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12 . Mehrere Zufallsgrößen
über demselben Wahrscheinlichkeitsraum

mm

Macuilxochitl, der Gott der Blumen und Spiele, überwacht das aztektische Patolli -Spiel.
2 Spieler, begleitet von 2 Punktrichtern , haben je 6 Kiesel als Steine und je 2 Bohnen als

Würfel und müssen alle 104 »Häuser « durchlaufen . Da 52 Jahre den Hauptzyklus des azteki-

schen Kalenders bilden , war Patolli nicht nur ein Glücksspiel , sondern diente auch religiösen
Zwecken. - Codex Magliabecchi ( 16 . Jh .)



12 . Mehrere Zufallsgrößen über demselben
Wahrscheinlichkeitsraum

12 . 1 . Die gemeinsame Wahrscheinlichkeitsverteilung
Wir betrachten zwei verschiedene * Zufallsgrößen X und Y über (ü , P ) mit ihren
Wahrscheinlichkeitsfunktionen Wx und WY.

Beispiel 1 : Für einen einfachen Würfelwurf sollen folgende Gewinnpläne gelten
a) Zufallsgröße X : Fällt eine gerade Zahl , so gewinnt der Spieler eine Mark;

andernfalls verliert er eine Mark .
b) Zufallsgröße Y: Fällt eine Primzahl, so gewinnt der Spieler eine Mark ; andern¬

falls verliert er eine Mark .
Die Wertetabellen der Zufallsgrößen X bzw . Y haben folgendes Aussehen :

CO 1 2 3 4 5 6
x = X (co) - 1 1 - 1 1 - 1 1
y = Y(a>) - 1 1 1 1 1 - 1
Für die Wahrscheinlichkeitsfunktionen Wx bzw. WY ergibt sich somit

X - 1 + 1 y - 1 + 1
Wx (x) 1 1

2 2 Wy (y) 12 12
Trotz X #= Y gilt also hier Ws = WY. X und Y sind demnach »gleichverteilt « .
Man definiert nämlich

Definition 198. 1 : Zwei Zufallsgrößen X und Y über demselben Wahr¬
scheinlichkeitsraum (Q, P ) heißen gleichverteilt oder auch identisch verteilt ,wenn ihre Wahrscheinlichkeitsverteilungen Wx und WY übereinstimmen .
X und Y heißen dann Kopien voneinander .

Beispiel 1 zeigt uns , daß aus der Gleichheit der Wahrscheinlichkeitsverteilungennicht auf die Gleichheit der Zufallsgrößen geschlossen werden darf .
Wir wollen uns nun einem Experiment zuwenden , bei dem zwei Zufallsgrößen
gleichzeitig betrachtet werden .

Beispiel 2 : In einer Klasse von 25 Schülern sind 10 Mädchen . 15 Schüler sind
katholisch und 8 Schüler evangelisch . 6 der Mädchen sind katholisch , der Rest
der Mädchen evangelisch .
Ein Schüler co werde beliebig ausgewählt . Wir definieren die Zufallsgrößen
»Geschlecht « G und »Religionszugehörigkeit « R folgendermaßen :

1falls 0J 6 Menge der Mädchen
\ 1, falls co e Menge der Jungen

* Zwei Zufallsgrößen heißen gleich, wenn sie als Funktionen gleich sind,d .h ., wenn ihre Wertetabellen überein¬stimmen .
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R (co) =:
1, falls co s Menge der Katholiken
2, falls co e Menge der Protestanten
3 sonst

0,5
WfG,R

Die Wahrscheinlichkeitsverteilungen von G und
R ergeben sich zu :

g 0 1

wG [g ) 0,40 0,60

r 1 2 3

WK {r) 0,60 0,32 0,08

Zur Erstellung einer Schulstatistik wird sowohl
nach Geschlecht als auch nach Religionszuge¬
hörigkeit gefragt . Diese Fragestellung bedingt
eine gleichzeitige Betrachtung beider Zufalls¬
größen .

Fig . 199. 1 Graphische Darstellung
der gemeinsamen Wahrscheinlich¬
keitsverteilung WG R

Um solche Fragestellungen modellmäßig erfassen zu können , definiert man die
gemeinsame Wahrscheinlichkeitsverteilung zweier Zufallsgrößen X und Y.
Dazu betrachtet man das Ereignis , daß X den Wert x und gleichzeitig Y den
Wert y annimmt , d . h . das Ereignis { co \X {co) = x a Y {co) = y ) , das wir analog
zu früher kurz »I = xa7 = v« schreiben . Mit dieser Bezeichnung legen wir fest :

Definition 199. 1 : Sind X und Y zwei Zufallsgrößen über demselben Wahr¬
scheinlichkeitsraum (ß , P ) , so heißt

Wxy . (x \y ) i- > P {X = xaY = y)

die gemeinsame Wahrscheinlichkeitsfunktion oder die gemeinsame Wahr¬

scheinlichkeitsverteilung der Zufallsgrößen X und Y.

In unserem Beispiel ergibt sich für WGR (g , r) = P (G = g a R = r) folgende
Wertetabelle :

r
g 1 2 3

0 0,24 0,16 0
1 0,36 0,16 0,08

Figur 199 . 1 zeigt den Graphen von WG_R in einem dreidimensionalen Koordi¬

natensystem .
Addiert man in der obigen Wertetabelle für WG R die Wahrscheinlichkeiten einer

Spalte r , so erhält man als Summe den Wert WK (r) . Andererseits erhält man
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WG (g) , wenn man die Wahrscheinlichkeiten der Zeile g addiert . Die vollständige
Tabelle sieht dann so aus :

r
g 1 2 3 WG (g)
0 '

0,24 0,16 0 0,4
1 0,36 0,16 0,08 0,6

WR (r) 0,60 0,32 0,08 1

Der gefundene Zusammenhang zwischen WG , WR und WG R gilt offenbar all¬
gemein :

Satz 200 . 1 : Wx (x£ = £
j
' = i

vj) = i WxM^ yj)
i = 1

Die Summation erstreckt sich dabei über alle yj aus dem Wertebereich von
Y bzw . über alle x t aus dem Wertebereich von X .

Bemerkung: Auf Grund von Satz 200. 1 nennt man die einfachen Wahrschein¬
lichkeitsfunktionen Wx und WY manchmal in diesem Zusammenhang auch
Rand - oder Marginalwahrscheinlichkeitsverteilungen.

12. 2 . Stochastische Unabhängigkeit von Zufallsgrößen
In Kapitel 10. wurde die stochastische Unabhängigkeit von Ereignissen definiert
und untersucht . Wir nannten die Ereignisse A und B stochastisch unabhängig ,
wenn der Produktsatz P (AnB ) = P (A ) P (B) gilt . Nun erzeugt jede Zufalls¬
größe X mittels der Aussagen »X = x ; « eine Menge von Ereignissen . Es liegt
daher nahe , die stochastische Unabhängigkeit zweier Zufallsgrößen X und Y
dadurch zu definieren , daß man für jedes mögliche Paar von Ereignissen »X = x ; «und » Y = yj « die stochastische Unabhängigkeit fordert :

Definition 200. 1 : Zwei Zufallsgrößen X und Y, die auf demselben Wahr-
scheinlichkeitsraum (Q , P ) definiert sind , heißen stochastisch unabhängig ,wenn für alle x ; , ys gilt :

P (X = x , A Y = y}) = P {X = x ;)
• P ( Y = yj)

oder kürzer : WX : Y(x ; , y}) = Wx (x ;) • WYty )

Bei mehr als zwei Zufallsgrößen unterscheidet man wie bei Ereignissen zwischen
paarweiser Unabhängigkeit und Unabhängigkeit in ihrer Gesamtheit gemäß
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Definition 201 . 1 : Die Zufallsgrößen X,Y, . . . ,Z , definiert über demselben
Wahrscheinlichkeitsraum (ß , P ) , heißen
a) paarweise stochastisch unabhängig, wenn je 2 von ihnen stochastisch un¬

abhängig sind ,
b) stochastisch unabhängig in ihrer Gesamtheit , wenn für alle xh yj7 . . . , zk

gilt :
P (X = Xi a Y = yj a . . . a Z = zk) = P (X = Xi) ■P (Y = y3) - . . . - P (Z = zk) .

Zur Veranschaulichung von Definition 200. 1 untersuchen wir die Zufallsgrößen
aus den Beispielen 1 und 2 des Abschnitts 12 . 1 . auf Unabhängigkeit . Die Ge¬
winnpläne X und Y sind nicht unabhängig ; denn es gilt z . B .

P (X = - 1 a Y = - 1 ) = i ; aber
P (X = - 1 ) ' P {Y = - l ) = | - i = i

Zur Untersuchung der Zufallsgrößen Geschlecht G und Religionszugehörigkeit
R auf Unabhängigkeit stellen wir die Tabelle der gemeinsamen Wahrscheinlich¬
keitsverteilung WG R der Produkttafel der Randwahrscheinlichkeitsverteilungen
gegenüber :

WG, R(g, r ) = P (G = g a R = r)

r
g \ 1 2 3 IITS
0 0,24 0,16 0 0,4
1 0,36 0,16 0,08 0,6

P (R = r) 0,6 0,32 0,08 1

WG (g ) - WR (r) = P (G = g) P (R = r)

r
g \ 1 2 3 Piß = g)

0 0,24 0,128 0,032 0,4
1 0,36 0,192 0,048 0,6

>3 II 0,6 0,32 0,08 1

Da die Tabellen nicht übereinstimmen , sind die Zufallsgrößen Geschlecht und

Religionszugehörigkeit in der betrachteten Klasse stochastisch abhängig . Hätte
man in derselben Klasse die Zufallsgröße »Religionszugehörigkeit « etwas anders
definiert , nämlich

1, falls
2 sonst ,

(o e Menge der Katholiken
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so ergäben sich folgende Tabellen :

WG ' R , {g,r
= P (G =

*
) =

g a R * = r *)

1 2 WG ig)
0 0,24 0,16 0,4
1 0,36 0,24 0,6

WR , (r *) 0,6 0,4 1

wG (g) - ws
= P (G =

, (r * ) =
g) • P (R * = r *)

r *
1 2 WG (g)

0 0,24 0,16 0,4
1 0,36 0,24 0,6

WR, {r *) 0,6 0,4 1

Diese Tabellen stimmen überein ; also sind Geschlecht G und Religionszugehörig¬
keit R * stochastisch unabhängige Zufallsgrößen .
Fazit : Durch geeignete Definition von Zufallsgrößen kann man das Ergebniseiner Untersuchung beeinflussen . Man sollte daher bei Veröffentlichungen von
statistischen Untersuchungen nicht nur auf die Ergebnisse achten , sondern auch
auf die Art , wie sie gewonnen wurden !

12 . 3 . Verknüpfung von Zufallsgrößen

Zufallsgrößen sind reellwertige Funktionen auf ß . Daher lassen sich Zufalls¬
größen wie Funktionen verknüpfen . Wir beschränken uns hier auf Summe und
Produkt zweier Zufallsgrößen und erinnern an die in der Analysis übliche

Definition 202. 1 : Sind X und Y zwei Zufallsgrößen über demselben Wahr¬
scheinlichkeitsraum (Q,P ) , so gilt :

(X + T ) (co) == X (m ) + Y(o>) und (X ■Y ) (oj) ■■= X (m ) • Y(oj )

Die Wahrscheinlichkeitsverteilung der Summe bzw . des Produkts zweier Zu¬
fallsgrößen kann man aus ihrer gemeinsamen Wahrscheinlichkeitsverteilung er¬
halten . Es gilt nämlich
P (X + Y = s) =

= ^ P {X = x t AY = yj)
Xi + yj = s

= Z wX ' Axi. yj) =
H + yj = s

n
= Z Wx,A xh s ~ x?> -

; = i

Zur Summe zweier Zufallsgrößen bringen wir folgendes
Beispiel : Beim Wurf zweier L-Würfel hat man zwei Zufallsgrößen X und Y,nämlich die Augenzahlen des 1 . bzw . 2 . Würfels über dem Wahrscheinlichkeits¬
raum (ß , P ) ; dabei besteht £2 aus den 36 Paaren (a 1 1a2) mit a ; e ( 1,2,3,4 , 5,6 } ,und P ist eine gleichmäßige Wahrscheinlichkeitsverteilung über ß . Für die Zu¬
fallsgrößen X und Y gilt dabei

P (X ■Y = k) =
= £ P (X = Xi AY = yj) =

Xiyj = k

= z W x , Y (x h yj ) .
x iyj = k
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X (co) = X ((ö ! | a 2 )) = und

Y (co) = Y((a x | a 2 )) = a 2 .

Ihre Summe X + Y ist eine neue
Zufallsgröße Z über (Q,P ) .
Dabei ist
Z (co) = (X + Y) (co) = X (co) + Y (co) .
Figur 203. 1 veranschaulicht diesen
Zusammenhang . Die Wertetabelle
von Z sieht folgendermaßen aus :

-Ck' -Yu

Fig . 203 . 1
Zur Summe zweier Zufallsgrößen
Z (co) = (X + Y) (co) = V (co) + Y (tu)

Die Wahrscheinlichkeitsfunktion Wz von Z ergibt sich gemäß

^ z (z) = Yu wx,r (Xi,yj ) ; so ist z . B .
Xi + yj = z

Wz m = E WX ' ¥ {x t , yj ) =
x i + yj ~ 10

= Wx<y (4,6) + WXt y ( 5,5) + Wx , y (6,4 ) =

= J6 + T5 + T6 =

— 36 •

Man erhält :
z 2 3 4 5 6 7 8 9 10 u 12

wz {z) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Erstaunlicherweise ist Z nicht gleichmäßig verteilt , obwohl die Summanden
X und Y gleichmäßig verteilt sind (vgl . Figuren 173 . 1 und 173 .2) .

12 . 4 . Sätze über Maßzahlen

Für Erwartung und Varianz lassen sich einige einfache Sätze leicht beweisen ,
durch die deren Berechnung in vielen Fällen erleichtert wird .

12 . 4 . 1 . Sätze über die Erwartung

Der Erwartungswert einer konstanten Zufallsgröße a ist als ihr Mittelwert na¬
türlich die Konstante selber , d . h . , Sa = a.



204 12 . Mehrere Zufallsgrößen über demselben Wahrscheinlichkeitsraum

Addiert man zu jedem Wert einer beliebigen Zufallsgröße X die Konstante 3 ,
so ist es anschaulich klar , daß auch ihr Mittelwert SX um 3 wächst ; man ver¬
mutet , daß S (X + a) = SX + a allgemein gilt .
Verdreifacht man hingegen jeden Wert einer Zufallsgröße X , so ist es klar , daß
auch der Mittelwert verdreifacht wird ; man vermutet , daß S {aX ) = a - SX all¬
gemein gilt . Wir beweisen

Satz 204. 1 : Für jede Zufallsgröße X und jede Konstante ae IR gilt :
( 1 ) Sa = a
(2) S (X + a) = S (X ) + a
(3 ) S (aX ) = a - SX

Beweis :
( 1 ) . Sa = a ■W(a ) = a ■ 1 = a .
(2) . Mit g (X ) ~ X + a gilt nach Satz 178 . 1

S (X + a) = £ (Xi + a) W(x i) = £ x, ^ (jc,) + a £ W{x^ = SX + a - 1 =
i = l i = 1 i = 1

= SX + a .
(3) . Mit g (X ) — aX gilt nach Satz 178 . 1

S {aX ) = £ ax i W{xj) = a £ X ; fF (x ;) = a - SX .
i = 1 i = 1

Der Mittelwert der Summe zweier Zufallsgrößen müßte wohl die Summe der bei¬
den Mittelwerte sein , wie Beispiel 1 und Beispiel 2 von Seite 173 für die Zufalls¬
größe »Augensumme zweier L-Würfel « vermuten lassen . Daß dies auch all¬
gemein gilt , ist die Aussage von

Satz 204 . 2 : Sind X und Y Zufallsgrößen über demselben Wahrscheinlich -
keitsraum (ß , P ) , dann gilt

S (X + Y) = S X + SY

Beweis :
Nach der Bemerkung 6 von Seite 172 gilt
S (X + Y) = £ (X + Y) (<o) - P {{<o } ) =

= X [X (co) + 7 (®)] - P ( { ro}) =
o) sfi

= £ V (m ) • / >
( { « } ) + ^ Kjco ) • / >( { © } ) =

o>eß coeß

= SX + SY .

Aus Satz 204. 1 und Satz 204.2 folgt sofort , daß die Erwartung eine lineare Funk¬
tion ist :

S (aX + bY) = aSX + bSY
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Diese Formel gestattet , den Erwartungswert der Zufallsgröße Z := aX + bY zu
berechnen , ohne daß man die Wahrscheinlichkeitsverteilung dieser Zufalls¬
größe Z kennt ! Darüber hinaus läßt sich sogar der Erwartungswert einer Zufalls¬
größe berechnen , die Summe von mehr als 2 Zufallsgrößen ist , ohne daß man
ihre (meist recht komplizierte ) Wahrscheinlichkeitsverteilung zu kennen braucht .
Es gilt nämlich

Satz 205 . 1 : Sind X 1, X 2 , . . . ,X „ Zufallsgrößen über demselben Wahr¬
scheinlichkeitsraum (Q , P ) , dann gilt

SfaiX ^ ""b ^2 -̂ - 2 ~b ~b Xn) — Ü ^SX ^ a2 SX 2 . ~h anS Xn ,
kurz

a ( 2Q = £ a . SX, .
i = 1 i = 1

Beweis:
Wir verwenden das Beweisverfahren von Satz 204.2 .

i { £ 0i Xd = E (a 1 X 1 + a2 X 2 + . . . + an Xn) (co) - P ( { co} ) =
i —1 coeQ

= E [a,X 1 (co) + a 2 X 2 (c0) + . . . + an Xn (co)
-
] - P ( { o>} ) =

coeQ

= E la iX ^ ca) - P {{w} ) + a2 X2 ((o) - P {{ (ß } ) + . . . + an Xn {a>) - P {{ (£>} )]
coeQ

= « i E 2f 1 (co) - F ( { ffl }) + . . . + a„ E =
coeQ coeQ

= $ X i "h CI2 $ X 2 "b • • * "h Cln ß X n .

Merkregel : Erwartungswert einer Summe = Summe der Erwartungswerte

Man könnte nun vermuten , daß ein ähnlicher Satz auch für das Produkt von
Zufallsgrößen gilt . Beispiel 1 und Beispiel 3 von Seite 173 f. zeigen aber , daß dem
nicht so ist , weil dort SX = 3,5 , dagegen
S {X ■X ) = S {X 2

) = 15i * 3,5 2 = {SX )
2 ist .

Erfreulicherweise gilt aber wenigstens

Satz 205 . 2 : Sind X und Y stochastisch unabhängige Zufallsgrößen über
demselben Wahrscheinlichkeitsraum (Q , P ) , so gilt

S (X - Y) = SX - SY.

Beweis:
S {X - Y) = x 1 y 1 WXtY (x 1, y 1) + x 1 y 2 WX ' r (x 1 , y2) + . . . + x„ ym fVXr y (x„,y m) =
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Diese Doppelsumme läßt sich wegen der vorausgesetzten Unabhängigkeit von
X und Y nach Definition 200. 1 umformen zu

n m
«f (X • 7 ) = X E {xr yj) ■Wx {xd ■WY{yj ) =

i = 1 J = 1
n m

= E x,wx {xd - E yjWrtyj) =
■= i j = i

= SX - SY .

Satz 205 .2 läßt sich nicht umkehren ! Die Zufallsgrößen sind nämlich nicht not¬
wendig unabhängig , wenn das Produkt der Erwartungswerte gleich dem Er¬
wartungswert des Produkts ist . Wir zeigen dies an folgendem

Beispiel : Die Zufallsgrößen X und Y besitzen die gemeinsame Wahrscheinlich¬
keitsverteilung :

0 l 2 Wx (x)

0 .0 1 0 1
2

2 1
4 0 1

4
1
2

WY(y) 1
4

1
7

1
4

Damit gilt für das Produkt X ■ Y :

xy 0 2 4

WX . Y(xy ) 1 0 |
Für die Erwartungswerte ergibt sich :
£ X = 0 - i + 2 - i = 1 ;
SY = 0 - i + 1 - i + 2 - i = 1 ;
S (X - Y) = 0 - | + 2 - 0 + 4 - i = 1 .
Offenbar gilt SX • SY = S {X - Y) . Die Zufallsgrößen X und Y sind jedoch nicht
unabhängig ; es gilt nämlich

P (X = 0) = | ; P ( 7 = 0) = i ; aber P (X = 0 a Y = 0) = 0 * } .
Wie schon erwähnt , können wir mit Hilfe der letzten Sätze die Berechnung von
Erwartungswerten oft wesentlich vereinfachen . So erhält man leichter als im
Beispiel 2 von Seite 173 den Erwartungswert der Zufallsgröße »Augensumme «
beim Doppelwurf nach Satz 204.2 zu 3,5 + 3,5 = 1 . X bzw . Y sind dabei die
Augenzahlen des 1 . bzw . 2 . Wurfs . Es gilt also X ((a \b)) = a bzw . Y((a \b)) = b .
Entsprechend erhält man für den Erwartungswert der Zufallsgröße »Augenpro¬
dukt « beim Doppelwurf nach Satz 205.2 den Wert 3,5 • 3,5 = 12,25 . Dieser Wert
unterscheidet sich vom Erwartungswert 151 des Quadrats der Augenzahl beim
einfachen Würfelwurf (siehe Beispiel 3 , Seite 174) . Die Zufallsgrößen X = Augen¬
zahl beim 1 . Wurf und Y = Augenzahl beim 2 . Wurf sind nämlich unabhängig ,
während die Zufallsgröße X natürlich von sich selber abhängig ist .

12 . 4 . 2 . Sätze über die Varianz
Auf Seite 181 haben wir angekündigt , daß die Berechnung der Varianz einer Zu¬
fallsgröße oftmals einfacher durchgeführt werden kann als durch direkte Be-
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rechnung gemäß ihrer Definition (Definition 180 . 1 ) . Mit Hilfe der Sätze aus
12. 4. 1 . über die Erwartung können wir die dazu nötige Formel herleiten.

Die Varianz einer Zufallsgröße X ist definiert als Erwartung des Abweichungs¬
quadrates (X — SX )

2
, d . h . als S ((X — ji)

2
) . Was ergibt sich , wenn wir allgemein

die Erwartung eines beliebigen Abweichungsquadrats (X — a)
2 berechnen ?

« l(X ~ «)
2] = * ( [(* — ß) + (l* — a)] 2

) =
= S [(X - n)

2 + (n — a )
2 + 2 (X — fi) (ß - a)] =

= S [(X - /r)
2 ] + S [{ji - ß)

2 ] + 2S [ (X - n) {[x - ß )] =
= S [(X - n)

2 ] + {fi - ß )
2 + 2 (SX - n) (p - fl) =

= VarX + (ß — a )
2 .

Aus der gewonnenen Gleichung S [(X — a )
2] = Var X + {fi — a)

2 läßt sich eine
interessante Minimaleigenschaft des Erwartungswerts /i ablesen . Da nämlich
der 2 . Summand nie negativ wird und den Wert 0 nur für a = fi annimmt , gilt
offenbar , daß das mittlere Abweichungsquadrat einer Zufallsgröße von einer
Zahl fl dann am kleinsten wird , wenn diese Zahl a gleich dem Erwartungswert
fi der Zufallsgröße ist . Das Streuungsmaß »Varianz « ist also dem Erwartungs¬
wert einer Zufallsgröße besonders gut angepaßt !

Durch Umstellen gewinnt man aus der letzten Gleichung

Satz 207 . 1 : Verschiebungssatz.
VarX = (f [ (X - a )

2] - {SX - a)
2

Für den Fall a = 0 liefert Satz 207. 1 die versprochene einfache Berechnungs¬
möglichkeit für die Varianz einer Zufallsgröße . Es gilt dann nämlich

Satz 207 . 2 : VarX = (X 2) - (<f X )
2 = <f (X 2

) - fi
2

Die Berechnung von VarX nach Satz 207.2 ist meist dann günstig , wenn X
ganzzahlige Werte annimmt , SX jedoch nicht ganzzahlig ist . So ist es beim
chuck -a-luck , für das wir nochmals VarX berechnen ; man vergleiche damit
die Berechnung auf Seite 181.

VarX = l - ff § + 4 - ^ + 9 -
2j 6 - ( - i ^ )

2 =

_ 269 ■ 216 - 289~ 216 2 =

_ 57 815 ^— 46656 ~

« 1,24 .
Die Sätze 204. 1 bis 205.2 zeigten einige wichtige Eigenschaften der Erwartung
auf. Welche analogen Eigenschaften gelten für die Varianz ?
Eine konstante Zufallsgröße nimmt einen einzigen Wert a an , der auch ihr
Mittelwert ist . Die Abweichungen davon sind also 0 ; daher ist auch das mittlere
Abweichungsquadrat 0 .
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Addiert man zu jedem Wert einer Zufallsgröße X die Konstante 3 , so wird der
Graph der Wahrscheinlichkeitsfunktion von X (bzw . das Stabdiagramm oder
das Histogramm ) um 3 nach rechts verschoben . Es ist anschaulich klar , daß in
der verschobenen Verteilung das mittlere Abweichungsquadrat bezüglich des
verschobenen Erwartungswertes ju + 3 genauso groß ist wie das mittlere Ab¬
weichungsquadrat in der ursprünglichen Verteilung bezüglich des ursprünglichen
Erwartungswertes /i . Man vermutet , daß Var (A + a ) = Var X allgemein gilt .
Verdreifacht man hingegen jeden Wert einer Zufallsgröße X , so ist klar , daß auch
jede Abweichung verdreifacht wird . Damit wird jedes Abweichungsquadrat ver-
neunfacht , also auch das mittlere Abweichungsquadrat . Man vermutet , daß
Var (aX ) = c/ 2 VarX allgemein gilt .
Wir beweisen

Satz 208 . 1 : Für jede Zufallsgröße X und jede Konstante aelß gilt :
( 1) Vara = 0
(2) Var (X + ä) = VarX
(3) Var (aX ) = a 2 VarX

Beweis : Mit Hilfe von Satz 204. 1 erhält man
( 1 ) Varn = g [(a — ga )

2] = g [ (a — a )
2] = g0 = 0 .

(2) Var (X + a) = g ( [(X + a) — g (X + n)] 2) =
= S {[X + a - SX - d] 2

) =
= <f ( [X - gX ] 2

) =
= VarX .

(3) Var (aX ) = g ( [aX - g (aX )] 2
) =

= g ( [aX - agX ~
\ 2

) =
= g (a2 [X — <# X] 2 ) =
= a2 g {[X - gX ] 2) =
= a2 - VarX .

Satz 208 . 1 zeigt einerseits , daß die Varianz im Gegensatz zur Erwartung keine
lineare Funktion sein kann , andererseits , daß Var (X + a ) = VarX + Varn gilt .
Man könnte also vermuten , daß wenigstens der Varianzwert einer Summe von
Zufallsgrößen gleich der Summe der Varianzwerte dieser Zufallsgrößen ist . Unter
der einschränkenden Bedingung der Unabhängigkeit gilt tatsächlich

Satz 208 . 2 : Sind X und Y stochastisch unabhängigeZufallsgrößen auf dem¬
selben Wahrscheinlichkeitsraum (Q , P) , dann gilt

Var (X + 7 ) = VarX + Vary .

Beweis : Wir setzen ß ■■= gX und v ~ gY und berechnen damit unter Verwen¬
dung der Sätze 204. 1 und 204.2 :
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Var (A + Y) = g ([(A + F) - (A + F)] 2) =
= g ( [X + Y — fi — v] 2

) =
= 6°

( [_(X - fi) + ( Y - v)] 2
) =

= * [(* - + ( Y ~ v)
2 + 2 {X - n) ( Y - v)] =

= g [(X - p)
2] + g [( F — f)

2] + 2 g [(X - n) ( Y — v)] =
= Var A + VarF + 2 <f [ (A — p) ( Y — v)] .

Aus Aufgabe 214/15 folgt , daß mit X und F auch X - p und F - v stochastisch
unabhängig sind . Wir können also auf den letzten Summanden Satz 205.2 an¬
wenden und erhalten

Var (A + F) = Var A + VarF + 2 $ {X — p) ■<a (Y — v) ,

woraus man , wieder unter Benützung von Satz 204. 1 ,

Var (A + F ) = Var X + VarF + 2 {8X - f£) ■{gY - v)

erhält . Da die beiden Faktoren des letzten Summanden den Wert 0 haben , ist
die Behauptung bewiesen .

Satz 208.2 wird mit Vorteil angewendet , wenn es gelingt , eine Zufallsgröße als
Summe von zwei unabhängigen einfacheren Zufallsgrößen darzustellen . Dann
läßt sich nämlich ihre Varianz aus der Varianz der Summanden berechnen , ohne
daß man die meist komplizierte Wahrscheinlichkeitsverteilung der Summe zu
kennen braucht . So kann man z . B . die Varianz der »Augensumme beim Dop¬
pelwurf « als Summe der Varianzen der unabhängigen Zufallsgrößen »Augenzahl
beim /-ten Wurf « ( i = 1 , 2) einfacher als durch Rückgriff auf ihre Definition (vgl.
Aufgabe 194/45 ) berechnen :

Var (Augensumme) = Var (A + F) = Var X + VarF = 2 • Var X =
= 2 - ^ [(A - 3,5)

2] =

= 2 • i • (2,5 2 + 1,5 2 + 0,5 2 + 0,5 2 + 1,5 2 + 2,5 2
) =

= | • (6,25 + 2,25 + 0,25 ) =
_ 35— 6 ■

Die Behauptung von Satz 208.2 läßt sich auf mehr als 2 Zufallsgrößen erweitern .
Als Voraussetzung genügt dabei aber schon die paarweise Unabhängigkeit der
auftretenden Summanden . 1853 bewies Irenee -Jules Bienayme ( 1796 - 1878)

Satz 209 . 1 : Sind X x , X 2 , ■■■,X n stochastisch paarweise unabhängige Zufalls¬
größen über demselben Wahrscheinlichkeitsraum (Q , P ) , dann ist die
Varianz der Summe dieser Zufallsgrößen gleich der Summe ihrer Varianzen :

V&r (X 1 + X 2 + ■■■ + A„) = VarZ 1 + VarX 2 + . . . + VarA „ ,

kurz : Var ( £ A ;) = £ VarA ; .
i = l i = 1
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Beweis : Unter Verwendung von fij ■■= SX t ergibt sich mit Satz 204 . 1 und Satz 205 . 1

Var
^

= g X t - <? ( £ X;)
^

T£ *<- £ J
\ li = 1 i = 1 _

= <? L (X ; - ^ )
2 + 2 - X (2fi - ft ) - (V, - /r,) =

V = 1 i < j )

= £ s [(X , - ft )
2] + 2 • £ g [(X , - ft ) (Xy - ft )] .

i = 1 i < j

Aus Aufgabe 214/15 folgt , daß mit den X t auch die Zufallsgrößen X t — ft paarweise unab¬
hängig sind . Nach Satz 205 .2 läßt sich der 2 . Term umformen , und man erhält

Var f £ Xt) = £ Var X , + 2 • £ S (X , - ft ) - g {Xj - ft ) =

= Y, VarX ( + 2 • £ {gX i - ft ) ■(fiX , - ft ) =
i = 1 i < j

= £ VarX ; .

Für die Aussage von Satz 205 .2 über den Erwartungswert des Produkts zweier
Zufallsgrößen mußte die Unabhängigkeit dieser Zufallsgrößen vorausgesetzt
werden . Die komplizierte Maßzahl Varianzwert benötigt diese Voraussetzung be¬
reits beim Satz über die Summe (Satz 208 .2) . Die Unabhängigkeit reicht als Vor¬
aussetzung nicht mehr aus , wenn man einen zu Satz 205.2 analogen Satz über die
Varianz des Produkts zweier Zufallsgrößen aufstellen will ; dies zeigt das folgende
Beispiel : Eine L-Münze werde zweimal geworfen . Die Zufallsgrößen X und Y
beschreiben die Ausfälle des 1 . bzw . des 2 . Wurfs . Dabei werde eine 1 notiert , falls
Adler fallt , sonst eine 0 . Dann gilt :

X 0 l y 0 l

Wx (x)

SX = SY

1
2

1“ 2 *

1
2 WY(y) 1

2
1
2

VarX = Var Y = \ .

Für die gemeinsame Wahrschein¬
lichkeitsfunktion Wx y erhält man :

X
y 0 l Wy (y )

0 1
4

1
4

1
2

1 1
4

1
4

1
2

Wx (x) 1
2

1
2
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Die WXY —Tabelle ist eine Produkttafel der Rand Wahrscheinlichkeiten , also sind
X und F unabhängige Zufallsgrößen .
Für das Produkt X ■Y gilt :

x - y 0 1

Wx . Y(x - y) 3 1
4 4

£ (X - Y) = i = SX - SY .
Var (X ■Y) = g [(X ■F) 2 ] - \g {X ■F)] 2 = * - ^ = Ä ■

Dagegen ist VarX ■VarF = \ • i = jg .

12 . 4 . 3 . Zusammenfassung
In den beiden vorausgehenden Abschnitten 12 . 4 . 1 . und 12 . 4 . 2 . wurde eine Reihe
von Sätzen über Erwartung und Varianz von Zufallsgrößen bewiesen , die wir in
der folgenden Tabelle übersichtlich zusammenstellen wollen . Dabei geben wir
zusätzlich die entsprechenden Sätze für die Standardabweichung a an .

a , be IR

Erwartung g Varianz Var Standardabweichung a

g a = a Vara = 0 q II o
g (X + a ) = gX + a Var (X + a) = VarX cr (X + a) = <t (X )
g (aX ) = a ■gX Var (aX ) = a2 VarX a (aX ) = \a \ - <r (X )
g (X + Y) = gX + gY

£ x l) = £ # x ,
:= i / i = i

& ist eine lineare
Funktion , d . h .,
g (aX + bY) = agX + bgY

X und Y stochastisch unabhängig
Y) = Var (X + Y) = VarX + VarF a (X + Y) = j/VarX + Var F

bzw.
_2 _ 2 , _ 2&X + Y ~ ^ X ' ^ Y

Alle Xi paarweise stochastisch unabhängig =>

Var £ X, - I Var V(

bzw.

' Z VarX,.
i = 1

_2
VSX; Ia 2

x .

12 . 5 . Das arithmetische Mittel von Zufallsgrößen
Bei der Messung einer Größe geht heute jedermann von der Vorstellung aus , daß
das arithmetische Mittel aus n Einzelmessungen »genauer « ist als eine Einzel -
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messung * . Jede Einzelmessung ist eine Zufallsgröße Xh deren Werte die mög¬
lichen Meßwerte sind . Wenn sich die Versuchsbedingungen von Messung zu
Messung nicht ändern , dann sind die Zufallsgrößen X t gleichverteilt und sto¬
chastisch unabhängig . Sie haben alle den gleichen Erwartungswert fx - das ist
der angestrebte Meßwert - und die gleiche Standardabweichung a - ein Maß für
die Genauigkeit der Einzelmessung . Das arithmetische Mittel

Jfj + X 2 + • • • + Xn
n

dieser Zufallsgrößen X i ist dann wieder eine Zufallsgröße * * . Ihr Erwartungs¬
wert SX und ihre Varianz Var V lassen sich unter Verwendung der Eigen¬
schaften der Funktionen & und Var aus /< und a wie folgt berechnen .

VarV = Var | ~ £ Xt
V 1= 1

E VarX ;

Das arithmetische Mittel X zielt also auf denselben Meßwert fi wie jede Einzel¬

messung X t ; die Genauigkeit der Messung verbessert sich um den Faktor X= .
yn

Will man also z . B . die Genauigkeit verzehnfachen , d . h . , einen Meßwert auf eine
Dezimalstelle genauer angeben , so sind mit derselben Versuchsanordnung lOOmal
soviel Messungen nötig wie zur Bestimmung des zu verbessernden Wertes .
Die obige Rechnung zeigt , daß nicht alle genannten Voraussetzungen über die
Zufallsgrößen X t benötigt werden . Eine genauere Betrachtung der durchgeführ¬
ten Berechnung gestattet die Formulierung folgender Sätze :

Satz 212 . 1 : Elaben n Zufallsgrößen den Erwartungswert jx , dann hat ihr
arithmetisches Mittel denselben Erwartungswert .

Satz 212 . 2 : Das j/n - Gesetz .
Haben n paarweise unabhängige Zufallsgrößen dieselbe Standardabwei¬

chung (7 , dann hat ihr arithmetisches Mittel die Standardabweichung —^ =-.

= - Yx l

* Obgleich das arithmetische Mittel neben 7 anderen Mitteln bereits den Pythagoreern bekannt war , entstand das
Vorgehen , das arithmetische Mittel als besten Schätzwert für eine zu messende Größe zu nehmen , erst in der 2. Hälfte
des 16. Jh .s in Westeuropa bei der Untersuchung des Erdmagnetismus . Die Astronomie übernahm sehr bald dieses
Verfahren . Berühmt wurde es durch seine Anwendung bei der Bestimmung der Erdabplattung 1736/37 durch
Maupertuis (1698 - 1759).
** X wird gelesen »X quer« . - Oft schreibt man auch genauer Xn, um auf die Anzahl der beteiligten Zufallsgrößen
hinzuweisen.
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Aufgaben

Zu 12 . 1 .

1 . Die gemeinsame Wahrscheinlichkeitsfunk¬
tion zweier Zufallsgrößen X und Y sei wie 0 1 2

nebenstehend definiert . 0 0,1 0,05 0,05
Berechne die Wahrscheinlichkeitsfunktionen 1 0,1 0,45 0,25
von X und von Y.

2. Eine Laplace-Münze wird dreimal geworfen. X sei die Anzahl der Adler. Y sei die Num¬
mer des Wurfs , bei dem zum ersten Mal Adler fällt . Y habe den Wert 4 ' falls dreimal Zahl
fällt . Bestimme die gemeinsame Wahrscheinlichkeitsfunktion und gib die Randwahr¬
scheinlichkeiten an .

3 . Ein Laplace-Würfel werde 3mal geworfen. Die Zufallsgröße X nehme den Wert 1 an ,
wenn beim 1. Wurf eine Sechs fällt , sonst den Wert 0 . Y nehme den Wert 1 an , wenn
mindestens eine Sechs fällt , sonst 0 . Z sei die Anzahl der geworfenen Sechsen.
a) Bestimme die Wahrscheinlichkeitsfunktionenvon X , Y und Z.
b) Gib die gemeinsamen Wahrscheinlichkeitsfunktionenvon X und Y, von X und Z

und von Y und Z an .
4. Von zwei Zufallsgrößen X und Y über demselben Wahrscheinlichkeitsraum(Q , P) sei

folgendes bekannt :
X hat die Wertemenge {0 ; 1} , die Wertemenge von Y ist { 1 ; 2 ; 3}. Außerdem gilt
Wx (0) = 0,35 ; Wr ( 1) = 0,2 ; WY(3) = 0,45 ; WXfY{1 ; 1) = 0,1 und Wx?r (0 ; 2) = 0,2 .
Gib die Tabelle der gemeinsamen Wahrscheinlichkeitsfunktion und die Marginalwahr¬
scheinlichkeiten an .

5. Aus einer Produktion wird eine Stichprobe von 4 Stück entnommen . Die Zufallsgröße
X bedeute die Anzahl der Stücke ohne Defekt , die Zufallsgröße Y bedeute die Anzahl
der Stücke in der Probe , die außerdem noch einer
besonders scharfen Gütekontrolle standhielten . Die
gemeinsame Wahrscheinlichkeitsfunktion dieser
Zufallsgrößen sei wie nebenstehend definiert .
a) Berechne die Wahrscheinlichkeitsfunktionenfür

X und für Y.
b) Wie groß ist die Wahrscheinlichkeit dafür , daß

unter den 4 Probestücken höchstens 3 gute und
darunter höchstens 1 sehr gutes ist ?

c) Wie groß ist die Wahrscheinlichkeit dafür , daß mindestens 2 Stücke der verschärften
Kontrolle standhalten ?

d) Wie groß ist die Wahrscheinlichkeit dafür , daß unter den 4 Probestücken höchstens
3 gute und darunter mindestens 2 sehr gute sind ?

X N . 0 1 2 3 4

0 0,10 0 0 0 0
l 0,15 0,05 0 0 0
2 0,35 0,10 0,05 0 0
3 0,10 0,03 0,02 0 0
4 0,02 0,02 0,01 0 0

Zu 12 . 2 .
6. Zeige : Die Zufallsgrößen X t ■■= »Augenzahl des i-ten Würfels« , re { 1,2}, beim Wurf

zweier L-Würfel sind unabhängig .
7- X und Y seien unabhängige Zufallsgrößen mit folgenden Wahrscheinlichkeitsfunktionen :

X l 2 3 y 10 20

Wx (x) 0,2 0,3 0,5 WY(y) 0,2 0,8

Stelle die gemeinsame Wahrscheinlichkeitsfunktion auf.
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8 . Die gemeinsame Wahrscheinlichkeitsfunktion zweier Zufallsgrößen X und Y ist gegeben
durch

x 0 1 2

0 0,04 0,1 0,06
i 0,16 0,4

a) Bestimme WXY ( 1 ; 2) .
b) Bestimme die Rand Wahrscheinlichkeiten .
c) Sind X und Y unabhängig?

• 9 . Für das Schafkopfspiel (vgl. Aufgabe 188/13) werden folgende Zufallsgrößen definiert :
A ■■= »Anzahl der Ober im Blatt des Spielers A«
B ■■= »Anzahl der Ober im Blatt des Spielers B«
a) Berechne P {A = a a B = b).
b) Stelle die gemeinsame Wahrscheinlichkeitsfunktion WAB auf .
c) Berechne zur Kontrolle die Randwahrscheinlichkeitsverteilung WA und vergleiche

sie mit Wx aus Aufgabe 188/13 .
d) Sind A und B unabhängig ?

10 . Beweise: Ist eine von zwei Zufallsgrößen konstant , so sind beide unabhängig .
11 . Eine Zufallsgröße X ist von sich selber unabhängig . Was läßt sich auf Grund dieser

Information über X sagen ?

Zu 12 . 3 .

12 . In einer Urne liegen vier Kugeln, die mit den Zahlen 0,1 , 2 , 3 beschriftetsind. Wir ziehen
zweimal je eine Kugel mit Zurücklegen . X sei die Zahl auf der ersten , Y die Zahl auf der
zweiten gezogenen Kugel .
a) Bestimme die Wahrscheinlichkeitsverteilungenvon X und von Y.
b) Bestimme die gemeinsame Wahrscheinlichkeitsverteilung .
c) Bestimme die Wahrscheinlichkeitsverteilung von A ■■= X + Y und zeichne ihr Stab¬

diagramm .
d) Bestimme die Wahrscheinlichkeitsverteilung von B -= X Y und zeichne ein Histo¬

gramm .
e) Bestimme die Wahrscheinlichkeitsverteilung von C == max (X,y ) und zeichne ein

Histogramm .
f) Berechne die Erwartungswerte von X,Y,A,B und C.
g) Berechne die Varianzwerte von X , Y, A , B und C.

13 . Löse Aufgabe 12 für den Fall , daß die Kugeln ohne Zurücklegengezogen werden.
• 14 . a) Wie berechnet sich Wx + Y(a) aus den Werten von WX Y?

b) Wie berechnet sich Wx + Y(a) aus den Werten von Wx und WY, falls X und Y unab¬
hängig sind ?

c) Berechne Wx + Y(2) für die Zufallsgrößen X und Y aus Aufgabe 213/1.
d) Berechne WA+ B(2) für die Zufallsgrößen A und B aus Aufgabe 214/9 . Was bedeutet

dieser Wert ?
15 . Zeige : Sind X und Y unabhängige Zufallsgrößen , dann sind auch X + a und Y + b

unabhängige Zufallsgrößen .
16. X sei die Zufallsgröße »Gewinn« des chuck-a-luck.

a) Stelle die Wahrscheinlichkeitsfunktionder Zufallsgröße Y ■■= X 2 auf.
b) Stelle die gemeinsame Wahrscheinlichkeitsfunktion von X und Y auf .
c) Untersuche , ob die beiden Zufallsgrößen unabhängig sind .

17 . Die Zufallsgröße X nehme die Werte x{ (i = 1,2, . . . , «) mit den Wahrscheinlichkeiten
W(x t) = Pt > 0 an . Zeige , daß dann gilt : X und X 2 sind genau dann unabhängig , wenn
X 2 konstant ist.
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Zu 12 . 4 . 1 .

18 . 3 L-Würfel werden geworfen . Berechne den Erwartungswert der Zufallsgröße Augen¬
summe .

19 . 8 L-Münzen werden geworfen. Berechne den Erwartungswert der Zufallsgröße Z ■= An¬
zahl der oben liegenden Adler .

20 . Die Berechnung von gX kann sehr mühsam sein . Man kann sich aber die Rechnung
vereinfachen , indem man einen günstigen Wert a wählt , so daß g (X + a) leicht zu be¬
rechnen ist . Unter Verwendung von Satz 204 . 1 erhält man für gX den Ausdruck
gX = g (X + a ) — a. Berechne nach diesem Verfahren den Erwartungswert folgender
Zufallsgröße :

X 163 164 165 167 168 169 170 173

W(x) 1 2 3 3 1 1 3 1
15 15 15 15 15 15 15 15

21 . a) Der Chef einer kleinen Firma hat die Angewohnheit , an seinem Geburtstag auf einen
Zettel eine Zahl a aus der Menge der ersten hundert natürlichen Zahlen zu schreiben.
Jeder der 30 Betriebsangehörigen versucht diese Zahl zu erraten . Falls es ihm gelingt,
erhält er vom Chef 100 DM ausbezahlt . Mit welcher Ausgabe hat der Chef durch¬
schnittlich pro Jahr zu rechnen , falls die Belegschaftsmitglieder jede Zahl mit gleicher
Wahrscheinlichkeit raten ? Ist diese Annahme realistisch ?

b) Mit welcherAusgabe muß ein Chef rechnen , der 100 Angestellte hat , aber nur 50 DM
jedem Erfolgreichen ausbezahlt ?

c) Löse das Problem allgemein , wenn ae {1,2, . . . , N } ist , die Firma n Angestellte hat
und die Erfolgsprämie m DM beträgt .

22. Das Treue -Spiel * . Die 13 Karten einer Farbe des Bridge werden gut gemischt und der
Reihe nach gezogen . Als Treffer wertet man das Ereignis , daß die Nummer der Ziehung
mit dem Zahlenwert der Karte übereinstimmt . Wie viele Treffer wird man im Mittel er¬
reichen ?

23 . Zwei Urnen enthalten jeweils 10 Kugeln , die eine numeriert von 0 bis 9 , die andere von
1 bis 10 . Man zieht je eine Kugel und bildet das Produkt der gezogenen Zahlen . Wie
groß wird dieses Produkt im Mittel sein?

Zu 12 . 4 . 2 . und 12 . 4 . 3 .
24. Eine L-Münze wird viermal geworfen . Berechne Erwartungswert und Varianzwert fol¬

gender Zufallsgrößen :
a) A — Anzahl der Adler b) B •— Anzahl der Wappen
c) L ■■= Größte Anzahl der direkt aufeinanderfolgenden Adler
d) X := Anzahl der Seitenwechsel.

25 . Ein L-Würfel wird zweimal geworfen . X sei die Augenzahl des 1. Wurfs , Y die des 2.
Wurfs . Berechne Erwartungswert und Varianzwert folgender Zufallsgrößen :
a) zU = X + 3 c) C ■■= X + 2Y g) E --= \X - Y \
b) B ■■= 3 X d) D ■■= max (X , Y) f) F --= \ {X + Y)

26. In einer Schachtel befinden sich 20 Perlen , darunter 4 wertvolle rosafarbene . Eine
solche Perle koste 12 DM . Ein Besucher darf sich unbesehen 4 Perlen herausnehmen
und die rosafarbenen darunter behalten . Dabei werden zwei verschiedene Verfahren
angeboten :

• a) Die 4 Perlen werden auf einmal entnommen .

Siehe Fußnote Seite 68 .
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*b) Es wird 4malje eine Perle entnommen. Ist sie nicht rosafarben, dann wird sie vor dem
nächsten Zug zurückgelegt .

Berechne jeweils Erwartungswert und Varianzwert der Zufallsgröße »Wert der gewonne¬
nen Perlen « .

27 . Cardano ( 1501- 1576) konnte bereits den Erwartungswertder Augensumme beim Spiel
mit den blinden Würfeln (siehe Aufgabe 191/29) berechnen . Mach ’s ihm nach ! - Be¬
rechne darüber hinaus die Varianz der Augensumme und vergleiche beide Werte mit
denen der Zufallsgröße Augenzahl eines L-Würfels .

28. Beweise: Var (aX + b) = a2 VarX .
• 29. Für unabhängige Zufallsgrößen X und Y gilt Var(X + Y) = VarV + VarF. Zeige, daß

für die Standardabweichungen unabhängiger Zufallsgrößen nur
a (X + F) g a (X ) + a (Y)
gilt ! Wann trifft die Gleichheit zu ?

30 . Ein Gerät besteht aus den Bauteilen A und B . Bauteil A fällt mit 20 % Wahrscheinlichkeit
während eines Jahres aus , Bauteil B unabhängig davon mit 2 % Wahrscheinlichkeit . Die
Reparatur von A kostet 70 DM , die von B 800 DM .
a) Berechne die mittleren Reparaturkosten für A bzw. B während eines Jahres und die

zugehörigen Standardabweichungen .
b) Berechneauf zwei Arten (einmal direkt, einmal unter Verwendung der Ergebnisse aus

a)) die mittleren Reparaturkostenpro Jahr für das Gerät und die zugehörige Standard¬
abweichung .

31 . Berechne unter Verwendung der Sätze 208 . 1 und 207.2 die Varianz der Zufallsgröße aus
Aufgabe 215/20.

32 . Flat eine Zufallsgrößedie Wertemenge {x u x 2 , . . . ,x n} und sind alle Wahrscheinlichkei¬
ten W(x t) > 0 , dann gilt auch die Umkehrung von Satz 208 . 1,( 1) . Formuliere diese Um¬
kehrung und beweise sie .

}33 . Die Zufallsgröße X 0 1 2 3 4
habe folgende Verteilung : W(x) 0,1 0,3 0,2 0,1 0,3
a) Bestimme den Erwartungswert fi und den Median m.
b) Zeige : i (X — a)

2 nimmt für a = fi und $ ( \X — a \) nimmt für a — m den kleinsten
Wert an .

• 34. Berechne beim Bernoulli -Eulerschen Problem der vertauschten Briefe Erwartungswert
und Varianz der Zufallsgröße X •■= Anzahl der Briefe, die im richtigen Umschlag stecken ,
ohne die in Aufgabe 121/80a) aufgestellte komplizierte Wahrscheinlichkeitsverteilung
dieser Zufallsgröße zu benützen . Drücke dazu X durch die n Zufallsgrößen X t aus , die
folgendermaßen definiert sind :

fl , falls Brief Nr . i im Umschlag Nr . i steckt ;
( 0 sonst .

Zu 12 . 5.
35 . Die paarweise unabhängigen Zufallsgrößen X t (i = 1,2, . . . , «) haben denselben Erwar¬

tungswert fi und dieselbe Standardabweichung a . Berechne Erwartungswert , Varianz
und Standardabweichung des arithmetischen Mittels X der Zufallsgrößen für
a) n = 10 , fi = 1 , <7 = 1 ;
b) « = 10 , fi = 5 , cr = 3 ;
c) « = 100 , fi = 5 , (7 = 3 .
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36 . Xt (i — 1,2, . . . , n) sind Kopien einer Zufallsgröße X mit dem Erwartungswert ß und der
Standardabweichung a . Wie groß muß man n wählen , damit die Standardabweichung
des arithmetischen Mittels X der Zufallsgrößen X{ höchstens den Wert a hat ?
a) ß = 0 , ff = 10 , a = 5 ; b) ß = 0 , a = 10 , a = 1 ; c) /r = 10 , <r = 1 , a = y ^

37 . Xu X 2 , . . . ,X n sind paarweise unabhängige Zufallsgrößen , die alle den gleichen Erwar¬
tungswert ß und die gleiche Standardabweichung a haben . S„ ist die Summe dieser
n Zufallsgrößen , X ihr arithmetisches Mittel .
a) Gib die Tschebyschow -Ungleichung für S„ und X an .
b) Wie groß muß n sein , damit die Sicherheitdafür , daß sich X von seinem Erwartungs¬

wert um weniger als tu unterscheidet , mindestens 90 % beträgt ?
c) Löse b) für ß = 10 , <j = 2 und t =

38 . Ein Ikosaeder trägt auf jeweils 2 seiner 20 dreieckigen Flächen (Bild 46. 1) eine der 10
Zahlen 0,1, . . . , 9. Es werde «-mal geworfen . X t sei die Augenzahl des i- ten Wurfs.
a) Berechne Erwartungswert ß und Standardabweichung a für jedes Xt.
b) Berechne Erwartungswert und Standardabweichung für die Augensumme Sn nach

n Würfen . Was ergibt sich für n = 10 und n = 100 ?
c) Berechne Erwartungswert und Standardabweichung für das arithmetische Mittel X

der Augenzahlen nach n Würfen . Was ergibt sich für n = 10 und für n = 100 ?
d) Schätze mit der Tschebyschow A] ug \&.cb\xng für 1) 10 , 2) 100 Würfe die Wahrschein¬

lichkeit ab , daß das arithmetische Mittel der Augenzahlen in [3 ; 6] bzw. [4 ; 7] liegt.
e) Löse mit der Tschebyschow- \Jng \e.ic\mng : Wie oft muß man das Ikosaeder werfen , um

mit höchstens 10 % Wahrscheinlichkeit damit rechnen zu müssen , daß das arithmetische
Mittel der Augenzahlen von seinem Erwartungswert um mehr als 2 abweicht ?

39. In einer Spielbude auf einem Rummelplatz stehen zwei mit 1 und 2 gekennzeichnete
Urnen . Urne 1 enthält 1 schwarze und 9 weiße Kugeln , Urne 2 ebenfalls 1 schwarze , aber
999 weiße Kugeln . Der Spieler zahlt an den Budenbesitzer 1 DM und darf dann aus einer
der Urnen eine Kugel entnehmen . Zieht er die schwarze Kugel aus Urne 1, so bekommt
er 10 DM ausbezahlt , zieht er sie hingegen aus Urne 2 , so erhält er 1000 DM . Beim Zug
einer weißen Kugel erhält er nichts . Schätze mit Hilfe der Ungleichung von Bienayme-

Tschebyschowab , wie oft der Spieler mit Urne 1 bzw. Urne 2 mindestens spielen muß , da¬
mit die Wahrscheinlichkeit dafür , daß sich das arithmetische Mittel seiner Gewinne vom
Erwartungswert der Zufallsgröße »Gewinn des Spielers bei einem Spiel« um höchstens
1 DM unterscheidet , mindestens 90 % beträgt .

40 . Eine Firma stellt Geräte her , die aus den Bauteilen A und B bestehen. Langjährige Er¬

fahrungen ergaben , daß im Schnitt bei 100 Geräten 10 Reparaturen des Bauteils A und
5 Reparaturen des Bauteils B pro Jahr anfallen . Die Teile A und B fallen unabhängig von¬
einander aus . Die Reparaturkosten für A betragen 30 DM , die für B hingegen 50 DM .
a) Es wurden 2000 Geräte verkauft . Welche Reparaturkostenkommen auf die Firma im

Garantiejahr zu ?
b) Die Firma will sich gegen diese zu erwartenden Reparaturkostenversichern .

1) Welche Kosten pro Gerät muß eine Versicherung im Mittel ansetzen ?
2) Mit welcher Wahrscheinlichkeit weichen die Reparaturkosten der 2000 Geräte

um mehr als 1000 DM von den zu erwartenden Reparaturkosten ab ? (Abschätzung
mittels der Ungleichung von Bienayme-Tschebyschow)

3) Die Versicherung ist nur bereit , einen solchen Vertrag abzuschließen , wenn das
arithmetische Mittel der anfallenden Reparaturkosten pro Gerät mit einer Wahr¬
scheinlichkeit von mehr als 90 % (95 % ; 99%) um höchstens 4 DM vom Erwartungs¬
wert abweicht . Wie viele Geräte müssen mindestens in die Versicherung einbezogen
werden ?
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