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Das Arithmetische Dreieck des Zhu Shi-Jie aus dem Kostbaren Spiegel der vier Elemente ( 1303).
Es trägt den Titel : Altes Schema der 7 vervielfachenden Quadrate .



14 . Die Binomialverteilung

14 . 1 . Einführung

Abraham de Moivre ( 1667- 1754) veröffentlichte im Jahre 1711 die Abhandlung
De Mensura Sortis , seu , de Probabilitate Eventuum in Ludis a Casu Fortuito Pen -
dentibus (Bild 75 . 1 ) , in der er 26 Probleme abhandelte . Problem I lautet :

PROB . I.
teffem

'ludunt , ex conditione, at fi A bis vslA & B unti teffem
'ludunt , ex conditione, ut fi A bis vel

fluries , otto jitttibcss tejfer/e monttdx jecerit , ipfe A vincat ;
fi» fcmel tantum, iel non omnino, B ’vincxt ; qttxnxm erit
ratip fortium ?

»A und B spielen mit einem Würfel so , daß A gewinnen soll , wenn er bei 8 Würfen zweimal
oder öfters ein As [d . h . eine Eins] wirft ; fällt das As nur einmal oder gar nicht , so gewinne
B . Wie groß ist das Verhältnis der Chancen ?«

Wir wollen diese Aufgabe mit unseren Hilfsmitteln lösen . Versuchen wir , zunächst
die Wahrscheinlichkeit für genau 2 Asse bei diesen 8 Würfen zu ermitteln . Das
zugrundeliegende Zufallsexperiment kann als Bernoulli - Kette der Länge 8 mit
dem Parameter ^ gedeutet werden , falls man als Treffer an der Stelle i das Er¬
scheinen eines Asses beim /-ten Wurf nimmt . Diese Annahme ist zulässig , weil
man davon ausgehen darf , daß die Ereignisse A t

■■= »As beim /-ten Wurf «
( / = 1,2, . . . , 8) stochastisch unabhängig sind , da sich die Würfe gegenseitig
nicht beeinflussen . Der Ergebnisraum Q besteht aus den 28 Oktupeln , die aus
den Ziffern 0 und 1 gebildet werden können . Bezeichnet man mit Z die Zufalls¬
größe »Anzahl der Treffer « , in unserem Fall also die Anzahl der gefallenen
Asse, so besteht unsere Aufgabe darin , die Wahrscheinlichkeit des Ereignisses
»Z = 2« zu berechnen . Dieses Ereignis besteht aus denjenigen 8 -Tupeln aus Q ,
die aus 2 Einsen und 6 Nullen gebildet werden können . Beispiele hierfür sind die
8 -Tupel 11000000 , 00100010 , 00010100 usw . Für das Ereignis »Z = 2« spielt
es dabei keine Rolle , an welchen Stellen die beiden Einsen stehen , d . h . , bei
welchen der 8 Würfe die beiden Asse fallen werden . Da man die 2 Einsen auf die

für das Ereignis »Z = 2« günstig sind . Jedes dieser 8 -Tupel hat als Elementar¬

ereignis gemäß Definition 221 . 1 die Wahrscheinlichkeit
5 \ 6
4 I • Damit er¬

halten wir für die Wahrscheinlichkeit des Ereignisses »Z = 2« den Wert
6

; der erste Teil unserer Aufgabe ist somit gelöst .

Analog gewinnen wir nun die Wahrscheinlichkeit für genau k Treffer , also für
das Ereignis »Z = k« , indem wir in den obigen Überlegungen die Zahl 2 durch
k ersetzen . Also ist
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P (Z = k) r *
Damit ergibt sich für die Gewinnchance von A der Wert

P (Z ^ 2) = £

Die numerische Berechnung dieser Wahrscheinlichkeit ist etwas mühsam . Leich¬
ter erhalten wir ihren Wert über das Gegenereignis »Z rg 1« , d . h . über die Ge¬
winnchance von B :

P {Z ^ 2) = 1 - P (Z gl ) =

68 — 5 8 — 8 • 5 7
_

6 8

1679616 - 390625 - 625000 _
1679616

1679616 - 1015625
1679616

663991_
1679616 ~

* 39,5 % .

Die Chancen von A und B verhalten sich also wie 663991 : 1015625 « 2 : 3 .

Das Typische an der Aufgabe von de Moivre ist , daß man sich nicht mehr für die
Nummer des Versuchs interessiert , bei dem der Treffer eintritt , sondern daß
man nach der Anzahl der Treffer fragt , die sich bei einer Serie von Versuchen
ergeben kann . Man betrachtet im stochastischen Modell also die Zufallsgröße
Z := »Anzahl der Treffer bei einer Bernoulli -Kette der Länge n mit dem Para¬
meter p « .
Für ihre Wahrscheinlichkeitsverteilung gilt nach dem Obigen die von Jakob
Bernoulli ( 1655- 1705 ) in der Ars Conjectandi (Seite 40) hergeleitete Formel :

p k
{l - p}P {Z = k)

In dieser Verteilung spielen die Binomialkoeffizienten eine wichtige Rolle . Man
sa£t daher , Z sei binomial verteilt . Allgemein definiert man :
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Definition 231 . 1 : Eine Zufallsgröße X heißt binomial nach B (n ; p) verteilt ,
wenn
1 . die Wertemenge von X die Menge {0,1,2, . . . , « } ist , und
2. für die Wahrscheinlichkeitsverteilung von X gilt :

B (n ; p ) : x i—►B (« ; p ; x) ■■■
- />)

" - * für xe {0,l, . . . , « } ,

0 sonst .

Bemerkungen:
1) Interessant sind eigentlich nur die Werte B (« ; p ; x) für xe {0,1,2, . . . , « }.

Für ein derartiges x schreibt man gerne k, um anzudeuten , daß es sich um
eine ganze Zahl handelt .

2) Mit q ■■= 1 — p erhält man den kürzeren Ausdruck B (n ; p ; k) = I
”

J
■p k ■qn ~ k.

3) Jede Wahrscheinlichkeitsverteilung B {n ; p) heißt Binomialverteilung. Der
Name rührt davon her , daß B (n ; p ; k) gerade der k-te Summand in der
Entwicklung der « -ten Potenz des Binoms p + q ist ; es gilt nämlich

(P + ^ n = t
o

( lj
- Pk - r ~ k

4) Die obige Definition 231 . 1 ist nur sinnvoll für den nicht -trivialen Fall 0 < p < 1 .
Ist p = 0 , so liefert jeder Versuch eine Niete ; das führt zur Verteilung

Tj ( f. fl für x = 0 ,B (« ; 0 ; cc) — <
0 sonst .

Ist hingegen p = 1 , so liefert jeder Versuch einen Treffer ;
lung
B (« ; l ; x) := W für x = « ,

sonst .

das führt zur Vertei -

Für die kumulative Verteilungsfunktion einer nach B (n ; p ) verteilten Zufalls¬
größe hat sich die Bezeichnung F " bewährt . Es gilt also nach Satz 176 . 1 :

Fp (x ) ■■= X B (« ; / >; z)
i ^ x

Ist insbesondere x eine der interessierenden Zahlen aus {0,1,2, . . . , « } , so schreibt
man an Stelle von v wieder gerne k und erhält damit

F; (k) = i B (« ; / >; 0
i = o_

Wenn keine Verwechslung möglich ist , lassen wir die Indizes bei Fp
" weg . Unter

Verwendung dieses Symbols lautet die Lösung des Problems von de Moivre

P (Z ^ 2) 1 - / }% ( !)
P (ZS 1 ) F\ js ( 1)
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Wir veranschaulichen die Binomialverteilung B (8 ; £) sowohl durch ein Stab¬
diagramm (Figur 232. 1 ) als auch durch ein Histogramm (Figur 232.2) .
Den Graphen der zugehörigen kumulativen Verteilungsfunktion zeigt
Figur 232. 3 .

Fig . 232 . 1 Stabdiagramm von B (8 ;

Fig . 232.2 Histogramm von B (8 ; £) Fig . 232.3 Graph von F)8
6

14. 2 . Ziehen mit bzw . ohne Zurücklegen
Die Formel von Definition 231 . 1 für die Binomialverteilung kennen wir schon
lange . Beim Ziehen mit Zurücklegen aus einer Urne erhielten wir in Satz 107 . 1
für die Wahrscheinlichkeit , genau s schwarze Kugeln zu ziehen , den Wert
{

" )p s q n ~ s
, also gerade B (n ; p ; s) . Die Zufallsgröße »Anzahl der Treffer « beim

Ziehen mit Zurücklegen ist demnach binomial verteilt . Weil man viele Experi¬mente auf das Ziehen mit Zurücklegen reduzieren kann , ist diese Zufallsgröße
gewissermaßen der Prototyp einer binomial verteilten Zufallsgröße .
Andererseits lassen sich viele Zufallsexperimente durch das UrnenexperimentZiehen ohne Zurücklegen simulieren . In diesem Fall liegt keine Bernoulli -Kette
vor , wie in Aufgabe 223/2 gezeigt wurde . Die Zufallsgröße »Anzahl der Treffer «
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ist dann auch nicht binomial verteilt . Für ihre Verteilung erhielten wir in Satz 106 . 1

AS \ (N - S^

P i z = s ) = ^
[' n - S '

Allgemein definieren wir :

Definition 233 . 1 : Eine Zufallsgröße X heißt für K ^ N und n A N hyper¬
geometrisch nach H (N ; K ; n) verteilt, wenn gilt :
1 . die Wertemenge von X ist eine Teilmenge von {0, 1 , 2, . . . , n } , und
2. die Wahrscheinlichkeitsverteilung von X lautet

H (N ; K ; n) : x i—►H (N ; K ; « ; x) ■■=

K\ fN - K
xj \ n — x

0 sonst .

für xe {0,1 ,

Auch hier schreibt man gerne für x e {0,1den Buchstaben k.
In der Praxis spielt die hypergeometrische Verteilung eine große Rolle . Der
Prototyp einer hypergeometrisch verteilten Zufallsgröße ist die »Anzahl der
Treffer« beim Ziehen ohne Zurücklegen aus einer Urne . So sind z . B . die Zufalls¬
größen »Anzahl der defekten Stücke « bei einer Qualitätskontrolle und »Anzahl
der Ja -Antworten « bei einer Umfrage hypergeometrisch verteilt .
Die hypergeometrische Verteilung erfordert wegen der drei Binomialkoeffizienten
einen sehr hohen rechnerischen Aufwand . Rechnerisch leichter zugänglich ist die
Binomialverteilung . Glücklicherweise läßt sich die hypergeometrische Verteilung

für n <§ min {N , K , N - K } recht gut durch die Binomialverteilung B
( ^ ]

H (500 ; 100 ;10 )Hl100 ;20 ;10 )

Fig . 233 . 1. Bild zu Tabelle 234 . 1 .
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approximieren . (Vergleiche dazu Aufgabe 264/27 .) Dies ist gar nicht so erstaun¬
lich , weil ja bei großen Kugelzahlen die Entnahme einiger weniger Kugeln keine
wesentliche Änderung der Anteile in der Urne bewirkt . Man kann dann also das
Ziehen mit Zurücklegen als gute Näherung für das Ziehen ohne Zurücklegen
nehmen . Eine Veranschaulichung geben Tabelle 234. 1 und Figur 233. 1 .

k B (10 ; ! ; fc)

U {N ; K ; W ; k)
N 50 100 500 1000 100000 1000000 1000000000

K 10 20 100 200 20000 200000 200000000

0 0,107374 0,082519 0,095116 0,104951 0,106164 0,107362 0,107373 0,107374
1 0,268435 0,266192 0,267933 0,268417 0,268431 0,268435 0,268435 0,268435
2 0,301990 0,336898 0,318170 0,305050 0,303510 0,302005 0,301991 0,301990
3 0,201327 0,217792 0,209208 0,202849 0,202085 0,201334 0,201327 0,201327
4 0,088080 0,078469 0,084107 0,087395 0,087744 0,088077 0,088080 0,088080
5 0,026424 0,016142 0,021531 0,025488 0,025959 0,026419 0,026424 0,026424
6 0,005505 0,001868 0,003541 0,005096 0,005299 0,005503 0,005505 0,005505
7 0,000786 0,000115 0,000368 0,000689 0,000737 0,000786 0,000786 0,000786
8 0,000074 0,000003 0,000023 0,000060 0,000067 0,000074 0,000074 0,000074
9 0,000004 4 - io ' 8

0,000001 0,000003 0,000004 0,000004 0,000004 0,000004
10 1 ■IO ~ 7 I - IO

' 10 1 • IO “ 8
7 • IO' 8

9 • IO “ 8 1 • IO ' 7 1 ■ IO “ 7 1 • IO
“ 7

Tab . 234 . 1 Vergleich einer Binomialverteilung mit verschiedenen hypergeometrischen Ver-

teilungen mit gleichem p = —

14 . 3 . Tabellen der Binomialverteilung
Die Berechnung von Werten einer Binomialverteilung ist rechnerisch meist sehr
aufwendig . Da die Binomialverteilung aber eine sehr häufig auftretende Wahr¬
scheinlichkeitsverteilung ist , hat man sie für oft vorkommende Werte der Para¬
meter n und p tabellarisiert . Für die ebenfalls sehr häufig auftretende hyper¬
geometrische Verteilung würde eine Tabellarisierung wegen der 3 Parameter
N , K und n zu einem äußerst umfangreichen Tabellenwerk führen , da man 3
Tabelleneingänge benötigte . Erfreulicherweise kann man aber die hypergeome¬trische Verteilung für n min { IV , K , N — K } durch die Binomialverteilung
B ( n ; \ recht gut approximieren , was den Wert der Binomialverteilungstabellen ,

kurz Binomialtabellen , noch erhöht .

Wir wollen uns nun der Erstellung solcher Binomialtabellen zuwenden . Man
wählt ein n und ein p und berechnet der Reihe nach für k = 0 , 1,2, . . . , « die
Werte B (rt ; p ; k) = p k ( l — p ) n ~ k

. Ein solches Vorgehen führt zu sehr vielen

Rechenvorgängen und ist daher zeitraubend . Es gibt aber einen einfachen Zu¬
sammenhang zwischen den Funktionswerten an der Stelle k und der Nachbar¬
stelle k — 1 :
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B (n ; p ; k)
B (n ; p ; k - l )

k. „ n - kp q

k - l
• 1q n ~ k + 1

n \ (k — l ) \ (n — k + 1 ) !
k \ (n — k) \ n \

P_
q

_ n — k + 1 p
k q

Wir erhalten also die Rekursionsformel :

B (n ; p ; k) = B {n ; p ; k - 1)

Sie gestattet - daher der Name * aus der Kenntnis eines Wertes den Wert des
Vorgängers und auch den des Nachfolgers zu berechnen . Es genügt also , einen
einzigen Wert B (n ; p ; k) mühsam zu errechnen . Die jeweiligen Nachbarn
B (n ; p ; k — l ) und B (« ; p ; k + 1 ) erhält man dann daraus durch einfache
Division bzw . Multiplikation . Es empfiehlt sich dabei , aus Genauigkeitsgründen
einen möglichst großen Startwert B (n ; p ; k) zu wählen . (Den größten Wert wer¬
den wir im Abschnitt 14 . 6 . bestimmen .)
Wir veranschaulichen das Vorgehen an der Binomialverteilung B (8 ; ^ ) . Gemäß
Figur 232. 1 empfiehlt sich als Startwert

B MTfiy625000
1679616 0,372108 . . .

Die Rekursionsformel liefert nun einerseits

andererseits

(8 — 2 + lH B 7 625000
10

'
1679616 0,260476 . . . ,

pA >. l . A _ 5 625000

(8 — 1 + 1 ) ■i 1
’ 6 ’ i 8 1679616 0,232568 . . .

Dieses Verfahren läßt sich leicht programmieren . Darüber hinaus kann man sich
fast, wenn nun p das Intervall ] 0 ; 1 [ durchläuft , die halbe Rechenarbeit er¬
sparen : Ist nämlich p die Wahrscheinlichkeit für einen Treffer , so ist q = 1 — p
die Wahrscheinlichkeit für eine Niete beim Einzelversuch . In einer Bernoulli -
Kette der Länge n ist dann die Anzahl der Treffer nach B (n ; p ) und die der
Nieten nach B (n ; q) verteilt , und da
P (»Anzahl der Treffer = k«) = P (»Anzahl der Nieten = n — k«)
gilt , folgt das

* recurrere = zurücklaufen .
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Symmetriegesetz für Binomialverteilungen:
B (n ; p ; k) = B (« ; q ; n — k)

Wegen dieser Symmetrie * genügt es , die Tabellen für die Binomialverteilungen nur
bis p = 0,5 zu führen . Will man z . B . den Wert B (8 ; f ; 3) ermitteln , so sucht man
den symmetrischen Wert B (8 ; 5) in der Binomialtabelle . Diese Umformungs¬
denkarbeit erspart uns ein zweiter Eingang zu den Tabellen mit den Werten für
\ ^ p < 1 . Er ist rot unterlegt im Gegensatz zum grau unterlegten ersten Ein¬
gang . Für ihn gelten dann die rechts stehenden rot unterlegten fc-Werte , die sich
mit den in der gleichen Zeile links stehenden grau unterlegten k -Werten jeweils
zu n ergänzen , wie der nebenstehende Ausschnitt aus den Stochastik - Tabellen * *
zeigt . (Tabelle 236. 1)
Nun benötigt man aber sehr oft wie beim Pro¬
blem I von de Moivre (Seite 229) nicht die
B (« ; p ; k) -Werte , sondern die Werte F ”

{k) der
kumulativen Verteilungsfunktion F " Man

k
könnte diese gemäß F ”

(k ) = E B (n ; p ; i)
i = 0

natürlich jedesmal aus den Tabellen der Bino¬
mialverteilung B (n ; p ) errechnen . Diese Sum¬
mation erspart man sich , wenn man F£ selbst
tabellarisiert .
Aus den Symmetrie -Eigenschaften der Binomial¬
verteilungen folgen auch solche für die Funk¬
tionen F ”

. Daher haben auch die Tabellen der
kumulativen Werte einen zweiten Eingang für
p ^ Bei dessen Benutzung muß man aller¬
dings beachten , daß man nicht mehr / ' " (fc) ,
sondern 1 — F£ (k ) erhält ! Wir wollen uns dies an Hand der Wahrscheinlichkeits¬
bedeutung von F ” überlegen .
Bekanntlich gilt F ”

(k) = F (Z A k ) , wenn Z die Anzahl der Treffer in der
Bernoulli -Kette ist . Gehen wir nun von den Treffern zu den Nieten über , dann er¬
halten wir P (Z rg k) = / ' (»Anzahl der Nieten ' A « — k«) .
Die Anzahl der Nieten gehorcht aber andererseits der Binomialverteilung B (n ; q) .
Damit gewinnen wir
F ”

(k) = / “(»Anzahl der Treffer A /<« ) =
= / '

(»Anzahl der Nieten 2; n — k« ) =
= 1 — / "

(»Anzahl der Nieten < n — k«) .
Ist k e {0,1,2, . . . , n ) , so kann man dafür schreiben
Fp (k) = 1 — P (»Anzahl der Nieten An — k - 1 «) = 1 — F ” (n — k — 1) .
Somit gilt das folgende

n k \
16

8 0 23257 8
I 37211 7
2 26048 6

3 104 19 5
4 02605 4
5 004 17 3
6 OOO42 2
7 00002 I
8 00000 0

\ fcn 6 p \

Tab . 236. 1 Die ersten 5 Dezimal¬
stellen (gerundet ) der Werte von
B (8 ; i ) undB (8 ; | )

* Der Name Symmetriegesetz wird durch Satz 246.1 noch verständlicher werden .** Barth , Bergold, Haller : Stochastik -Tabellen , Ehrenwirth Verlag.



14 .4 . Veranschaulichung von Binomialverteilungen durch Experimente 237

Symmetriegesetz für kumulative binomiale Verteilungsfunktionen:

Fp (k) = F?_ p {n - k - \ ) , falls fce {0,l, . . . , «}

Die Symmetriebeziehung für k <£ {0 , 1, . . . , n ] ist
Tabelle 237. 1 zeigt uns einen Ausschnitt aus den
dessen wir die Tafelbenutzung erklären wollen .
Suchen wir z . B . den Wert -F5

8
/6 (6) , so könnten

ohne praktische Bedeutung .
Stochastik -Tabellen , an Hand

wir dafür 1 - F *
6 (8 - 6 - 1 ) = 1 - F *

6 ( 1)
schreiben , F *

6 ( 1 ) mit Hilfe des grauen Eingangs
zu 0,60468 bestimmen und schließlich F5

8
/6 (6) =

1 — 0,60468 = 0,39532 errechnen . Benutzen wir
hingegen für p den roten Eingang unten , so
müssen wir die rechts stehenden rot unterlegten
/( -Werte nehmen . Wir lesen zu p = f und k = 6
unmittelbar den Wert 0,60468 ab ; die Subtrak¬
tion dieses Wertes von 1 bleibt uns leider nicht
erspart . Andererseits benötigt man bei vielen
Aufgaben gerade den Wert 1 — Fp (k) , den man
für p dann direkt mit Hilfe des roten Ein¬
gangs aus der Tabelle entnehmen kann . Sucht
man z . B . für n = 8 und p = f die Wahrschein¬
lichkeit P (X ^ 4) = 1 - P (X S 3 ) = 1 - F5% (3) ,
so liest man diesen Wert in Tabelle 237. 1 mit
Hilfe des roten Eingangs direkt ab zu
P (X ^ 4) = 0,99539.

F£ {k) = 1 — Tafelwert

Tab . 237 . 1 Die ersten 5 Dezimal¬
stellen (gerundet ) der kumulativen

PS■1/6Verteilungsfunktionen F 8
und if /6 .
Man beachte , daß sich die grau
unterlegten k -Werte mit den rot
unterlegten fc-Werten nur zu n — 1
ergänzen !

14 . 4 . Veranschaulichung von Binomialverteilungen
durch Experimente

Beispiel 1 : Wir wollen die Werte von B ( 10 ; experimentell durch relative Häufig¬
keiten angenähert herstellen . Dazu müssen wir z . B . den lOfach-Wurf einer
Laplace -Münze sehr oft ausführen und zählen , wie oft wir dabei 0 Adler , 1 Adler ,
• • • , 10 Adler erhalten . Wir werten Tabelle 11 . 1 demgemäß aus : Je 2 untereinander¬
stehende Fünfergruppen werden als ein Ergebnis eines lOfach-Wurfes aufgefaßt .
Es ergibt sich folgende Häufigkeitsverteilung :

k 0 1 2 3 4 5 6 7 8 9 10

Anzahl
des Auf¬
tretens von
k Adlern 0 0 4 10 14 23 16 10 2 1 0

Häufigkeit 0 0 0,0500 0,1250 0,1750 0,2875 0,2000 0,1250 0,0250 0,0125 0

B( 10; ^ ; k ) 0,0010 0,0098 0,0439 0,1172 0,2051 0,2461 0,2051 0,1172 0,0439 0,0098 0,0010
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Unter den relativen Häufigkeiten sind die »Idealwerte « B ( 10 ; j ; k) eingetragen .
Die Abweichungen zwischen Ideal und Wirklichkeit sind nicht allzu groß . Wir
schreiben sie dem Zufall zu . Ob dies berechtigt ist , wäre mit den Methoden der
mathematischen Statistik zu klären .
Mit einem von Francis Galton (1822- 1911 )* angegebenen Gerät kann man ange¬
nähert eine Binomialverteilung sogar unmittelbar mechanisch erzeugen . Wir be¬
sprechen dazu

Beispiel 2 : Wir stellen uns eine
schachbrettartig angelegte Stadt vor
(Figur 238. 1) . Im Punkte 0 befindet
sich eine Kneipe . Ein Betrunkener
versucht , nach Hause zu gehen . An
jeder Kreuzung geht er mit der
Wahrscheinlichkeit p nach rechts
und mit der Gegenwahrscheinlich¬
keit q = 1 — p nach links .
Der Irrweg endet zufallsbestimmt an
der Kreuzung Nummer k in der « -Len
Zeile . Zur Berechnung der Wahr¬
scheinlichkeit für ein bestimmtes k
betrachten wir folgendes Schema :

0 1 2 3 4 5 6 7 [k)
Fig . 238 . 1 Stadtplan für den Irrweg

An jedem Kreuzungspunkt steht jeweils die Wahrscheinlichkeit , ihn zu erreichen .Ein Kreuzungspunkt kann nur von den beiden darüberliegenden Kreuzungspunk¬ten aus erreicht werden . Die Anzahl der Wege , die zu ihm führen , ist also gleichder Summe der Möglichkeiten , die beiden darüber liegenden Punkte zu erreichen .
Man erhält so die Anordnung des Pascal -Stifelschen Dreiecks . Die gesuchte

Wahrscheinlichkeit ergibt sich damit zu p k q n k = B (« ; p ; k ).

Die Zufallsgröße »Nummer der Kreuzung in der « -ten Zeile « ist also binomial
nach B (n ; p ) verteilt .
Für p = q = \ läßt sich nun der Zufallsweg des Betrunkenen mit einem Galton -
Brett realisieren .

Auf einem vertikal aufgestellten Brett wird ein Quadratgitter durch Nägel erzeugt
(vgl. Figur 239 . 1 ) . Die durch einen Trichter senkrecht auf den ersten Nagel fallen¬
den Kugeln werden mit der Wahrscheinlichkeit \ nach rechts oder links abgelenkt .
* Siehe Seite 407.
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Y

Fig. 239 . 1 Galton -Brett . Das Brett heißt auch Quincunx. Faßt man nämlich jeweils 5 Nägel
zusammen , so entsteht eine Anordnung der Form : • : , die von den Römern quincunx genannt
wurde.

Falls der Abstand der Nägel in einem günstigen Verhältnis zum Kugeldurch¬
messer steht , treffen die Kugeln wieder senkrecht auf die Nägel der nächsten Reihe .
In den Fächern sammeln sich die Kugeln dann so an , daß ihre Verteilung der
Binomialverteilung entspricht . Einen Eindruck von den wirklichen Ver¬
hältnissen gibt Bild 239.2 . Durch eine seitliche Neigung kann auch p =(= j reali¬
siert werden .

mmmb

Bild 239 .2 Versuch am Galton-Brett . (Die roten Linien geben die Idealwerte an .)
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14 . 5 . Erwartungswert und Varianz einer binomial verteilten
Zufallsgröße

Es sei X eine nach B (« ; / ?) verteilte Zufallsgröße . Ihr Erwartungswert ß (X )
berechnet sich nach Definition 172 . 1 gemäß

W ) = £ k - B {n ; p ; k) = £ k - ( f ) / ( l - / >) " " * •

Die Berechnung dieses Summenwerts ist sehr mühsam . Liebhabern tüfteliger
Umformungen sei Aufgabe 266/45 empfohlen ! Wie so oft in der Mathematik
hilft eine gute Idee uns auch hier , viel Arbeit zu ersparen . Sie besteht in der Ein¬
führung von n neuen Zufallsgrößen
X ; — »Anzahl der Treffer an der Stelle i der Bernoulli -Kette der Länge n« .
Die Zufallsgröße X t besitzt die Wahrscheinlichkeitsverteilung Wp.

X 0 l

WAx ) q p
Die X ; sind somit gleichverteilt , und zwar binomial nach B ( 1 ; p ) . Also sind
auch ihre Erwartungswerte gleich , nämlich

S {X^ = 0 - q + l - p = p .
Die Anzahl X der Treffer der gegebenen Bernoulli - YjsXXQ ist aber die Summe der
Treffer X ; an den Stellen i, aufsummiert von 1 bis n . Also

X = X 1 + X 2 + . . . + Xn = £ X f .
i = 1

Nach Satz 205 . 1 erhält man daher sofort

SX = ß { Yj Xi) = £ SX t = tp = np .
i = 1 ; = 1 i = l

Dieselbe gute Idee hilft uns auch , VarX auf einfache Weise zu berechnen . Zu¬
nächst gilt S (X ;

2
) = () ■q + 1 ■p = p und damit

VarX ; = ^ (X ,
2

) - (ß Xi) 2 =
= P ~ P 2 =
= P ( 1 - P) =
= pq -

Aus der zugrundeliegenden Bernoulli -Kette ergibt sich , daß die X ; stochastisch
n

unabhängig sind . Damit läßt sich Satz 209. 1 auf X = ]T X ; anwenden , und
man erhält *= 1

VarX = Var ( £ X;) = £ VarX ; = £ pq = npq .
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Wir fassen zusammen in

Satz 241 . 1 : Eine nach B (n ; p ) verteilte Zufallsgröße X hat den Erwartungs¬
wert SX = np und die Varianz Var A- = npq .
Die Standardabweichung <? {X ) hat den Wert ]/ npq .

14 . 6 . Eigenschaften der Binomialverteilung
Jede Binomialverteilung B (« ; / ?) wird durch die beiden Zahlen n (Länge der
Bernoulli-Kette = Anzahl der Einzelversuche ) und p (Trefferwahrscheinlichkeit
beim Einzelversuch ) festgelegt . Einen ersten Überblick über diese Abhängigkei¬
ten geben die Histogramme der Figuren 242. 1 und 243. 1 .

In Figur 242. 1 stimmen alle Verteilungen in der Länge n = 16 überein . Wir ma¬
chen folgende Beobachtungen :

1 . Die Maximumstelle , d . h . die Stelle größter Wahrscheinlichkeit , rückt mit
wachsendem p nach rechts .

2 . Der Erwartungswert p wächst mit p monoton .
3 . B ( 16 ; /?) liegt symmetrisch zur Verteilung B ( 16 ; 1 — p ) bezüglich der Achse

x = 8 .
4 . Von p = 0,1 bis p = 0,5 werden die Verteilungen breiter , danach (wegen der

Symmetrie ) wieder schmäler , d . h . , die Standardabweichung a nimmt bis zu
einem Maximum bei p = \ monoton zu und dann wieder monoton ab .

5. Von p = 0,1 bis p = 0,5 werden die Verteilungen niedriger , danach (wegen
der Symmetrie ) wieder höher , d . h . , das Maximum von p h-+ B ( 16 ; p ) nimmt
mit wachsendem p bis p = \ ab , dann wieder zu .

6 . B ( 16 ; -j ) ist symmetrisch bezüglich der Achse x = 8 . Je näher p bei { liegt ,
um so »symmetrischer « ist die Verteilung .

In Figur 243. 1 stimmen alle Verteilungen im Parameter p = \ überein . Wir
machen folgende Beobachtungen :

7 . Die Maximumstelle , d . h . die Stelle größter Wahrscheinlichkeit , rückt mit
wachsendem n nach rechts .

8. Der Erwartungswert p wächst mit n monoton .
9. Die Verteilungen werden mit wachsendem n immer breiter , d . h . , die Stan¬

dardabweichung a wächst mit n monoton .
10. Die Verteilungen werden mit wachsendem n immer niedriger , d . h . , das

Maximum von n i—> B (« ; y) fällt monoton mit n.
11 . Die Verteilungen werden mit wachsendem n immer »symmetrischer « .
12. B (4 ; j ) , B (9 ; j ) und B (64 ; | ) nehmen ihr Maximum zweimal , und zwar an

benachbarten Stellen k an .



242 14 . Binomialverteilung

ST

P = 0,1

- —

■ 1- r 1- 0-

1 r

p = 0,2

p = 0,3

LVl
p = 0,4

p = 0,5

p = 0,6

p = 0,7

To Je

H
ir *

p = 0,1 p = 0,2 p = 0,3
B (X) F (x) BW F (x) BW F (x)

.185 . 185 .028 .028 .003 .003

.329 •515 ■113 . 141 .023 .026

.275 .789 .211 ■352 .073 .099

. 142 ■932 .246 •598 .146 .246

.051 .983 .200 .798 .204 ■45°

.014 •997 . 120 .918 .210 .660

.003 ■999 ■055 •973 .165 .825

.000 1.000 .020 ■993 .101 .926
.006 ■999 .049 ■974
.001 1.000 .019 ■993

.006 ■998

.001 1.000

p = 0,4 p = 0,5 p = 0,6

X BW FW BW FW BW FW
1 .003 .003
2 •015 .018 .002 .002
3 .047 .065 .009 .011 .001 .001
4 . 101 . 167 .028 .038 .004 .005
5 .162 .329 .067 .105 .014 .019
6 .198 .527 .122 .227 .039 .058
7 .189 .716 ■175 .402 .084 . 142
8 . 142 .858 . 196 ■598 .142 .284
9 .084 .942 •175 ■773 .189 •473

10 ■039 .981 .122 ■895 .198 .671 .
11 .014 ■995 .067 .962 . 162 .833
12 .004 •999 .028 .989 . 101 ■935
13 .001 1.000 .009 .998 .047 .982
14 .002 1.000 .015 ■997
15 .003 1.000

P = 0,7 p = 0,8 p = 0,9
X BW FW BW FW BW FW
5
6
7
8
9

.001

.006

.019

.049

. 101

.002

.007

.026

.074
•175

.001

.006

.020

.001

.007

.027 .000 .001
10
11
12
13
14
15
16

.165

.210

.204

. 146
•073
.023
.003

.340
■550
•754
.901
•974
•997

1.000

•055
.120
.200
.246
.211
•113
.028

.082

.202

.402

.648
■859
.972

1.000

.003

.014

.051

.142
•275
•329
.185

.003

.017

.068

.211
•485
.815

1.000

Fig . 2421 Binomialverteilungen B ( 16 ; />) für verschiedene Parameterwerte
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0.5f

| n =11

x

n = 1

X BW F (x)
0 ,8oo .800
l .200 1.000

n = 4

X BW FW
0 410 . 410
1 410 .819
2 ■154 •973
3 .026 .998
4 .002 1.000

n = 9

X BW FW
0 ■134 ■134
1 .302 .436
2 .302 .738
3 .176 .914
4 .066 .980
5 .017 ■997
6 .003 1.000

n = 16

X BW FW
0 .028 .028
1 .113 . 141
2 .211 ■352
3 .246 •598
4 .200 .798
5 .120 .918
6 •055 •973
7 .020 •993
8 .006 ■999
9 .001 1.000

n = 100n = 64

1.000.ooi I

li.ooo

n = 64

Fig . 243 . 1 Binomialverteilungen B (n ; j ) für verschiedene Längen n der Bernoulli -Kette
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Zu 2 . und 8 . Nach Satz 241 . 1 ist SX = np. Also gilt allgemein : Der Erwartungs¬
wert wächst mit n und mit p echt monoton .
Zu 4 . und 9 . Nach Satz 241 . 1 ist a = \/npq . Also gilt allgemein : Die Standard¬
abweichung wächst echt monoton mit n . Aus der Umformung
<7 = ]/np { 1 - p ) = l / - n {p - \ )

2
+ in

ersieht man sofort , daß der Radikand Var V der
Funktionsterm einer nach unten geöffneten
Parabel ist , deren Scheitel bei (j \ \ n ) liegt . (Vgl.
Figur 244. 1 . ) Das bedeutet aber , daß a bei
festem n für p = \ maximal wird .
Zu 1 . , 7 . und 12 . Das Maximum einer Bino¬
mialverteilung bezüglich x kann man leider
nicht mit der Differentialrechnung bestimmen ,
da die Funktion ja gerade an den interessanten
Stellen 0,1,2, . . . , « unstetig und damit nicht
differenzierbar ist . Hier hilft uns aber die in
14 . 3 . für diese Stellen gewonnene Rekursions¬
formel weiter , die wir weiter umformen .

B (n ; p ; k) _ n — k + l p _
B (« ; p ; k — \) k q

= 1
(« - k + \ )p - kg =

kq

= i +
(” + X) P ~ k

kq
Der Zähler des Bruches entscheidet , ob und wann B (n ; p ) von k — 1 zu k wächst ,
konstant bleibt oder abnimmt :
k < (n + l ) / > o B (« ; p \ k — 1) < B (« ; p \ k) ,
k = (« + l )p <=> B (« ; p ; k — 1 ) = B (« ; p ; k) ,
k > (n + l )p <=> B (« ; p ; k - 1) > B (n ; p ; k) .
B (« ; p ) wächst also stets bis zur größten ganzen Zahl unterhalb von (« + 1 )p .
Man bezeichnet diese Zahl durch die Gau/J-Klammer [(« f l )p] , die man »Größte
Ganze aus (« + 1 )p « liest . Sollte {n + \ )p selbst ganzzahlig sein , so bleibt der
Funktionswert dann beim nächsten Schritt erhalten und fällt erst danach (2 be¬
nachbarte Maximumstellen ) ; andernfalls fällt er sogleich ab (Figur 245. 1 ) .

VarX

p i—> npq

Fig . 244. 1 Der Graph von
Var X = npq , hier für n = 5
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(n + 1)p

Fig. 245 . 1 Verhalten von B (« ; p ) in der Umgebung des Maximums
a) (n + l )p ganzzahlig, b) (n + 1) p nicht ganzzahlig

Wir fassen die gewonnenen Erkenntnisse zusammen in

Satz 245 . 1 : Falls (» + \ )p ganzzahlig ist , nimmt B (n ; p) seinen maximalen
Wert an den zwei benachbarten Stellen k = (n + l )p — 1 und k = (n + l )p
an .
Falls (n + \ )p nicht ganzzahlig ist , liegt das einzige Maximum beim größten
Wert von k unterhalb von (n + 1 )p , also bei [(« + 1) /?] .
Schränkt man die Definitionsmenge von B (n ; p ) auf {0,1, . . . , n } ein , so
gilt dort : B (n ; p ) wächst echt monoton bis zum Maximum und nimmt dann
echt monoton ab .

Bemerkungen :
1 . Die Maximumstelle ist der wahrscheinlichste Wert ( = Modalwert ) der Zufalls¬

größe X . Dabei ist jedoch zu bedenken , daß für großes n auch der wahrschein¬
lichste Wert nur eine sehr kleine Wahrscheinlichkeit besitzt . So ist z . B .
maxB (4 ; j ; k) x 41 % ; aber maxB ( 100 ; -| ; k) » 10% . (Siehe auch Figur 243. 1 .)

2 . Wegen (n + l )p = np + p = p + p liegt das Maximum immer in der Nähe
des Erwartungswertes p , also recht genau dort , wo wir es bei naiver Betrach¬
tung vermuten würden : Wir rechnen ja damit , daß etwa der Bruchteil p aller
Versuche einen Treffer liefern wird , also : Anzahl der Treffer xn -p . Die
Maximumstelle der Verteilung unterscheidet sich von diesem Wert höchstens
um Eins ! Nur für ganzzahliges p stimmen die dann einzige Maximumstelle
und der Erwartungswert überein .

3 . Erstaunlicherweise muß der wahrscheinlichste Wert nicht notwendig das dem
Erwartungswert am nächsten liegende k sein (vgl . Aufgabe 271/67) . So ist z . B .
bei B ( 16 ; ^ ) der Erwartungswert p = 1,6 ; das Maximum liegt jedoch bei
k = [ 1,6 + 0,1 ] = 1 und nicht bei dem näher gelegenen Wert k = 2 .

4 . Mit dem Aufsuchen der Maximumstelle [(« + 1 ) p\ ist das Problem des Start¬
werts für die Berechnung der Binomialtabellen gelöst .

Wir verstehen nun , daß die Maximumstelle mit wachsendem n und p nach rechts
rückt : [(« + 1 ) / »] wächst sowohl mit n als auch mit p .
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Zwei gleich hoch gelegene Punkte des Funktionsgraphen gibt es für p = %
dann , wenn (n + 1 ) • | eine ganze Zahl ist , in Figur 243. 1 bei n = 4 , 9 und 64 :

(4 + 1 ) • i = 1 ; (9 + 1 ) • j = 2 ; (64 + l ) - | = 13 ;
also liegen die Doppelmaxima für n = 4 bei 0 und 1 , für n = 9 bei 1 und 2 und
für n = 64 bei 12 und 13 .
Zu 3 . und 6 . Das auf Seite 236 gefundene Symmetriegesetz für B (« ; p) besagt
B (n ; 1 — p ; n — k) = B (n ; p ; k) .

Wegen
n - k = ^ n + (jti — k ) und k = \ n — (^ n — k)
liegen die Argumente n — k und k symmetrisch
zu \ n , wie Figur 246. 1 noch veranschaulicht .
Damit erhält das Symmetriegesetz für Binomial¬
verteilungen die Form von

B (n ; p \ k) B (n ; 1 — p ; n — k)

&
0 k R n — k

2

x
n

Fig . 246 . 1 Das Argument k von
B (n ; p ; k) und das Argument
n — k von B (n ; 1 — p ; n — k)
liegen symmetrisch zu \ n .

Satz 246 . 1 : Die Verteilungen B (n ; p) und B (n ; 1 — p) liegen zueinander
symmetrisch bezüglich der Geraden x = \ n . Insbesondere ist die Vertei¬
lung B (n ; i ) in sich achsensymmetrisch bezüglich der Achse x = \ n .

Zu 6 . und 11 . Um das »Symmetrischer-Werden« der Binomialverteilungen in Abhängigkeit
von n und p zu zeigen , benötigt man ein Maß für die Abweichung von der Symmetrie . Man
wählt hierfür für er =)= 0 den Formparameter Schiefe ( = skewness) einer Zufallsgröße , definiert
durch

Schiefe *= <? [ (* - /d
3]

^ 3

Eine sehr mühsame Rechnung liefert für die Schiefe von Zufallsgrößen , die nach B (rc; p) ver¬
teilt sind , den Wert - — — . Man erkennt daraus , daß die Schiefe genau dann 0 ist , wenna

p = \ ist , was unserer Beobachtung 6 . entspricht . Aus - — — = / ^ — erkennt man
a ]/ nP (.1 ~ P)

unmittelbar , daß die Schiefe für wachsendes n bei festem p monoton gegen 0 konvergiert ,was unserer Beobachtung 11 . entspricht .
Zu 5. und 10 . Wir besitzen keinen einfachen Rechenausdruck für den Maximalwert einer
Binomialverteilung . Wie wir aber später in Aufgabe 313/15 zeigen werden , gibt es für große
n eine Näherungsformel für den Maximalwert . Es gilt nämlich :

Es sei M (n ; p ) der Maximalwert der Binomialverteilung B (n ; p ) , also
M (n ; p ) = max {B (n ; p ; x) |xe IR} . Dann gilt für 0 < p < 1 und großes « :

M (n ; p ) « — = ■
<7 [/27t
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Figur 247 . 1 zeigt , wie gut diese Näherung
ist .
Wir haben bereits oben (Seite 244) gezeigt,
daß er bei festem n für p = j am größten
wird. Also muß M (n ; p ) bei festem n für
p = j bezüglich p am kleinsten werden ,
was Beobachtung 5 . entspricht . Anderer¬
seits wächst a bei festem p mit n echt
monoton ; also nimmt M {n ; p ) echt mo¬
noton ab (Beobachtung 10 . ) .
Anschaulich ist dies alles klar : Da die
Histogramme immer breiter werden , ihre
Flächeninhalte aber konstant den Wert 1
haben , sollte das höchste Rechteck des
Histogramms immer niedriger werden .

Fig . 247 . 1 Güte der Näherungsformel
für die Maxima von Binomialverteilungen
Einzelpunkte : Maximalwerte M (n ; p)
der Binomialverteilungen B (n ; p ) .
Durchgezogene Kurven : zugehörige
Näherungen (<7j/27t )

_ 1.
Beachte: Auf der n-Achse logarithmischer
Maßstab !

M (n ; p)

p = 0,05

3 4 5 678 10 15 20

14 . 7. Die Ungleichung von Bienayme - Tschebyschow für binomial
verteilte Zufallsgrößen und das Gesetz der großen Zahlen

Wenden wir die Ungleichung von Bienayme - Tschebyschow, nämlich

P {\X - n \ ^ a) ^ VarX

auf binomial nach B (n ; p ) verteilte Zufallsgrößen X an , dann lassen sich p und
VarX durch np bzw . npq ersetzen , und wir erhalten

P {\X - np | ^ a) ^ .a
Die Ungleichung | X — np [ a beschreibt kurz das Ereignis { m j | X (m ) — np | 2: a ) .
Dividiert man die in der Mengenklammer stehende Ungleichung durch n , so
wird weiterhin dasselbe Ereignis beschrieben , also
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(co | X (co) — np f ^ a} co

Weil durch diese Umformung das Ereignis nicht verändert wurde , bleibt auch
die Wahrscheinlichkeit dieselbe , und es gilt

X
~
w

~ p > ± < ”££= n2

xDa X die Anzahl der Treffer in einer Bernoulli -Kette der Länge n ist,stellt — = : Hn
die Zufallsgröße »Relative Häufigkeit von Treffer in einer Bernoulli -Kette von
n Versuchen , bei denen der Treffer jeweils die Wahrscheinlichkeit p hat « dar .
Die Wertemenge von H n ist demnach die Menge (0 , 1 } , die Wahr¬
scheinlichkeitsverteilung von H n ergibt sich zu P {H „ = £) = B (« ; p ; k) . Den¬
noch ist H n nicht binomial verteilt ! hn bezeichne weiterhin einen bestimmten
Wert von H „ . Der Bequemlichkeit halber set-

e und erhalten damitzen wir —
n

pq p ( 1 - p )
n e ne n e

Oft kennt man p nicht . Dann schätzt man
p (l — p) durch seinen Maximalwert i ab (vgl .
Figur 248 . 1 ) .

Zusammenfassend gilt also
Fig . 248 . 1 Graph der Funktion
P 'r+ PlX - p)

Satz 248 . 1 : Bienayme - Tschebyschow-Un^ eichmg für die relative Häufig¬
keit. Für die relative Häufigkeit Hn (»Treffer«) in einer Bernoulli-Kette der
Länge n mit dem Parameter P (»Treffer «) = p gilt :

P ( \Hn - p \ ^ e) S M " 1
ne 2 4 « e2

Bemerkung: Das Tschebyschow-Kisiko rT = ^ ar
2
^- wird hier zu rT = und

ne
beträgt höchstens

4ne 2

Sowohl in der Interpretationsregel für Wahrscheinlichkeiten (5 . 2 . ) wie auch beim
Versuch der Definition der Wahrscheinlichkeit eines Ereignisses durch v. Mises
wird ein intuitiver Zusammenhang zwischen relativer Häufigkeit und Wahr¬
scheinlichkeit sichtbar . Satz 248 . 1 gibt uns nun die Möglichkeit , diesen Zu¬
sammenhang zu erkennen . Dazu schreiben wir die Tschebyschow-Ungleichung
von Satz 248 . 1 für das Gegenereignis auf , also

P {\H n - p \ < E) ^ l - P\ .ne
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Diese Ungleichung können wir folgendermaßen interpretieren : Die Wahrschein¬
lichkeit dafür , daß sich die relative Häufigkeit des Treffers um weniger als ein
beliebig kleiner , aber fest gewählter Wert s von der Wahrscheinlichkeit p des
Treffers unterscheidet , wächst mit zunehmender Länge n der Bernoulli -Kette
und kommt dem Wert 1 beliebig nahe . Damit erweist sich die relative Häufigkeit
für hinreichend großes n als guter »Meßwert « für die Wahrscheinlichkeit . Dieser
Sachverhalt ist die Aussage des sog . Hauptsatzes der Ars Conjectandi , den Jakob
Bernoulli ( 1655 - 1705 ) wohl um 1685 gefunden hat , und den man heute schwaches
Gesetz der großen Zahlen nennt .*

Satz 249 . 1 : Schwaches Gesetz der großen Zahlen von Jakob Bernoulli.
Ist A der Treffer einer Bernoulli -Kette der Länge n mit P (A) = p und
Hn {A ) seine relative Häufigkeit , dann gilt für jedes £ > 0 :

lim P ( \H n — p \ < e) = l
n - >oo

Man könnte nun versucht sein , e = 0 zu setzen , in der Hoffnung , mit zunehmen¬
dem n schließlich p exakt zu bestimmen . Bernoulli hat bereits daraufhingewiesen ,
»daß sich dann das Gegenteil ergäbe « ,

nämlich lim P ( \H n — p \ = 0) = lim P {H „ = p ) = 0 ,
n -*■co n -*■oo

was mit unserer Beobachtung über max { B (n ; p ; x)} von Seite 246f . überein¬
stimmt , und daß wir den Wert von p
»nur mit einer bestimmten Annäherung erhalten , d . h . zwischen zwei Grenzen einschließen
können , welche aber beliebig nahe beieinander angenommen werden dürfen « .

Der scheinbare Widerspruch klärt sich auf , wenn man bedenkt , daß im endlichen
Intervall ] / ? — e ; p + e [ für großes n sehr viel mögliche Werte von H n liegen ,

1 2 s
die alle im Abstand — aufeinanderfolgen . Es gibt also ungefähr -y - = 2 ns:

Werte für H n in diesem Intervall , von denen jeder zwar eine verschwindend kleine
Wahrscheinlichkeit hat , die Summe all dieser Wahrscheinlichkeiten aber nahezu
1 ergibt .

Was besagt im Sinne der Analysis eigentlich lim P {\H „ — p \ < e) = 1 ? Diese
n -* oo

Gleichung drückt doch aus , daß sich bei fest vorgegebenem positiven s zu jeder
beliebigen Schranke r\ > 0 eine Länge n0 für Bernoulli -Ketten des Parameters p

* Bernoulli hat , wie er selbst in der Ars Conjectandi (ed . 1713 ) wohl um 1703/4 schreibt , dieses Problem schon 20
Jahre mit sich herumgetragen . Wie stolz er auf diesen Satz war , zeigen seine Worte am Schluß des Beweisesin seinen
Tagebüchern :

»Hoc inventum pluris facio quam si ipsam circuli quadraturam dedissem , quod si maxime reperiretur , exigui
usus esset.«
»Diese Entdeckung gilt mir mehr , als wenn ich gar die Quadratur des Kreises geliefert hätte ; denn wenn diese
auch gänzlich gefunden würde , so wäre sie doch sehr wenig nütz .«

Der Name Gesetz der großen Zahlen stammt von Simeon-Denis Poisson (1781- 1840), der 1837 einen allgemeinen Satz
veröffentlichte , den er la loi des grands nombres nannte , und von dem das Bernoullische Gesetz der großen Zahlen ein
Spezialfall ist.
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finden läßt , so daß für alle n ^ n0 die Wahrscheinlichkeit dafür , daß sich die
relative Trefferhäufigkeit um weniger als e von der Wahrscheinlichkeit p für einen
Treffer unterscheidet , mindestens 1 — rj wird , daß also P {\H „

— p \ < s) S: 1 — tj
gilt . Nehmen wir z . B . tj = tq , so bedeutet P ( \H n — pj < s) ^ 90% nach der
Interpretationsregel für Wahrscheinlichkeiten : Bestimmt man sehr oft die rela¬
tive Häufigkeit H n des Treffers in Bernoulli -Ketten einer Länge li 2: «0 zum sel¬
ben Parameter p , so erhält man in ungefähr mindestens 90% aller Fälle Werte
h„ , die in das Intervall \ p - c : p + c [ fallen . Diesen Sachverhalt drückt man da¬
durch aus , daß man sagt , H„ konvergiere in Wahrscheinlichkeit nach p , oder auch ,
Hn konvergiere stochastisch nach p. Figur 250 . 1 veranschaulicht diese Art von
Konvergenz .

Fig . 250 . 1 Zum Schwachen Gesetz der großen Zahlen : Es gibt ein n0 , so daß für alle rt ä n0die Wahrscheinlichkeit dafür , daß die Werte hn der relativen Häufigkeit Hn in das Intervall
]p — e ; / >+ e [ fallen, mindestens 1 — r\ beträgt . - Anschaulich : Der Anteil der Schlangen ,die durch das 2e -Tor um p hindurchgehen , ist für rt±in 0 etwa 1 — t\ *

Aus der stochastischen Konvergenz von H n darf auf keinen Fall geschlossen
werden , daß von dem gefundenen n0 ab die relative Häufigkeit für noch größere
Längen in dem Intervall ]/ ? — e ; / >+ s [ bleibt , d . h . , daß etwa lim HJA ) = P (Ä)

n -* oo
gelte ! Eine etwas schwächere Behauptung als diese hat im Jahre 1909 Emile Borei
( 1871- 1956) für p = \ gefunden . Sie wurde 1917 von Francesco Paolo Cantelli
( 1875 - 1966 ) für 0 < p < 1 verallgemeinert und heißt

Das starke Gesetz der großen Zahlen :
P ( hm H n = p ) = 1

n -> oo

Es besagt , daß die relative Häufigkeit fast sicher gegen die zugehörige Wahr¬
scheinlichkeit konvergiert .
Wir verzichten auf den Beweis , da wir dazu unendliche Ergebnisräume benötigten .
* Jede gezeichnete Schlange ist folgendermaßen entstanden : Zu jedem n werden n unabhängige Versuche gemacht ,und dann h„ bestimmt . Z . B . : Um /i 100 zu bestimmen , müssen 100 unabhängige Versuche gemacht werden . Umdann eine Schlange bis n = 100 zeichnen zu können , müssen 1 + 2 + . . . + 100 = 5050 Versuche ausgeführt werden !Man darf die Schlangen von Figur 250.1 nicht mit denen der Figuren 31. 1, 33. 1, 34. 1 und 71. 1 verwechseln , die dieEntwicklung von hn darstellen . So ist z . B . in Figur 31.1 die Entstehung von h800(»Adler «) = \ dargestellt ; dieSchlange gibt also die Entwicklung für diesen einen Wert an .
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Das schwache Gesetz der großen Zahlen rechtfertigt unsere Interpretationsregel
für Wahrscheinlichkeiten , d . h . die statistische Bestimmung von Wahrscheinlich¬
keiten . Um mit Jakob Bernoulli zu sprechen : Wir können die Wahrscheinlichkeit

»a posteriori fast ebenso genau finden , als wenn sie uns a priori bekannt «
wäre . Es liefert uns also gewissermaßen eine Meßvorschrift für die Wahrschein¬
lichkeit von solchen Ereignissen , die unter gleichen Bedingungen beliebig oft
wiederholbar sind . Die Wahrscheinlichkeit solcher Ereignisse läßt sich damit
wie eine physikalische Konstante messen !
Bei flüchtiger Betrachtungsweise könnte man meinen , daß im Gesetz der großen
Zahlen ein Zirkelschluß vorliegt , da es eine Aussage über einen Zusammenhang
zwischen der relativen Häufigkeit eines Ereignisses und seiner Wahrscheinlichkeit
macht , den man über die Interpretationsregel schon zur Grundlage der Defini¬
tion der Wahrscheinlichkeit gemacht hat . Ein solcher circulus vitiosus liegt aber
nicht vor , weil wir als Grundlage der mathematischen Theorie der Wahrschein¬
lichkeit die Wahrscheinlichkeit eines Ereignisses im Axiomensystem von Kolmo-
gorow völlig unabhängig vom Begriff der relativen Häufigkeit definiert haben .
Das Gesetz der großen Zahlen zeigt nun , daß diese abstrakte Definition der
Wahrscheinlichkeit genau den realen Hintergrund erfaßt , für dessen Beschrei¬
bung man die Wahrscheinlichkeitstheorie geschaffen hatte . Wir können nun auch
noch verstehen , warum wir das Empirische Gesetz der großen Zahlen , die Sta¬
bilisierung der relativen Häufigkeit um einen festen Wert , nicht präzise formu¬
lieren konnten . Wir benötigen zu diesem Zweck nämlich den Begriff der Wahr¬
scheinlichkeit . Das schwache Gesetz der großen Zahlen drückt diese Stabilisie¬
rung aus ; es besagt ja gerade , daß große Abweichungen der relativen Häufigkeit
von diesem festen Wert nach einer sehr langen Versuchsreihe sehr unwahrschein¬
lich sind .
Die Aussage des schwachen Gesetzes der großen Zahlen wird von vielen Leuten
mißverstanden . So neigen manche Lottospieler wie einst d ’Alembert ( 1717- 1783)
dazu , gerade diejenigen Zahlen zu tippen , die bei den bis dahin erfolgten Aus¬
spielungen sehr selten erschienen sind . Sie meinen nämlich , das schwache Gesetz
der großen Zahlen arbeite wie ein Buchhalter , der darauf achtet , daß alle Zahlen
gleich oft gezogen werden . Das schwache Gesetz der großen Zählen arbeitet aber
anders , nämlich gewissermaßen durch Überschwemmung * : Defizite oder Über¬
schüsse , die sich bei den absoluten Häufigkeiten im Laufe der Zeit ergeben , wer¬
den in der relativen Häufigkeit dadurch ausgebügelt , daß sie als Differenzen im
Zähler bei sehr großem Nenner keine Rolle mehr spielen . So hat z . B . die Zahl 13 ,
wie die Tabelle zu Aufgabe 38/7 zeigt , nach 1225 Ziehungen ein Defizit von 29
gegenüber dem Sollwert von 150 . Das bedeutet für die relative Häufigkeit ein
Defizit von jffj < 2,4% . Dasselbe Defizit von 29 würde bei 10000 Ziehungen in
der relativen Häufigkeit nur mehr 0,29% ausmachen ; nach 1 Million Ziehungen
spielt dieses Defizit mit 0,0029% aber keine Rolle mehr .
Analog sorgt beim Galtonbrett das schwache Gesetz der großen Zahlen dafür ,
daß auf lange Sicht , wenn immer mehr Kugeln durch den Nagelwald laufen , die
Fächer immer genauer nach B (« ; -§) gefüllt werden . Dabei ist es offensichtlich

* swamping effect - L .H . C. Tippett prägte 1943 diesen Begriff .
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unsinnig anzunehmen , daß eine startende Kugel weiß , in welchem Fach gerade
Defizit herrscht , um bevorzugt dorthin zu springen .
Unterstellt man dem schwachen Gesetz der großen Zahlen also einen Buchhal¬
tercharakter , so müßte man wider alle Vernunft annehmen , daß stochastische
Geräte Gewissen und Gedächtnis hätten , wie es Joseph Bertrand (1822- 1900)
einmal treffend formulierte * . Wäre dem so , entgegnete 1785 Leonhard Euler ( 1707
bis 1783 ) in seinen Opuscula Analytica * * der Auffassung d ’Alemberts ,
»dann müßte jeder nach einem Jahr , ja nach einem Jahrhundert stattfindende Zug vom Er¬
gebnis aller Züge abhängen , die seit undenklichen Zeiten an irgendwelchen Orten dieser Erde
stattgefunden haben ; Absurderes kann sicherlich kaum gedacht werden .«

14. 8 . Anwendungen der Ungleichung von Bienayme- Tschebyschow
Die Ungleichung von Bienayme -Tschebyschow kann , je nach Bedarf , unter¬
schiedlich formuliert werden . Wir stellen die drei häufigsten Formulierungen der
Bienayme -Tschebyschow- Ungleichung in der Form , in der sie sich am leichtesten
merken lassen , zusammen :

1) Ist X eine Zufallsgröße mit S X = p und ist a > 0 , dann gilt
Vor yP ( \X - p \ ^ a) ^ (Satz 184. 1)

2) Ist H n die relative Häufigkeit eines Ereignisses mit der Wahrscheinlich¬
keit p in einer Bernoulli -Kette der Länge n und ist e > 0 , dann gilt
P ( | H „ - p |̂ e) ^ ^ ^ - A ^ . (Satz 248. 1)ne 4 ne

3) Ist X„ das arithmetische Mittel n gleichverteilter , paarweise unabhängi¬
ger Zufallsgrößen X t mit S' Xf = p und Var A , = a 2 und ist a > 0 , dann
gilt

P ( | Xn - p | S a) ^ . (Aufgabe 271/71 )

Viele Aufgaben der Wahrscheinlichkeitsrechnung handeln davon , daß das wahre
Risiko , d . h . , daß die Wahrscheinlichkeit dafür , daß die Werte einer ZufallsgrößeX von ihrem Erwartungswert p um mindestens a abweichen , eine gewisseSchranke p nicht überschreiten soll , kurz , daß

P ( \X - p \ ^ a ) ^ p ( 1)
sein soll . Anders ausgedrückt : Die Wahrscheinlichkeit , daß die Werte von Xsich um weniger als a von p unterscheiden , soll einen gewissen Mindestwert be¬sitzen , d . h . ,
* »On fait trop d’honneur ä la roulette : eile n’a ni conscience ni memoire .« (Calcul des Probabilites , p.XXII , 1889)** Die Abhandlung lautet Solutio quarundam quaestionum difficiliontm in Calculo Probabilium . - Friedrich II . batEuler 1749 und 1763 um Rat bezüglich der Errichtung von Lotterien , um die Finanznot seines Staates zu beheben .Aus der Beschäftigung mit diesem Problem entstanden Eulers wahrscheinlichkeitstheoretische Arbeiten .
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P { \X - n \ < ä] ^ \ - rj . (2)
Da man nun auf Grund von Satz 184 . 1 weiß , daß das wahre Risiko höchstens so
groß wie das Tschebyschow -Risiko rT ist , ist Bedingung ( 1 ) für das wahre Risiko
sicher erfüllt , wenn man das Tschebyschow-Risiko rT höchstens so groß wie die
Schranke rj werden läßt , also (meist ) weniger fordert , nämlich

P ( \X - n \ ^ a) Zr T Zr, .

Es ist uns natürlich bewußt , daß man dadurch unter Umständen viel zu grobe
Abschätzungen erhält . Wo möglich , wird man außerdem versuchen , mit rT = rj
auszukommen .
Nun zu den Aufgaben ! Der einfachste Aufgabentyp ist derjenige , bei dem aus ge¬
gebenen Daten eine Schranke für das wahre Risiko gesucht wird .
Beispiel 1 : Wie groß ist die Mindestwahrscheinlichkeit dafür , daß die relative
Häufigkeit für eine Sechs beim lOOfachen Wurf eines L-Würfels um weniger als
0,05 von der Wahrscheinlichkeit für eine Sechs abweicht ?
Lösung : An sich könnte man die gesuchte Wahrscheinlichkeit direkt berechnen .
Mit X ■■= »Anzahl der Sechsen bei 100 Würfen « erhalten wir

P ( \H X00 — i | < 0,05) = — i I < ab) = Pd X - TI < 5) =

= P ( llf < X < 21 -f ) =

= £ B ( 100 ; i ; /c) = F1
1
/
°o

(21) - F1
1
/
° °

( ll ) =
k = 12

= 0,89982 - 0,07772 = 0,82210.

Hätten wir keine Tabellen , z . B . wenn n = 80 wäre , so müßten wir eine sehr
mühsame Rechnung durchführen . Da ist man dann oft froh , wenn man die ge¬
suchte Wahrscheinlichkeit durch eine untere Schranke abschätzen kann . Wir
suchen nun also eine untere Schranke für P ( \H 100 — i \ < 0,05 ) . Dazu gehen wir
zum Gegenereignis über und suchen eine obere Schranke für P {\ H U)0 — | j A 0,05 ) .

1 . 5
Das Tschebyschow -Risiko r .r = - -—-—T ist eine solche obere Schranke . Wir7 T WO - 0,052
erhalten rT = f < 0,556 . Also ist

p ( \H100 - i \ < 0,05) £ 1 - $ = f > 44,4% .
Das bedeutet :
Mit einer Wahrscheinlichkeit von mehr als 44,4% liegen beim lOOfachen Wurf
eines L-Würfels die Weite h l00 (»Sechs«) der relativen Häufigkeit H 100 (»Sechs«)
im Intervall ]£ - 0,05 ; \ + 0,05 [ = ] ^ ; was durch FiSur 2541 veran '
schaulicht wird .

In einer Vielzahl von Aufgaben wird nach der Zahl n der Versuche gefragt , die
nötig sind , um das wahre Risiko nicht größer als r] werden zu lassen .
Beispiel 2 : Wie oft muß ein L-Würfel mindestens geworfen werden , damit mit
einer Sicherheit von mindestens 60 % das arithmetische Mittel der Augenzahlen
um weniger als 0,25 vom Erwartungswert 3,5 abweicht ?
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- -0,05

60 60
Fig . 254. 1 Die Wahrscheinlichkeit , daß beim lOOmaligemWerfen eines L-Würfels die relative
Häufigkeit der Sechs um weniger als -jq von ihrer Wahrscheinlichkeit £ abweicht , ist minde¬
stens f .

Lösung: Gesucht ist ein kleinstes n, so daß P { \ Xn — 3,51 < 0,25) ^ 60% = 1 — rj.Da die Varianz der Zufallsgröße Augenzahl den Wert ff hat (Aufgabe 194/44),erhalten wir aus der Tschebyschow- Ungleichung

P ( \Xn - 3,5 f ^ 0,25 ) g —

Setzen wir das rechts stehende Tschebyschow-Risiko höchstens gleich der Schranke
f/ ( = 40%) , dann gewinnen wir für n die folgende Abschätzung

- ^ 0,4o ^ f = 116 | , also rt ^ 117 .12 • 0,25 • n
Somit gilt : Wirft man mindestens 117mal einen L -Würfel , so ist die Wahrschein¬
lichkeit dafür , daß das arithmetische Mittel der Augenzahlen vom Erwartungswert
3,5 um weniger als 0,25 abweicht , mindestens 60% , was Figur 255. 1 veranschau¬
lichen soll .

Schwieriger als diese beiden Aufgabentypen sind diejenigen , in denen s- bzw.
a -Intervalle gesucht sind . Dabei sind zwei Fragestellungen zu unterscheiden .
1 . Fragestellung: Es ist dasjenige Intervall um p (bzw. p) gesucht , in das die
relative Häufigkeit Hn (bzw . das arithmetische Mittel X ) mit einer vorgegebenen
Sicherheitswahrscheinlichkeit von mindestens 1 — rj trifft . Man sucht also ein
e , so daß die Bedingung

\H„ ~ p \ < e op ~ e < Hn < p + e
mit einer vorgegebenen Mindestwahrscheinlichkeit 1 — p erfüllt wird .
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- - 0.01

Fig. 255 . 1 Soll die Wahrscheinlichkeit , daß das arithmetische Mittel der Augenzahlen eines
L-Würfels vom Erwartungswert 3,5 um weniger als \ abweicht , mindestens 60% betragen , so
muß mindestens 117mal gewürfelt werden .
Gezeichnet ist vom Stabdiagramm der Wahrscheinlichkeitsverteilung P [X 117 = x) nur
jeder dritte der 586 Stäbe (die bei x e {Ltt ?, ir ?>. . . , 6 } liegen), sofern er mindestens 5 ■10 “ 5
mißt.

Beispiel 3 : In welchem Intervall um p = £ liegt bei lOOmaligem Werfen eines
L-Würfels die relative Häufigkeit für die Augenzahl 6 mit einer Mindestwahr¬
scheinlichkeit von 60% ?
Lösung : Gesucht ist ein e , so daß

P ( \H 100 - i | < S) = P (i - e < H l00 < i + e) ^ 60 %
wird . Statt dessen können wir auch

^ ( l^ ioo — il ^ e) ^ 40%

fordern . Das ist sicher erfüllt , wenn das Tschebyschow-Risiko höchstens 40%
wird , also

1^ 2 ^ 0,4 A ^ ^ 1/2 = 0,0589 . . .

Für e = 0,059 ist die Bedingung sicherlich erfüllt , d . h . , mit einer Wahrschein¬
lichkeit von mindestens 60% ergeben sich Werte A 100 (»6«) der relativen Häufig¬
keit tf 100 (»6«) zwischen 0,107 und 0,226. Figur 256 . 1 veranschaulicht diesen
Sachverhalt . - Bedenkt man noch , daß H 100 nur Werte aus {0 , hTo , tüö >• • • >Tho > 1 }
annehmen kann , so läßt sich verschärfend sagen , daß mit einer Wahrscheinlich¬
keit von mindestens 60% die relative Häufigkeit / / 100(»Sechs«) Werte im Inter¬
vall [0,11 ; 0,22] annimmt .
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P ( IH100- | l < f ) = 90 %

l < Ü ) 5 60 %

■0.1

6 12

T 1 ft
6
~24 6

ÖT

Fig . 256 . 1 Beim lOOmaligen Werfen eines L-Würfels ist die Wahrscheinlichkeit mindestens
60% , daß die relative Häufigkeit des Ereignisses »Sechs« von seiner Wahrscheinlichkeit \ um
weniger als s = ^ j/2 abweicht . - Punktiert ist dasjenige g-Intervall angegeben , das man
wählen muß , falls man eine Wahrscheinlichkeit von mindestens 90 % fordert .

Die Aufgabenstellung von Beispiel 3 lautet allgemein P ( \ H „ — p \ < e) 3: 1 — r]
bzw . P ( \H „ — p \ Sie) <! rj . Mit dem Ansatz rT = ti , also — = p , erhält man

ns

was zum Intervall I (p )

führt . Es wird also jedem p ein Intervall / (/;) zugeordnet , in das die Werte hnder relativen Häufigkeit H n mindestens mit der Wahrscheinlichkeit 1 — jj hin¬
einfallen . Figur 257. 1 veranschaulicht diesen Zusammenhang p i—> I {p ) . Die
Hüllkurve all dieser Intervalle ist eine Ellipse mit der Gleichung

piX - p)
IK ~ P

2. Fragestellung: Der andere Fall der Intervallbestimmung besteht darin , daß
man bei einer Versuchsserie der Länge n einen Wert h„ der relativen HäufigkeitHn ermittelt hat und nun ein g-Intervall um diesen Wert h„ angeben möchte , von
dem man mit einer vorgegebenen Mindestwahrscheinlichkeit sagen kann , daß
es die unbekannte , aber feste Wahrscheinlichkeit p enthält . Solche Zufallsinter¬
valle nannte 1934 Jerzy Neyman * (1894- 1981 ) Vertrauensintervall oder Konfidenz¬
intervall für p .
* gesprochen nejman
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Fig.
Der
also
Für

n = 100 | r) =10 %

Graph der Relation p i—> I (p ) ist die Punktmenge {{p | hn) | h„ e I {p ) n [0 ; 1] a p e [0 ; 1] } ,
das grau unterlegte Gebiet einschließlich des schwarzen Randes .
P = I ist / (| ) = ]| — tö ]/3Ö ; | + to ]/30 [ c: ]0,613 ; 0,887 [ rot hervorgehoben .

In dieses Intervall fällt die relative Trefferhäufigkeit mindestens mit der Wahrscheinlichkeit
90%, wenn P (»Treffer«) = f ist .
- : Geht man bei h„ = J ein , so erhält man das zugehörige echte Konfidenzintervall auf
der p -Achse (vgl. Figur 260. 1) .

Man konstruiert dazu vor der Ausführung des Zufallsexperiments ein möglichst
enges Zufallsintervall ~

\ H„ — e ; H „ + ;: [ . das die unbekannte , aber feste Wahr¬
scheinlichkeit p mindestens mit der Wahrscheinlichkeit 1 — r\ überdeckt , für das
also P ( \Hn - p \ < e) = P (H n - e < p < H „ + £) ^ l - ri gilt .
Bei der 1 . Fragestellung lag das s - Intervall um den bekannten Wert p fest . Der
Zufall steckte im Hineintreffen der relativen Häufigkeit Pl„ in dieses Intervall .
Bei der 2 . Fragestellung ist zwar auch p fest , aber nicht bekannt . Der Zufall be¬
stimmt jetzt den Wert h„ der relativen Häufigkeit H n und damit mindestens mit
der Wahrscheinlichkeit 1 — rj das e-Intervall um h„ , das so auf der Zahlengeraden
liegt , daß es den gesuchten p -Wert überdeckt . Dabei hängt der Radius s natür¬
lich von r\ ab . (Das Verfahren ähnelt also dem Jagen einer Fliege mit einer Flie¬
genklatsche : Die Fliege ist das p , die Klatsche das E- Intervall , die Klatschen¬
mitte trifft zufallsgesteuert bei jedem Schlag auf das jeweilige hn .)

Beispiel 4 : Die ersten 100 Würfe von Tabelle 10. 1 ergaben /u 0o ( { 6} ) = B,18. Für
welches Intervall kann man mit einer Sicherheit von mindestens 90% schließen ,
daß es die Wahrscheinlichkeit p für eine Sechs enthält ?

Lösung : Gesucht ist ein e, so daß P {H IW ( { (>} ) — s < p < 77100 ( { 6 } ) + e) (ä 90 %
wird . Dazu betrachten wir wieder das Gegenereignis , also

p <\ Hioo - P \ 10% ,
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n =100 n = 10 %

Fig . 258 . 1 Grobe Konfidenzintervalle . Der Graph der Relation h„ > I (h„) ist die Punktmenge
{(/zn |^ ) |/ ; e/ (/2n) n [0 ; 1] A /i„ e [0 ; 1] } , also das grau unterlegte Gebiet einschließlich des
schwarzen Randes . Für h 100 = f ist / (f ) = ] | — ]/lÖ ; | + 2üj/lÖ [ <= ] 0,591 ; 0,909 [ rot
hervorgehoben . Man kann mit einer Sicherheit von mindestens 90 % darauf vertrauen , daß
dieses Intervall die Wahrscheinlichkeit p = P (»Treffer «) überdeckt , wenn die relative Häufig¬
keit des Treffers zu h 100 = f gemessen wurde .

was sicherlich erfüllt ist , wenn - £ 5 . < ^
, < 10% .

Wir erhalten g % io 1/40 = 0,158 . . . Zum Zufallsergebnis h UM ( \ 6 \ ) = 0,18 ge¬
hört also das Intervall ] 0,021 ; 0,339[ , von dem wir sagen können , es wurde auf
Grund eines Verfahrens erhalten , das mit einer Wahrscheinlichkeit von min¬
destens 90 % zu einem Intervall führt , das die wahre Wahrscheinlichkeit p für
die Augenzahl 6 bei diesem Würfel enthält .
Löst man die Aufgabenstellung von Beispiel 4 allgemein mit dem Ansatz
P ( \H „ — p \ > g) < ^

, = n , so erhält man g = — \= und damit1 - ~ ne 2 ~ 4 « g2
21/W

das grobe Konfidenzintervall I (hn) = h„ -
2 l/W

K +
21/ nrf

Es wird also jedem Wert hn ein Intervall I (hn) zugeordnet , das den unbekann¬
ten Wert p mindestens mit der Wahrscheinlichkeit 1 — rj enthält . Figur 258. 1
veranschaulicht diesen Zusammenhang hn y~~* I (h„) . Die Hüllkurve dieser groben
Konfidenzintervalle ist ein Parallelenpaar mit der Gleichung \p — hn \ =

»Genauere« Näherung. Weil p unbekannt ist , mußten wir den Ausdruck pq aus
rT durch den Wert \ abschätzen . Kennte man p , so wäre für p + j eine genauere
g-Bestimmung durch Pß_

ne2 = r\ möglich . Man erhielte s Nach dem
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n = 100 | ti - 10 %
P

US

<x

Fig . 259 . 1 Näherungskonfidenzintervalle . Der Graph der Relation h„ i- > I (hn) ist die Punkt¬
menge {(h„ \p ) \pel (hn) n [0 ; 1] a h„ e [0 ; 1] } , also das grau unterlegte Gebiet einschließlich
des schwarzen Randes . Für h 100 = | ist f (f ) = ]£ - ^ |/3Ö ; f + <k |/30 [ c ] 0,613 ; 0,887 [
hervorgehoben . Man kann mit einer Sicherheit von etwa 90% darauf vertrauen , daß dieses
Intervall die Wahrscheinlichkeit p — P (»Treffer«) enthält , wenn die relative Häufigkeit des
Treffers zu h 100 = f gemessen wurde .

schwachen Gesetz der großen Zahlen ist aber h„ ein Näherungswert für p . Er-

K ( 1 ~ K)setzen wir also p durch hn , so wird e

0,18 • 0,82
100 ■0,1

Mit den Werten aus Beispiel 4 gewinnen wir s

wie erwartet , ein kleineres Konfidenzintervall um 0,18 für p = E ( { 6 } ) . Wir kön¬
nen damit sagen : Das Intervall ] 0,059 ; 0,301 [ wurde durch ein Verfahren ermit¬
telt , das mit einer Sicherheit von ungefähr mindestens 90 % zu einem Intervall
führt , das die wahre Wahrscheinlichkeit für die Augenzahl 6 bei diesem Würfel
enthält .
Die genauere Näherung führt im allgemeinen Fall also zu einem

Kif - K)K0 - ~ K )
NäherungskonfidenzintervaH T(hn)

Figur 259. 1 zeigt den Zusammenhang hn k -> / (/?„ ) . Die Hüllkurve dieser Nähe -
KQ - K)

rungskonfidenzintervalle ist eine Ellipse mit der Gleichung \p — h „ j =

die mit der Ellipse aus Figur 257. 1 übereinstimmt , wenn man die Achsenbezeich¬
nungen p und h„ miteinander vertauscht . Diese Näherung ist vor allem für sehr
kleine und sehr große h„ nicht sehr sinnvoll . In Figur 259. 1 entartet z . B . für
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n = 100 | ri =10 %

Fig . 260 . 1 Echte Konfidenzintervalle und die Konfidenzellipse \p — h„ \ = . Das graunrj
unterlegte Gebiet einschließlich des schwarzen Randes ist die Menge der Konfidenzinter¬
valle . Für h 10 o = | ist das zugehörige Konfidenzintervall 3 (f ) = ] -& — Jjj/34 ; n - +
+ 55 j/34 [ <= ] 0,594 ; 0,860 [ rot hervorgehoben . Man kann mit einer Sicherheit von min¬
destens 90% darauf vertrauen , daß dieses Intervall die Wahrscheinlichkeit p = P (»Treffer «)
überdeckt , wenn die relative Häufigkeit des Treffers zu h i00 = f gemessen wurde .

hn = 0 das Vertrauensintervall für p zu einem Punkt . Das würde heißen , daß
für h„ = 0 die Wahrscheinlichkeit p mit der Sicherheit 1 — r\ (in unserem Bei¬
spiel also 90%) den Wert 0 hätte , was sicher zuviel gesagt ist , wie die grobe Ab¬
schätzung von Figur 258 . 1 zeigt , die als grobes Konfidenzintervall für diesen Fall
noch das Intervall 0 ; - zuläßt .’ 2 \/nr \
Das echte Konfidenzintervall erhält man , wenn man das oben gefundene e
verwendet und damit die Ungleichung | h„ — p \ < e löst . Die Grenzen dieses
offenen Intervalls sind somit die Lösungen der Gleichung

Bezeichnen wir die beiden Lösungen dieser quadratischen Gleichung für p mit
/q und p 2 (wobei p x < p 2 sein soll) , dann wird jedem hn
das echte Konfidenzintervall 3 (/j„) = j/q ; /j 2 [
zugeordnet .
Man gewinnt dieses echte Konfidenzintervall übrigens graphisch , wenn man die
Relation zwischen hn und p aus Figur 257. 1 von der /q -Achse her liest . Zeichnet
man die /q -Achse , wie üblich , als Rechtswertachse , dann wird die Hüllellipse von
Figur 257. 1 an der Winkelhalbierenden gespiegelt . Es entsteht Figur 260. 1 , die
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n =100 T) =10 %
P

. 0.1. 0.5 3
4

h„

Fig . 261 . 1 Der Zusammenhang zwischen grobem , Näherungs - und echtem Konfidenzinter¬
vall einschließlich der Hüllkurven Parallelenpaar , Näherungskonfidenzellipse (schwarz) und
echte Konfidenzellipse (rot ) . - Hervorgehoben ist der Wert hn

— f .

die echten Konfidenzintervalle samt der Konfidenzellipse mit der Gleichung
PX ~ p) als Hüllkurve zeigt .

In unserem konkreten Beispiel finden wir das echte Konfidenzintervall durch
PiX - p)
100 ■0,1

Lösen der quadratischen Gleichung 10,18 — p \ . Eine leichte Rech¬

nung liefert p 1 = 0,08965 . . . und p 2 = 0 .32852 . . . Damit können wir sagen :
Das 90 % -Konfidenzintervall ] 0,089 ; 0,329[ wurde durch ein Verfahren ermittelt ,
das mit einer Sicherheit von mindestens 90 % zu einem Intervall führt , das die
wahre Wahrscheinlichkeit für die Augenzahl 6 bei diesem Würfel enthält . Das
bedeutet : Führt man sehr oft dieses Verfahren durch , so werden mindestens 90 %
der so gefundenen Intervalle p enthalten . (Vgl . Aufgaben 275/96 und 97.)
Die vermeintlich genauere Schranke 0,301 von 7(0,18 ) darf uns nicht täuschen !
Sie ist ja nur ein Näherungswert . Zur Klärung zeigt Figur 261 . 1 den Zusammen¬
hang zwischen dem Parallelenpaar der groben Abschätzung , der Hüllellipse sog.
»genaueren « Näherung und der Konfidenzellipse .

Aufgaben
Zu 14 . 1 .

1 . Eine Urne enthält 6 schwarze , 8 weiße und 10 rote Kugeln . Mit welcher Wahrschein¬
lichkeit erhält man bei ömaligem Ziehen mit Zurücklegen genau 3 rote Kugeln ?

2 . Eine Maschine stellt Stanzteile mit einem Ausschußanteil von 5 % her . Wie groß ist die
Wahrscheinlichkeit , daß 4 zufällig ausgewählte Teile ausnahmslos in Ordnung sind ?
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3 . Ich spiele dreimal Roulett und setze jedesmal auf »pair « (Seite 22 f.) . Mit welcher Wahr¬
scheinlichkeit werde ich genau . zweimal gewinnen ?

4 . Bei einer Prüfung ist zu 10 Fragen jeweils die richtige von 3 Antworten anzukreuzen.
Mit welcher Wahrscheinlichkeit erzielt man bei blindem Raten nur 3 richtige Lösungen ?

5 . In einer Bevölkerung leben 2% Linkshänder . Wie wahrscheinlich ist es , daß sich unter 7
zufällig zusammentreffenden Personen
a) genau ein , b) mindestens ein Linkshänder befindet?

6 . Eine L-Münze werde 8mal geworfen bzw. 8 L-Münzen werden lmal geworfen .
a) Berechne die Wahrscheinlichkeit, daß

1) genau 2) mindestens 3) höchstens 3mal Wappen erscheint.
b) Welches der folgenden Ereignisse hat die größte Wahrscheinlichkeit:

A ■■= »Genau 4 Wappen « , B ■■= »3 oder 5 Wappen « , C := »2 oder 6 Wappen « ?
7 . Ein Würfel werde viermalgeworfen. Zeichne das Histogramm der Verteilung der Zufalls¬

größe »Anzahl der geworfenen Sechsen« zur Breite 1.
8 . Zwei Mannschaften A und B machen einen Wettkampf im Tauziehen * . Erfahrungsge¬

mäß gewinnt A in 60 % aller Fälle . Ein Entscheidungskampf bestehe aus n Partien .
Sieger ist , wer die Mehrzahl der Partien gewinnt .
a) Warum sollte n ungerade sein?
b) Mit welcher Wahrscheinlichkeit gewinnt die schwächere Mannschaft bei 3 bzw. bei

7 bzw. bei 15 Partien ?
• c) Wie viele Partien sollten mindestens »gezogen« werden, damit die Chance der

schwächeren Mannschaft auf den Gesamtsieg unter 33 -j % liegt ?
9 . Eine Sau ferkelt zweimal im Jahr . Die Wahrscheinlichkeit sei für männliche und weib¬

liche Ferkel gleich groß .
a) Wie groß ist in einem Wurf von 10 Ferkeln die Wahrscheinlichkeit für genau (höch¬

stens , mindestens ) 8 weibliche Ferkel ?
b) Wie groß ist im betrachteten Wurf die Wahrscheinlichkeit dafür , daß mindestens ein

weibliches und mindestens ein männliches Ferkel geworfen werden ?
• c) Wie groß ist im Zehnerwurfdie Wahrscheinlichkeit, daß mindestens i weibliche und

mindestens j männliche Ferkel geworfen werden ? Welche Werte ergeben sich für
( i I?) = (212) , (215) , (515) , (0 | 0) , (4 | 8) ?

10. Von einer Familie ist bekannt, daß sie 8 Kinder hat .
a) Welche Anzahl von Mädchen ist am wahrscheinlichsten, wenn die Wahrscheinlichkeit

für eine Knabengeburt 0,5 ist ?
b) Mit welcher Wahrscheinlichkeit tritt diese Anzahl wirklich auf?
c) Der empirische Wert der Wahrscheinlichkeit für eine Knabengeburt ist über lange

Zeiträume hinweg konstant bei 0,514. Löse Aufgabe a) und b) für diesen Wert .
11 . Bei einem Spiel hat Spieler A die Gewinnchance 0,7. Mit welcher Wahrscheinlichkeit ge¬

winnt er trotzdem weniger als die Hälfte von 5 Spielen ?
12 . Bei einem Glücksautomaten besteht die Gewinnchance ^ für ein Spiel.

a) Ist die Wahrscheinlichkeit, genau zweimal zu gewinnen, bei 3 oder bei 4 Spielen
größer ?

• b) Zeichne diese Wahrscheinlichkeit in Abhängigkeit von der Zahl n der Spiele
(n = 1, . . . ,10 ) .

• c) Für welche Anzahlen n ist die Wahrscheinlichkeit für genau 2maliges Gewinnen am
höchsten bzw. liegt sie unter 10 % ?

• 13 . Jemand würfelt 60mal und hofft, genau lOmal die Eins zu erreichen . Wie groß ist die
Chance dafür ? - Sein Freund meint , man müsse viel öfter würfeln , um einen solchen
Idealfall zu erreichen . Wie groß ist die Wahrscheinlichkeit für 20 Einsen bei 120 Würfen ?

* In den Jahren 1912 und 1920 war Tauziehen sogar olympische Disziplin .
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14 . Zwei Spieler vereinbaren: Wer bei 6maligem Würfeln mindestens k0 Sechsen erzielt ,
hat gewonnen .
a) Bestimme k0 so , daß das Spiel möglichst fair wird .

• b) Denke eine andere Vereinbarung über die Anzahl der zu erzielenden Sechsen aus , so
daß das Spiel noch »fairer« wird .

• 15. Bei einer schwierigen Operation besteht für Frauen die Chance 0,8 , für Männer die
Chance 0,7 , danach noch mindestens 1 Jahr zu leben . Mit welcher Wahrscheinlichkeit
sind von 2 Frauen und 3 Männern (3 Frauen und 2 Männern ) , die diese Woche operiert
werden mußten , nach einem Jahr noch genau 2 Personen am Leben ?

16 . a) Wie lang muß eine Zufallsziffernfolgesein, damit mit einer Wahrscheinlichkeitvon
mehr als 1) 99 % 2) 60 % mindestens einmal die Ziffer 3 auftritt ?

b) Überprüfe 2) anhand der Zufallszifferntabellein den Stochastik -Tabellen , Seite 47.

17 . Drei Aufgaben aus Christiaan Huygens’
( 1629- 1695) De ratiociniis in aleae ludo ( 1657) .*

»Aufgabe X : Es ist die Anzahl der Würfe zu bestimmen , mit der es jemand wagen kann ,
mit einem Würfel 6 Augen zu werfen .«
»Aufgabe XI : Es ist die Anzahl der Würfe zu bestimmen , mit der es jemand wagen kann ,
mit zwei Würfeln 12 Augen zu werfen .«
»Aufgabe XII : Es ist zu bestimmen , mit wieviel Würfeln es jemand wagen kann , auf
den ersten Wurf zwei Sechser zu werfen .«

18 . Eine ideale Münze wird 40mal geworfen . Untersuche auf Unabhängigkeit:
A s= »Nach dem 20. Wurf hat man 10 Adler « ;
B ~ »Nach dem 21 . Wurf hat man 11 Adler « .

Zu 14 . 2 .

19 . Eine Urne enthält 6 schwarze, 8 weiße und 10 rote Kugeln. Mit welcher Wahrschein¬
lichkeit erhält man bei ömaligem Ziehen ohne Zurücklegen genau 3 rote Kugeln ?
Vergleiche das Ergebnis mit dem der Aufgabe 261/1 .

20 . Eine Urne enthalte 8 Kugeln , darunter 3 weiße. Man entnimmt ihr
a) vier b) zwei Kugeln ohne Zurücklegen. Gib die Wahrscheinlichkeitsfunktion
der Zufallsgröße »Anzahl der weißen Kugeln in der Stichprobe « an und zeichne ein
Stabdiagramm (10% = 1 cm) .

21 . Ein Komitee von 6 Personen wird aus 10 Männern und 5 Frauen ausgewählt. Berechne
Wahrscheinlichkeitsverteilung , Erwartungswert und Varianz der Zufallsgröße »Anzahl
der Männer im Komitee « .

22 . In einer Kiste mit 20 Äpfeln sind 2 faule Äpfel . Man entnimmtauf gut Glück eine Stich¬
probe von 4 Äpfeln . Berechne die Wahrscheinlichkeitsverteilung der Zufallsgröße »An¬
zahl der faulen Äpfel in der Stichprobe « .

23 . a) Aus einem Skatspiel (32 Karten) werde eine Karte gezogen und wieder zurückgelegt.
Wie oft muß dieser Vorgang mindestens ausgeführt werden , damit mit einer Wahr¬
scheinlichkeit , die größer als 0,5 ist , mindestens 2 Herzkarten gezogen werden ?

b) Berechne die Wahrscheinlichkeit, mindestens 2 Herzkarten zu erhalten , wenn man
die in a) ermittelte Anzahl von Karten auf einmal dem Spiel entnimmt .

* Die Aufgaben X und XI behandeln das Problem von de Mere . - Für Liebhaber geben wir den lateinischen Urtext
von X an :
Propositio X : Invenire , quot vicibus suscipere quis possit , ut una tessera 6 puncta iaciat .
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24. a) Begründe die Bedingungen K ^ N und n f N in der Definition 233 . 1.
b) Zeige, daß {k |max {0 ; n - (N - K)j ^ k ^ min {n ; K } /\ ke IM0} u {0} die Wertemenge

einer nach H (N ; K ; n) verteilten Zufallsgröße ist .
fn \ [ N — n\
\kJ \K - k)

26. Beweise: ]T

25. Beweise, daß man H (IV ; K ; n ; k) auch in der Form - — - schreiben kann.
fK \ / N - K\ = fN

- - Kk ) \ n - k )
~

\
27 . In einer Urne liegen 100 Kugeln , darunter 10 schwarze . Man zieht n Kugeln einmal mit

und einmal ohne Zurücklegen . Vergleiche die Wahrscheinlichkeiten dafür , dabei genau
2 schwarze Kugeln zu ziehen , falls a) n = 2 , *b) « = 10 , c) n = 100 .

• 28. Beweise unter Verwendung von Aufgabe 26 : Für den Erwartungswert einer nach

H (N ; K ; n) verteilten Zufallsgröße X gilt : SX = w — . Überprüfe damit den Wert aus

Aufgabe 21 . - Führe den Beweis ohne Verwendung von Aufgabe 26 .
29 . Beweise: Für die Varianzeiner Zufallsgröße X gilt : VarX = i (X (X — 1)) + SX — (SX )

2.
30. Beweise unter Verwendung von Aufgabe 29 : Ist X eine hypergeometrisch nach

H (N ; K ; n) verteilte Zufallsgröße , dann gilt : VarX = — —
j - Über -

' ’
N — nprüfe den Wert aus Aufgabe 21 . - Die Endlichkeit des Urneninhalts wird durch ——

den finite population (correction) factor (Endlichkeitsfaktor ) berücksichtigt , der für
festes n mit wachsendem N gegen 1 strebt .

Zu 14 . 3.

31 . Bestimme aus einer Binomialtabelle :
a) B (20 ; 0,8 ; 16 ) b) B ( 100 ; 0,75 ; 87) c) B (50 ; 0,5 ; 25)
d) (

l
4
°

) ■0,24 0,8 6 e) 0,6 10 f) 0,99 lo °

32 . Bestimme aus den
Stochastik -
Tabellen

n 9 9 20 20 200 9 9 20 20 200

p 0,05 0,4 0,2 0,35 0,15 0,95 0,6 0,8 0,65 0,85
F "

(x) für X 2 2 16 3,7 27,2 2 2 16 3,7 171,6
33. Z sei eine nach B (n ; p ) verteilte Zufallsgröße . Bestimme aus einer Tabelle der kumula¬

tiven Werte die Wahrscheinlichkeiten des Ereignisses A :
n P A n P A

a) 20 0,8 Zg 8 g) 50 0,45 10 g Z ^ 20
b) 20 0,2 Zg 8 h) 50 0,75 10 < Z <1 21
c) 10 0,2 Z = 2 0 50 0,65 | Z — 25 | < 4
d) 20 0,9 Z < 7 j) 100 0,65 |Z — 50 i > 7
e) 10 0,6 Z > 3 k) 40 0,04 | Z — 1,61 > 1
0 10 0,6 Z ^ 4 1) 30 0,50 | Z - 151 ^ 5

34. In einem Sack sind r rote Kugeln und w weiße Kugeln . Es wird eine Kugel gezogen,
ihre Farbe notiert , die Kugel zurückgelegt und gut gemischt . Dies wird «-mal gemacht .
Mit welcher Wahrscheinlichkeit erhält man insgesamt
a) genau 5 rote , b) genau 5 weiße , c) mehr als 5 weiße Kugeln , d) keine weiße Kugel ?
Rechnung für die Tripel r ; w ; n
1) 50 ; 50 ; 10 2) 70 ; 30 ; 10 3) 70 ; 30 ; 20 4) 30 ; 70 ; 20 .
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35 . Eine ideale Münze wird 200mal geworfen . Mit welcher Wahrscheinlichkeit liegt die An¬
zahl der Adler im Intervall [70,130 ] bzw. [80,120 ] , [90,110 ] , [95,105 ] , [99,101] bzw.
ist sie genau gleich 100 ?

36 . Eine ideale Münze wird geworfen . Der Anteil der Adler im Wurfergebnis liegt zwischen
40 % und 60 % . Wie wahrscheinlich ist dies bei 5 , 10 , 20 , 50 , 100 und 200 Würfen ?

•37 . Für n Würfe einer idealen Münze soll ein möglichst enges Intervall gefunden werden ,
in dem die Anzahl der Adler mit mindestens 90 % Wahrscheinlichkeit liegen wird . Löse
diese Aufgabe für n = 10 , 50 , 100 , 200.

38 . a) In einer Urne befinden sich 20 Kugeln ; davon sind 8 schwarz . Es werden 3 Kugeln
miteinander der Urne entnommen . Ein Treffer liegt vor , wenn sich darunter mindestens
eine schwarze Kugel befindet . Der Versuch wird lOmal ausgeführt . Gib die Wahr¬
scheinlichkeitsverteilung für die Anzahl der Treffer an .

b) Löse die Aufgabe a) allgemein: Von N Kugeln in der Urne sind S schwarz , m Kugeln
werden miteinander entnommen ; der Versuch wird rc-mal ausgeführt .

39 . Zum 50köpfigen Aufsichtsrat einer Firma gehören 8 Mathematiker . Durch das Los wird
jährlich ein 5köpfiger Vorstand gewählt . In der 20jährigen Geschichte der Firma ist es
llmal vorgekommen , daß mindestens ein Mathematiker im Vorstand war . Wie wahr¬
scheinlich ist es , daß derart häufig oder noch häufiger Mathematiker in den Vorstand
gewählt werden ? (Näherungslösung mit der Binomialtabelle genügt .)

40 . Ein Tennis-Match ist entschieden, wenn einer der Spieler 3 Sätze gewonnen hat . Jeder
Satz wird bis zur Entscheidung gespielt , d . h ., im Tennis gibt es kein Unentschieden .
Spieler A gewinne einen Satz mit der Wahrscheinlichkeit p .
a) Berechne die Wahrscheinlichkeitsfunktion der Zufallsgröße X ■■= »Anzahl der zur

Entscheidung benötigten Sätze« . Überprüfe , ob die Summe der Wahrscheinlichkeiten
den Wert 1 ergibt .

b) Berechne für 2 gleich starke Gegner die Werte der obigen Wahrscheinlichkeitsfunktion
und den Erwartungswert von X . - Zeichne ein Histogramm .

41 . Eine Fußballmannschaft gewinne ihre Spiele allgemein mit der Wahrscheinlichkeitp
und spiele mit der Wahrscheinlichkeit p ' unentschieden . Unabhängigkeit der Spiele
wird angenommen .
a) Man zeichne die »Gewinncharakteristik« für eine Runde von 5 Spielen , d . h . die

Funktion p i—> P (»Mindestens 3 Spiele gewonnen«) (Einheit 10 cm) . Für welchen
Wert p ist die Gewinnchance für die Spielrunde genau gleich -| ? (Vermutung ? -
Graphische und rechnerische Prüfung !)

b) Nun werde wie üblich gewertet: Gewonnenes Spiel 2 Punkte , Unentschieden 1 Punkt,
verlorenes Spiel 0 Punkte . Wie groß ist die Wahrscheinlichkeit , die Runde zu gewin¬
nen , d . h . mehr als die Hälfte aller erreichbaren Punkte zu erhalten ? (Formel mit p
und p '

.) Setze die Daten p = 0,7 und p ’ = 0,1 ein und vergleiche mit dem entsprechen¬
den Ergebnis aus a) .

42 . Ein Taxistandplatz ist für 10 Taxen vorgesehen. Die Erfahrung zeigt, daß ein Wagen
sich durchschnittlich 12 Minuten pro Stunde am Standplatz aufhält . Genügt es , den
Standplatz für 3 wartende Wagen anzulegen , ohne daß dadurch in mehr als 15 % aller
Fälle ein Taxi keinen Platz findet ?
Welche Anzahl von Taxen wird man am häufigsten am Standplatz antreffen ?

43 . Bei einer Versicherung sind 20 Agenten beschäftigt , die 75% ihrer Zeit im Außendienst
verbringen . Wie viele Schreibtische müssen angeschafft werden , damit mindestens 90%
der Innendienstzeit jeder Agent einen eigenen Schreibtisch zur Verfügung hat ?

44 . Anläßlich der Einführung des 8 - Minuten-Takts für Ortsgespräche bietet ein Waren¬
haus Sanduhren an . Ungenauigkeiten bei der Herstellung bewirken , daß 10 % der Uhren
länger als 8 min laufen . Ein Lehrling packt eine Sendung von 50 Sanduhren aus .
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a) Mit welcher Wahrscheinlichkeit enthält die Sendung genau (höchstens , mindestens )
6 länger laufende Uhren ?

b) Mit welcher Wahrscheinlichkeit enthält die Sendung genau 6 länger laufende Sand¬
uhren , die noch dazu beim Auspacken direkt nacheinander kommen ?

c) Die Sendung enthalte genau 6 länger laufende Sanduhren . Mit welcher Wahrschein¬
lichkeit folgen sie beim Auspacken direkt aufeinander ?

Zu 14 . 5.

• 45 . Berechne Erwartungswert und Varianz einer binomial verteilten Zufallsgröße durch
Zurückgehen auf ihre Definitionen .

46. Berechne Erwartungswert , Varianz und Standardabweichung für folgende Zufalls¬
größen :
A := Anzahl der Adler beim 8fachen Wurf einer Laplace -Münze ,
B ■■= Anzahl der Adler beim löfachen Wurf einer Laplace -Münze ,
C — Anzahl der Adler beim 160fachen Wurf einer Laplace -Münze ,
D ■■= Anzahl der Adler beim 10 6fachen Wurf einer Laplace -Münze ,
E := Anzahl der Sechser beim 4fachen Wurf eines Laplace -Würfels ,
F ■■= Anzahl der Doppelsechser beim 24fachen Wurf zweier Laplace -Würfel ,
G — Auszahlung in DM beim lOOmaligen Setzen von 0,5 DM auf Rouge beim Roulett .
(Warum ist die Zufallsgröße »Auszahlung « nicht binomial verteilt , wenn der Einsatz
1 DM beträgt ? )

47. Zwei Schützen A und B treffen mit einer Sicherheit von 75% bzw. 85 % . A erzielte bei
10 Schüssen 7 Treffer, B bei 20 Schüssen 16 Treffer . Wer war relativ zu seinen sonstigen
Leistungen an diesem Tage der bessere ?

48. Eine Zufallsgrößeist binomial verteilt mit dem Erwartungswert p und der Standardab¬
weichung er. Berechne n und p für
a) p = 8,1 und er = 2,7 b) p = 72,9 und er = 2,7 c) p = 8,1 und er = 0,9 j/Ü

49. Eine Zufallsgröße X ist binomial verteilt mit p = 3,2 und er = 1,6. Berechne, ggf.
unter Verwendung der Rekursionsformel ,
a) P (X = 3) , b) P (X = 5) , c) P (X = 9) , «d) P (2 < X ^ 8) ,
• e) P ( \X — p \ < 2 - er) .

50 . Von einem Schock Eier sind im Schnitt 3 angeschlagen. Dorothea kauft 40 Eier und findet
5 angeschlagene .
a) Wie groß ist der Erwartungswert und die Standardabweichung der Zufallsgröße

»Anzahl der angeschlagenen Eier« ?
b) Wie groß ist die Wahrscheinlichkeit dafür , daß unter 40 Eiern mindestens 5 ange¬

schlagene sind ? Hat Dorothea besonderes Pech ?
51 . In einem großen Saustall befinden sich 1000 Säue . Im Jahr sind 2000 Würfe zu erwarten

(vgl . Aufgabe 262/9) . Wir nehmen an , daß es sich um Zehnerwürfe handelt . Bei wie vielen
dieser Würfe enthält der Wurf voraussichtlich
a) kein männliches Ferkel, b) mindestens ein männliches Ferkel,
c) 1 oder 2 männliche Ferkel , d) genau 2 männliche Ferkel ,
e) genau 5 männliche Ferkel ?

52. Der Schützenkönig eines Kirchweihfestes geht auf folgenden Handel ein . Er schießt
lOmal auf eine Scheibe . Für jeden Treffer ins Schwarze erhält er 100 DM . Trifft er nicht ,
so muß er jedesmal 200 DM bezahlen . Seine Treffsicherheit beträgt jedesmal 80 % .
a) Wie groß ist die Wahrscheinlichkeit , daß er mindestens 8mal ins Schwarze trifft ?
b) Wieviel Geld hat er zu erwarten ?
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53 . Von einer Familie ist bekannt , daß sie 8 Kinder hat .
a) Wie viele Mädchen sind zu erwarten , wenn die Wahrscheinlichkeit für eine Knaben¬

geburt 0,5 ist ?
b) Mit welcher Wahrscheinlichkeit wird diese Anzahl wirklich angenommen ?
c) Der empirische Wert der Wahrscheinlichkeit für eine Knabengeburt ist über lange

Zeiträume hinweg konstant 0,514 . Löse Aufgabe a) und b) für diesen Wert .
d) Vergleiche diese Aufgabe mit Aufgabe 262/10.

54 . Ein Schütze trifft mit 85 % Sicherheit . Er nahm an 3 Wettbewerben teil . Beim 1. Wett¬
bewerb traf er bei 10 Schüssen 8mal , beim 2 . Wettbewerb bei 15 Schüssen 12mal und
beim 3 . Wettbewerb bei 20 Schüssen 16mal ins Schwarze . Wann war er relativ am besten
und am schlechtesten ?

55 . Zum Klassentreffen 1981 haben sich 30 ehemalige Schüler im Restaurant » II Mulino«
verabredet . Der Organisator hatte allerdings nicht bedacht , daß im Großraum München
3 Restaurants dieses Namens existieren . Jeder geht auf gut Glück in eines der drei
Restaurants .
a) Wie viele Exschüler sind im Schwabinger »II Mulino « zu erwarten ?
b) Mit welcher Wahrscheinlichkeit treffen sich dort mehr als § der Exschüler ?
c) Mit welcher Wahrscheinlichkeit kommt keiner (kommen alle ) dorthin ?
d) Tatsächlich kommen 13 dorthin.

1) Wie wahrscheinlich ist dies ?
2) Bei welcherWahrscheinlichkeitp = P (»Entscheidungfürs Schwabinger 11Mulino«)

ist diese Zahl am wahrscheinlichsten ? Berechne dazu das Maximum der Funktion
py- > B (30 ; p ; 13 ) .

56 . Eine Maschine stellt Werkstücke mit einem Ausschußanteil von 4% her.
a) Man entnimmt der laufenden Produktion 200 Stück . Berechne Erwartungswert ,

Varianz und Standardabweichung der Zufallsgrößen X ■■= Anzahl der defekten Stücke
und Y ■■= Anzahl der brauchbaren Werkstücke . - Mit welcher Wahrscheinlichkeit
liegt die Anzahl der Ausschußstücke im Bereich [p — er; p + a] ?

b) Wie viele Werkstücke darf man höchstens entnehmen , damit man mit 95% Sicher¬
heit nur brauchbare hat ? Welche Anzahl erhält man , wenn man nur 90% Sicherheit
fordert ?

57 . a) Fasse die ersten 1000 Würfe aus Tabelle 10 . 1 als 100 Bernoulli-Ketten der Länge 10 auf.
Nimm als Treffer »Wurf eines Daus « * und erstelle die empirische Verteilung der Zu¬
fallsgröße »Anzahl der Dause bei 10 Würfen« . Berechne daraus den empirischen
Mittelwert p und die empirische Wahrscheinlichkeit p .

b) Berechne die Verteilung B (n ; p ) und vergleiche mit der empirischen Verteilung .
58 . a) Vergleiche für eine nach B (n ; p ) verteilte Zufallsgröße den Erwartungswert p mit

der Wahrscheinlichkeit P (»Mindestens 1 Treffer«) für die Zahlenwerte
1) n = 2 ; p = 0,005 2) n = 3 ; p = 0,1 3) n = 3 ; p = 0,01

b) Beweise die Näherungsformel : Für eine nach B (n ;p ) verteilte Zufallsgröße gilt, falls
der Erwartungswert p nahe bei Null liegt : P (X g 1) « p.

c) Berechne mit Hilfe dieser Näherungsformel P (X ^ 1) für n = 100 und p = 2^ 0 -
Was liefert der Taschenrechner für P (X 1) ?

59. Eine nach B (n ; p ) verteilte Zufallsgröße hat die Standardabweichung a und den Er¬
wartungswert p . .
a) Drücke n und p durch <7 und p aus . b) Beweise, daß er2 5S p gilt ,
c) Beweise, daß für a2 < p die Zahl p - a2 ganzzahlig in p2 enthalten ist .

* Das Daus (Plural : Dause , auch Däuser ), gelegentlich auch Taus , bedeutet beim Würfelspiel »zwei Augen« , was im
Englischen mit deuce bezeichnet wird . Zur Etymologie : Daus < spätalthochdeutsch dus < südfrz. dous < lat. duos
für duo .
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60. X sei nach B (« ; p) verteilt . Wie groß muß n sein , damit das 3cr-Intervall um p zwischen
0 und n liegt , d . h . , \p - 3er ; p + 3 <r] <= [0 ; «] , falls p zwischen 0,1 und 0,9 liegt ?

61 . a) Jemand wettet , daß bei einem 20fachen Wurf einer Laplace -Münze 9- , 10 - oder llmal
Zahl erscheint . Wie müssen die Einsätze verteilt sein , damit die Wette fair ist?
(Exakter Wert )

b) Wie ist die Verteilung der Einsätze für eine faire Wette, wenn man eine L -Münze
10- , 20 - , 40 - , lOOmal wirft und jedesmal darauf wettet , daß die Anzahl der Adler im
Bereich [ß — er; p + <r] liegt ?

62. Bei einem Glücksrad ist ein Sektor mit p ■360° für die 1 als Treffer vorgesehen . Der Rest
liefert 0 als Niete . Das Glücksrad muß «-mal gedreht werden . Gibt es dabei genau einen
Treffer , dann wird ein Preis ausbezahlt . Für welches p ist die Wahrscheinlichkeit für einen
Preis am größten ? Berechne für dieses p den Erwartungswert der Anzahl der Treffer . -
Welcher Wert ergibt sich für die Wahrscheinlichkeit , einen Treffer zu erzielen , wenn n
gegen Unendlich strebt ?

63 . A und B vereinbaren folgende Spielregel : A wirft drei 5-DM -Münzen , B wirft zwei
5-DM -Münzen . (Die Münzen seien Laplace -Münzen .) Gewonnen hat der Spieler , der
mehr Adler geworfen hat . Im Fall eines Remis wird ein neues Spiel gespielt .
a) Die Spielergebnissewerden als Paare (Anzahl der Adler von A | Anzahl der Adler von

B) notiert . Stelle den dazu passenden Ergebnisraum auf.
b) Es werden die folgenden Ereignisse definiert : A ■■= »A gewinnt das Spiel«, B -=

»B gewinnt das Spiel«, R — »Remis « . Gib die entsprechenden Ergebnismengen an .
c) Stelle tabellarisch die Wahrscheinlichkeiten aller Elementarereignisse des Ergebnis¬

raums aus a) auf . Liegt ein Laplace -Experiment vor ? Begründung !
d) Berechne P {A) , P (B) und P {R) . Wie groß ist die Wahrscheinlichkeit, daß in den ersten

3 Spielen keine Entscheidung fällt ?
e) X sei die Zufallsgröße »Spielausgang « ; sie nehme die Werte — 1, 0,1 an , wenn B ge¬winnt , wenn Remis eintritt bzw. wenn A gewinnt . Zeichne das Flistogramm mit der

Breite 1 und die kumulative Verteilungsfunktion dieser Zufallsgröße . Wie kann man
aus der kumulativen Verteilungsfunktion die Wahrscheinlichkeit des Ereignisses
»B verliert nicht« entnehmen ? Wie groß ist diese Wahrscheinlichkeit ?

f) Es werden nun so viele Spiele gespielt, bis schließlichA oder B gewinnt. Wie groß ist
die Wahrscheinlichkeit , daß A Sieger wird ?

g) Der Gewinner des in f) beschriebenen Spiels erhält alle 5 Münzen , also 25 DM . Be¬
rechne den Erwartungswert der Zufallsgröße Y ■■= »Anzahl der von A gewonnenenDM « . Ist das Spiel fair?

h) Nun werde vereinbart , höchstens 5 Spielezu spielen. S sei die Zufallsgröße»Anzahl der
Spiele, die nötig sind , bis eine Entscheidung gefallen ist« ; für den Fall , daß alle 5
Spiele remis enden , soll S auch den Wert 5 annehmen . Welcher einfache Ergebnis¬
raum kann hier nun zugrundegelegt werden ? Wie groß ist seine Mächtigkeit ? Be¬
rechne den Erwartungswert von S. Welche Bedeutung hat er ?

i) Welcher Wert ergibt sich für SS aus h) , wenn man die Beschränkung auf 5 Spielefallenläßt ?
64 . Zwei Wanderer A und B gehen mit Schritten der Länge 1 auf der Zahlengeraden unab¬

hängig voneinander spazieren . A beginnt bei 0 und geht jede Sekunde mit der Wahr¬
scheinlichkeit § einen Schritt nach rechts (d . h . in positiver Richtung ) , mit der Wahr¬
scheinlichkeit L einen Schritt nach links . Er bleibt nie stehen . B beginnt bei — k und geht
jede Sekunde mit der Wahrscheinlichkeit |1 einen Schritt nach rechts , mit der Wahr¬
scheinlichkeit ruht er sich eine Sekunde aus , was auch schon in der 1. Sekunde ein-
treten kann .



Aufgaben 269

a) Die beiden Wanderergehen k Sekundenlang. Man schreibe + 1 für einen Schritt nach
rechts , — 1 für einen Schritt nach links und 0 für eine Sekundenpause . Gib für k = 3
je einen Ergebnisraum ß A bzw . ß B für A bzw. B an und bestimme die zugehörigen
Wahrscheinlichkeitsverteilungen PA und PB .

b) Die Zufallsgröße Ak bzw. Bk ordnejedem Ergebnis die Zahl zu , auf der der Wanderer
sich nach k Sekunden befindet . Gib je eine Wertetabelle für A 3 bzw. ß 3 an .
Beachte : ß 3 beginnt bei — 3 (siehe oben ) .
Stelle die Wahrscheinlichkeitsfunktionen für A 3 bzw. ß 3 auf.

c) Gib die kumulative Verteilungsfunktion für A 3 an . Berechne die Wahrscheinlichkeit
dafür , daß A sich nach 3 Sekunden auf einer positiven Zahl befindet.

d) Wie groß ist die Wahrscheinlichkeitdafür , daß sichA und B nach genau drei Sekunden
am selben Ort befinden ?

e) Zeige, daß A nach genau k = 2n — 1 Sekunden sicher nicht in 0 ist . Wie groß ist die
Wahrscheinlichkeit dafür , daß A und B sich nach genau k = 2n Sekunden in 0 be¬
finden ?

f) Berechne i (A 3) und $ (ß 3) , allgemein S (A^ und A (Bk) .
Hinweise : 1. Stelle Ak als Summe von k Zufallsgrößen dar .

2. Beachte , daß Bk + k eine nach B (k ; p ) verteilte Zufallsgröße ist .
65 . Ein Händler bezieht Spieltetraeder von zwei Herstellern A und B . Aus langjähriger Er¬

fahrung weiß der Händler , daß sich in der Produktion des Lieferanten A etwa 90% , in
der des Lieferanten B etwa 70% L-Tetraeder befinden . A liefert dreimal soviel wie B .
a) Wie groß ist die Wahrscheinlichkeit, daß sich in einer willkürlich ausgewählten Pak -

kung zu 20 Stück genau 4 Nicht -L-Tetraeder befinden ?
b) Aus den Packungen, die sich äußerlich nicht unterscheiden, wird auf gut Glück eine

ausgewählt . Sie enthält genau 4 Nicht -L-Tetraeder . Mit welcher (bedingten ) Wahr¬
scheinlichkeit wurde ihr Inhalt vom Hersteller A geliefert?

66 . Le probleme des partis . - Vergleiche Aufgabe 18/10. Zwei Spieler A und B spielen um
einen Einsatz ein Spiel , das aus mehreren Partien besteht . Gewinner soll derjenige sein ,
der als erster n Partien gewonnen hat . A gewinnt mit der Wahrscheinlichkeit p eine Partie ,
B mit q = 1 — p . Aus irgendwelchen Gründen brechen A und B das Spiel beim Stand

(Siege von A ) : (Siege von B) = a : ß = (n — a) : (n — b)
ab ; dabei bedeuten a bzw. b die Anzahlen derjenigen Partien , die A bzw. B noch gewin¬
nen müßten , um Sieger zu sein . Wie ist der Einsatz bei Spielabbruch »gerecht« aufzu¬
teilen ?
a) Leite dazu einen der folgendenAusdrücke für die Wahrscheinlichkeiteines Sieges von

A her :

de Moivre ( 1711) : ^ (
a + b ~ i \ p a + b - k ~ 1 qk

fc= o \ * J

Montmort ( 1713) : p“ ■ £ (
k = 0 \ * J

b) Löse damit die folgenden historischenAufgaben. Vergleiche deine gefundene Lösung
mit den seinerzeit gemachten Vorschlägen über die Aufteilung des Einsatzes .
A . Beide Spieler sind gleich geschickt .
I . Luca Pacioli ( 1494 ) :

n = 6 , a = 5 , ß = 2 ; Vorschlag 5 : 2
II . Gerolamo Cardano ( 1539) :

1) n = 10 , a = 7 , ß = 9 ; Vorschlag 1 : 6
2) n = 10 , ot = 3 , ß = 6 ; Vorschlag 5 : 14
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III . Niccold Tartaglia ( 1556) :
1) n = 6 , a = 5 , ß = 3 ; Vorschlag 2 : 1
2) n = 60 , a = 50 , ß = 30 ; Vorschlag 2 : 1

J3) n = 60 , a. = 10 , ß = 0 ; Vorschlag 7 : 5
IV. Giobattista Francesco Peverone ( 1558 ) * :

n = 10 , a = 7 , ß = 9 ; Vorschlag : 1 : 6
V . Am 29 . 7 . 1654 schrieb Bfawe Pascal einen Brief an Pierre de Fermat , in dem er

mehrere Aufgaben dieses Typs löste :
1) n = 3 , a = 2 , ß = 1 ; Vorschlag 3 : 1
2) n = 3 , a = 2 , ß = 0 ; Vorschlag 7 : 1
3) h = 3 , a = 1 , /? = 0 ; Vorschlag 11 : 5
4) Ist a = n — 1 und ß = 0 , so soll im Verhältnis (2" — 1) : 1 aufgeteilt werden .

J5 ) Ist a = 1 und ß = 0 bei einem Spiel von n Partien , so soll der Anteil von A
(2w - 3) ! !

betragen . Dabei bedeute
(2h - 2) ! !

am Einsatz

1 - 3 - 5 - . . . - H , falls h ungerade ,
2 • 4 • 6 • . . . • h , falls n gerade ,

gelesen »h Doppelfakultät « .
VI . Jakob Bernoulli gibt in seiner Ars Conjectandi ( 1713 ) einen einfacheren Ausdruck

für A’s Anteil aus V . 5) an : Es fehle dem B nur ein Spiel mehr als dem A (d . h .,

Zeige die Richtigkeit dieser Behauptung .

B . Beide Spieler sind nicht gleich geschickt .
I . Abraham de Moivre ( 1667- 1754) veröffentlichte * * 1711 als erster eine solche Auf¬

gabe als Problem II in De Mensura Sortis :
Dem A fehlen 4 Siege und dem B 6 Siege zum Gewinn . Die Chance des A , eine
Partie zu gewinnen , verhält sich zu der von B wie 3 : 2 .
Wie ist der Einsatz gerecht aufzuteilen ?

II . Zur Einübung der in der Einleitung der 2 . Auflage der Doctrine of Chances ( 1738)
aufgestellten Formeln rechnet de Moivre einige einfache Fälle durch .
1) »Case IXth. A and B play together , A wants 1 Game of being up , and B 2 ; but

the Chances whereby B may win a Game , are double to the number of
Chances whereby A may win the same : ’tis requir ’d to assign the respective
Probabilities of winning .«

2) »Case X th. Supposing that A wants 3 Games of being up , and B 7 ; but that the
Proportion of Chances which A and B respectively have for winning a Game
are 3 to 5 , to find the respective Probabilities of winning the Set .«

III . Welche Aufteilung des Einsatzes wäre beim Problem von Pacioli gerecht , wenn
man auf Grund des Spielstandes bei Spielabbruch annimmt , daß sich die Ge¬
schicklichkeiten der Spieler wie die Spielstände verhalten ?

* Due brevi e facili Trattati, il Primo d 'Arithmetica , l ’Altro di Geometria .** Die unter a) angegebene Formel von de Moivre teilte bereits Johann Bernoulli am 17. 3. 1710 brieflich Montmortmit , der wiederum seine Formel am 1. 3. 1712 an Nikolaus Bernoulli schrieb und sie dann in die zweite Auflage seines
Essay <f Analyse sur le Jeux de Hazard (1713) aufnahm .Auch Jakob Bernoulli beschäftigte sich mit ungleich geschickten Spielern , wie der Abschnitt IV seines Lettre a unAmy sur les Parties du Jeu de Paume zeigt , der als Anhang zu seiner Ars Conjectandi abgedruckt wurde .
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Zu 14 . 6 .
67 . a) Welche Beziehung muß zwischen n und p bestehen, damit bei einer Binomialvertei¬

lung der wahrscheinlichste Wert kw nicht der dem Erwartungswert am nächsten
liegende k -Wert ist ?

b) Zeige , daß im Fall der Aufgabe a) der wahrscheinlichsteWert fcw der zweitnächste
fc-Wert ist .

68 . a) Zeige : Die Schiefe der Binomialverteilung B (n ;p ) ist positiv für 0 < p < { und negativ
für ^ cpc 1 .

b) Zeige : Die Schiefe einer nach B (« ; 1 — p) verteilten Zufallsgröße ist gleich der nega¬
tiven Schiefe einer nach B (n ; p ) verteilten Zufallsgröße .

c) Berechne die Schiefe für die Verteilungen B ( 16 ; p) aus Figur 242 . 1.
d) Berechne die Schiefe für die Verteilungen B (« ; -! ) aus Figur 243 . 1.

• 69 . a) Bestimme Median , 1. und 3 . Quartil und das Quantil der Ordnung 90 % für eine nach
B ( 16 ; p ) binomial verteilte Zufallsgröße mit pe {to >Ä >. . . , ^ } mit Hilfe der Tabellen
von Figur 242. 1.

b) Verfahre ebenso mit den Verteilungen von Figur 243 . 1.
c) Bestimme mit Hilfe von Tabellen dieselben Werte für Zufallsgrößen , die binomial

nach B (8 ; 0,35 ) , B (50 ; 0,1 ) , B ( 100 ; 0,9) und B (200 ; 0,6) verteilt sind.

Zu 14 . 7.
•70 . Jakob Bernoulli ( 1655- 1705 ) formuliertedas Gesetz der großen Zahlen folgendermaßen :

»Es verhalte sich die Zahl der fruchtbaren Fälle zur Zahl der unfruchtbaren Fälle wie
r : s , also zur Zahl aller Fälle wie 777 = 7 , was zwischen den Grenzen und ^ 4.
liegt . Dann können so viele Versuche gemacht werden , daß es beliebig (z . B . c-mal)
wahrscheinlicher ist , daß die Anzahl der fruchtbaren Beobachtungen innerhalb dieser
Grenzen als außerhalb falle , d . h . , daß die Anzahl der fruchtbaren zur Anzahl aller
Beobachtungen ein Verhältnis haben wird , das weder größer als noch kleiner als
-!1̂ Tist .«t

Bernoulli beweist dies , indem er die Anzahl n der Versuche bestimmt , die dazu nötig
sind . Er findet : n muß mindestens so groß wie die größere der beiden folgenden Zahlen

und v2 sein.

( m 1 + ^ Wl ^ t, wobei m i - TT
^

TTA — A m i e -
\ r + 1 J v lg (r + 1) — lgr

v2 := ( m2 + r ^mi
^ ^ t, wobei m2 g ^ ^ — a m 2 s N 0 .

ä + 1 lg Cs + 1) - lgs

Zum Abschluß seines unvollendeten Werks zeigt er, daß , wenn r : s den Wert 1,5 hat ,
man nicht r : s = 3 : 2 , sondern wie 30 : 20 oder gar wie 300 : 200 setzen solle, um dadurch
die Grenzen einzuengen . Im Falle 30 : 20 bestimmt er dann die Anzahl der Versuche für
c = 1000 , 10 4 und 10 5 .
a) Bestimme die Anzahl n der Versuche für die angegebenen c-Werte .

Jb) Bestätige Bernoullis Behauptung, daß , ausgehend von c = 1000 , bei Erhöhung des
c -Wertes um eine Zehnerpotenz die Anzahl der Versuche um 5708 erhöht werden muß .

c) Löse a) und b) für das Verhältnis 300 : 200 .
71 . a) Beweise: Sind die Zufallsgrößen X t ( i = 1,2, . . . , «) paarweise unabhängig und gleich¬

verteilt mit ßX t = u und VarW = <j 2
, dann gilt für ihr arithmetisches Mittel

1 r t 2

Xn— ^ £ X t folgende Tschebyschow-Ungleichung : P {\Xn — p \ < a) S: 1 —
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b) Wie lautet das für X„ geltende schwache Gesetz der großen Zahlen? Welche meß¬
technische Bedeutung hat dieses Gesetz ?

c) Beweise mit Hilfe der Ungleichung aus a) den Satz 248 . 1.

Zu 14 . 8 .
72. In einer Urne liegen 2000 schwarze und 3000 weiße Steinchen . Man zieht 200mal ein

Steinchen mit Zurücklegen .
a) Schätze mit Hilfe der Tschebyschow-Ungleichung die Wahrscheinlichkeit dafür ab ,

daß mindestens 60 und höchstens 100 schwarze Steinchen gezogen werden .
b) Berechne diese Wahrscheinlichkeitexakt.

73. Ein L-Würfel werde w-mal geworfen und die relative Häufigkeit der Sechs bestimmt .
Schätze mit Hilfe der Ungleichung von Bienayme- Tschebyschow die Wahrscheinlichkeit
dafür ab , den »Idealwert « T um mehr als zu verfehlen . Berechne anschließend , falls
möglich , die exakten Wahrscheinlichkeiten .
a) n = 10 , b) n = 200 , c) n = 1000 .

74. In einer Urne sind 1000 Kugeln , darunter 300 weiße . Man zieht rc-mal eine Kugel mit
Zurücklegen .
a) Mit welcher Mindestwahrscheinlichkeit kann man nach Tschebyschow prophezeien ,

daß die Anzahl der weißen Kugeln nicht mehr als ß + 0,05 • n und nicht weniger als
/t — 0,05 - n beträgt ?

b) Zeichne die Graphen der Funktionen n i—> rT und n \—> 1 — rT. Gib die Funktions¬
werte für n = 100 , 200 und 1000 an .

• 75. In einem Behälter befinden sich 10 25 Moleküle eines Gases . Sie fliegen völlig regellos
durcheinander . Ein Zufallsexperiment bestehe darin , zu einem beliebigen Zeitpunkt zu
bestimmen , wie viele Moleküle in der linken Hälfte des Behälters sind . Für jedes Molekül
seien die Aufenthaltswahrscheinlichkeiten für die beiden Behälterhälften gleich groß ,
und die Moleküle mögen sich unabhängig voneinander bewegen . (Diese Annahme ist für
ein Gas vernünftig , weil die Moleküle nur für winzige Zeitspannen an Zusammenstößen
beteiligt sind und den überwiegenden Teil der Zeit frei dahinfliegen .)
a) Wie groß ist nach der Tschebyschow- \Jng \eidcmng die Wahrscheinlichkeit höchstens ,

weniger als 49,95 % oder mehr als 50,05 % aller Moleküle in der linken Behälterhälfte
zu finden ? Was besagt das Ergebnis ?

b) Mit welcher Wahrscheinlichkeit sind rechts und links genau gleich viele Moleküle ?
(Rechenausdruck genügt .)

c) Es wird in dem Behälter ein winziger Teilbereich ins Auge gefaßt , der im »Idealfall« n0Moleküle enthalten würde . Im ganzen Behälter sind es n Moleküle . Wie groß ist die
Wahrscheinlichkeit , ein bestimmtes Molekül in dem ausgewählten Teilbereich anzu¬
treffen ? Wie groß ist höchstens die Wahrscheinlichkeit , daß der Idealwert der Mole¬
külzahl im Teilbereich um mindestens 0,1 % unter - oder überschritten wird ?

d) Die Wahrscheinlichkeit für die in c) besprochene »Schwankung« der Molekülzahl
soll gleich 0,5 sein . Gib mit Hilfe der dort vorgenommenen Abschätzung eine obere
Schranke für die Anzahl n0 der Moleküle an . Welche Kantenlänge hat ein Würfel mit
so vielen Molekülen unter Normalbedingungen (273 K und 1013 mbar ) ?

76. a) Wie oft muß man eine Münze werfen , damit man die Wahrscheinlichkeit für »Adler«
mit einer Sicherheit von mindestens 90% auf 2 Prozentpunkte * genau durch die rela¬
tive Häufigkeit von »Adler « annähern kann ?

* In der Umgangssprache gibt man die Differenz zwischen zwei Prozentzahlen in Prozentpunkten an . Man beachte :
Steigt z. B. die Arbeitslosenquote von 4 % auf 5% , dann steigt sie um 1 Prozentpunkt , aber um 25 % .
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b) Ersetze in a) Münze durch Würfel und »Adler« durch »Sechs « und löse dafür die Auf¬
gabe .

c) Welchen Wert für n erhält man in b) , wenn man davon ausgeht, daß / ' (»Sechs «)
höchstens 20 % beträgt ?

77 . Wie oft muß man eine L-Münze mindestens werfen , damit sich mit einer Sicherheit von
mindestens 99% die relative Häufigkeit von »Adler « um weniger als 1 Prozentpunkt von
der Wahrscheinlichkeit für »Adler « unterscheidet ?

78 . a) Es soll mit mindestens 60% Sicherheit ausgesagt werden , daß man auf Grund einer
Stichprobe die Wahrscheinlichkeit eines Ereignisses in ein Intervall der Länge 0,04
einschließen kann . Wie groß muß die Stichprobe mindestens sein ?

b) Wie ändert sich die Stichprobenlänge, wenn man bei gleicher Sicherheit das Intervall
für p nochmals auf die Hälfte reduzieren will ?

79 . Eine Lieferung enthält einen unbekannten Anteil p defekter Stücke . Man möchte durch
eine Stichprobe der Länge n den Anteil p bis auf ^ genau mit einer Sicherheitswahr¬
scheinlichkeit von mindestens 95 % bestimmen . Bestimme n . (Rechne mit Zurücklegen !)

80 . a) Wie viele Personen muß man mindestens befragen , um den Stimmenanteil einer Partei
mit einem Fehler von höchstens 5 Prozentpunkten Vorhersagen zu können , wenn
diese Vorhersage eine Sicherheit von mindestens 95 % haben soll?

b) Wie ändert sich diese Mindestanzahl, wenn man mit 85 % Sicherheit zufrieden ist ?
c) Welche Mindestanzahlen ergeben sich bei a) und b) , wenn man eine Genauigkeitvon

2 Prozentpunkten fordert ?
81 . a) In einer Kleinstadt gibt es 10000 Wähler .Der Bürgermeisterkandidat Theodor möchte

durch eine Befragung von n willkürlich ausgewählten Personen das Wahlergebnis
mit einer Sicherheit von 97,5 % bis auf + 1000 Theodor -Wähler Vorhersagen lassen.
Welche Zahl n ist hinreichend ?

b) Bei der letzten Wahl stimmten 6000 der 10000 Wähler für Theodor. Wie viele Be¬
fragungen sind jetzt hinreichend , wenn Theodor durch seine Leistungen im Amt
davon ausgehen kann , daß seine Beliebtheit
1) sich nicht verändert hat ,
2) gestiegen ist , und er mit mindestens 8000 Theodor -Wählern rechnet ?

82 . Die Wahrscheinlichkeit eines Treffers in einer Bemoulli-Kette habe den Wert p = \ ■
Jakob Bemoulli berechnete die Anzahl der Versuche , die nötig sind , damit es c-mal
wahrscheinlicher ist , daß die relative Häufigkeit des Treffers in das Intervall J1r 1]
fällt als daß sie außerhalb fällt . (Vergleiche dazu Aufgabe 271/70.)
Schätze mit Hilfe der Ungleichung von Tschebyschow diese Zahl ab für r : s = 20 : 30
(bzw. 200 : 300 ) und c = 10 3

, 10 4 und 10 5. Dabei ist r + s = t. Vergleiche die erhaltenen
Werte mit den von Bemoulli gefundenen .

83 . Zur Stabilität einer Folge von Häufigkeiten .
a) Eine ideale Münze wird 500mal geworfen. In welchem Bereich liegt die erzielte Anzahl

von Adlern mit 99%iger Sicherheit ? Wie ist es bei 2000 Würfen ?
b) Löse a) für einen idealen Würfel hinsichtlich der Anzahl der Sechsen .
c) Löse b) für ein ideales Ikosaeder.

84. In einer Urne befinden sich 100 Kugeln , davon 20 weiße. Es wird 200mal eine Kugel mit
Zurücklegen gezogen .
a) In welchem bezüglich [i symmetrischen Intervall liegt mit einer Mindestwahrschein¬

lichkeit von 90 % die Anzahl der gezogenen weißen Kugeln ?
b) Berechne die exakte Wahrscheinlichkeitdafür , daß die Anzahl der gezogenen weißen

Kugeln in dem unter a) gefundenen Intervall liegt.
c) Bestimme mit Hilfe von Tabellen ein möglichst kleines Intervall für die Sicherheits¬

wahrscheinlichkeit von 90 % aus a) .
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85 . Jemandbietet uns eine Urne mit Kugeln dar . Einige davon sind weiß. Wir dürfen lOOmal
eine Kugel mit Zurücklegen ziehen und sollen auf Grund unserer »Stichprobe « erraten ,
welches Intervall (in Abhängigkeit von hl00) den Anteil p der weißen Kugeln mit einer
Sicherheit von mindestens 50 % bzw . 90% enthält . Gib die Intervalle an .

86. a) Der 800fache Münzenwurf von Tabeile 11 . 1 hat zufällig genau 400mal »Adler « ergeben .
Welches Intervall enthält die Wahrscheinlichkeit von »Adler « bei dieser Münze mit
mindestens 99,6 % Sicherheit ? Bestimme das grobe , das Näherungs - und das echte
Konfidenzintervall .

b) Welche Intervalle ergeben sich, wenn man nur
1 ) 95 % , 2) 90% , 3) 80 % Sicherheit fordert ?

87 . Ein Würfel wird 300mal geworfen. Dabei fällt 250mal die Eins.
a) Bestimme mit Hilfe der Tschebyschow - Un%\tic \nmg das grobe Konfidenzintervall,

so daß man mit einer Sicherheit von 99 % darauf vertrauen kann , daß p = P (»Eins«)
diesem Intervall angehört .

b) Bestimme das Näherungskonfidenzintervall.
c) Bestimme das echte Konfidenzintervall.

• d) Zeichne für die gegebenen Daten das Parallelenpaar, die Näherungsellipse und die
Konfidenzellipse wie in Figur 261 . 1.

88. Jemand will sein Schätzverfahren so einrichten , daß bei einer Stichprobenlänge von 100
die Irrtumswahrscheinlichkeit schlimmstenfalls 1% beträgt . Die Urteile haben die Form :

|Wahrscheinlichkeit des Ereignisses minusHäufigkeit desAuftretens in der Stichprobe | < a
Wie muß a gewählt werden ?

89. Der Würfel von Tabelle 10 . 1 ist offensichtlichunsymmetrisch, wie Tabelle 32 . 1 zeigt. Trotz
der Bevorzugung von »Zwei« wird man annehmen dürfen , daß / ' (»Zwei«) rg 0,25 ist,
und sicherlich ist / ' (»Vier«) g 0,15 . Man ermittle unter diesen Voraussetzungen Inter¬
valle, die P (»Zwei«) bzw. P (»Vier«) mit mindestens 99 % Sicherheit enthalten .

90 . Aus einer Zeitungsmeldungvom 30 . 1. 71 :
»Das Interesse an Apollo 14 ist in der Bundesrepublik nach wie vor stark . Nach dem
Ergebnis der Befragung von 1024 Einwohnern , ob sie sich für die Mondlandung ge¬
nauso interessierten wie für das letzte Unternehmen dieser Art , sagten 28 % , sie interes¬
sierten sich mehr dafür .«

Nehmen wir an , die 1024 Befragten seien eine echte Zufallsauswahl aus der Bevölkerung .
In welchem Intervall kann man dann mit mindestens 97,5 % Sicherheit den wahren Pro¬
zentsatz p derjenigen Bundesdeutschen vermuten , die sich damals besonders stark für
die Mondlandung interessiert haben ?
Berechne dazu
a) das grobe b) das Näherungs- c) das echte Konfidenzintervall.

91 . Von einer Urne mit 1000 Kugeln sei von vornherein bekannt, daß sie höchstens 200
weiße Kugeln enthält . Es wird eine Stichprobe von 100 Stück mit Zurücklegen entnom¬
men . Man schätzt die Anzahl der weißen Kugeln in der Urne zu X = 1000 • A 100 , falls
^ ioo andernfalls zu 200 und gibt über die Urne folgendes Urteil ab :
» | geschätzte Zahl minus wirkliche Zahl weißer Kugeln | < 50«
Gib mit Hilfe der Tschebyschow- \Jn ^ c\cb\mg eine obere Schranke für die Irrtumswahr¬
scheinlichkeiten an .

92 . Man hat die Vermutung, daß in einer Urne , die nur schwarze und rote Kugeln enthält,
doppelt soviel rote wie schwarze Kugeln liegen. Man zieht 300mal eine Kugel mit Zu-
rücklegen und entschließt sich , die Vermutung nicht abzulehnen , wenn man mehr als
180- und weniger als 220mal eine rote Kugel zieht .
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a) Schätze die Wahrscheinlichkeitab , mit der man irrtümlicherweise von der Vermutung
abgeht .

b) Wie müßte man die Entscheidungsregelabändern, damit die Wahrscheinlichkeitaus
a) kleiner als 5 % bzw. 5°/0o wird ?

93 . Jemand möchte testen , ob eine Münze eine Laplace-Münze ist . Dazu wirft er sie 500mal
und hält sie für eine Nicht -L-Münze , falls weniger als 230mal oder mehr als 270mal
»Adler « fällt .
a) Schätze die Wahrscheinlichkeit ab , mit der irrtümlicherweise eine L-Münze für eine

Nicht -L-Münze gehalten wird .
b) Ändere die Entscheidungsregel so ab , daß die Wahrscheinlichkeitaus a) kleiner als

10 % bzw. 5% wird .
94. Im September 1964 haben sich 41 % von 1000 befragten Bundesdeutschenfür die Todes¬

strafe ausgesprochen .
a) Gib das grobe Konfidenzintervall an , das mit einer Wahrscheinlichkeit von minde¬

stens 90 % den wahren Anteil p der Befürworter der Todesstrafe enthält .
b) Berechne das Näherungskonfidenzintervallmit h„ » p .
c) Berechne das echte Konfidenzintervall .
d) Löse a) , b) und c) , falls 41 % von 10000 Befragten für die Todesstrafegewesen wären .

95. Eine Repräsentativumfrageunter 4000 Bürgern ergab , daß 600 bei der nächsten Wahl
den Kandidaten A wählen würden .
a) Welches Intervall enthält die Wahrscheinlichkeitfür einen A -Wähler mit einer Sicher¬

heit von 90% ?
b) In welchem Bereich liegen mit 90% Sicherheit die absoluten A-Wählerzahlen , wenn

alle 80000 Wahlberechtigten auch wählen ?
c) Mit welcher Mindestsicherheit kann man behaupten , daß bei einer Umfrage unter

4000 Bürgern die relative Häufigkeit für einen A-Wähler im [14% ; 16%] -Intervall liegt,
falls die tatsächliche Wahrscheinlichkeit für einen A-Wähler 15% beträgt ?

Auf Grund der langwierigen Rechnungen empfiehlt sich bei denfolgenden Aufgaben Gruppen¬
arbeit oder Auswertung mit Hilfe eines Computers .
96. Fasse Tabelle 10 . 1 als eine Serie von 20 Versuchen zu je 60 Würfen auf. Bestimme unter

Verwendung der linken Hälfte von Tabelle 32. 1 die 20 Werte von / / 60(»Sechs «). Berechne
die 75 %- bzw. 90%-Konfidenzintervalle für p = P (»Sechs«) und trage sie jeweils in ein
Koordinatensystem ein , dessen Abszisse die Nummer der Versuchsserie angibt und des¬
sen Ordinatenachse eine /»Achse ist.

97. In Tabelle 33 . 1 sind 8 Versuchsserienzu je 100 Würfen aus den 800 Würfen von Tabelle
11. 1 konstruiert worden . Fasse sie durch Halbieren als 16 Serien zu je 50 Würfen auf und
gib die 16 Werte an , die / / 50(»Adler «) angenommen hat . Berechne die 75%- bzw. 90%-
Konfidenzintervalle für p = P (»Adler «) und trage sie jeweils in ein Koordinatensystem
ein, dessen Abszisse die Nummer der Versuchsserie angibt und dessen Ordinatenachse
eine p -Achse ist .
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