEFGH .
Für den Winkel cp zwischen der Deckfläche EFGH und der Seitenfläche HGD

gilt cos cp =
MNoMD
MN - MD '

MN = GF

also cos cp =

r - 5 \
5

v 0
- 25

, wegen M( |

5^ 2 -7,5^ 2
" cp =

- 1 110 ) ist MD

109,5 °

( 2 ’5 1- 2,5

■3 FC-5I0I10 )
GCOI-5110)

E (015110)

- * \ q

Für den Winkel \\> zwischen den Seitenflächen AHD und AEH brauchen wir die
senkrechten Projektionen von E und D auf die Gerade durch A( 5 I 5 I 0 ) und

f0
H(5 I 0 I 10) : X = + h 1

- 2
Die Hilfsebene H E : x2 - 2x3 + 15 = 0 durch E , ist senkrecht zu AH und schneidet
AH in P ( 5 I 11 8 ) , der senkrechten Projektion von E auf AH.
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Die Hilfsebene HD : x2 - 2x3 + 5 = 0 durch D , ist senkrecht zu AH und schneidet
AH in Q(5 I 3 I 4 ) , der senkrechten Projektion von D auf AH.
PE und QD bilden den gesuchten Winkel :

PE o QD o
v|/ = 131,8”

PE • QD
Der Schnittwinkel der zugehörigen Ebenen ist 180°—131,8 ° = 48,2 °.

Schnittwinkelvon Ebeneund Gerade
Der Winkel \|/ zwischen einer Gerade g und einer Ebene E ist gleich dem Winkel zwi¬
schen der Gerade und ihrer senkrechten Projektion gx in die Ebene . Weil die Normale n
der Ebene senkrecht auf g± steht , sind der Winkel zwischen n und g und der gesuchte
Winkel \|/ komplementär : < ( n , g ) = 90 ° - \|/

n o u
cos (90 ° - \)/ ) =

n II u

n°u
nu

.90 - 1// ,

n

Ist n ein Normalvektor der Ebene E und
~u ein Richtungsvektor der Gerade g und

<£ (E , g) = \\f, dann gilt sin v|/ = r=rrp =x
I n 11 u

Beispiel : Berechne den Winkel , den eine Seitenfläche und eine Kante eines regelmäßi¬
gen Tetraeders einschließen .
Wir verwenden das Tetraeder von oben .
Seitenfläche : E = E (A, D , C ) : xx + x2 - x3 = 0

g = DB : XGerade : 0 + P 1

2,1 n1 ° 1n o u

/ 1 \ ( Oj

\|/ = 54,7 °.
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\\i + \ |/ + (p = 180

Auch bei solchen Aufgaben muß man unterscheiden zwischen dem nicht¬
stumpfen Schnittwinkel von Gerade und Ebene und dem Winkel, den eine
Kante eines Polyeders mit einer Seitenfläche bildet , denn dieser kann auch
stumpf sein . Im regelmäßigen Tetraeder ist y spitz wegen 2y + 9 = 180 °.

Aufgaben

\T] Gib eine skalare Normalform an von
( 1 f 2 \ '

_ v f 4 N '
_ j.

a) - 2 X - 2 = 0 b) 5 X - - 2
l-2J = 0 c) - 3

l - 2 V

0 X -
( 5 )]

2. Stelle vektorielle Normalformen der Koordinatenebenen auf .

3. Gib eine skalare Normalform der Ebene E an , von der man weiß:

a ) E enthält A( 11 0 1—3 ) und hat die Normalrichtung
( 2 \
- 2

v 3 vb) E enthält A( 11 11 - 2 ) , B(- 2 I 11 0 ) und C ( 0 111 2 )
(12 \ flc) E enthält A( 11 - 11 - 4 ) und die Gerade g : X = 4

0
+ % 1

- 4

d) E enthält A( 11 - 11 - 4 ) und steht senkrecht auf g : X =

e) E enthält g: X = | 0 | + X

f) E enthält g : X = j 0
l -\

( 2 \ —^ / 2 ■
- 1 und h : X = p - 1

und h : X =

(12 \ f 1 A
4 \ + K 1

l ° J l" 4J

+ 1 - 1
3

( 5
- 2 | + p

(- 4
2

- 6
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|
~
4 ] E : 3xj + x3 - 6 = 0 enthält P ( 11 71 3 ) , aber nicht Q( 2 I 2 I 1 ) .

a ) n sei das Lot von E in P . Gib eine Gleichung von n an.
b) m sei das Lot von E durch Q . Gib eine Gleichung von m an.

[& ] Stelle eine Normalform der Ebene F auf , die auf E : 3x , - x2 + 2x3 - 3 = 0
senkrecht steht und g enthält

— rU ( 2 1 _ v f 3 \
a ) g: X = l + h - 1 b) g: X = 1 + h - 1UJ 1 1 J l 3 J V 2 J

6 . Bestimme eine Gleichung der Gerade g , die A( 11 2 I 3 ) enthält und
parallel ist zu E : 2xx - 3x2 - 4x3 + 4 = 0 und F : x , - x2 + x3 + 1 = 0 .

7. g: X = ( 2 ^ fU —' f 2 ']0 + k 1 , h : X = 0 + p l
l 3 y w l 2 y w

Bestimme eine Normalform der Ebene ,

a ) die durch den Ursprung geht und parallel ist zu g und h
b) die g enthält und senkrecht steht auf der Ebene von a ) .

8 . g: X
/ U _ * ( -
4 , h : X = n 8

l 7 J
g liege in E und h in F . E und F bilden denselben Winkel wie g und h .
Bestimme Normalformen von E und F , eine Gleichung der Schnittgerade s
von E und F und den Schnittwinkel von E und F.

_ ^ —- ( 3 ^ k
• 9. g: X = \ 2 , h : X = 2 + p 2

l 3 ; Uv l 3 J
g liege in E und h in F . E und F haben denselben Abstand wie g und h .
Bestimme Normalformen von E und F .

10 . Bestimme eine Normalform der Symmetrieebene von A(3 I - 11 4 ) und B ( 7 I - 5 I

• 11 . Bestimme eine Normalform der Symmetrieebene von
_ ^ f u fU —- ( 3 ^

g: X = 0 + k 2 und h : X = 4 + p 2
Uv UJ {-b V4 J

• 12 . Bestimme eine Normalform der Symmetrieebene von
E : 2xx - x2 + 2x3 - 3 = 0 und F : 2xx - x2 + 4x3 - 8 = 0 ,
die durch den Ursprung geht .

( - 25 ^ ( - 5 \
13. s x = 6

V 11 J
+ p 8

l 1 J
, P ( lllll )

Bestimme den Abstand von Punkt P und Gerade g.

•2 ) .
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14 . Welche Punkte der Gerade g : X
rl \ ( lA

x
*

- 2 + p 0w haben

a ) vom Ursprung die Entfernung 2a/ 11 ?
b) von der x1x2-Ebene den Abstand 3 ?
c) von der x1-Achse den Abstand 2,5 ?

d) von der Gerade h : X = | 3 | + v 1 ) den Abstand 2a/3 ?( 2a / i \
3 + V l

l 1 ;

t 15 . In welchen Punkten schneidet die Gerade s : X =
/ 2 \

v 3 y

den Zylinder um die Achse a : X =
_* ( Oa ( 2 'iX = - 2 + p - 2

l-v UJmit dem Radius 6 ?

16 . g: X f 8 a
i Mi P( 14 I 6 I 3 )

a ) g ist Tangente einer Kugel um P.
Berechne Berührpunkt A und Kugelradius ra .

b) Auf g liegt der Mittelpunkt B der kleinsten Kugel durch P . Berechne B und
den Kugelradius rb und die Schnittpunkte S von Kugel und Gerade.

c ) Berechne Radius rc und Mittelpunkt C der kleinsten Kugel, die durch P geht
und g berührt .

17 . Spiegle den Punkt P an der Ebene E :
a ) P( 14 I 2 | 1 ) , E : 3Xl - x2 = 0

b) P( ll I 111 3 ),
( 3a *_ x 2 ü

3 0 x - - 2
l 2 J UJJ

• 18 . E : x1 + 2x2 + 2x3 + 30 = 0 , P( 0 I 2 I 1 )
a ) E ist Tangentialebene einer Kugel ka um P.

Berechne Berührpunkt A und Kugelradius ra .
b) In E liegt der Mittelpunkt B der kleinsten Kugel durch P.

Berechne B und den Kugelradius rb.
c) Berechne Radius rc und Mittelpunkt C der kleinsten Kugel,

die durch P geht und E berührt .
d) E ist Symmetrieebene der Kugeln ka (von a ) ) und k ' .

Berechne den Mittelpunkt M ' von k ' .
e ) Wo liegen die Mittelpunkte aller Kugeln, die ka und k ' berühren ?
f) Die Kugeln ka und k ' lassen sich durch eine Halbdrehung ineinander

überführen . Beschreibe in Worten die möglichen Drehachsen .
g) E und die Kugel um P mit Radius 13 schneiden sich .

Berechne Mittelpunkt M und Radius p des Schnittkreises .
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• 19 . E : 4xj + 4x2 + 7x3 - 81 = 0 , k ist die Kugel um den Ursprung mit Radius 41
a ) Berechne Mittelpunkt A und Radius p des Kreises,

in dem sich E und k schneiden.
b) Verkleinert man den Schnittkreisradius von a ) um 16 ,

so ergibt sich ein Kreis , in dem sich E und Kugeln mit Radius 30 schneiden.
Berechne die Mittelpunkte M dieser Kugeln.

c) Bestimme Gleichungen der Tangentialebenen von k , die zu E parallel sind.

_ V r 1 ! ( 2 \
• 20. g: X = i + p 3

l 1 ) l 6 J
a ) Berechne Mittelpunkt M und Radius r der kleinsten Kugel,

die durch P geht und ihren Mittelpunkt auf g hat .
b) P sei die Ecke eines Quadrats , von dem eine Diagonale in g liege .

Berechne die restlichen Quadratecken und eine Gleichung ihrer Ebene.
c ) Wo (Punktmenge , Gleichung!) liegen die Mittelpunkte der Kugeln,

die das Quadrat in b ) berühren ?

• 21 . Spiegle die Ebene E : 2xx - 3x2 + 5x3 - 7 = 0
a ) am Ursprung b) an der x3-Achse c) an der x1x2-Ebene

• 22. Spiegle die Ebene E : 3x3 + 2x3 - 1 = 0

a ) am Punkt P ( 1 I 2 | 3 ) b) an der Gerade g : X = g
^

2
j

c ) an der Ebene F : xx + 2x2 + 3x3 = 0

23. Berechne die Schnittwinkel cp von E und F :
a ) E : Xj + 10x2 + 9x3 - 4 = 0,
b) E : 2x1 + 4x2 + 5x3 - 4 = 0 ,
c ) E : 3xj - 4x2 + 5x3 = 0 ,
d) E : x3 + 4x2 + 9x3 - 1 = 0 ,

F : llx 3 + 19 x2 + 8x3 - 4 = 0
F : 8x: + x2 + 5x3 - 4 = 0
F : - xx + 3x2 + 3x3 - 9 = 0
F : 3xj + 5x2 - 8x3 + 1= 0

24. Berechne die Schnittwinkel cp von E und g:
_ f 3 \

a) E: 5x x + 5x2 + 2x 3 - 6 = 0, g: X = p 12
l 3 J_x r 13 ' c3 \

b) E : xi + x2 - 3x3 + 13 = 0 , g: X = p - 7 + - 7
l 2 . v 1 J_v pl \ ( 3 \

c) E: - x x + 5x2 - 10x 3 = 0, g: X = p 2 + -7l
( 1 \ f 3

d) E : x3 -f x2 + 4x3 + 111 = 0, g: X
^

= p 4 + 7
r 8/
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25 . Berechne die Schnittwinkel von E : 12x1 - 12x2 + 17x3 = 0 und den
a) Koordinatenachsen a) Koordinatenebenen

26. H:
a)

b )

c)
d )

e)

2xx - x2 + x3 - 4 = 0 , A(- l I 2 I 2 ) , B(3 I - 3 I 1 )
Bestimme eine Normalform der Ebene E , die auf H senkrecht steht und durch
A und B geht.
Bestimme eine Normalform der Ebene G, die AB in A senkrecht schneidet .
Bestimme den Schnittwinkel <p von G und H.
Bestimme eine Gleichung der Gerade g,
die durch B geht und parallel zu G und H ist .
Bestimme den Schnittwinkel \|/ von g und F : xx + 3x2 — x3 - 0 .

27. A(31 1 13 ) , B(6 141 5 ) , C(7,51 11 6 ) und die Spitze S(41 1 18 ) bilden ein Tetraeder .
a) Berechne das Volumen .
b) Berechne den Fußpunkt F der Höhe durch S und die Länge dieser Höhe .
c) Berechne den Winkel a zwischender Grundfläche und der Kante [AS ] .
d ) Berechne den Winkel ß zwischen der Grundfläche und der Fläche [ACS ] .

28. A(2 I - 3 I 2 ) , B (- l | 3 I 6) , C(5 I —5 I 0)
a) Berechne den Flächeninhalt des Dreiecks ABC.
b ) A '

, B ' und C ' sind die senkrechten Projektionen von A , B und C in die x ^ -
Ebene . Berechne den Flächeninhalt des Dreiecks A'B 'C ' .

c ) Berechne den Winkel 9 zwischen E^ c und der x 1x2-Ebene .

29. E : 2Xl + 3x2 + 4x3 + 5 = 0 , A( 1 1 2 I 4 ) , B (- 2 I 2 I - 9 ) , C (- 2 I 7 I 9 )
A'

, B ' und C sind die senkrechten Projektionen von A, B und C in E .
a) Bestimme die Bildpunkte A'

, B ' und C '.
b) Bestimme die Flächeninhalte der Dreiecke ABC und A 'B 'C '

.
c) Bestimme den Winkel 9 zwischen F und EA[ic und bestätige die

Beziehung FAB C. = FABC • cos 9.

• 30 . Die sechs Punkte auf den Koordinatenachsen , die vom Ursprung die Entfernung k
haben , bilden ein regelmäßiges Oktaeder .
Berechne alle Winkel zwischen den Kanten , zwischen den Flächen und zwischen
den Kanten und Flächen .

• 31 . Bei dem Quaderstumpf ABCDEFGH sind Grundfläche ABCD
und Deckfläche EFGH quadratisch . Berechne den Winkel zwischen
a) den SeitenflächenHGF und HGD
b) den Flächen AHD und AFE
c ) der Kante HD und der Deckfläche.
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G(0l - 5i5 )

E (0I5I5 )

X,

• 32 . ABCDS ist eine vierseitige gerade Pyramide mit quadratischer Grundfläche.
Berechne den Winkel zwischen
a) Grund- und Seitenfläche
b) zwei Seitenflächen mit gemeinsamerKante
c) zwei Seitenflächenohne gemeinsame Kante .

I 33. Der Körper ABCDEFGH entsteht so : man verdreht zwei kongruente Quadrate 45°

gegeneinander und verschiebt eines so weit nach oben , bis die Seitenkanten so lang
sind wie die Quadratseiten .

a) Bestätige die Koordinaten von H (öV21 0 I 5 V 2a/
"
2 ) .

b) Berechne den Winkel zwischen Grundfläche und einer Seitenflächemit
gemeinsamer Kante .

c) Berechne den Winkel zwischen zwei Dreieckflächen mit gemeinsamer Kante .
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• 34. X = , E : 3x1 - 6x2 + 2x3 + 4 = 0 , A(15 I 11 3)
/ 9q \

a) Untersuche die Lage von ga und E .
b ) Welcher Punkt B in E liegt A am nächsten ?
c) Welche Schargerade liegt A am nächsten ?
d) E sei Tangentialebene einer Kugel k um A.

Berechne Radius und Berührpunkt .
e) Bestimme eine Gleichung der Ebene H , die die Kugel k von d ) halbiert und auf

den Schargeraden senkrecht steht .
f ) Bestimme eine Gleichung der Schnittgerade s von H und E .

M(—11 0 I —1 )35 . ga : X •2 + g - 1

a ) Beschreibe in Worten die Geradenschar und bestimme eine Gleichung der
Ebene E , in der die Schargeraden liegen .

b) Welche Schargerade geht durch M ?
•c) Welche Schargeraden berühren eine Kugel um M mit Radius 2 ?

Welche Schargeraden sind Sekanten der Kugel ?
d) Welche Schargeraden halbieren die Winkel der beiden Kugeltangenten

g0 und g4 ?
•e) Welche Schargerade hat vom Ursprung den kleinsten ,

welche den größten Abstand ?

• 36. Bestimme von E a : x1 + ax2 + (a + l )x3 - 6 = 0 die Büschelebenen ,
a) die mit der x x-Achse 45 ° einschließen
b) die mit der x1x2-Ebene 60 ° einschließen
c) die mit der x2x3-Ebene 30 ° einschließen
d) die 30 ° mit der Ursprungsgerade durch (- 6 I 7 I 1 ) einschließen
e) die senkrecht sind zur Gerade durch (2 I 4 | 2 ) und (4 I 0 I 0 )
f) die parallel sind zur Ursprungsgerade durch ( 11 10 | - 7 )
g) die parallel sind zur Ursprungsgerade durch ( 11 11 - 1 )
h ) die senkrecht auf E0 stehen
i) die mit E x 45 ° bilden .

• 37. Ea : (a + Ux ! + (a - l )x2 = a
a ) Bestimme eine Gleichung der Ursprungsebene ,

die alle Scharebenen senkrecht schneidet .
b) Welche Scharebene steht auf E t senkrecht ?

38 . E.
a - 4

a) Bestimme die Achsenpunkte Ax , A2 und A3 von Ea .
Welche Scharehene hat nur einen Achsenpunkt , wie liegt sie ?
Welche Scharebenen haben nur zwei Achsenpunkte , wie liegen sie ?
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b)
c)
d)
e)
f )

g)

h )

i)

j)

Welche Scharebenen gehen durch den Ursprung ?
Welche Scharebenen enthalten den Punkt P( 1 1 11 6 ) ?
Bestimme a so , daß die Scharebene parallel ist zu einer Koordinatenebene.
Bestimme a so , daß die Scharebene parallel ist zu einer Koordinatenachse.
Welche Scharebene ist parallel zu F : xr + 3x2 - 18x3 + 10 = 0 ?
Welche Scharebene ist senkrecht zu G : 3xj - 2x2 + x3 = 2 ?

— - f 1 j ( 1 1Welche Scharebenen sind parallel zu g : X = 2 + p - 2 ?
[ s ) [n )

Welche Scharebenen sind senkrecht zu S : X =
\ ( 2 11
) l- ij

+ p
- 5
2

Bestimme eine Gleichung der Schnittgerade s von E2 und E4.

?

_ ( 4 \ ( ~ 3 \• 39. E : 3xj — 6x2 + 2x3 = 42 , ga : X = - 3 + U 2 —2a

l « J
a ) In welchem Punkt schneiden sich die Ebene E und die Schar ga ?

b) Bestimme eine Gleichung der Ebene F , in der die Schar ga liegt .
c ) Bestimme den Schnittwinkel cp und eine Gleichung der Schnittgerade s von E

und F.
d) Bestimme Gleichungen der senkrechten Projektionen von g_2 und g2 in E .

e) Welche Schargerade ist identisch mit ihrem Spiegelbild bezüglich E ?

tf ) E ist Symmetrieebene der Schargeraden ga und ga. .
Drücke a ' mit a aus .

_ f 2a^ /
• 40. Q( 16 I 16 I 8 ) , M( 14 | 5 1- 2 ) g, : X = a + p

V
a ) Welche Schargerade geht durch Q ?

b) Bestimme eine Gleichung der Ebene E , in der die Schar ga liegt.
c) Bestimme eine Gleichung der Ebene F,

bezüglich deren Q und der Ursprung symmetrisch sind.
d) Bestimme eine Gleichung der Schnittgerade s von E und F .
e) Bestimme Schnittpunkt S und Schnittwinkel 9 von s und g0 .
f) Berechne die Punkte von g0 , die von M die Entfernung 15 haben .

g) Bestimme Gleichungen der Tangentialebenen T ,
die eine Kugel um M mit Radius 15 in Q und 0 berühren .

h ) Bestimme eine Gleichung der Gerade t , die in beiden Tangentialebenen liegt .
i) Berechne den Abstand d von t und g0.

265



2. Hesse-Form der Ebenengleichung
Ist P ein Punkt der Ebene E : 2x l - 2x2 + x3 + 6 = 0 , dann erfüllen seine Koordinaten die
Gleichung und es gilt E (P ) = 2p 1 - 2p2 + p3 + 6 = 0 .
Liegt ein Punkt Q nicht in der Ebene E , dann ergibt sich für E (Q ) eine positive oder
negative Zahl.
Beispiel : P( 2 I 2 I - 6 ) , E (P ) = 4 - 4 - 6 + 6 = 0

Qj (3 I - 2 | 2 ) , E (QX) = 6 + 4 + 2 + 6 = 18
Q2(- 8 I 6 I - 5 ) , E(Q2) = - 16 - 12 - 5 - 6 = - 27

Um die Bedeutung des Vorzeichens zu verstehen , betrachten wir die vektorielle Nor¬
malform der Ebenengleichung :

E :
‘no ( x

‘
- X ) = 0

AX = 0
E (X ) = n - A X • cos 9 , wobei ip = ^ ( n,AX ) ist .

Negativer Halbraum
+ + cos q> < 0
+ + +
+ + + +/ + — — — — —
+ + + / + + ’“ — - -
+ + + n + + + + + ~

cos <P > 0 | + + + + + + +

Positiver Halbraum + + + + + + +

cos 9 legt das Vorzeichen von E (X ) fest . Die Ebene E teilt den Raum in zwei Halbräume :
Liegt Q in dem Halbraum , in den der Normalvektor zeigt , dann ist 9 spitz , cos 9 also
positiv. Diesen Halbraum nennen wir positiven Halbraum .
+ + + + + + + + + + [e (Q2) > q | q 2-
K ( l>) = (i + +.H- + + + + + + + + +

„ i * + + +7 + + + + + +
L+ +/ + + + + + +7 + + +

+ ^+ / + + +/ + + + +
J V .n / + + -f + + + +

*+/ + + + + +

ny / O_ /_ +
,K(( >)< 0 | _

_ _ / _ /_ |E (Q, ) < 0 _ _
Ebene ist richtig orientiert

Unterscheidet man zwischen positivem und negativem Halbraum , dann nennt man die
Ebene orientiert .
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Enthält die Ebene E den Ursprung nicht, dann orientiert man sie gewöhnlich so , daß der
Ursprung im negativen Halbraum liegt , das heißt E(O ) < 0 . In der Ebenengleichung E:
n1x1 + n2x2 + n3x3 + n0 = 0 ist E( O ) = n0 . Ist also n0 negativ , so ist die Ebene schon richtig
orientiert . Ist n0 positiv, so orientiert man die Ebene um , indem man ihre Gleichung mit
—1 multipliziert .
Bei einer richtig orientierten Ebene weist der Normalvektor von der Ebene aus in den
Halbraum , in dem der Ursprung nicht liegt - oder anders ausgedrückt - zeigt der Nor¬
malvektor vom Ursprung zur Ebene . Geht die Ebene durch den Ursprung , so sind beide
Orientierungen richtig , das heißt gleichberechtigt.
Die Ebene E : 2x t - 2x2 + x3 + 6 = 0 ist noch nicht richtig orientiert . Durch Multiplika¬
tion mit - 1 orientieren wir sie um : E : - 2x1 + 2x2 - x3 - 6 = 0 . Jetzt gilt E ( O ) = - 6 < 0 ,
ElQj ) = - 18 und E (Q2 ) = 27 . Qj und Q2 liegen auf verschiedenen Seiten der Ebene , Q x
und der Ursprung liegen auf derselben Seite .

Wir kennen jetzt die Bedeutung des Vorzeichens von E (Q) - was aber bedeutet der Be¬
trag | E (Q) I ?

_ ^ _
! E ( Q ) | = |

~n ° AQ I = n - AQ -I cos <p I . Aus der Zeichnung lesen wir ab:
AQ -| cos <p I = d , das ist der Abstand von Punkt und Ebene . I E (Q ) I = n-d ist also das Pro¬
dukt des Abstands Punkt -Ebene und der Länge des Normalvektors .

Der Mathematiker Ludwig Otto HESSE (Königsberg 1811 bis 1874 München ) hat
vorgeschlagen , als Normalvektor in der richtig orientierten Ebenengleichung einen
Einheitsvektor Tn 0 zu verwenden . Setzt man in seine Ebenengleichung einen Punkt ein,
so ergibt sich sofort der Abstand von Punkt und Ebene (bis aufs Vorzeichen) . HESSE zu
Ehren nennt man diese Form der Ebenengleichung Hesse -Form EH ; den zugehörigen
Vektor TT 0 nennen wir kurz Hesse -Vektor .

2 , n = 3Beispiel : E : 2xt - 2x2 + x3 + 6 = 0 , n

Umorientierung E : - 2x1 + 2x2 - x3 - 6 = 0

x3 - 2 = 0 , TnNormierung X1 + q X23 * 1 3

Punkte einsetzen EH (0 ) = - 2 , E und O haben den Abstand 2
Eh ( Q1) = - 6 , E und Qj haben den Abstand 6
Eh(Q2) = 9 , E und Q2 haben den Abstand 9
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Zusammenfassung
Von E : npq + n2x2 + n3x3 + n0 = 0 ist

- sgn(n0)Eh : - - - (n^ + n2x2 + n3x3 + n0) = 0

mit n0 * 0 und n = nx
2 + n2

2 + n3
2

die Hesse -Form der Ebene E .

Ist n„ = 0 , dann sind ± ^ (n^ + n2x2 + n3x3 + n0) = 0
die beiden Hesse-Formen der Ebene E .

Abstand Punkt -Ebene : d( Q,E ) = | E H( Q ) |

Erzeugung der Hesse -Form aus der allgemeinen Normalform in der Praxis :
Dividiere die Ebenengleichung durch den Betrag des Normalvektors .
Richte die Vorzeichen so ein , daß n 0 (falls vorhanden) negativ ist.

1 . Beispiel : Die Ebene E : 2xl + 6x2 + 3x3 + 49 = 0 und die drei Koordinatenebenen
begrenzen ein Tetraeder .
Gesucht ist die Länge der Höhe , die durch den Ursprung geht und auf der
Gegenfläche senkrecht steht , und der Höhenfußpunkt .

In dieser Aufgabe versteckt sich die Grundaufgabe Senkrechte Projektion
eines Punkts in eine Ebene. Diesmal lösen wir sie mit der Hesse-Form.
Eh : - (2x x + 6x2 + 3x3 + 49 ) = 0 , EH(0 ) = - 7 ,
Ebene und Ursprung haben den Abstand d = 7 , und das ist die gesuchte
Länge der Höhe.
Um 0 in E zu projizieren , tragen wir den Hesse-Vektor n 0 = ^
7mal von 0 aus ab und treffen auf den gesuchten Fußpunkt F:

r- 2 \

'- 2a
- 6
- 3 y

F = O + 7 ”n ° =
v- 3y

, F(—2 I - 6 I - 3 )

2 . Beispiel : Gesucht ist der geometrische Ort G der Punkte , die von der Ebene
E : 7xj — 4x2 — 4x3 — 18 = 0 den doppelten Abstand haben wie von der Ebene
F : 2x ( + x2 - 2x3 + 12 = 0 .
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Eh : | ( 7xj - 4x2 - 4x3 - 18 ) = 0 , FH : | (- 2xj - x2 + 2x3 - 12 ) = 0

Für die gesuchten Punkte X gilt : I E H(X ) 1 = 2 - 1FH (X ) I ,
das heißt : G3 : E H(X) = 2 -F H(X) oder G2 : E H(X ) = - 2 -F H(X )
Gx : l (7Xj - 4x2 - 4x3 - 18 ) = § (- 2Xl - x2 + 2x3 - 12 ) 11 -9

Gj : 19xj + 2x2 - 16x3 + 54 = 0
G2 : J (7xj - 4x2 - 4x3 — 18) = - | (- 2Xl - x2 + 2x3 - 12 ) 11 -9

G2 : 5x3 + 10x2 - 8x3 + 90 = 0
Der gesuchte geometrische Ort besteht aus zwei Ebenen G x und G2, die sich

in der Schnittgerade von E und F treffen .

Weil das Skalarprodukt der Hessevektoren h ^
' ° und hjT 0 negativ ist , schlie¬

ßen WjT
0 und einen stumpfen Winkel ein , das heißt , der Ursprung liegt

in einem der spitzen Winkelfelder von E und F . Weil G3 aus E H(X) = 2 -F H(X)

hervorgegangen ist , liegen die Punkte von Gx in den Winkelfeldern , in denen

sich die beiden positiven beziehungsweise negativen Halbräume überlappen .
Gj und O liegen also im selben Winkelfeld .

WinkelhalbierendeEbenen

Wichtiger Sonderfall der Aufgabe aus dem letzten Beispiel :
Gesucht ist der geometrische Ort der Punkte , die von zwei sich schneidenden Ebenen E
und F denselben Abstand haben .
Er besteht aus den beiden WinkelhalbierendenEbenen W , und W2 .
Für die gesuchten Punkte X gilt : | EH(X) I = I F H(X ) I , das heißt ,
Wx : Eh (X) = Fh(X) oder W2 : EH (X ) = - FH (X ) , anders geschrieben
W 1 : E H (X ) - F h (X ) = 0 oder W 2 : E H (X ) + F H (X ) = 0 .
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Für die Ebenen E und F des letzten Beispiels mit
Eh : | (7xj - 4x2 - 4x3 - 18 ) = 0 , FH : | (- 2x x - x2 + 2x3 - 12 ) = 0
ergibt sich W3 : 13x3 - x2 - 10x3 + 18 = 0

W2 : xx - 7x2 + 2x3 - 54 = 0
Wie sichs gehört , stehen Wt und W2 aufeinander senkrecht :

= 0

Um zu entscheiden , welche Winkelhalbierende Ebene im spitzen Winkelfeld liegt ,berechnen wir den Winkel a zwischen E und W1 :
I n E ° n l I 13R K

24,1

13 -N ( 1 1
- 1 O - 7

- 10J ( 2 J

cos a ■■
nE 9^ 270 Väö

’ a ■■

und den Winkel ß zwischen F und W2 : ß = 90 °- a = 65,9 °.
Also halbiert Wx das spitze und W2 das stumpfe Winkelfeld von E und F.

Aufgaben

[ü | Gib die Hesse-Form an
a) 7x1 - 2x2 + 26x3 + 54 = 0 b) 6x : + 8x3 = — 50
c) löxj + 6x2 - 10x3 = 0 d) 3x3 = 3
e) | x1 - | x2 + | x3 = l f ) x1 = 0

f& j Gib die Hesse-Form der Ebene E an,
die durch A( 11 11 5 ) , B(9 I 11 1 ) und C ( ll I 4 | - 1 ) geht .

[3 1̂ Welchen Abstand haben der Ursprung , A( 12 | 2 I - 2 ) , B ( 11 01 - 2 ) und
C (- 9111 2 ) von der Ebene E : Xj + 8x2 - 4x3 = 9 ?

4. Welchen Abstand haben der Ursprung , A( 11 - 2 I 2 ) und B ( 11 11 - 1 ) von der Ebene E

5.

f ° ~) ' 2 1
x

"
= 0 + k 1 +p 1 ?

UJ

E : *i + 2x2 + 2x3 + 3 — 0
F: + 2x2 + 2x3 - 6 = 0
G: *1 + 2x 2 + 2x 3- 9 = 0
H: *1 + 2x 2 + 2x3 + 12 = 0

Zeichne den Ursprung , die Ebenen E bis H
(als Strecken ) mit den richtigen Abständen , die Normal-
und Hesse-Vektoren von E bis H mit den richtigen
Längen , Maßstab : 1 ^ 0,5cm .

6. A( 11 01 - 2 ) , B (- l I 4 | - 2 ) , C ( 0 I 6 I 0 ) , D(? | ? | ? ) , S ( 3 I 3 I - 3 )
Die Pyramide ABCDS hat als Grundfläche das Parallelogramm ABCD .
a ) Berechne die Länge der Höhe h.
b) Berechne das Volumen der Pyramide .

- ( 0 r 2 1+ 75 = 0 , g X = - 5 + p 5Uv [ wj
Zeige , daß E und g parallel sind , und berechne den Abstand d(g , E ).
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8. Berechne den Abstand der windschiefen Geraden so:
Bestimme eine Normalgleichung der Ebene E , die die Gerade g enthält und parallel
ist zur andern Gerade h .
Berechne dann den Abstand , den irgendein Punkt von h und die Ebene E haben .

_ X f 1 ) ( lA _ f ° ) fOA
a ) g: X = - 2

l 3 J+ p 1 , h : X = 5
l «J+ X 0UJ

_ / 0 A fl \ _ ^ f - 7a ( - 3 A
b) g X = 17

IsJ
+ p

( 2 ) ' h : X = 9
116;

+ X 4
,

4
>

[&j Stelle Gleichungen der Ebenen auf,
die von E : 6xx - 7x2 + 6x3 + 55 = 0 den Abstand 33 haben .

10 . Bestimme den geometrischen Ort der Punkte ,
die von der Ebene E : 7xx - 6x2 + 6x3 = 7 den Abstand 1 haben .

11 . Bestimme den geometrischen Ort der Punkte , die in der Ebene E : 2xx + x2 - 2x3 = 12
liegen und von der Ebene F : x3 - x2 + 3x3 = 0 den Abstand 3 haben .

12 . E : 15Xi + 12x2 - 16x3 = 15 , F : - 9xj + 12x2 - 20x3 = 35
Welche Punkte der x3-Achse haben von E und F denselben Abstand ?

• 13 . E : 6x3 + 9x2 + 2x3 = 11 , g: X =
f 39 A

61
- 23 y

r 13

Eine Kugel K mit Radius 22 bewegt sich so, daß ihr Mittelpunkt auf g wandert .

a ) In welchen Punkten berührt die Kugel die Ebene ?
Wo ist dann jeweils der Kugelmittelpunkt ?

b) Wo ist der Mittelpunkt des größten Schnittkreises von K und E ?
- 6 \ f 7 '

14 . g± sei die senkrechte Projektion von g : X + p | 2
10

in die Ebene E : 2x1 - x2 + 3xs - 4 = 0 .
Bestimme den Schnittpunkt von g und g , und eine Gleichung von g± .

15. Die Punkte P ( 13 I —6 I 6 ) und P ’ seien symmetrisch bezüglich
der Ebene E : 7xx - 4x2 + 4x3 - 7 = 0 . Berechne P ’.

16 . T : 3x3 - 4x2 - 12x3 = 0 sei Tangentialebene einer Kugel K um M (7 I - 1 ! - 12 ).

a ) Berechne Radius und Berührpunkt von K.

b) Bestimme eine Gleichung der anderen Tangentialebene T ’ von K ,
die parallel ist zu T.

17 . H : 10xx - llx 2 + 2x3 = 1 halbiere die kleinste aller Kugeln ,
die durch P (211 - 211 5 ) gehen . Berechne ihren Radius und Mittelpunkt .

18 . Bestimme Gleichungen der winkeihalbierenden Ebenen von
E : Xj + 2x2 — 2x3 + 5 = 0 und F : 5x , — 14x2 + 2x3 — 4 = 0.



19 . E : 2xx + x2 - 2x3 + 3 = 0 , F : 6x! - 2x2 - 3xs + 21 = 0
a) Bestimme den geometrischen Ort der Punkte,

die von E und F denselben Abstand haben .
b) Bestimme den geometrischen Ort der Punkte,

deren Abstand von E halb so groß ist wie der von F.
20. E : 4xj - x2 + 8x3 + 18 = 0 , F: 4x x - x2 + 8x3 - 36 = 0 )

a) Gib eine Gleichung der Ebene S an , die von E und F denselben Abstand hat. [
b) Gib Gleichungen der Ebenen G und H an , I

deren Abstand von F doppelt so groß ist wie der von E.
c) Zeichne den Ursprung und die Ebenen E , F , S , G und H

(als Strecken ) mit den richtigen Abständen im Maßstab : 1 = 1cm .
• 21 . E : 3xj — 4x3 = 0, F : 2xx - x2 + 2x3 = 0 ■

Eine Kugel vom Radius 4 rollt in der von E und F gebildeten Rinne hinunter .
(Die Schwerkraft wirkt entgegen der x3-Richtung ) . jBestimme eine Gleichung der Gerade , auf der sich der Kugelmittelpunkt bewegt.

22. E : 2x, - x9 — 2xo = 5, F : 2xx + 2x2 - x3 = 5 , G: x1 + 2x2 - 2x3 + 4 = 0
Eine Kugel vom Radius 3 liegt in dem von E , F und G gebildeten Pyramiden -Trichter (der Trichter enthält die positive x3-Achse) . Wo liegt ihr Mittelpunkt M ?

E: i Xj + x2 + x3 ■
Eine Kugel vom Radius 4 rollt auf der Ebene E hinunter . (Die Schwerkraft wirkt
entgegen der x3-Richtung ) . Bestimme eine Gleichung der Gerade , auf der der
Kugelmittelpunkt läuft , wenn er in S(01 01 m) startet .

1 = 0

3. Normalformenvon Geraden
Für Geraden und Ebenen im Raum gibt es Parametergleichungen - eine Normalformaber ist nur bei Ebenen möglich, weil Geraden keine eindeutigen Normalrichtungenhaben . Deshalb gibt es auch keine Hesse -Form von Geraden im Raum . In der Geo¬metrie der Ebene ist das anders . Hier kann man der Gerade eine Normalrichtung ge¬nau so zuordnen wie einer Ebene im Raum . Mit zweidimensionalen Vektoren geschrie¬ben sieht das so aus:

g:

n =

“no AX = 0
nxx + nyy + n0 = 0
'
j ist ein Normalvektor und A(ax I ay) ein Punkt der Gerade g.
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PCI 17)

F (2,2I5,4 )

Wie im Raum findet man die Hesse -Form durch Normieren und Orientieren :
- sgn (n 0 )

gm - n- (nxx + nyy + n 0) = 0

Wieder gilt für den Abstand Punkt -Gerade : I gH (X ) I = d(P , g)

Beispiel : Welchen Abstand haben P ( 11 7 ) und g : 3x - 4y + 15 = 0 ?

gH : - 1 (3x - 4y + 15 ) = 0 , gH (P ) = - | (- 10) = 2
P und g haben den Abstand 2 , g liegt zwischen P und 0 .
Subtrahiert man von P das 2fache des Hesse -Vektors ,
dann trifft man auf die senkrechte Projektion F von P auf g:

V = P
"

- 2 [- i
(_

3
4 )] = ( ^ g ) , F(2,2l5,4 >

* * Plücker -Form

Der Mathematiker Julius PLÜCKER (Elberfeld 1801 bis 1868 Bonn ) hat eine Form der
Gleichung einer Gerade g im Raum angegeben , bei der man ähnlich wie bei der Hesse -
Form der Ebene durch Einsetzen eines Punkts Q gleich den Abstand d (Q , g ) bekommt .
Ist V ° ein Einheitsvektor in Geradenrichtung , so erfüllen die Punkte X der Gerade die

(parameterlose ! ) Gleichung :

gP : V ° xGX = ~
o Plücker -Form der Geradengleichung

Für den Abstand d(Q , g ) Punkt -Gerade gilt dann : sin cp -

also d(Q, g) = GQ sin cp = I ^v ° l • I GQ I • sin cp - 1 v ° x GQ I - : I gp(Q ) I
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5a
Beispiel : Welchen Abstand haben Q(0 I —2 | 1 ) und g: X = | 2

6

2 A
+ p | - 2

3

a/17

d(Q , G) =

( 2 a
- 2

V 3 /
gp : Vr7

/ 2a
- 2

V 3 /

/X ,. - 5a
x2 - 2
x3 - ey

= 0

1 r 2 a r - fh 1 / 22 a

Vl7
- 2

l 3 .
X - 4

Vr7
- 5

H 8 J
= 833 = a/49

~
= 7

a/17

Aufgaben

[ü | Gib die Hesse-Form der Geraden a bis f an
a) a : - 3x + 4y + 15 = 0 b) b : x + y = l c ) c : - 2y = 0
d) d : x + 0,75y = 0,25 e) e: y = mx + t f ) f: X = f ^ + p ^

S: X = f ^ + n ^ '
A( 0,5 1- 3,5 )

a) Berechne den Abstand von A und g.
b) Berechne die Gleichung der Lotgerade von g durch A.
c) Berechne den Lotfußpunkt F von b) und die Länge des Lots AF .

13. | a) Berechne den Abstand von Ursprung und Gerade g: 3x + 4y = 12 .
b) Berechne den Abstand von b : 3x + 4y = 24 , c : 3x + 4y + 24 = 0 und

d : 6x + 8y = 24.

4. Bestimme eine Gleichung der Gerade h durch H(3 I - 4 ) parallel zur
Gerade g: 3x = 5(y + 1 ) .

5. Bestimme eine Gleichung der Gerade , die durch G(- 12 I 5 ) geht
und vom Ursprung den Abstand 13 hat .

6. Bestimme Gleichungen der Geraden p und q ,
die von der Gerade g : 3x + 4y + 12 = 0 den Abstand 0,5 haben .

7. Gib die Punkte auf h : y = x + 2 an , die von g: - 3x + 4y = 3 den Abstand 1 haben .
• 8. Gib die Punkte an , die von g: x + 7y = 0 und der Winkelhalbierenden w

des 1 . Quadranten jeweils den Abstand a/ 50 haben .

9. In einem Dreieck ABC ist A( 21 1 ) , hc : 5x - 4y = 7 und hb : 3x + 4y = 11 .
a) Bestimme Gleichungen der Geraden , in denen die Seiten liegen.
b) Berechne die Koordinaten der Ecken B und C .

10 . g: x + y = 2 , h : 7x + y + 7 = 0
a) Bestimme Gleichungen der Winkelhalbierenden von g und h .
a) Bestimme Gleichungen der Geraden ,

deren Punkte jeweils von h einen dreimal so großen Abstand haben wie von g
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0 (1610116 )

B (0I10I0 )

A ( 151010 )

11 . Im ersten Oktanten liegt eine ebene, dreieckige, spiegelnde GlasscheibeABC .
Von Q aus trifft ein Laserstrahl 1 auf die Glasscherbe (siehe Bild ).

a) Bestimme eine Gleichung der Ebene E , in der die Spiegelfläche liegt .
b) Bestimme Gleichungen der Spurgeraden von E .

c) Berechne den Winkel 9 zwischen Laserstrahl 1 und E .
Berechne den Einfallswinkel a .

d) In welchem Punkt S trifft der Strahl aufs Glas ?

e) Bestimme eine Gleichung des Einfallslots e .
f ) L sei die Ebene , in der der ein- und ausfallende Strahl liegen .

Bestimme eine Gleichung von L.

g ) Bestimme eine Gleichung der Schnittgerade von E und L.

h ) Bestimme eine Gleichung der senkrechten Projektion lx von Strahl 1 in die
Ebene E .

i) Q und Q ' seien Spiegelpunkte bezüglich E . Bestimme Q'.

j ) Bestimme eine Gleichung der Gerade r , in der der reflektierte Strahl liegt .

k ) Bestimme eine Gleichung der Symmetrieebene K von Strahl 1 und reflek¬
tiertem Strahl r.

l) Die Symmetrieebene von k ) schneide E in s . Gib eine Gleichung von s an.

m ) Welchen Winkel schließen lx und s ein ?

n ) Bestimme eine Gleichung der Schnittgerade n von L und K.

o) Welchen Winkel schließen n und 1± , n und s ein ?



12 .

P)

q )

r )
s )

t)

u )

v )

w )

a )

b)

c )

d)

e )

Q und Q" seien Spiegelpunkte bezüglich K . Bestimme Q" .
Welchen Abstand haben E und die Gerade QQ" ?

Welchen Abstand haben K und die Gerade QQ" ?
U hege in E , K und in der x1x2-Ebene . Berechne K.

Die Ebene H enthalte 1 und habe vom Ursprung denselben Abstand wie 1.
Bestimme eine Gleichung von H .
Die Gerade g hege in E und habe vom Ursprung denselben Abstand wie E .
Bestimme eine Gleichung von g.

Der Schnittpunkt von 1 und r sei Mittelpunkt einer Kugel mit Radius IOa/ 3.
Berechne die Schnittpunkte von Kugel und Geradenkreuzung .

Eine Kugel um den Ursprung mit Radius y schneide E .
Berechne Radius und Mittelpunkt des Schnittkreises .

t CU
1 und v = 7- 1 \

0
l 2 v l 2 JBestimme Gleichungen der Ebenen , die zu u

parallel sind und vom Punkt Q( 01 0 I 7 ) den Abstand 3 haben .

gc sind Ursprungsgeraden durch ( 11 —11 c ) . Welche Gerade schneidet die
Ebene E : 2x1 - 2x2 + x3 - 16 = 0 nicht ? Welcher Zusammenhang besteht dann
zwischen der Richtung von gc und den Vektoren hf und "

v ?

Die Ebene F enthalte die x3-Achse und die Geradenschar gc von b ) .
Bestimme eine Gleichung von F .
E und die Koordinatenebenen begrenzen eine Pyramide P .
a ) Berechne das Volumen von P .
ß ) Berechne die Oberfläche von P .
y) Zeige , daß F Symmetrieebene von P ist .
5 ) Prüfe , ob S(3 I - 3 I 3 ) und T(3 I - 3 I 5 ) in der Pyramide hegen ,
e ) Es gibt eine Kugel in P , die alle vier Seitenflächen berührt .

Berechne Radius und Mittelpunkt dieser Kugel .

Welche Schargeraden von gc berühren eine Kugel um M(2 | —2 I 2 ) mit Radius 2 ?
Berechne die Berührpunkte .
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