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14. Die Binomialverteilung
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|?31S,-'\l'11l1n1l:l1.~u.‘]1c Dreieck des Zhu Shi- Jie aus dem Kostharen Spiegel der vier Elemente (1303).
£s tragt den Titel: Altes Schema der 7 vervielfachenden Quadrate.




14. Die Binomialverteilung

14.1. Einfiihrung

Abraham de Moivre (1667-1754) veroffentlichte im Jahre 1711 die Abhandlung
De Mensura Sortis, seu, de Probabilitate Eventuum in Ludis a Casu Fortuito Pen-
dentibus (Bild 75.1), in der er 26 Probleme abhandelte. Problem I lautet:

i YR OB L

Ac» B una teffera ludunt, ea conditione, ut fi A bis il

| pluries, ofto jaitibus te(Jere monada jecerit, ipfe A vineat |

ﬁﬂ ff?ﬂ'—'f r.':.»:x.*:;;.-, wel }}-m OB HIECy B wincat 3 i d
ratip fortinm ?

»A und B spielen mit einem Wiirfel so, daBB A gewinnen soll, wenn er bei 8 Wiirfen zweimal
oder dfters ein As [d.h. eine Eins] wirft; fallt das As nur einmal oder gar nicht, so gewinne
B. Wie grol3 ist das Verhiiltnis der Chancen 7«

Wir wollen diese Aufgabe mit unseren Hilfsmitteln 16sen. Versuchen wir, zunichst
die Wahrscheinlichkeit fiir genau 2 Asse bei diesen 8 Wiirfen zu ermitteln. Das
zugrundehegende Zufallsexperiment kann als Bernoulli-Kette der Linge 8 mit
dem Parameter ¢ gedeutet werden, falls man als Treffer an der Stelle i das Er-
scheinen eines Asses beim i-ten Wurf nimmt. Diese Annahme ist zuldssig, well
man davon ausgehen darf, daBl die Ereignisse A,;:=»As beim i-ten Wurf«
(i=1,2,...,8) stochastisch unabhingig sind, da sich die Wiirfe gegenseitig
nicht beeinflussen. Der Ergebnisraum Q besteht aus den 2° Oktupeln, die aus
den Ziffern 0 und 1 gebildet werden kénnen. Bezeichnet man mit Z die Zufalls-
grofle wAnzahl der Treffer«, in unserem Fall also die Anzahl der gefallenen
Asse, so besteht unsere Aufgabe darin, die Wahrscheinlichkeit des Ereignisses
nZ = 2« zu berechnen. Dieses Ereignis besteht aus denjenigen 8-Tupeln aus £,
die aus 2 Einsen und 6 Nullen gebildet werden kénnen. Beispiele hierfiir sind die
8-Tupel 11000000, 00100010, 00010100 usw. Fiir das Ereignis »Z = 2« spielt
es dabei keine Rolle, an welchen Stellen die beiden Einsen stehen, d.h., bei
welchen der 8 Wiirfe die beiden Asse fallen werden. Da man die 2 Einsen auf die
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8 Stellen des 8-Tupels auf ( ﬁ) Arten verteilen kann, gibt es ( j) Oktupel, die

it A e U : 3
fiir das Ereignis »Z = 2« giinstig sind. Jedes dieser 8-Tupel hat als Elementar-
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ereignis gemiB Definition 221.1 die Wahrscheinlichkeit [ g ) (f_, ) . Damit er-
= WL \

o

n = 4 ¥ A
halten wir fiir die Wahrscheinlichkeit des Ereignisses »Z = 2« den Wert

8N FINE faNG ; : - s 2
[ : ] : ( ; ) . ( ( ] . der erste Teil unserer Aufgabe ist somit geldst.
\ = ) W, 'r J -j !

Analog gewinnen wir nun die Wahrscheinlichkeit fiir genau k Treffer, also fur

das Ereignis »Z = k«, indem wir in den obigen Uberlegungen die Zahl 2 durch
k ersetzen. Also ist
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Nk /eN8

JWZ==RJ=:(§)(;) ;;)= i

YN

Damit ergibt sich fiir die Gewinnchance von A der Wert
8 saN ANk /fg5N\B
= (8N 1N /5
P(Z >2) = ( =) (=)
= ;%‘_, k ‘ﬁ)_ X 6
Die numerische Berechnung dieser Wahrscheinlichkeit ist etwas mithsam. Leich-

ter erhalten wir ihren Wert tiber das Gegenereignis »Z < l«, d.h. iiber die Ge-
winnchance von B:

PZz22=1-P(Z=<1)=
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1679616 — 390625 — 625000

1679616

1679616 — 1015625
3 1679616 i

663991
1679616

39.5%.

&

Die Chancen von A und B verhalten sich also wie 663991 - 1015625 ~ 2:3.

Das Typische an der Aufgabe von de Moivre ist, daB man sich nicht mehr fiir die
Nummer des Versuchs interessiert, bei dem der Treffer eintritt. sondern daB
man nach der Anzahl der Treffer fragt, die sich bei einer Serie von Versuchen
ergeben kann. Man betrachtet im stochastischen Modell also die ZufallsgroBe
Z = »Anzahl der Treffer bei einer Bernoulli-Kette der Linge » mit dem Para-
meter p«.
Fir ihre Wahrscheinlichkeitsverteilung gilt nach dem Obigen die von Jakob
Bernoulli (1655-1705) in der Ars Conjectandi (Seite 40) hergeleitete Formel:
P(Z = J\} £ (” )PhH T p}u—a i (H]pﬁqn k-

k k

i M
In dieser Verteilung spielen die Binomialkoeffizienten eine wichtige Rolle. Man
sagt daher, Z sei binomial verteilt. Allgemein definiert man:




14.1. Einfithrung 231

Definition 231.1: Eine Zufallsgroie X heiB3t binomial nach B(n; p) verteilt,
wenn

l. die Wertemenge von X die Menge {0, 1,2,..., n} ist, und

2. fiir die Wahrscheinlichkeitsverteilung von X gilt:

fi X R—X —
B(n: p): x> B(n: p: x) = I ( \_)ﬂ' iL—7) fir  xeil, 1, ..., nt,
0

sonst.

Bemerkungen :

1) Interessant sind eigentlich nur die Werte B(n; p: x) fiir xe {0,1,2,...,n}.
Fiir ein derartiges x schreibt man gerne k, um anzudeuten, daf} es sich um
eine ganze Zahl handelt.

: i i ‘m\ &
2) Mit g:= 1 — p erhilt man den kiirzeren Ausdruck B(n;p; k) = (#) Jf e Ll
3) Jede Wahrscheinlichkeitsverteilung B(n; p) heillt Binomialverteilung. Der
Name riihrt davon her, dall B(n; p; k) gerade der k-te Summand in der
Entwicklung der n-ten Potenz des Binoms p + ¢ ist; es gilt nimlich

; i G
(p+qg)" = E { _)-J.r:l“-f,r” 3
k=0 \ "I‘,-
4) Die obige Definition 231.1 ist nur sinnvoll fiir den nicht-trivialen Fall 0 < p < 1.
Ist p = 0, so liefert jeder Versuch eine Niete; das fithrt zur Verteilung
1 fiir x = 0,

B(n;0;x):
(0 sonst.
[st hingegen p = 1, so liefert jeder Versuch einen Treffer; das fiihrt zur Vertei-

lung

I f\‘l = -_ o :
B(n: 1:x):= ﬁ:’ ur x i

0 sonst.

Fiir die kumulative Verteilungsfunktion einer nach B(n; p) verteilten Zufalls-
groBe hat sich die Bezeichnung F;' bewihrt. Es gilt also nach Satz 176.1:
Fi(x):= Y. Bn:p;d
=X
Ist insbesondere x eine der interessierenden Zahlen aus {0, 1, 2,..., n}, so schreibt
man an Stelle von x wieder gerne k und erhilt damit

k
Fi(k) = ) B(n:p;i)
i=0

Wenn keine Verwechslung moglich ist, lassen wir die Indizes bei F,' weg. Unter
Verwendung dieses Symbols lautet die Lésung des Problems von de Moivre
P(Z =2 I — F2si1)

PlZ=ayo, - ER @)
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14. Die Binomialverteilung

Wir veranschaulichen die Binomialverteilung B(8;2) sowohl durch ein Stab-
diagramm (Figur 232.1) als auch durch ein Histogramm (Figur 232.2).

Den Graphen der zugehorigen kumulativen Verteilungsfunktion F8. zeigt
Figur 232.3.

Fig. 232.1 Stabdiagramm von B(8; 1)
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Fig. 232.2 Histogramm von B(8; ) Fig. 232.3 Graph von F§.
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14.2. Ziehen mit bzw. ohne Zuriicklegen

Die Formel von Definition 231.1 fiir die Binomialverteilung kennen wir schon
lange. Beim Ziehen mit Zuriicklegen aus einer Urne erhielten wir in Satz 107.1
flir die Wahrscheinlichkeit, genau s schwarze Kugeln zu ziehen, den Wert
(s)P*q""", also gerade B(n:p;s). Die ZufallsgréBe »Anzahl der Treffer« beim
Ziehen mit Zuriicklegen ist demnach binomial verteilt. Weil man viele Experi-
mente auf das Ziehen mit Zuriicklegen reduzieren kann. ist diese Zufallsgrofe
gewissermafen der Prototyp einer binomial verteilten ZufallsgroBe.

Andererseits lassen sich viele Zufallsexperimente durch das Urnenexperiment
Ziehen ohne Zuriicklegen simulieren. In diesem Fall liegt keine Bernoulli-Kette
vor, wie in Aufgabe 223/2 gezeigt wurde. Die ZufallsgroBe »Anzahl der Treffer«
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14.2. Zichen mit bzw. ohne Zuriicklegen

F

ist dann auch nicht binomial verteilt. Fiir ihre Verteilung erhielten wir in Satz 106.

(Sy)

R, =5/
PIZ =5)=—1r " —
(™)

Allgemein definieren wir:
Definition 233.1: Eine ZufallsgroBe X heilit fur K < N und n £ N hyper-
geometrisch nach H(N: K; n) verteilt, wenn gilt:
I. die Wertemenge von X ist eine Teilmenge von {0, 1, 2, ..., n}, und
2. die Wahrscheinlichkeitsverteilung von X lautet

iHN:K:m;wwEHN:Knﬁxb—] (N) fiir xe {0, 1,..., n},

| "\H i
| 0 sonst.

Auch hier schreibt man gerne fiir x€ {0, 1,...,n} den Buchstaben k.
In der Praxis spielt die hypergeometrische Verteilung eine grofle Rolle. Der
Prototyp einer hypergeometrisch verteilten Zufallsgrofle ist die »Anzahl der
Treffer« beim Ziehen ohne Zuriicklegen aus einer Urne. So sind z. B. die Zufalls-
groBen »Anzahl der defekten Stiicke« bei einer Qualititskontrolle und »Anzahl
der Ja-Antworten« bei einer Umfrage hypergeometrisch verteilt.

Die hypergeometrische Verteilung erfordert wegen der drei Binomialkoeffizienten
einen sehr hohen rechnerischen Aufwand. Rechnerisch leichter zugidnglich ist die
Binomialverteilung. Gliicklicherweise 140t sich die hypergeometrische Verteilung

SN

fiir n <min{N, K, N — K} recht gut durch die Binomialverteilung B{n: - ]

: ! !
J H(50,10;10) iy J'._' HI100,20,10) o _] H(500,100;10)
i Bl10; &) | B(10; 1) : Bl10; <!
= 7] o
_i_
Le 5 S ol ‘—|_ &
- : - 5 3 ™

Fig. 233.1. Bild zu Tabelle 234.1.
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dpp:mmuucn (Vergleiche dazu Aufgabe 264/27.) Dies ist gar nicht so erstaun-
lich, weil ja bei groBlen Kugelzahlen die Entnahme einiger weniger Kugeln keine
wesentliche Anderung der Anteile in der Urne bewirkt. Man kann dann also das
Ziehen mit Zuriicklegen als gute Niherung Fu[ das Ziehen Ohﬂt Zuricklegen
nehmen. Eine Veranschaulichung geben T 234.1 und Figur 233.1.

H(N: K:10: k)

50 100 500 1000 100000 | 1000 (JH“ 1 000000000

268435 0266192 |0,267933 | 0,268417 [0.268431 | 0,268435 |0,268435 | 0,268435
0,301990 0,336898 | 0,318170 | 0,305050 (0,303510 | 0,302005 |0,301991 | 0,301990

) 0,201327 | 0,217792 | 0,209208 | 0,202849 (0,202085 | 0,201334 |0,201327 | 0,201327
4| 0,088080 0.078469 | 0,084107 | 0,087395 | 0,087744 | 0,088077 | 0,088080 | 0,088080
5| 0,026424 0,016142 | 0,021531 [0,025488 | 0,025959 [ 0,026419 |0,026424 | 0,026424
6| 0,005505 0,001868 | 0,003541 | 0,005096 | 0,005299 0.005503 | 0,005505 | 0,005505
7| 0,000786 0,000115 | 0,000368 | 0,000689 |0,000737 | 0,000786 [0,000786 | 0,000786
8 | o,000074 0,000003 | 0,000023 | 0,000060 | 0,000067 | 0,000074 [0,000074 | 0,000074
9| 0,000004 4-10°° |0,000001 | 0,000003 |0,000004 | 0,000004 |0,000004 0,000004
10 BosTowis|  1-10"1%1-107% |7:1678 [g-107% |1-10"7 |1-10~7 110’

Tab. 234.1 Vergleich einer Binomialverteilung mit verschiedenen hypergeometrischen Ver-

teilungen mit gleichem p = e

14.3. Tabellen der Binomialverteilung

Die Berechnung von Werten einer Binomis ilverteilung ist rechnerisch meist sehr
aufwendig. Da die Binomialverteilung aber eine sehr hiufig auftretende Wahr-
\Li‘lLlI]]]th\Lil%‘uilLI]UHU ist, hat man sie fiir oft vorkommende Werte der Para-
meter n und p tabellarisiert. Fiir die ebenfalls sehr hiufig auftretende hyper-
geometrische "vm teilung wiirde eine ° l'abellarisierung wegen der 3 Parameter
N, K und »n zu einem #HuBerst umfangreichen Tabellenwerk fithren. da man 3
Tabelleneinginge benétigte. Erfreulicherweise kann man aber die hypergeome-
trische Verteilung fiir n<min{N,K,N — K! durch die Binomialverteilung

F iy

B ( ™ ) recht gut approximieren, was den Wert der Binomialverte

kurz Binomialtabellen. noch erhéht.

Wir wollen uns nun der Erstellung solcher Binomialtabellen zuwenden. Man
wihlt ein # und ein p und berechnet der Reihe nach fiir k = 0. 1.2.....n die

*
Werte B(n; p; k) = (,’ ],r? (1 —p)" % Ein solches Vorgehen fiihrt zu sehr vielen
L
Rechenvorgiingen und ist daher zeitraubend. Es gibt aber einen einfachen Zu-
sammenhang zwischen den Funktionswerten an der Stelle k und der Nachbar-
stelle k — 1:

k|B(10;%:k) | N |
. K| 10 20 100 200 | 20000 | 200000| 200000000
0] 0,107374 0.082519 | 0,095116 | 0,104951 |0, m(ﬂh; 0,107362 |0,T07373| 0.,I107374
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A

'R komn=—i
. pk,
B(n; p; k) < (f\) i
B(n; p: k— 1)

\'.

_ nlk— D!n—k+1)! p
kl(n—k)ln! 7]

n—k+1 p

k q

Wir erhalten also die Rekursionsformel:

Bin: p: k) = = JT )P B(n;p; k —1)

K
Sie gestattet — daher der Name* —, aus der Kenntnis eines Wertes den Wert des
Vorgédngers und auch den des Nachfolgers zu berechnen. Es geniigt also, einen
einzigen Wert B(n; p; k) mithsam zu errechnen. Die jeweiligen Nachbarn
B(n;p;k —1) und B(n;p; k + 1) erhdlt man dann daraus durch einfache
Division bzw. Multiplikation. Es empfiehlt sich dabei, aus Genauigkeitsgriinden
einen moglichst groBen Startwert B(n; p; k) zu wihlen. (Den groften Wert wer-
den wir im Abschnitt 14. 6. bestimmen.)
Wir veranschaulichen das Vorgehen an der Binomialverteilung B(8; ¢). GemilB
Figur 232.1 empfiehlt sich als Startwert

B 8; L [) (%)(') (ﬁ’] _ 520000 o108
T a5 \1/\ 6 J 6 1679616

Die Rekursionsformel liefert nun einerseits

Fioa) 7 625000

L) (& =2 1)
B(-‘%; o e G P ) [ = 0,260476...
26 ) T (_H 6 J 0 1679616 :
andererseits
B(8: : ;n) £ L% B(s: . = L
. 6/ B—-1+1)-2 6 | 8 1679616

Dieses Verfahren laBt sich leicht programmieren. Dariiber hinaus kann man sich
fast, wenn nun p das Intervall ]0; 1] durchliuft, die halbe Rechenarbeit er-
Sparen: Ist nimlich p die Wahrscheinlichkeit fiir einen Treffer, so ist g = 1 — p
die Wahrscheinlichkeit fiir eine Niete beim Einzelversuch. In einer Bernoulli-
Kette der Linge n ist dann die Anzahl der Treffer nach B(n; p) und die der
Nieten nach B(n; g) verteilt, und da

P(»Anzahl der Treffer = k«) = P(»Anzahl der Nieten = n — k«)

gilt, folgt das

recurrere = ruriicklaufen
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Symmetriegesetz fiir Binomialverteilungen:

B(n:p: k) =Bn,q:n—k)

Wegen dieser Symmetrie* geniigt es, die Tabellen fiir die Binomialverteilungen nur
bis p = 0,5 zu fithren. Will man z. B. den Wert B(8; 2; 3) ermitteln, so sucht man
den symmetrischen Wert B(8: ¢: 5) in der Binomialtabelle. Diese Umformungs-
denkarbeit erspart uns ein zweiter Eingang zu den Tabellen mit den Werten fiir
3 =p < 1. Er ist rot unterlegt im Gegensatz zum grau unterlegten ersten Ein-
gang. Fiir ihn gelten dann die rechts stehenden rot unterlegten k-Werte, die sich
mit den in der gleichen Zeile links stehenden grau unterlegten k-Werten jeweils
zu n erginzen, wie der nebenstehende Ausschnitt aus den Srochastik-Tabellen**
zeigt. (Tabelle 236.1)

Nun bendtigt man aber sehr oft wie beim Pro- N | 1 5
blem 1 von de Moivre (Seite 229) nicht die | P [
B(n: p; k)-Werte, sondern die Werte F!(k) der | : N =
kumulativen Verteilungsfunktion I‘f-'f',". Man | ‘ 2 e 3
konnte diese gemall Fy (k) =}_ B(n; p; i) | : ; ,?2“}; r:
et = Fr : [ 02605 4
natiirlich jedesmal aus den Tabellen der Bino- 5 ‘ 004 17 3
mialverteilung B(n; p) errechnen. Diese Sum- : oo :
mation erspart man sich, wenn man F' selbst g ::?E; ;
tabellarisiert. Nk |
Aus den Symmetrie-Eigenschaften der Binomial- n | & ,'}

verteilungen folgen auch solche fiir die Funk- | ’ i
tionen F;'. Daher haben auch die Tabellen der Tab.236.1 Die ersten 5 Dezimal-
kumulativen Werte einen zweiten Eingang fiir  stellen (gerundet) der Werte von
P = 3. Bei dessen Benutzung muB man aller-  B(8:%) und B(8: )

dings beachten, daB man nicht mehr Fk),

sondern 1 — F(k) erhilt! Wir wollen uns dies an Hand der Wahrscheinlichkeits-
bedeutung von F) tiberlegen.

Bekanntlich gilt Fi(k) = P(Z < k), wenn Z die Anzahl der Treffer in der
Bernoulli-Kette ist. Gehen wir nun von den Treffern zu den Nieten iiber. dann er-
halten wir P(Z < k) = P(»Anzahl der Nieten = n — k«).

Die Anzahl der Nieten gehorcht aber andererseits der Binomialverteilung B(n: g).
Damit gewinnen wir

F;'(k) = P(»Anzahl der Treffer < k«) =

P(»Anzahl der Nieten = n — k«) =

1 — P(»Anzahl der Nieten < n — k«).

Ist ke {0, 1.2,...,n}, so kann man dafiir schreiben

Fy(k) = 1 — P(»Anzahl der Nieten <n —k —1«) = | — Flin—k—1).
— ! I’j

Somit gilt das folgende

* Der Name Symmetriegesetz wird durch Satz 246.1 noch versti

** Barth, Bergold, Haller: Stochastik-Tabellen, Ehrenwirth V.

ndlicher werden.




14.4. Veranschaulichung von Binomialverteilungen durch Experimente 237
Symmetriegesetz fiir kuamulative binomiale Verteilungsfunktionen :
k) =1-FK_,(n—k—1), falls ke {0, 1,...,n)
Die Symmetriebeziehung fiir k¢ {0, 1,...,n} ist ohne praktische Bedeutung.

Tabelle 237.1 zeigt uns einen Ausschnitt aus den Stochastik-Tabellen, an Hand
dessen wir die Tafelbenutzung erkliren wollen. :
p

Suchen wir z.B. den Wert F&.(6), so kénnten n . 1

wir dafir 1— F8,(8—6—1) = 1 — F& (1) e e

schreiben, F¢ (1) mit Hilfe des grauen Eingangs s R 23257 5
zu 0,60468 bestimmen und schlieBlich FS, (6) = I 60468 :
| — 0,60468 = 0,39532 errechnen. Benutzen wir . o
hingegen fiir p den roten Eingang unten, so 4 99539 3
miissen wir die rechts stehenden rot unterlegten 5 99956 :
k-Werte nehmen. Wir lesenzu p = 2 und k = 6 ? Bk 0

unmittelbar den Wert 0,60468 ab; die Subtrak- ' N il o
tion dieses Wertes von 1 bleibt uns leider nicht 4 6 [P
erspart. Andererseits benotigt man bei vielen
Aufgaben gerade den Wert 1 - ;'-'I'j{a'c]l. den man F?(k) = 1 — Tafelwert
fiir p =4 dann direkt mit Hilfe des roten Ein-
gangs aus der Tabelle entnehmen kann. Sucht Tab. 237.1 Die ersten 5 Dezimal-
man z.B. fiir n = 8 und p = ¢ die Wahrschein- stellen (gerundet) der kumulativen
lichkeit P(X >4)=1—P(X <3)=1— F&.(3), \-"cr!L*i_lung.td'unkL'umcn Fii

so liest man diesen Wert in Tabelle 237.1 mit 404 F5je.

: e : Man beachte, dal} sich die grau
Hilfe des roten Eingangs direkt ab zu ; i G

P BoEEs unterlegten k-Werte mit den rot
P(X = 4) = 0,99539. ]

unterlegten k-Werten nurzu n — 1

erginzen!

14.4. Veranschaulichung von Binomialverteilungen
durch Experimente

Beispiel 1: Wir wollen die Werte von B(10; 4) experimentell durch relative Haufig-
keiten angenihert herstellen. Dazu miissen wir z.B. den 10fach-Wurl einer
Laplace-Miinze sehr oft ausfithren und ziihlen, wie oft wir dabei 0 Adler, | Adler,
..., 10 Adler erhalten. Wir werten Tabelle 11.1 demgemf aus: Je 2 untereinander-
stehende Fiinfergruppen werden als ein Ergebnis eines [0fach-Wurfes aufgefalit.
Es ergibt sich folgende Hiufigkeitsverteilung:

K 1] [ ) 1 4 5 i} 7 8 Y 10
Anzahl
des Auf:
tretens von
k Adlern ] 0 4 10 14 23 i6 10 2 I 0
Haufigkeit 0 1] 0.0500 0.1250 0.0750 (2875 0,2000 01250 0,0250 00125 0
72 0.0439 LO09K OO0 LD

B(10: =) 00010 (.0098 (0.0439 1172 20205 00,2461 0. 2051 .11

e e L B A S e s e
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238 14. Die Binomialverteilung

Unter den relativen Hiufigkeiten sind die »Idealwerte« B(10; 4; k) eingetragen.
Die Abweichungen zwischen Ideal und Wirklichkeit sind nicht allzu groB. Wir
schreiben sie dem Zufall zu. Ob dies berechtigt ist, wire mit den Methoden der
mathematischen Statistik zu kliren.

Mit einem von Francis Galton (1822-1911)* angegebenen Gerit kann man ange-
néhert eine Binomialverteilung sogar unmittelbar mechanisch erzeugen. Wir be-
sprechen dazu

Beispiel 2: Wir stellen uns eine
schachbrettartig angelegte Stadt vor
(Figur 238.1). Im Punkte 0 befindet
sich eine Kneipe. Ein Betrunkener
versucht, nach Hause zu gehen. An .
jeder Kreuzung geht er mit der <><>O

Wahrscheinlichkeit p nach rechts <><><>O
und mit der Gegenwahrscheinlich- ‘<>I<>

0

i o
5,
ﬂ i

|

&
e
=

=)

keit ¢ =1 — p nach links.

Der Irrweg endet zufallsbestimmt an
e 2 ; Il e s R

der Kreuzung Nummer k in der n-ten

Zeile. Zur Berechnung der Wahr- Fig. 238.1  Stadtplan fiir den Irrweg

scheinlichkeit fiir ein bestimmtes k

betrachten wir folgendes Schema:

= 18
o P x: ~d e
SApl Sl

P G o DC g
2 a3 = 2

Sl _2pq” e

1---!._. ]ra ;'l""‘-u-._ o3 B - l|l,l - {I., o o Ilr_l_,. -, :I{ s
A AP b4 Ag
e B i < = P l.r’{‘"‘x B, ‘,l,l - - ] o = p - = q

An jedem Kreuzungspunkt steht jeweils die Wahrscheinlichkeit, ihn zu erreichen.
Ein Kreuzungspunkt kann nur von den beiden dartiberhegenden Kreuzungspunk-
ten aus erreicht werden. Die Anzahl der Wege, die zu ihm fiihren. ist also gleich
der Summe der Méglichkeiten, die beiden dariiber liegenden Punkte zu erreichen.
Man erhilt so die Anordnung des Pascal-Stifelschen Dreiecks. Die gesuchte

: A : o . (I
Wahrscheinlichkeit ergibt sich damit zu [ i J,n"f,r” =B DIk

Die Zufallsgrofie »Nummer der Kreuzung in der n-ten Zeile« ist also binomial
nach B(n; p) verteilt.

Fiir p = g = 4 liBt sich nun der Zufallsweg des Betrunkenen mit einem Galton-

Brett realisieren.

Auf einem vertikal aufgestellten Brett wird ein Quadratgitter durch Niigel erzeugt
(vel. Figur 239.1). Die durch einen Trichter senkrecht auf den ersten Nagel fallen-

den Kugeln werden mit der Wahrscheinlichkeit 3 nach rechts oder links abgelenkt.

* Siehe Seite 407,
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Fig. 239.1 Galton-Brett. Das Brett heiBt auch Quincunx. FaBt man nimlich jeweils 5 Nigel
Zusammen, so entsteht eine Anordnung der Form : -, die von den Rémern quincunx genanni
wurde.

Falls der Abstand der Nigel in einem giinstigen Verhiltnis zum Kugeldurch-
messer steht, treffen die Kugeln wieder senkrecht auf die Nigel der niichsten Reihe.
In den Fichern sammeln sich die Kugeln dann so an, daB ihre Verteilung der
Binomialverteilung B (n;4) entspricht. Einen Eindruck von den wirklichen Ver-
hiltnissen gibt Bild 239.2. Durch eine seitliche Neigung kann auch p + £ reali-
siert werden.

W ¥ ¥ & i §
e Lk i e JL \s',*': T S T D T e R |
s . ; | T N B ) b ] ¥ L4
g T e R, :’-”"V«' AR 9 o 0E ao olk Y
3 g bt T A A T, B, B PR

Bild 2392 Versuch am Galton-Brett. (Die roten Linien geben die Idealwerte an.)
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14.5. Erwartungswert und Varianz einer binomial verteilten
Zufallsgrofie

Es sei X eine nach B(n; p) verteilte ZufallsgroBe. Thr Erwartungswert &(X)
berechnet sich nach Definition 172.1 gemiB
N : “:.'_ [ "!.-] .
e o ; ol ey Erik k =1 n—k
EX)= > k-Bmp:k)= Y k (oS =™
k=0 k=0
Die Berechnung dieses Summenwerts ist sehr miithsam. Liebhabern tiifteliger
Umformungen sei Aufgabe 266/45 empfohlen! Wie so oft in der Mathematik
hilft eine gute Idee uns auch hier, viel Arbeit zu ersparen. Sie besteht in der Ein-
fiihrung von » neuen ZufallsgréBen
X;+=»Anzahl der Treffer an der Stelle i der Bernoulli-Kette der Linge n«.
Die ZufallsgroBe X; besitzt die Wahrscheinlichkeitsverteilung W;:
X 0 1
Wi(x) q p

Die X; sind somit gleichverteilt, und zwar binomial nach B(1;p). Also sind
auch ihre Erwartungswerte gleich, nimlich

E(X)=0-gq+1-p=p.
Die Anzahl X der Treffer der gegebenen Bernoulli-Kette ist aber die Summe der
Treffer X; an den Stellen i, aufsummiert von 1 bis n. Also

i

X=X, +X+...+X,= Y X

Nach Satz 205.1 erhilt man daher sofort

n n L
EX=8(Y X)=) 6X;=Y p=np.

=9 i=1 i=1
Dieselbe gute Idee hilft uns auch, VarX auf einfache Weise zu berechnen. Zu-
nichst gilt &(X;*) = 0-¢g+ 1:p = p und damit

VarX; = &(X?) — (& X
=p—p* =
=pil —p)=
= pgq.

Aus der zugrundeliegenden Bernoulli-Kette ergibt sich, daB die X. stochastisch

i

n

unabhingig sind. Damit l4Bt sich Satz 209.1 auf X = Y X, anwenden, und
man erhilt i=1

VarX = Var() X)= Y VarX,= Y pg=npyq.
i= i=1

1 i=1
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Wir fassen zusammen in

Satz 241.1: Eine nach B(n; p) verteilte ZufallsgroBBe X hat den Erwartungs-
wert £ X = np und die Varianz Var X = npgq.
Die Standardabweichung o(X) hat den Wert |/npgq.

14.6. Eigenschaften der Binomialverteilung

Jede Binomialverteilung B(n; p) wird durch die beiden Zahlen n (Lénge der
Bernoulli-Kette = Anzahl der Einzelversuche) und p (Trefferwahrscheinlichkeit
beim Einzelversuch) festgelegt. Einen ersten Uberblick iiber diese Abhingigkei-
ten geben die Histogramme der Figuren 242.1 und 243.1.

In Figur 242.1 stimmen alle Verteilungen in der Linge n = 16 iiberein. Wir ma-
chen folgende Beobachtungen:
1. Die Maximumstelle, d.h. die Stelle groBter Wahrscheinlichkeit, riickt mit
wachsendem p nach rechts.
2. Der Erwartungswert u wichst mit p monoton.
3. B(16; p) liegt symmetrisch zur Verteilung B(16; 1 — p) beziiglich der Achse
X =15
4. Von p = 0,1 bis p = 0,5 werden die Verteilungen breiter, danach (wegen der
Symmetrie) wieder schmiiler, d.h., die Standardabweichung ¢ nimmt bis zu
einem Maximum bei p = § monoton zu und dann wieder monoton ab.

5. Von p = 0.1 bis p = 0,5 werden die Verteilungen niedriger, danach (wegen
der Symmetrie) wieder héher, d. h., das Maximum von p — B(16; p) nimmt
mit wachsendem p bis p = + ab, dann wieder zu.

6. B(16; 4) ist symmetrisch beziiglich der Achse x = 8. Je niher p bei 3 liegt,

um so »symmetrischer« ist die Verteilung.

In Figur 243.1 stimmen alle Verteilungen im Parameter p = s iiberein. Wir

machen folgende Beobachtungen:

e groBter Wahrscheinlichkeit, riickt mit

7. Die Maximumstelle, d.h. die Stel
wachsendem » nach rechts.

8. Der Erwartungswert g wichst mit n monoton.

9. Die Verteilungen werden mit wachsendem n immer breiter, d.h., die Stan-
dardabweichung ¢ wichst mit # monoton.

10. Die Verteilungen werden mit wachsendem n immer niedriger, d.h., das
Maximum von n > B(n; %) fillt monoton mit n.

11. Die Verteilungen werden mit wachsendem n immer »symmetrischer«.

12. B(4: 1), B(9; %) und B(64: %) nchmen ihr Maximum zweimal, und zwar an
benachbarten Stellen k an.
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Zu 2. und 8. Nach Satz 241.1ist & X = np. Also gilt allgemein: Der Erwartungs-
wert wichst mit #» und mit p echt monoton.

Zu 4. und 9. Nach Satz 241.1 ist ¢ = |/npgq. Also gilt allgemein: Die Standard-
abweichung wichst echt monoton mit n. Aus der Umformung

c=np(l—p)=)—-nlp—37*+4in

ersieht man sofort, daB der Radikand Var X der
Funktionsterm einer nach unten geoffneten ;
P%ll':ibcl ist, deren Scheitel bei (3 | 4 n) liegt. {‘v’gl: | ;/\ p i npg
Figur 244.1.) Das bedeutet aber, dall ¢ bei / ‘x‘

festem n fiir p = 3 maximal wird. / \

Var X

Zu 1., 7. und 12. Das Maximum einer Bino- {f \
mialverteilung beziiglich x kann man leider ! )
nicht mit der Differentialrechnung bestimmen, 0 '
da die Funktion ja gerade an den interessanten Fig. 244.1 Der Graph von
Stellen 0,1,2,....n unstetig und damit nicht VarX = npg, hier fiir n = 5
differenzierbar ist. Hier hilft uns aber die in

14.3. fiir diese Stellen gewonnene Rekursions-

formel weiter, die wir weiter umformen.

B(n; p; k) =kt 1lup
Bn:p;k—1) k e
= e nektl b . ol
k q
= 5 (n—k+1)p— kg =
kg
e (n+1)p—k
kg N

Der Zihler des Bruches entscheidet, ob und wann B(n; p) von k — 1 zu k wichst,
konstant bleibt oder abnimmt:

k<(n+1)p < Bn;p: k—1) < B(n; p; k),

k=@m+1)p < B(n; p; k—1) = B(n; p; k),

k>(n+1)p <= B(n; p; k—1) > B(n; p; k).

B(n; p) wichst also stets bis zur grofiten ganzen Zahl unterhalb von (n + 1)p.
Man bezeichnet diese Zahl durch die Gauf-Klammer [(n + 1)p], die man »Grolte
Ganze aus (n + 1) p« liest. Sollte (n+ 1)p selbst ganzzahlig sein, so bleibt der
Funktionswert dann beim niichsten Schritt erhalten und fillt erst danach (2 be-
nachbarte Maximumstellen): andernfalls fillt er sogleich ab (Figur 245.1).
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a) b)

‘ A 'L J
- T
/fJ o & (r + ||,;, X
nm+1)p—1 (n+1)p 2l

Fig. 245.1 Verhalten von B(n; p) in der Umgebung des Maximums
a) (n + 1) p ganzzahlig, b) (n + 1)p nicht ganzzahlig

Wir fassen die gewonnenen Erkenntnisse zusammen in

Satz 245.1: Falls (n + 1)p ganzzahlig ist, nimmt B(n; p) seinen maximalen
Wert an den zwei benachbarten Stellen k = (n+ 1)p—1und k =(n+ 1)p
an.

Falls (n 4+ 1) p nicht ganzzahlig ist, liegt das einzige Maximum beim gréBten
Wert von k unterhalb von (n + 1)p, also bei [(n + 1)p]. 5
Schrinkt man die Definitionsmenge von B(n; p) auf {0, 1,..., n} ein, so
gilt dort: B(n; p) wiichst echt monoton bis zum Maximum und nimmt dann
echt monoton ab.

Bemerkungen :

1. Die Maximumstelle ist der wahrscheinlichste Wert (= Modalwert) der Zufalls-
groBe X. Dabei ist jedoch zu bedenken, daB fiir grofles n auch der wahrschein-
lichste Wert nur eine sehr kleine Wahrscheinlichkeit besitzt. So ist z.B.
max B(4; 4; k) ~ 419,; aber max B(100; ; k) ~10%,. (Siehe auch Figur 243.1.)

2, Wegen (n+ 1)p =np+p = p+ p liegt das Maximum immer in der Nihe

des Erwartungswertes u, also recht genau dort, wo wir es bei naiver Betrach-

tung vermuten wiirden: Wir rechnen ja damit, daB3 etwa der Bruchteil p aller

Versuche einen Treffer liefern wird, also: Anzahl der Treffer ~n-p. Die

Maximumstelle der Verteilung unterscheidet sich von diesem Wert hichstens

um Eins! Nur fiir ganzzahliges u stimmen die dann einzige Maximumstelle

und der Erwartungswert iiberein.

Erstaunlicherweise muB der wahrscheinlichste Wert nicht notwendig das dem

Erwartungswert am niichsten liegende k sein (vgl. Aufgabe 271/67). So ist z. B.

bei B(16;+5) der Erwartungswert p = 1,6; das Maximum liegt jedoch bei

k =[1,6+ 0,17 = 1 und nicht bei dem niiher gelegenen Wert k = 2.

Mit dem Aufsuchen der Maximumstelle [(» + 1)p] ist das Problem des Start-

werts fiir die Berechnung der Binomialtabellen gelost.

_:-J

o

Wir verstehen nun, daB die Maximumstelle mit wachsendem n und p nach rechts
rickt: [(n 4 1)p] wichst sowohl mit » als auch mit p.
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Zwei gleich hoch gelegene Punkte des Funktionsgraphen gibt es fiir p = }

dann, wenn (r + 1) - ¢+ eine ganze Zahl ist, in Figur 243.1 bei n =4, 9 und 64: '
@d+1):%+=1; O+ 1)-%=2; (64 +1)-1 = 13;

also hegen die Doppelmaxima fiir n = 4 bei 0 und 1, fiir n = 9 bei 1 und 2 und
fiir n = 64 bei 12 und 13.

Zu 3. und 6. Das auf Seite 236 gefundene Symmetriegesetz fiir B(n; p) besagt

B(n;1—pin—k)= B(n: p: k).

Bn; p; k) : Bin;l—p;n—F)
Wegen [ | I
n—k=4n+@En—k und k=3in—(EFn—k
liegen die Argumente » — k und k symmetrisch
zu 3n, wie Figur 246.1 noch veranschaulicht. . i . x
Damit erhilt das Symmetriegesetz fiir Binomial- 0 k noon—k n

vertellungen die Form von
gLtk Ex il Fig. 246.1 Das Argument k von

B(n; p; k) und das Argument

n—kvon Bin; 1 —p;n—k)

liegen symmetrisch zu 3 n.
Satz 246.1: Die Verteilungen B(n; p) und B(n; 1 — p) liegen zueinander
symmetrisch beziiglich der Geraden x = 4n. Insbesondere ist die Vertei-
lung B(n; 3) in sich achsensymmetrisch beziiglich der Achse x = Lhn,

Zu 6. und 11. Um das »Symmetrischer-Werden« der Binomialverteilungen in Abhingigkeit
von n und p zu zeigen, benGtigt man ein MaB fiir die Abweichung von der Symmetrie. Man
wihlt hierfiir fiir ¢ 4 0 den Formparameter Schiefe (= skewness) einer ZufallsgroBe, definiert
durch

é[(X — w']

3
a

Schiefe :=

Eine sehr mithsame Rechnung liefert fiir die Schiefe von ZufallsgroBen, die nach B(z: p) ver-
ety . 1—2p AL e 3
teilt sind, den Wert —. Man erkennt daraus, daB die Schiefe genau dann 0 ist, wenn
T

P s jaeiig bt oty i1 =2p | —2p
P = 7 1st, was unserer Beobachtung 6. entspricht. Aus =
g [ np(l — p)
unmittelbar, daB die Schiefe fiir wachsendes n bei festem p monoton gegen (0 konvergiert,
was unserer Beobachtung 11. entspricht.

erkennt man

Zu S.und 10. Wir besitzen keinen einfachen Rechenausdruck fiir den Maximalwert einer
Binomialverteilung. Wie wir aber spiiter in Aufgabe 313/15 zeigen werden, gibt es fiir groBe
n eine Niherungsformel fiir den Maximalwert. Es gilt néimlich:

Es sei M (n:p) der Maximalwert der Binomialverteilung B(n; p), also
Min; p) = max {B(»n: p; x)|xeR}. Dann gilt fiir 0 <p < 1 und grofBes n:

Min; p) =
agl/2n
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Figur 247.1 zeigt, wie gut diese Niherung M ) Ak
ist. aal2n
Wir haben bereits oben (Seite 244) gezeigt, :
daB ¢ bei festem # fiir p = 4 am gréfBten
wird. Also muBB M (n; p) bei festem n fiir
p = 3 beziiglich p am kleinsten werden, \
was Beobachtung 5. entspricht. Anderer- B x
seits wichst ¢ bei festem p mit n echt
monoton; also nimmt M(n; p) echt mo-
noton ab (Beobachtung 10.), )
Anschaulich ist dies alles klar: Da die 0.7
Histogramme immer breiter werden, ihre
Flicheninhalte aber konstant den Wert |
haben, sollte das héchste Rechteck des 0.61
Histogramms immer niedriger werden.

Fig. 247.1 Giite der Niherungsformel
liir die Maxima von Binomialverteilungen 0,2
Einzelpunkte: Maximalwerte M (n; p)
der Binomialverteilungen B(n; p).
Durchgezogene Kurven: zugehérige
Niherungen (¢|/2m)

0,14
1

Beachte: Auf der n-Achse logarithmischer
MaBstab!

|

O 7 G 1 ) e Ceoes Ao 1 T |
3 4567810 1520 30

14.7. Die Ungleichung von Bienaymé-Tschebyschow fiir binomial

verteilte ZufallsgroBen und das Gesetz der grofien Zahlen

Wenden wir die Ungleichung von Bienaymé-Tschebyschow, nimlich
| v ShiG Var X
PIX —pul2a) < ——,

o

auf binomial nach B(n; p) verteilte ZufallsgroBen X an, dann lassen sich u und

VarX durch np bzw. npq ersetzen, und wir erhalten

: ¥ _ npc

P(|X —np| =a) < fzf -
a

Die Ungleichung | X

np| = a beschreibt kurz das Ereignis {o || X (w)

np| = aj.
Dividiert man die in der Mengenklammer stehende Ungleichung durch n, so
wird weiterhin dasselbe Ereignis beschrieben, also
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I | X (o) a

fo || X (@) — =q) = llm| — —p| = -

o || X (w) —np| = af j i = D= n

"

Weil durch diese Umformung das Ereignis nicht verindert wurde, bleibt auch
die Wahrscheinlichkeit dieselbe, und es gilt

r N
< 4 g

Da X die Anzahl der Treffer in einer Bernoulli-Kette der Linge n ist,stellt S H,

die ZufallsgroBe »Relative Hiufigkeit von Treffer in einer Bernoulli-Kette von
n Versuchen, bei denen der Treffer jeweils die Wahrscheinlichkeit p hat« dar.
Die Wertemenge von H, ist demnach die Menge {0,1,2 ... 1}, die Wahr-
scheinlichkeitsverteilung von H, ergibt sich zu P(H, = ¥) = B(n; p; k). Den-
noch ist H, nicht binomial verteilt! h, bezeichne weiterhin einen bestimmten
Wert von H,. Der Bequemlichkeit halber set-

P .
zen wir — =:¢ und erhalten damit A
' 1|
“ npe 11¢ (1l —.p Al
P(|H,—plze = g ’i, = 'IT ik -j-’f ’. p— p(1—p)
n“e ne® ne* 1
4

Oft kennt man p nicht. Dann schitzt man
p(1 — p) durch seinen Maximalwert + ab (vgl. 0
Figur 248.1).

1
2

Fig. 248.1 Graph der Funktion

1P
Zusammenfassend gilt also p—=pll—p

Satz 248.1: Bienaymé-Tichebyschow-Ungleichung fiir die relative Haufig-
keit. Fiir die relative Hiufigkeit H, (»Treffer«) in einer Bernoulli-K ette der
Lange n mit dem Parameter P(»Treffer«) = p gilt:

P(B—plzg=Ll < 1

B 4ng”
Bemerk A | 23 Viar : P
emerkung: Das Tschebyschow-Risiko Fp = 5— wird hier zu r, = =~ und
(s ne

betriigt hoéchstens

dneg*”

Sowohl in der Interpretationsregel fiir Wahrscheinlichkeiten (5.2.) wie auch beim
Versuch der Definition der Wahrscheinlichkeit eines Ereignisses durch v. Mises
wird ein intuitiver Zusammenhang zwischen relativer Hiufigkeit und Wahr-
scheinlichkeit sichtbar. Satz 248.1 gibt uns nun die Méglichkeit, diesen Zu-
sammenhang zu erkennen. Dazu schreiben wir die T'schebyschow-Ungleichung
von Satz 248.1 fiir das Gegenereignis auf, also

,D“ .I;".{“ — Jlr} < I|"} = ] J'”{{‘ :
HE™
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Diese Ungleichung kénnen wir folgendermal3en interpretieren: Die Wahrschein-
lichkeit dafiir, daB sich die relative Hiufigkeit des Treffers um weniger als ein
beliebig kleiner, aber fest gewihlter Wert ¢ von der Wahrscheinlichkeit p des
Treffers unterscheidet, wiachst mit zunehmender Lange »n der Bernoulli-Kette
und kommt dem Wert 1 beliebig nahe. Damit erweist sich die relative Haufigkeit
fiir hinreichend groBles n als guter »MeBwert« fiir die Wahrscheinlichkeit. Dieser
Sachverhalt ist die Aussage des sog. Hauptsatzes der Ars Conjectandi, den Jakob
Bernoulli (1655-1705) wohl um 1685 gefunden hat, und den man heute schwaches
Gesetz der groBen Zahlen nennt.®

Satz 249.1: Schwaches Gesetz der groien Zahlen von Jakob Bernoulli.

[st A der Treffer einer Bernoulli-Kette der Linge n mit P(4) = p und

H,(A) seine relative Hiufigkeit, dann gilt fiir jedes ¢ > 0:

<¢g) =1 |

Man konnte nun versucht sein, ¢ = ) zu setzen, in der Hoffnung, mit zunehmen-
dem n schlieBlich p exakt zu bestimmen. Bernoulli hat bereits darauf hingewiesen,

lim P(|H,—p

ndall sich dann das Gegenteil ergiibe«,

ndmlich lim P(|H,—p|=0)= lim P(H,=p)=0,

n=r n—tuo
was mit unserer Beobachtung iiber max{B(n; p; x)} von Seite 246f. lberein-
stimmt, und daB wir den Wert von p

»nur mit einer bestimmten Anniiherung erhalten, d.h. zwischen zwei Grenzen einschliefen
kénnen, welche aber beliebig nahe beicinander angenommen werden diirfen«.

Der scheinbare Widerspruch klirt sich auf, wenn man bedenkt, dall im endlichen
Intervall Jp —e&; p + ¢[ fiir groBes n sehr viel mogliche Werte von H, liegen,

: . 1 o 5 LA p .

die alle im Abstand = aufeinanderfolgen. Es gibt also ungefdhr —— = 2ne
n

Werte fiir H, in diesem Intervall, von denen jeder zwar eine verschwindend kleine

Wahrscheinlichkeit hat, die Summe all dieser Wahrscheinlichkeiten aber nahezu

| ergibt.

Was besagt im Sinne der Analysis eigentlich lim P(|H,—p|<¢) = 1? Diese
n—+ o

Gleichung driickt doch aus, daB sich bei fest vorgegebenem positiven & zu jeder
beliebigen Schranke n > 0 eine Linge n, fiir Bernoulli-Ketten des Parameters p

. i i ¢ 4 . L] - M § = Ay Tl ]

* Bernoulli hat, wie er selbst in der Ars Conjectandi (ed. 1713) wohl um 1703/4 schreibt, dieses Problem schon 20
Jahre mit sich herumgetragen. Wie stolz er aul diesen Satz war, zeigen seine Worte am Schiufi des Bewelses in seinen
lagebiichern

»Hoc inventum pluris facio quam si ipsam circuli guadraturam dedissem, quod si maxime reperiretur, exigui
USUS es5el. o )

& T 13afar TS 1a - P
kung gilt mir mehr, als wenn ich gar die Quadratur des Kreises geliefert hitte; denn wenn diese
£ - — o = -3 O

funden wiirde, so wiire sie doch sehr wenig niitz. «
Zeh stamml von Siméon-Denis Poisson (| 7%1-1840), der 1837 emen allgemeinen Satz
i des erands nombres nannte. und von dem das Bernoullische Gesetz der groben Zahlen ein

#Diese Entd

auch giinzlich
Dier Name Ges
verdffentlichie, de
Spezialfall ist.
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finden laBt, so daB fiir alle # = n, die Wahrscheinlichkeit dafiir. daB sich die
relative Trefferhdufigkeit um weniger als ¢ von der Wahrscheinlichkeit p fiir einen
Treffer unterscheidet, mindestens 1 —n wird, daB also P(|H,—p|<e)=1—y
gilt. Nehmen wir z.B. 5 = {5, so bedeutet P(| g) = 90% nach der
Interpretationsregel fiir Wahrscheinlichkeiten: Bestimmt man whr oft die rela-
tive Hiufigkeit H, des Treffers in Bernoulli-Ketten einer Linge 1 = n, zum sel-
ben Parameter p, so erhilt man in ungefihr mindestens 90%/ aller Fille Werte
h,, die in das Intervall |p —&; p + ¢[ fallen. Diesen Sachverhalt driickt man da-
durch aus, dall man sagt, H, konvergiere in Wahrscheinlichkeit nach p, oder auch.
H, konvergiere stochastisch nach p. Figur 250.1 veranschaulicht diese Art von
Konvergenz.

h;
pee]
p--
p-if
i n
1 |
Ny n

Fig. 250.1 Zum Schwachen Gesetz der grolen Zahlen: Es gibt ein ng, so daB fiir alle n = n,
die W uhmhmnlmh]\m dafir, dal die Werte A, der relativen Haufigkeit H, in das Intervall
lp—e; p+¢[ fallen, mindestens 1 — 1 betridgt. — Anschaulich; Der ,-\r][ul der Schlangen,
die durrh das 2¢-Tor um p hindurchgehen, ist fiir # = n, etwa 1 — H.*

Aus der stochastischen Konvergenz von H, darfl auf keinen Fall geschlossen
werden, dall von dem gefundenen 1, ab die :L[dll‘\ Hiufigkeit fiir noch groBere
Langen in dem Intervall |p —&; p + e[ bleibt, d.h., daB etwa hm H,(A) = P(4)

n

gelte! Eine etwas schwiichere Behauptung als diese hat im Jahre l‘)ﬂ‘l’ Emile Borel
(1871-1956) fiir p = 3 gefunden. Sie wurde 1917 von Francesco Paolo Cantelli
(1875-1966) fiir 0 < p < 1 verallgemeinert und heiBt

Das starke Gesetz der groBen Zahlen:

P(lim H, = p) =1

Es besagt, daB die relative Héufigkeit fast sicher gegen die zugehorige Wahr-
scheinlichkeit konvergiert.

Wir verzichten auf den Beweis, da wir dazu unendliche Ergebnisrdume benotigten.,

* Jede gezeichnete Schiange ist |'n|;, ndermafen entstanden: Zu jedem n werden n unabhin gige Versuche gemacht,
und dann A, bestimmt, 7, B.: 1 50 Zu bestimmen, miissen 100 una Versuche ger nuhl \\JJ._ 1. Um
dann eine Schlange bis n = 100 zei Lhnm zu kénnen, missen 1 + 2 + £ 100 = 5050 Versuche ausgeli
Man .d‘“'f die Schlangen von Figur 250.1 nicht mit denen der I ; .1, 34.1 und 71.1 verwechseln, die die
I I:_'\’-'l‘-'kil-'“:c-" von h, darstellen. So ist z.B. in | igur 31.1 die Entstehung von he,,(»Adlers) = 4 darsestellt: die
Schlange gibt also die Entwicklung fiir diesen einen Wert an. E Iy - ;
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14.7. Das Gesetz der groflen Zahlen

Das schwache Gesetz der groflen Zahlen rechtfertigt unsere Interpretationsregel
fiir Wahrscheinlichkeiten, d. h. die statistische Bestimmung von Wahrscheinlich-
keiten. Um mit Jakob Bernoulli zu sprechen: Wir kénnen die Wahrscheinlichkeit
»a posteriori fast ebenso genau finden, als wenn sie uns a priori bekannt«

wire. Es liefert uns also gewissermalBlen eine MeBvorschrift fiir die Wahrschein-
lichkeit von solchen Ereignissen, die unter gleichen Bedingungen beliebig oft
wiederholbar sind. Die Wahrscheinlichkeit solcher Ereignisse ldBt sich damit
wie eine physikalische Konstante messen !

Bei fliichtiger Betrachtungsweise konnte man meinen, daBl im Gesetz der groBen
Zahlen ein ZirkelschluB vorliegt, da es eine Aussage Uber einen Zusammenhang
zwischen der relativen Haufigkeit eines Ereignisses und seiner Wahrscheinlichkeit
macht, den man iiber die Interpretationsregel schon zur Grundlage der Defini-
tion der Wahrscheinlichkeit gemacht hat. Ein solcher circulus vitiosus liegt aber
nicht vor, weil wir als Grundlage der mathematischen Theorie der Wahrschein-
lichkeit die Wahrscheinlichkeit eines Ereignisses im Axiomensystem von Kolmo-
gorow vollig unabhingig vom Begriff der relativen Hiufigkeit definiert haben.
Das Gesetz der groBen Zahlen zeigt nun, dal} diese abstrakte Definition der
Wahrscheinlichkeit genau den realen Hintergrund erfaBt, fiir dessen Beschrei-
bung man die Wahrscheinlichkeitstheorie geschaffen hatte. Wir kénnen nun auch
noch verstehen, warum wir das Empirische Gesetz der groBen Zahlen, die Sta-
bilisierung der relativen Hiufigkeit um einen festen Wert. nicht prizise formu-
lieren konnten. Wir bendtigen zu diesem Zweck namlich den Begriff der Wahr-
scheinlichkeit. Das schwache Gesetz der groflen Zahlen driickt diese Stabilisie-
rung aus; es besagt ja gerade, daB grofle Abweichungen der relativen Haufigkeit
von diesem festen Wert nach einer sehr langen Versuchsreihe sehr unwahrschein-

ich sind.

Die Aussage des schwachen Gesetzes der groflen Zahlen wird von vielen Leuten
miBverstanden. So neigen manche Lottospieler wie einst d’Alembert (1717-1783)
dazu, gerade diejenigen Zahlen zu tippen, die bei den bis dahin erfolgten Aus-
spielungen sehr selten erschienen sind. Sie meinen namlich, das schwache Gesetz
der groBen Zahlen arbeite wie ein Buchhalter, der darauf achtet, daf3 alle Zahlen
gleich oft gezogen werden. Das schwache Gesetz der groBen Zahlen arbeitet aber
anders, nimlich gewissermaBen durch Uberschwemmung*: Defizite oder Uber-
schiisse, die sich bei den absoluten Hiaufigkeiten im Laufe der Zeit ergeben, wer-
den in der relativen Hiufigkeit dadurch ausgebiigelt, daB sie als Differenzen 1m
Ziihler bei sehr groBem Nenner keine Rolle mehr spielen. So hat z. B. die Zahl 13,
wie die Tabelle zu Aufgabe 38/7 zeigt, nach 1225 Ziehungen ein Defizit von 29
gegeniiber dem Sollwert von 150. Das bedeutet fiir die relative Haufigkeit emn
Defizit von +33= < 2.4%. Dasselbe Defizit von 29 wiirde bei 10000 Zichungen in
der relativen Hiufigkeit nur mehr 0,299, ausmachen; nach 1 Million Ziehungen
spielt dieses Defizit mit 0,0029% aber keine Rolle mehr.

Analog sorgt beim Galtonbrett das schwache Gesetz der groBen Zahlen dafiir,
daB auf lange Sicht, wenn immer mehr Kugeln durch den Nagelwald laufen, die
Ficher immer genauer nach B(n;3) gefiillt werden. Dabei ist es offensichtlich

*

swamping effect — L. H.C, Tippert prigte 1943 diesen Begriff.




252 14. Binomialverteilung

unsinnig anzunehmen, dal} eine startende Kugel weill, in welchem Fach gerade
Defizit herrscht, um bevorzugt dorthin zu springen.

Unterstellt man dem schwachen Gesetz der groBen Zahlen also einen Buchhal-
tercharakter, so miilte man wider alle Vernunft annehmen, daB stochastische
Gerite Gewissen und Gedichtnis hiitten, wie es Joseph Bertrand (1822-1900)
einmal treffend formulierte*. Wire dem so, entgegnete 1785 Leonhard Euler (1707
bis 1783) in seinen Opuscula Analytica** der Auffassung d’ Alemberts.

»dann miiBte jeder nach einem Jahr, ja nach einem Jahrhundert stattfindende Zug vom Er-
gebnis aller Ziige abhiingen, die seit undenklichen Zeiten an irgendwelchen Orten dieser Erde
stattgefunden haben; Absurderes kann sicherlich kaum gedacht werden.«

14.8. Anwendungen der Ungleichung von Bienaymé- Tschebyschow

Die Ungleichung von Bienaymé- Tschebyschow kann, je nach Bedarf, unter-
schiedlich formuliert werden. Wir stellen die drei hdufigsten Formulierungen der
Bienaymé-Tscheby. schow-Ungleichung in der Form, in der sie sich am leichtesten
merken lassen, zusammen:

1) Ist X eine ZufallsgréBe mit € X = u und ist @ > 0, dann L=1It

s b viaNari =
P(lX—pu|l=a) =< ‘--,—- r (Satz 184.1)
a*
2) Ist H, die relative Hiufigkeit eines Ereignisses mit der Wahrscheinlich-
keit p in einer Bernoulli-Kette der Lange n und ist &£ >0, dann gilt

\

I4

PIH,—plz<PL < L (satz 248.1)

ne* dne”

3) Ist X, das arithmetische Mittel n gleichverteilter, pa: irweise unabhingi-
ger ZufallsgroBen X; mit £ X, = u und Var X, = ¢ und ist a> (), dann
gilt

P }?,, —ul =a) = -: - (Aufgabe 271/71)
a-

Viele Aufgaben der Wabhrscheinlichkeitsrechnung handeln davon, daB das wahre
Risiko, d.h., daB} die Wahrscheinlichkeit dafiir. dap die Werte einer ZufallsgroBe
X von ihrem Erwartungswert p# um mindestens a abweichen, eine gewisse
Schranke # nicht iiberschreiten soll. kurz. d: a3

P(X —pulza) =y (1)

sein soll. Anders ausgedriickt: Die Wahrscheinlichkeit, dal die Werte von X

sich um weniger als @ von u unterscheiden. soll einen gewissen Mindestwert be-
sitzen, d.h.,

* »On fait trop d’honneur 4 14 roulette: elle n'a ni conscience ni mémoire.« (Calewd des Probabilités, p. XX, 1889)
el B \Hh:mill ng lautet Solutio quarundam quaestionum difficiliorum in Calcwlo Probabifium. Friedrich 11, bat
Enler 1749 und 1763 um Rai beziiglich der Errichty ing von Lotterien, um die Finanznot seines Staates zu beheben.
Aus der Beschiftigung mit diesem Problem entstanden i ters wahrscheinlichkeitstheoretische Arbeiten.
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*‘”'[EX' — i = a) = 1 1. {2}

Da man nun auf Grund von Satz 184.1weil3, daBl das wahre Risiko hochstens so
gro} wie das Tschebyschow-Risiko r, ist, ist Bedingung (1) fiir das wahre Risiko
sicher erfiillt, wenn man das Tschebyschow-Risiko r;. hochstens so groB3 wie die
Schranke »n werden 1idf3t, also (meist) weniger fordert, namlich

Pl X —ulza)=r. =1.

Es ist uns natiirlich bewuBt, dal man dadurch unter Umstinden viel zu grobe
Abschitzungen erhidlt. Wo méglich, wird man auBlerdem versuchen, mit ry = g
auszukommen.

Nun zu den Aufgaben! Der einfachste Aufgabentyp ist derjenige, bei dem aus ge-
gebenen Daten eine Schranke fiir das wahre Risiko gesucht wird.

Beispiel 1: Wie grof} ist die Mindestwahrscheinlichkeit dafiir, daBl die relative
Haufigkeit fiir eine Sechs beim 100fachen Wurf eines L-Wiirfels um weniger als
0,05 von der Wahrscheinlichkeit fiir eine Sechs abweicht ?

Liosung: An sich konnte man die gesuchte Wahrscheinlichkeit direkt berechnen.
Mit X :=»Anzahl der Sechsen bei 100 Wiirfen« erhalten wir

P(|Hygo — 31 < 0,05) = P(l18s — t1 < 20) = P X — 1§*| <5) =
= P(112 <X <213) =

B(100; £; k) = F12°(21) — F2°(11) =

= (,89982 — 0,07772 = 0.,82210.

Hiitten wir keine Tabellen, z. B. wenn »n = 80 wire, so miiiten wir eine sehr

miihsame Rechnung durchfiihren. Da ist man dann oft froh, wenn man die ge-

suchte Wahrscheinlichkeit durch eine untere Schranke abschitzen kann. Wir

suchen nun also eine untere Schranke fiir P(|H o0 — %1 < 0,05). Dazu gehen wir

zum Gegenereignis tiber und suchen eine obere Schranke fiir P(| Hy 0 — 5| = 0.05).
! 5

Das Tschebyschow-Risiko r,. = l{'J'h{'J-':E'{J(HE ist eine solche obere Schranke. Wir

erhalten r.. = 3 < (,556. Also ist

=
P(|Higo— 51 <005) 21— 35 = 5 > 4447

Das bedeutet:

Mit einer Wahrscheinlichkeit von mehr als 44,4%; liegen beim 100fachen Wurf
eines L-Wiirfels die Werte /oo (»Sechs«) der relativen Haufigkeit H, oo (»Sechs«)
im Intervall ]% — 0,05; 2 + 0,05] = lgo: s5[, was durch Figur 254.1 veran-
schaulicht wird.

[n einer Vielzahl von Aufgaben wird nach der Zahl n der Versuche gefragt, die
notig sind, um das wahre Risiko nicht groBer als y werden zu lassen.

Beispiel 2: Wie oft muf ein L-Wiirfel mindestens geworfen werden, damit mit
einer Sicherheit von mindestens 60% das arithmetische Mittel der Augenzahlen
um weniger als 0,25 vom Erwartungswert 3,5 abweicht?
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Fig. 254.1 Die Wahrscheinlichkeit, d: 1]1 beim 100maligem Werfen eines L-Wiirfels die relative
][minukul der Sechs um weniger als 55 von ihrer Wahrscheinlichkeit £ abweicht, ist minde-
stens .-

Liosung: Gesucht ist ein kleinstes n, so daB P(| X,—351<025)=260% =1—n.
Da die Varianz der ZufallsgroBe Augenzahl den ‘»‘uu 22 hat (Aufgabe 194/44),
erhalten wir aus der Tschebyschow-Ungleichung

bajtn

P(X,—3,51 2025 < Tk

n_
S [l
:

Setzen wir das rechts stehende Tsche byschow-Risiko hochstens gleich der Schranke
(= 40%), dann gewinnen wir fiir # die folgende Abschiitzung

— S04 <= n 230 = 116% also n = 117.

Somit gilt: Wirft man mindestens 117mal einen I - Wiirfel, so ist die Wahrschein-
hchka.n dafiir, daB das arithmetische Mittel der Augenzahlen vom Erwartungswert

3,5 um weniger als 0,25 abweicht, mindestens 60° 7. was Figur 255.1 veranschau-
]uth soll.

Schwieriger als diese beiden Aufgabentypen sind diejenigen, in denen & bzw.
a-Intervalle gesucht sind. Dabei sind zwei F ragestellungen zu unterscheiden.

. Fragestellung: Es ist dasjenige Intervall um p (bzw. u) gesucht, in das die
IL]tlTl\ Héufigkeit H, (bzw. das arithmetische Mittel X) mit einer vorgegebenen

Sicherheitswahrscheinlichkeit von mindestens 1 — n trifft. Man sucht also ein
&, 50 dafl die Bedingung

|H,—pl<e <= p—e<H <p+s

mit einer vorgegebenen Mindestwahrscheinlichkeit | — n erfiillt wird.
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Fig. 255.1 Soll die Wahrscheinlichkeit, daf§ das arithmetische Mittel der Augenzahlen eines
L-Wirfels vom Erwartungswert 3,5 um weniger als 4 abweicht, mindestens 609, betragen, so
mul} mindestens 117mal gewiirfelt werden.

Gezeichnet ist vom Stabdiagramm der Wahrscheinlichkeitsverteilung P(X,,; = ©) nur
Jeder dritte der 586 Stiibe (die bei X e {1,415, {7, -.-, 6} liegen), sofern er mindestens 5- 10~ °
milit.

Beispiel 3: In welchem Intervall um p = ¢ liegt bei 100maligem Werfen eines
L-Wiirfels die relative Hiufigkeit fiir die Augenzahl 6 mit einer Mindestwahr-
scheinlichkeit von 60% ?
Losung: Gesucht ist ein &, so daB

: ik e cimardie -1 2> 60
P””mn -5 <g) = P{E — &= Hj{m <% - £} = 60 o
wird, Statt dessen konnen wir auch

P[I”u‘m !| (=8 = 40“],

£

fordern. Das ist sicher erfiillt, wenn das Tschebyschow-Risiko hochstens 407
wird, also

4 i
bl ik e
100,z =04 < 2= 77)/2 = 00589

Fiir & = 0,059 ist die Bedingung sicherlich erfiillt, d.h., mit einer Wahrschein-
lichkeit von mindestens 60% ergeben sich Werte hyq(»6«) der relativen Haufig-
keit H,,o(»6«) zwischen 0,107 und 0,226. Figur 256.1 veranschaulicht diesen
Sachverhalt. — Bedenkt man noch, daB H, 4, nur Werte aus {0, 15. T4 i 100, 1}
annehmen kann, so liBt sich verschirfend sagen, daf} mit einer Wahrscheinlich-
keit von mindestens 60% die relative Hiufigkeit H,,,(»Sechs«) Werte im Inter-
vall [0,11; 0,22] annimmt.
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Fig. 256.1 Beim 100maligen Werfen eines L-Wiirfels ist die Wahrscheinlichkeit mindestens
6077 daB die relative Hiufigkeit des Ereignisses »Sechs« von seiner Wahrscheinlichkeit Lum
weniger als & = 4 |/2 abweicht. — Punktiert ist dasjenige e-Intervall angegeben, das man
wihlen muB, falls man eine Wahrscheinlichkeit von mindestens 909 fordert.

Die Aufgabenstellung von Beispiel 3 lautet allgemein P(|H,—p|<e)=1—1n

bzw. P(|H,— p|=¢) <n. Mit dem Ansatz ry =1, also -‘-”—-E", —

1. erhdlt man
nHE™
s - f—— Y -
: (PE = : | pg [ pg
E= 1/ z a8 7z 2IrVe fi — - i 4
e was zum Intervall I(p) ’p t s L/ =

fiihrt. Es wird also jedem p ein Intervall I(p) zugeordnet, in das die Werte #,
der relativen Haufigkeit H, mindestens mit der Wahrscheinlichkeit | —n hin-
einfallen. Figur 257.1 veranschaulicht diesen Zusammenhang p+— I(p). Die
Hiillkurve all dieser Intervalle ist eine Ellipse mit der Gleichung

|hy— p| = ’ p(1 =Rl
/  nn

2. Fragestellung: Der andere Fall der Intervallbestimmung besteht darin, daB
man bei einer Versuchsserie der Linge n einen Wert h, der relativen Hiufigkeit
H, ermittelt hat und nun ein ¢-Intervall um diesen Wert h, angeben mochte, von
dem man mit einer vorgegebenen Mindestwahrscheinlichkeit sagen kann, daB
es die unbekannte, aber feste Wahrscheinlichkeit p enthilt. Solche Zufallsinter-
valle nannte 1934 Jerzy Neyman* (1894—1981 ) Vertrauensintervall oder Konfidenz-
intervall fir p.

* gesprochen jezd nejman
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71:100- n=10%
Ah,

z J\ P
VI T e i |
0,594 - 0860

ey

Fig. 257.1
Der Graph der Relation p s I(p) ist die Punktmenge {(p|h)|h, € I(p)[0:1] A pe[0; 1]},
also das grau unterlegte Gebiet einschlieBlich des schwarzen Randes.
Fiir p =32 ist 1(3) = 5 _:'-,,-] 30:24 4;',.,[ 30[ = |0.613;0.887] rot hervorgehoben.
In dieses Intervall fillt die relative Trefferhiufigkeit mindestens mit der Wahrscheinlichkeit
90%. wenn P{»Treffer«) = 2 ist.

: Geht man bei h, = 3 ein, so erhilt man das zugehorige echte Konfidenzintervall auf

der p-Achse (vgl. Figur 260.1).

Man konstruiert dazu vor der Ausfiithrung des Zufallsexperiments ein moglichst
enges Zufallsintervall |H, —&: H, + ¢[. das die unbekannte, aber feste Wahr-
scheinlichkeit p mindestens mit der Wahrscheinlichkeit 1 — y iiberdeckt, fiir das
also P(|H, — p|<¢) = P(H,—e<p<H,+¢ 21—y gilt.

Bei der 1. Fragestellung lag das e-Intervall um den bekannten Wert p fest. Der
Zufall steckte im Hineintreffen der relativen Hiufigkeit #, in dieses Intervall.
Bei der 2. Fragestellung ist zwar auch p fest. aber nicht bekannt. Der Zufall be-
stimmt jetzt den Wert A, der relativen Hiufigkeit H, und damit mindestens mit
der Wahrscheinlichkeit 1 — » das &-Intervall um A, das so auf der Zahlengeraden
liegt, daB es den gesuchten p-Wert iiberdeckt. Dabei hingt der Radius & natiir-
lich von # ab. (Das Verfahren édhnelt also dem Jagen einer Fliege mit einer Flie-
genklatsche: Die Fliege ist das p. die Klatsche das ¢-Intervall, die Klatschen-
mitte trifft zufallsgesteuert bei jedem Schlag auf das jeweilige h,,.)

Beispiel 4: Die ersten 100 Wiirfe von Tabelle 10.1 ergaben h;0({6}) = U,18. Fiir
welches Intervall kann man mit einer Sicherheit von mindestens 907, schliefien,
daB es die Wahrscheinlichkeit p fiir eine Sechs enthalt?

Losung: Gesucht ist ein & so daB P(H,o0({6}) —& <p < H,00({6)) + &) =904
wird. Dazu betrachten wir wieder das Gegenereignis, also

EllH oo —pl =8) = 10%,
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n=100 | n=10%
' . _
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Fig. 258.1 Grobe Konfidenzintervalle. Der Graph der Relation A, — I(h,) ist die Punktmenge
{(ha|p)|pe I(h)N[0; 1] A h,e[0; 1]}, also das grau unterlegte Gebiet einschlieBlich des
schwarzen Randes. Fiir hyqq = 7 ist I(3) = 13 — 25 /105 3 + 36 It.'h[. < 10.591; 0,909[ rot
hervorgehoben. Man kann mit einer Sicherheit von mindestens 90%, darauf vertrauen, daf
dieses Intervall die Wahrscheinlichkeit p = P(»Treffer«) iiberdeckt, wenn die relative Hiufig-
keit des Treffers zu h,,, = 3 gemessen wurde.

Py g 1 il
< =~ =< 10
100 &~ 400 —

Wir erhalten & = 55]/10 = 0,158... Zum Zufallsergebnis h,,({6}) = 0,18 ge-
hort also das Intervall ]0,021; 0,339[, von dem wir sagen kénnen, es wurde auf
Grund eines Verfahrens erhalten, das mit einer Wahrscheinlichkeit von min-
destens 907, zu einem Intervall fiihrt, das die wahre Wahrscheinlichkeit p fiir
die Augenzahl 6 bei diesem Wiirfel enthilt.

was sicherlich erfiillt ist, wenn

o*

Lost man die Aufgabenstellung von Beispiel 4 allgemein mit dem Ansatz

2 e s o 1 7
P(H,—p|l=¢) = Pq < = =1, $0 erhdlt man = und damit
neg: dne® 2/ nn

das grobe Konfidenzintervall /(h,) = |k, — - h, + : [
3}_ 1y 3]_'13;;
Es wird also jedem Wert A, ein Intervall /(h,) zugeordnet, das den unbekann-
ten Wert p mindestens mit der Wahrscheinlichkeit 1 — » enthilt. Figur 258.1
veranschaulicht diesen Zusammenhang h, +— I(h,). Die Hiillkurve dieser groben
|
2] mli"
»Genauere« Naherung. Weil p unbekannt ist, muBten wir den Ausdruck pq aus
ry durch den Wert 4 abschiitzen. Kennte man p, so wiire fiir p + 5 eine genauere
| pq

i o :
"r-fl? n moglich. Man erhielte & = |/ — Nach dem
ne” / nny

Konfidenzintervalle ist ein Parallelenpaar mit der Gleichung |p — h

Jll_

e-Bestimmung durch
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n=100 | n=10%

Fig. 259.1 Niherungskonfidenzintervalle. Der Graph der Relation k, +— (k) ist die Punkt-
menge {(h,|p)|p e I(h,)~[0; 1] A h, € [0; 1]}, also das grau unterlegte Gebiet einschlieBlich
des schwarzen Randes. Fiir h,,, = % ist f(3) = ]2 - 4-'5;,[ 304+ & I 30[ = 10.613; 0,887
|1rr'\'m'};clmhcn. Man kann mit einer Sicherheit von etwa 90% darauf vertrauen, dall dieses
Intervall die Wahrscheinlichkeit p = P(»Treffer«) enthilt, wenn die relative Haufigkeit des

Treffers zu h,,, = 3 gemessen wurde.

schwachen Gesetz der groBBen Zahlen ist aber £, ein Niherungswert fiir p. Er-

-’7
: . fh(1—h)
setzen wir also p durch A, so wird ¢ = |/ nmy :

: S : . /0,18 - 0,82
Mit den Werten aus Beispiel 4 gewinnen wir & & [; 100 0.1

wie erwartet, ein kleineres Konfidenzintervall um 0,18 fiir p = P({6}). Wir kﬁ“—
nen damit sagen: Das Intervall ]0,059; 0,301 wurde durch ein Verfahren ermit-
telt, das mit einer Sicherheit von ungefihr mindestens 90%, zu einem Intervall
fiihrt, das die wahre Wahrscheinlichkeit fiir die Augenzahl 6 bei diesem Wiirfel
enthilt.
Die genauere Niherung fiihrt im allgemeinen Fall also zu einem

F,.-"f."i”[l — h,)

Niherungskonfidenzintervall 7(h,) = |h, — / nn Byt

= (0,121..., also

=Rl
s ny .

Figur 259.1 zeigt den Zusammenhang h, — I(h,). Die Hiillkurve dieser Nihe-

[h(1—h,)
rungskonfidenzintervalle ist eine Ellipse mit der Gleichung [p — A,| = {r ny

die mit der Ellipse aus Figur 257.1 iibereinstimmt, wenn man die Achsenbezeich-
nungen p und A, miteinander vertauscht. Diese Néiherung ist vor allem fir sehi

- ; i . RS TTEa ot Ak
kleine und sehr groBe 4, nicht sehr sinnvoll. In Figur 259.1 entartet z.B. fiir
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n=100 | n=10% |

P
1.0,86( 3 Il
Y 1| - J
// }
iR iy
U, 2k .
05 V.
1 o
L
|
PO = = ey
: : : e . L= 4 ; Py -
Fig. 260.1 Echte Konfidenzintervalle und die Konfidenzellipse |p — &, :r Das grau
E [ ny

unterlegte Gebiet einschlieBlich des schwarzen Randes ist die Menge der Konfidenzinter-
valle. Fiir hyq, = 3 ist das zugehérige Konfidenzintervall 3(3) = ]& — /34
15/ 34[ = 10.594; 0.860[ rot hervorgehoben. Man kann mit einer Sicherheit von min-
destens 90% darauf vertrauen, daB dieses Intervall die Wahrscheinlichkeit p = P(»Treffer«)
uiberdeckt, wenn die relative Haufigkeit des Treffers zu h,,, = 4 gemessen wurde.

h, = 0 das Vertrauensintervall fiir p zu einem Punkt. Das wiirde heifen. daB
fiir 4, = 0 die Wahrscheinlichkeit p mit der Sicherheit 1 — n (in unserem Bei-
spiel also 907;) den Wert 0 hiitte, was sicher zuviel gesagt ist, wie die grobe Ab-
schitzung von Figur 258.1 zeigt, die als grobes Konfidenzintervall fiir diesen Fall

noch das Intervall | 0: | zulaBt.
2)/nn

pg
' np
verwendet und damit die Ungleichung |h, — p| <& 16st. Die Grenzen dieses
offenen Intervalls sind somit die Lésungen der Gleichung

Das echte Konfidenzintervall erhiilt man, wenn man das oben gefundene &

x pq

h —pl =1, b
|, — p| n

Bezeichnen wir die beiden Losungen dieser quadratischen G
py und p, (wobei p; < p, sein soll), dann wird jedem #,
das echte Konfidenzintervall J(h,) = p,: p,[

zugeordnet.

eichung fiir p mit

Man gewinnt dieses echte Konfidenzintervall iibrigens graphisch, wenn man die
Relation zwischen 4, und p aus Figur 257.1 von der h,-Achse her liest. Zeichnet
man die A,-Achse, wie tiblich, als Rechtswertachse, dann wird die H iillellipse von
Figur 257.1 an der Winkelhalbierenden gespiegelt. Es entsteht Figur 260.1, die
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[n=100[n=10%

e
01,4 0.5

3
L

Fig. 261.1 Der Zusammenhang zwischen grobem, Niherungs- und echtem Konfidenzinter-
vall einschlieBlich der Hiillkurven Parallelenpaar, Niherungskonfidenzellipse (schwarz) und

echte Konfidenzellipse (rot). — Hervorgehoben ist der Wert h, = 3.

die echten Konfidenzintervalle samt der Konfidenzellipse mit der Gleichung

: [p(l—p)
I I / f mif

+ als Hiillkurve zeigt.

In unserem konkreten Beispiel finden wir das echte Konfidenzintervall durch
/p(1—p)

j . Eine leichte Rech-
/ 100-0,1

Losen der quadratischen Gleichung [0.18 — p| =
nung liefert p, = 0,08965... und p, = 0.32852... Damit konnen wir sagen:
Das 90% -Konfidenzintervall ]0,089; 0,329[ wurde durch em Verfahren ermittelt,
das mit einer Sicherheit von mindestens 90% zu einem Intervall fithrt, das die
wahre Wahrscheinlichkeit fiir die Augenzahl 6 bei diesem Wiirfel enthilt. Das
bedeutet: Fiihrt man sehr oft dieses Verfahren durch, so werden mindestens 909,
der so gefundenen Intervalle p enthalten. (Vgl. Aufgaben 275/96 und 97.)

Die vermeintlich genauere Schranke (0,301 von 7(0.18) darf uns nicht tduschen!
Sie ist ja nur ein Niherungswert. Zur Klirung zeigt Figur 261.1 den Zusammen-
hang zwischen dem Parallelenpaar der groben Abschitzung, der Hiillellipse sog.
ngenaueren« Niherung und der Konfidenzellipse.

Aufgaben

Zu 14.1.

l. Eine Urne enthilt 6 schwarze, 8 weiBle und 10 rote Kugeln. Mit welcher Wahrschein-
lichkeit erhilt man bei 6maligem Ziehen mit Zuriicklegen genau 3 rote Kugeln?

2. Eine Maschine stellt Stanzteile mit einem AusschuBanteil von 5%, her. Wie grof ist die
Wahrscheinlichkeit, daB 4 zufiillig ausgewiihite Teile ausnahmslos in Ordnung sind?
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Ich spiele dreimal Roulett und setze jedesmal auf »pair« (Seite 221.). Mit welcher Wahr-
schemnlichkeit werde ich genau zweimal gewinnen?

4. Bei einer Priifung ist zu 10 Fragen jeweils die richtige von 3 Antworten anzukreuzen.
Mit welcher Wahrscheinlichkeit erzielt man bei blindem Raten nur 3 richtige Losungen?

5. In einer Bevolkerung leben 2% Linkshiinder. Wie wahrscheinlich ist es. daB sich unter 7
zufillig zusammentreffenden Personen
a) genau ein, b) mindestens ein Linkshinder befindet?

. Eine L-Miinze werde 8mal geworfen bzw. 8 L-Miinzen werden 1mal geworfen.
a) Berechne die Wahrscheinlichkeit, daf}
1) genau 2) mindestens 3) hochstens 3mal Wappen erscheint.
b) Welches der folgenden Ereignisse hat die gréBte Wahrscheinlichkeit:
A == »Genau 4 Wappen«, B = »3 oder 5 Wappen«, C :=»2 oder 6 Wappen«?

7. Ein Wiirfel werde viermal geworfen. Zeichne das Histogramm der Verteilung der Zufalls-
grofe »Anzahl der geworfenen Sechsen« zur Breite 1.

8. Zwei Mannschaften A und B machen einen Wettkampf im Tauziehen*. Erfahrungsge-
mil gewinnt A in 607 aller Fille. Ein Entscheidungskampf bestehe aus n Partien.
Sieger ist, wer die Mehrzahl der Partien gewinnt.

a) Warum sollte n ungerade sein?
b) Mit welcher Wahrscheinlichkeit gewinnt die schwichere Mannschaft bei 3 bzw. bei
T bzw. bei 15 Partien?
oc) Wie viele Partien sollten mindestens »ngezogen« werden, damit die Chance der
schwiicheren Mannschaft auf den Gesamtsieg unter 3339, liegt?

9. Eine Sau ferkelt zweimal im Jahr. Die Wahrscheinlichkeit sei fiir méinnliche und weib-

liche Ferkel gleich groB.
a) Wie groB ist in einem Wurf von 10 Ferkeln die Wahrscheinlichkeit fiir genau (hoch-
stens, mindestens) 8 weibliche Ferkel ?
b) Wie grof3 ist im betrachteten Wurf die Wahrscheinlichkeit dafiir, dal mindestens ein
weibliches und mindestens ein ménnliches Ferkel geworfen werden?
oc) Wie groB ist im Zehnerwurf die Wahrscheinlichkeit, daB mindestens i weibliche und
mindestens ; minnliche Ferkel geworfen werden? Welche Werte ergeben sich fiir
(£17) = (2]2), (2]5), (5]|5), (0]0), (4]|8)?

10. Von einer Familie ist bekannt, daB sie 8 Kinder hat.

a) Welche Anzahl von Midchen ist am wahrscheinlichsten. wenn die Wahrscheinlichkeit
fiir eine Knabengeburt 0.5 ist?

b) Mit welcher Wahrscheinlichkeit tritt diese Anzahl wirklich auf?

¢) Der empirische Wert der Wahrscheinlichkeit fiir eine Knabengeburt ist iiber lange
Zeitrdume hinweg konstant bei 0,514, Lose Aufgabe a) und b) fiir diesen Wert.

I. Bei emnem Spiel hat Spieler A die Gewinnchance 0.7. Mit welcher Wahrscheinlichkeit ge-
winnt er trotzdem weniger als die Hiilfte von 5 Spielen?

12. Bei einem Gliicksautomaten besteht die Gewinnchance 4 fiir ein Spiel.

a) Ist die Wahrscheinlichkeit, genau zweimal zu gewinnen, bei 3 oder bei 4 Spielen
grober?
ob) Zeichne diese Wahrscheinlichkeit in Abhingigkeit von der Zahl » der Spiele
=1, ...,10).
ec) Fiir welche Anzahlen # ist die Wahrscheinlichkeit fiir genau 2maliges Gewinnen am
héchsten bzw. liegt sie unter 10% 7
o13. Jemand wiirfelt 60mal und hofft, genau 10mal die Eins zu erreichen. Wie grol} ist die
Chance dafiir? — Sein Freund meint, man miisse viel éfter wiirfeln, um einen solchen
Idealfall zu erreichen. Wie grof3 ist die Wahrscheinlichkeit fiir 20 Einsen bei 120 Wiirfen?

* In den Jahren 1912 und 1920 war Tauziehen sogar olympische Disziplin
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14. Zwei Spieler vereinbaren: Wer bei 6maligem Wiirfeln mindestens k, Sechsen erzielt,
hat gewonnen.
a) Bestimme k, so, dal das Spiel méglichst fair wird,
eb) Denke eine andere Vereinbarung iiber die Anzahl der zu erzielenden Sechsen aus. so
dal} das Spiel noch »fairer« wird.
ol5. Bei einer schwierigen Operation besteht fiir Frauen die Chance 0.8, fiir Minner die
Chance 0,7, danach noch mindestens 1 Jahr zu leben. Mit welcher Wahrscheinlichkeit
! Frauen und 3 Minnern (3 Frauen und 2 Minnern), die diese Woche operiert

gind von 2

werden muBten, nach einem Jahr noch genau 2 Personen am Leben?

a) Wie lang mul} eine Zufallsziffernfolge sein, damit mit einer Wahrscheinlichkeit von
mehr als 1) 999% 2) 60 mindestens einmal die Ziffer 3 auftritt?

b) Uberpriife 2) anhand der Zufallszifferntabelle in den Stochastik-Tabellen, Seite 47,

Drei Aufgaben aus Christiaan Huygens' (1629-1695) De ratiociniis in aleae ludo (1657).%

nAufgabe X : Es ist die Anzahl der Wiirfe zu bestimmen, mit der es jemand wagen kann,
mit einem Wiirfel 6 Augen zu werfen.«

wAufgabe XI: Es ist die Anzahl der Wiirfe zu bestimmen, mit der es jemand wagen kann,
mit zwei Wiirfeln 12 Augen zu werfen .«

»Aufgabe X1I: Es ist zu bestimmen, mit wieviel Wiirfeln es jemand wagen kann, auf
den ersten Wurf zwei Sechser zu werfen.«

18. Eine ideale Miinze wird 40mal geworfen. Untersuche auf Unabhingigkeit:
A = »Nach dem 20. Wurf hat man 10 Adler«;
B = »Nach dem 21. Wurf hat man 11 Adler«.

Zu 14.2.

Eine Urne enthilt 6 schwarze, 8 weille und 10 rote Kugeln. Mit welcher Wahrschein-
lichkeit erhilt man bei 6maligem Ziehen ohne Zuriicklegen genau 3 rote Kugeln?
Vergleiche das Ergebnis mit dem der Aufgabe 261/1.

20. Eine Urne enthalte 8 Kugeln, darunter 3 weiBe. Man entnimmt ihr
a) vier b) zwei Kugeln ohne Zuriicklegen. Gib die Wahrscheinlichkeitsfunktion
der ZufallsgroBe »Anzahl der weiBen Kugeln in der Stichprobe« an und zeichne ein
Stabdiagramm (10% = 1 cm).

Ein Komitee von 6 Personen wird aus 10 Miinnern und 5 Frauen ausgewidhlt. Berechne
Wahrscheinlichkeitsverteilung, Erwartungswert und Varianz der Zufallsgrofie »Anzahl
der Minner im Komitee«.

22. In einer Kiste mit 20 Apfeln sind 2 faule Apfel. Man entnimmt auf gut Gliick eine Stich-
probe von 4 Apfeln. Berechne die Wahrscheinlichkeitsverteilung der ZufalisgroBe »An-
zahl der faulen Apfel in der Stichprobe«.

23, a) Aus einem Skatspiel (32 Karten) werde eine Karte gezogen und wieder zuriickgelegt.
Wie oft muB dieser Vorgang mindestens ausgefithrt werden, damit mit einer Wahr-
scheinlichkeit, die gréBer als 0.5 ist, mindestens 2 Herzkarten gezogen werden?

b) Berechne die Wahrscheinlichkeit, mindestens 2 Herzkarten zu erhalten, wenn man
die in a) ermittelte Anzahl von Karten auf einmal dem Spiel entnimmt.

faaben X und X1 behandeln das Problem von de Méré. — Fiir Liebhaber geben wir den lateinischen Urtext

von X ar

Propositio X - Invenire, quot vicibus suscipere quis possit, ut una tessera 6 puncia raciat.
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3.1.

lad

24. a) Begriinde die Bedingungen K = N und n = N in der l‘)clinilinn AL
b) Zeige, daB {k|max{0;n — (N — K)} =k s min{n; K} »n ke Ny} w {0} die Wertemenge

einer nach H(N: K: n) verteilten /LJIL‘.meﬁL ist.
|r| \ .'

\ \H K—k ]
25. Beweise, dafi man H(N: K; n; k) auch in der Form o schreiben kann.
26. Beweise: J =1 ] \K )
g \ n—k | \n |

27. In einer [.- rme Ilcs;-:n 100 Kugcln. darunter 10 schwarze. Man zieht # Kugeln einmal mit
und einmal ohne Zuriicklegen. Vergleiche die Wahrscheinlichkeiten dafiir, dabei genau
2 schwarze Kugeln zu ziehen, [alls ayn =2, eb) n = 10, ¢)n = 100.

e28. Beweise unter Verwendung von Aufgabe 26: Fiir den Erwartungswert einer nach

H(N; K n) verteilten ZufallsgroBe X gilt: £X = n = Uberpriife damit den Wert aus

Aufgabe 21. — Fiihre den Beweis ohne Verwendung von Aufgabe 26.
29. Beweise: Fiir die Varianz einer ZufallsgroBe X gilt: VarX=&(X (X — 1))+ &X — (£ X )2
30. Beweise unter Verwendung von Aufgabe 29: Ist X eine hypergeometrisch nach

H(N: K;n) verteilte Zufallsgréfie, dann gilt: VarX = - !\_ : [ | h_ } el Uber-
T N\ N/ N—1

5 . =] ez : i E - i \ n

priife den Wert aus Aufgabe 21. — Die Endlichkeit des Urneninhalts wird durch N1

den finite population (correction) factor (Endlichkeitsfaktor) beriicksichtigt, der fiir
festes n mit wachsendem N gegen 1 strebt.

Zu 14.3.

31. Bestimme aus einer Binomialtabelle:
a) B(20: 0,8: 16) b) B(100: 0,75: 87) ¢) B(50: 0,5: 25)
d) (12 0,240.8° e) 0,610 f) 0,99190

32, Bestimme aus den n 9 9. 20 200 200 9 9 20 20 200
Stochastik- I = ? 7 = e : = =
Tabellen 7] 005 04 02 035 045 095 06 08 065 085
o (x) fir X 2 Piim e [ e S 50 2 2 16 3.7 1716

. Z sei eine nach B(n; p) verteilte ZulallsgroBe. Bestimme aus einer Tabelle der kumula-
tiven Werte die Wahrscheinlichkeiten des Ereignisses A:

n p A n P A
a) 20 (1.8 Z=73 g) 50 0.45 =Z=20
by 20 0,2 Z =8 h) 50 0,753 10 < Z
¢c) 10 0.2 L= i) 50 0.65 Z—25|=¢
d) 20 0.9 g i) 100 0.65 Z—50|=17
e 10 0.6 Z >3 k) 40 0,04 |Z—1.6]=1
£y 0.6 Z>4 ) 30 0,50 Z—15[=5

34. In einem Sack sind r rote Kugeln und w weiBe Kugeln. Es wird eine Kugel gezogen,
thre Farbe notiert, die Kugel zuriickgelegt und gut gemischt. Dies wird n-mal gemacht.
Mit welcher Wahrscheinlichkeit erhiilt man insgesamt
a) genau 5 rote, b) genau 5 weille, ¢) mehr als 5 weiBe Kugeln, d) keine weiBe Kugel?
Rechnung fiir die Tripel r: w: n
1) 50; 50: 10 2) 70; 30; 10 3) 70; 30: 20 4) 30; 70; 20.
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Eine ideale Miinze wird 200mal geworfen. Mit welcher Wahrscheinlichkeit liegt die An-
zahl der Adler im Intervall [ 70, 130] bzw. [80, 120], [90, 110], [95, 105], [99, 101] bzw.
ist sie genau gleich 1007

Eine ideale Miinze wird geworfen. Der Anteil der Adler im Wurfergebnis liegt zwischen

40%, und 60%;. Wie wahrscheinlich ist dies bei 5, 10, 20, 50, 100 und 200 Wiirfen?

Fiir n Wiirfe einer idealen Miinze soll ein méglichst enges Intervall gefunden werden,

in dem die Anzahl der Adler mit mindestens 90% Wahrscheinlichkeit liegen wird. Lose

diese Aufgabe fiir n = 10, 50, 100, 200.

a) In einer Urne befinden sich 20 Kugeln; davon sind 8 schwarz. Es werden 3 Kugeln
miteinander der Urne entnommen. Ein Treffer liegt vor, wenn sich darunter mindestens
eine schwarze Kugel befindet. Der Versuch wird 10mal ausgefiihrt. Gib die Waha-
scheinlichkeitsverteilung fiir die Anzahl der Treffer an.

b) Lose die Aufgabe a) allgemein: Von N Kugeln in der Urne sind S schwarz. m Kugeln
werden miteinander entnommen; der Versuch wird n-mal ausgefiihrt.

Zum 50kopfigen Aufsichtsrat einer Firma gehéren 8 Mathematiker. Durch das Los wird

jahrlich ein Skopfiger Vorstand gewiihlt. In der 20jdhrigen Geschichte der Firma ist es

I1mal vorgekommen, dall mindestens ein Mathematiker im Vorstand war. Wie wahr-

scheinlich ist es, daB derart hiufig oder noch hiiufiger Mathematiker in den Vorstand

gewithlt werden ? (Niherungslésung mit der Binomialtabelle gentigt.)

Fin Tennis-Match ist entschieden, wenn einer der Spieler 3 Sitze gewonnen hat. Jeder

Satz wird bis zur Entscheidung gespielt, d.h., im Tennis gibt es kein Unentschieden.

Spieler A gewinne einen Satz mit der Wahrscheinlichkeit p.

a) Berechne die Wahrscheinlichkeitsfunktion der ZufallsgroBe X = »Anzahl der zur
Entscheidung bendtigten Sitze«. Uberpriife, ob die Summe der Wahrscheinlichkeiten

den Wert 1 ergibt.

b) Berechne fiir 2 gleich starke Gegner die Werte der obigen Wahrscheinlichkeitsfunktion
und den Erwartungswert von X. — Zeichne ein Histogramm.

Eine FuBballmannschaft gewinne ihre Spiele allgemein mit der Wahrscheinlichkeit p

und spiele mit der Wahrscheinlichkeit p" unentschieden. Unabhiéingigkeit der Spiele

wird angenommen.

a) Man zeichne die »Gewinncharakteristik« fiir eine Runde von 5 Spielen, d.h. die
Funktion p— P(»Mindestens 3 Spiele gewonnen«) (Einheit 10cm). Fiir welchen
Wert p ist die Gewinnchance fiir die Spielrunde genau gleich 5 ? (Vermutung?
Graphische und rechnerische Priifung!)

b) Nun werde wie {iblich gewertet: Gewonnenes Spiel 2 Punkte, Unentschieden 1 Punkt,
verlorenes Spiel 0 Punkte, Wie grof3 ist die Wahrscheinlichkeit, die Runde zu gewin-
nen, d.h. mehr als die Hiilfte aller erreichbaren Punkte zu erhalten? (Formel mit p
und p'.) Setze die Daten p = 0,7 und p’ = 0,1 ein und vergleiche mit dem entsprechen-

den Ergebnis aus a).

. Ein Taxistandplatz ist fiir 10 Taxen vorgesehen. Die Erfahrung zeigt, daB ein Wagen

sich durchschnittlich 12 Minuten pro Stunde am Standplatz aufhilt. Geniigt es, den
Standplatz fiir 3 wartende Wagen anzulegen, ohne daB dadurch in mehr als 15% aller
Fille ein Taxi keinen Platz findet?

Welche Anzahl von Taxen wird man am hdufigsten am Standplatz antreffen?

Bei einer Versicherung sind 20 Agenten beschiftigt, die 75% ihrer Zeit im Auflendienst
verbringen. Wie viele Schreibtische miissen angeschafft werden, damit mindestens 907,
igpung hat?

der Innendienstzeit jeder Agent einen eigenen Schreibtisch zur Verl

i. AnliBlich der Einfiihrung des 8-Minuten-Takts fiir Ortsgespriiche bietet ein Waren-

haus Sanduhren an. Ungenauigkeiten bei der Herstellung bewirken, daB 10%; der Uhren
linger als 8 min laufen. Ein Lehrling packt eine Sendung von 50 Sanduhren aus




266

48,

49,

7. Zwei Schiitzen A und B treffen mit einer Sicherheit von

14. Die Binomialverteilung

a) Mit welcher Wahrscheinlichkeit enthdlt die Sendung genau (hochstens, mindestens)
6 linger laufende Uhren?

b) Mit welcher Wahrscheinlichkeit enthiilt die Sendung genau 6 linger laufende Sand-
uhren, die noch dazu beim Auspacken direkt nacheinander kommen?

¢) Die Sendung enthalte genau 6 linger laufende Sanduhren. Mit welcher Wahrschein-
lichkeit folgen sie beim Auspacken direkt aufeinander?

4.

h

. Berechne Erwartungswert und Varianz einer binomial verteilten ZufallsgréBie durch

Zuriickgehen auf ihre Definitionen,

6. Berechne Erwartungswert, Varianz und Standardabweichung fir folgende Zufalls-

grofien:

A := Anzahl der Adler beim 8fachen Wurf einer Laplace-Miinze,

B := Anzahl der Adler beim 16fachen Wurf einer Laplace-Miinze,

C:= Anzahl der Adler beim 160fachen Whurf einer Laplace-Miinze,

D := Anzahl der Adler beim 10°fachen Wurf einer Laplace-Miinze,

E = Anzahl der Sechser beim 4fachen Wurf eines Laplace-Wiirfels,

Anzahl der Doppelsechser beim 24fachen Wurf zweier Laplace-Wiirfel,

G == Auszahlung in DM beim 100maligen Setzen von 0,5 DM auf Rouge beim Roulett.
(Warum ist die Zufallsgrofie »Auszahlung« nicht binomial verteilt, wenn der Einsatz
1 DM betrégt?)

15% bzw. 85%. A erzielte bei
10 Schiissen 7 Treffer, B bei 20 Schiissen 16 Treffer. Wer war relativ zu seinen sonstigen
Leistungen an diesem Tage der bessere?

Eine Zufallsgréfe ist binomial verteilt mit dem Erwartungswert i und der Standardab-
weichung ¢. Berechne n und p fiir

a) u=281 und g = 2,7 b) p =729 und o = 2.7 e)u=281 und ¢ =09]/7.
Eine ZufallsgréBe X ist binomial verteilt mit u = 3.2 und ¢ = 1,6. Berechne, ggf.

unter Verwendung der Rekursionsformel,

a) P(X = 3), b) P(X = 5), ) PIX=9), ed)P2<Xc=<8),

o) P(| X —ul<2 q).

Von einem Schock Eier sind im Schnitt 3 angeschlagen. Dorothea kauft 40 Eier und findet

5 angeschlagene.

a) Wie grofl ist der Erwartungswert und die Standardabweichung der ZufallsgroBe
»Anzahl der angeschlagenen Eiery?

b) Wie grofi ist die Wahrscheinlichkeit dafiir, daB unter 40 Eiern mindestens 5 ange-
schlagene sind? Hat Dorothea besonderes Pech?

. In einem groflen Saustall befinden sich 1000 Siue. Im Jahr sind 2000 Wiirfe zu erwarten

(vgl. Aufgabe 262/9). Wir nehmen an, daB es sich um Zehnerwiirfe handelt. Bei wie vielen
dieser Wiirfe enthalt der Wurf voraussichtlich

a) kein minnliches Ferkel, b) mindestens ein minnliches Ferkel.

¢) | oder 2 minnliche Ferkel, d) genau 2 minnliche Ferkel,

€) genau 5 minnliche Ferkel?

. Der Schiitzenkonig eines Kirchweihfestes geht auf folgenden Handel ein. Er schieBt

|0mal auf eine Scheibe. Fiir jeden Treffer ins Schwarze erhiilt er 100 DM. Trifft er nicht,
s0 muf er jedesmal 200 DM bezahlen. Seine Treffsicherheit betriigt jedesmal 80%.

a) Wie grof3 ist die Wahrscheinlichkeit. daB er mindestens 8mal ins Schwarze trifft?

b) Wieviel Geld hat er zu erwarten?
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53. Von einer Familie ist bekannt, daf3 sie 8 Kinder hat.

a) Wie viele Middchen sind zu erwarten, wenn die Wahrscheinlichkeit fiir eine Knaben-

geburt 0,5 ist?

b) Mit welcher Wahrscheinlichkeit wird diese Anzahl wirklich angenommen ?

¢) Der empirische Wert der Wahrscheinlichkeit fiir eine Knabengeburt ist iiber lange

‘eitriiume hinweg konstant 0,514. Lése Aufgabe a) und b) fiir diesen Wert.

d) Vergleiche diese Aufgabe mit Aufgabe 262/10.

Ein Schiitze trifft mit 85%, Sicherheit. Er nahm an 3 Wetthewerben teil. Beim 1. Wett-

bewerb traf er bei 10 Schiissen 8mal, beim 2. Wettbewerb bei 15 Schiissen [2mal und

beim 3. Wettbewerb bei 20 Schiissen 16mal ins Schwarze. Wann war er relativ am besten
und am schlechtesten?

. Zum Klassentreffen 1981 haben sich 30 ehemalige Schiiler im Restaurant »I Mulino«
verabredet. Der Organisator hatte allerdings nicht bedacht, daB im Grofiraum Miinchen
3 Restaurants dieses Namens existieren. Jeder geht auf gut Gliick in eines der drei
Restaurants.

a) Wie viele Exschiiler sind im Schwabinger »Il Mulino« zu erwarten?

b) Mit welcher Wahrscheinlichkeit treffen sich dort mehr als % der Exschiiler?

¢) Mit welcher Wahrscheinlichkeit kommt keiner (kommen alle) dorthin?

d) Tatsiichlich kommen 13 dorthin.

I) Wie wahrscheinlich ist dies?

2) Bei welcher Wahrscheinlichkeit p = P (»Entscheidung fiirs Schwabinger Il Mulino«)
ist diese Zahl am wahrscheinlichsten? Berechne dazu das Maximum der Funktion
p—B(30;p; 13).

Eine Maschine stellt Werkstiicke mit einem AusschuBanteil von 4%, her.

a) Man entnimmt der laufenden Produktion 200 Stiick. Berechne Erwartungswert,
Varianz und Standardabweichung der ZufallsgréBen X := Anzahl der defekten Stiicke
und ¥ := Anzahl der brauchbaren Werksticke. — Mit welcher Wahrscheinlichkeit
liegt die Anzahl der AusschuBistiicke im Bereich [u—o0: u+a]?

b) Wie viele Werkstiicke darf man hochstens entnehmen, damit man mit 95% Sicher-
heit nur brauchbare hat? Welche Anzahl erhiilt man, wenn man nur 90%, Sicherheit
fordert?

957, a) Fasse die ersten 1000 Wiirfe aus Tabelle 10.1 als 100 Bernoulli-Ketten der Lange 10 auf.
Nimm als Treffer »Wurf eines Daus«* und erstelle die empirische Verteilung der Zu-
fallsgroBe »Anzahl der Dause bei 10 Wiirfen«. Berechne daraus den empirischen
Mittelwert i und die empirische Wahrscheinlichkeit p.

b) Berechne die Verteilung B(n; p) und vergleiche mit der empirischen Verteilung.

58. a) Vergleiche fiir eine nach B(n; p) verteilte ZufallsgréBe den Erwartungswert u mit

der Wahrscheinlichkeit P(»Mindestens 1 Treffer«) fiir die Zahlenwerte
)n=2; p=0005 2)n=3;: p=10.1 Nn=3;p=00]

b) Beweise die Niherungsformel: Fiir eine nach B(n;p) verteilte ZufallsgroBe gilt, falls
der Erwartungswert u nahe bei Null liegt: P(X = 1) ~ u.

¢) Berechne mit Hilfe dieser Niherungsformel P(X = 1) fir n = 100 und p
Was liefert der Taschenrechner fiir P(X = 1)?

39. Eine nach Bi(n; p) verteilte ZufallsgroBe hat die Standardabweichung o und den Er-

wartungswert u. P et :

a) Driicke n und p durch o und u aus. b) Beweise, daB o= < y gilt.

¢) Beweise, daB fiir o2 < i die Zahl j — ¢ ganzzahlig in u* enthalten ist.

n
th

&

piel »zwer Augend, was um

|_ nglischen mit denee bezeichnet wird. Zur Etymologie: Daus < spétalthochdeutsch dus < stdirz. dous < lat. duos

fiir duo:;

Das Daus (Plural: Dause, auch Diuser), gelegentlich auch Taus, bedeutet beim Wilr
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60. X sei nach B(n; p) verteilt, Wie groll mull » sein, damit das 3 o-Intervall um 1 zwischen

63,

3

O und » liegt. d.h., [u—3e; u+ 30] = [0;n]. falls p zwischen 0,1 und 0.9 liegt?

I. a) Jemand wettet, dal} bei einem 20fachen Wurf einer Laplace-Miinze 9-, 10- oder 11mal

Zahl erscheint. Wie miissen die Einsitze verteilt sein, damit die Wette fair ist?
(Exakter Wert)
b) Wie ist die Verteilung der Einsdtze fur eine faire Wette, wenn man eine L-Miinze
10, 20-, 40-, 100mal wirft und jedesmal darauf wettet, daB die Anzahl der Adler im
Bereich [pu— o u+ o] liegt?

Bei einem Gliicksrad ist ein Sektor mit p - 360° fiir die 1 als Treffer vorgesehen. Der Rest
liefert 0 als Niete. Das Gliicksrad muB n-mal gedreht werden. Gibt es dabei genau einen
Treffer, dann wird ein Preis ausbezahlt. Fiir welches p ist die Wahrscheinlichkeit fiir einen

“reis am groBten? Berechne fiir dieses p den Erwartungswert der Anzahl der Treffer.

Welcher Wert ergibt sich fiir die Wahrscheinlichkeit, einen Treffer zu erzielen, wenn »

gegen Unendlich strebt?

A und B vereinbaren folgende Spielregel: A wirft drei 5-DM-Miinzen, B wirft zwei

3-DM-Miinzen. (Die Miinzen seien Laplace-Miinzen.) Gewonnen hat der Spieler, der

mehr Adler geworfen hat. Im Fall eines Remis wird ein neues Spiel gespielt.

a) Die Spielergebnisse werden als Paare (Anzahl der Adler von A | Anzahl der Adler von
B) notiert. Stelle den dazu passenden Ergebnisraum auf.

b) Es werden die folgenden Ereignisse definiert: 4:=»A gewinnt das Spiel, B:=
»B gewinnt das Spiel«, R := »Remis«. Gib die entsprechenden Ergebnismengen an.

¢) Stelle tabellarisch die Wahrscheinlichkeiten aller Elementarereignisse des Ergebnis-
raums aus a) auf. Liegt ein Laplace-Experiment vor? Begriindung!

d) Berechne P(A4), P(B) und P(R). Wie grof ist die Wahrscheinlichkeit. daB in den ersten
3 Spielen keine Entscheidung fillt?

€) X sei die ZufallsgroBe »Spielausgange; sie nehme die Werte — 1,0, 1 an, wenn B ge-
winnt, wenn Remis eintritt bzw. wenn A gewinnt. Zeichne das Histogramm mit der
Breite I und die kumulative Verteilungsfunktion dieser Zufallsgrofe. Wie kann man
aus der kumulativen Verteilungsfunktion die Wahrscheinlichkeit des Ereignisses
»B verliert nicht« entnehmen? Wie groB ist diese Wahrscheinlichkeit?

f) Es werden nun so viele Spiele gespielt, bis schlieBlich A oder B gewinnt, Wie grof ist
die Wahrscheinlichkeit, daB A Sieger wird?

g) Der Gewinner des in f) beschriebenen Spiels erhalt alle 5 Miinzen. also 25 DM. Be-
rechne den Erwartungswert der ZufallsgréBe Y :=»Anzahl der von A gewonnenen
DM«. Ist das Spiel fair?

h) Nun werde vereinbart, hochstens 5 Spiele zu spielen. S sei die ZufallsgréBe »Anzahl der
Spicle, die notig sind, bis eine Entscheidung gefallen ist«; fiir den Fall, daB alle 5
Spiele remis enden, soll § auch den Wert 5 annehmen. Welcher einfache Ergebnis-
raum kann hier nun zugrundegelegt werden? Wie grof3 ist seine Michtigkeit? Be-
rechne den Erwartungswert von S. Welche Bedeutung hat er?

i) Welcher Wert ergibt sich fiir £5 aus h), wenn man die Beschriinkung auf 5 Spiele
fallenla3t?

. Zweil Wanderer A und B gehen mit Schritten der Liinge 1 auf der Zahlengeraden unab-

hiingig voneinander spazieren. A beginnt bei 0 und geht jede Sekunde mit der Wahr-
scheinlichkeit § einen Schritt nach rechts (d.h. in positiver Richtung), mit der Wahr-
scheinlichkeit 1 einen Schritt nach links. Er bleibt nie stehen. B beginnt bei —k und geht
jede Sekunde mit der Wahrscheinlichkeit 2 cinen Schritt nach rechts, mit der Wahr-
scheinlichkeit § ruht er sich eine Sekunde aus, was auch schon in der 1. Sekunde ein-
treten kann.
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a) Die beiden Wanderer gehen k Sekunden lang. Man schreibe + 1 fiir einen Schritt nach
rechts, — 1 fiir einen Schritt nach links und 0 fiir eine Sekundenpause. Gib fiir k = 3
je einen Ergebnisraum @, bzw. @y fiir A bzw. B an und bestimme die zugehorigen
Wahrscheinlichkeitsverteilungen P, und P,.

b) Die Zulallsgrofie 4, bzw. B, ordne jedem Ergebnis die Zahl zu, aul der der Wanderer
sich nach k Sekunden befindet. Gib je eine Wertetabelle fiir 4, bzw. B; an.

Beachte: B, beginnt bei —3 (siche oben).
Stelle die Wahrscheinlichkeitsfunktionen fiir 45 bzw. By auf.

¢) Gib die kumulative Verteilungsfunktion fiir 45 an. Berechne die Wahrscheinlichkeit
dafiir, daB A sich nach 3 Sekunden auf einer positiven Zahl befindet.

d) Wie grofi ist die Wahrscheinlichkeit dafiir, dal3 sich A und B nach genau drei Sekunden

am selben Ort befinden?

e) Zeige, dall A nach genau k = 2n — | Sekunden sicher nicht in 0 ist. Wie grol3 ist die
Wahrscheinlichkeit dafiir, dall A und B sich nach genau k = 2» Sekunden in 0 be-
finden?

f) Berechne &(A45) und &(B;), allgemein &(A4,) und &(85;).

Hinweise: 1. Stelle 4, als Summe von k ZufallsgroBen dar.

2. Beachte, dal3 B, + k eine nach B(k; p) verteilte ZufallsgroBe ist.

5. Ein Handler bezieht Spieltetraeder von zwei Herstellern A und B. Aus langjihriger Er-
fahrung weill der Hindler, dall sich in der Produktion des Lieferanten A etwa 90%;. m
der des Lieferanten B etwa 70%, L-Tetraeder befinden. A liefert dreimal soviel wie B.

a) Wie grof3 ist die Wahrscheinlichkeit, daB sich in einer willkiirlich ausgewihlten Pak-
kung zu 20 Stiick genau 4 Nicht-L-Tetraeder befinden?

b) Aus den Packungen, die sich dufierlich nicht unterscheiden, wird auf gut Gliick eine
ausgewiihlt. Sie enthilt genau 4 Nicht-L-Tetraeder. Mit welcher (bedingten) Wahr-
scheinlichkeit wurde ihr Inhalt vom Hersteller A geliefert?

66. Le probléme des partis. — Vergleiche Aufgabe 18/10. Zwei Spieler A und B spielen um
einen Einsatz ein Spiel, das aus mehreren Partien besteht. Gewinner soll derjenige sein,

der als erster n Partien gewonnen hat. A gewinnt mit der Wahrscheinlichkeit p eine Partie,
B mit ¢ = 1 — p. Aus irgendwelchen Griinden brechen A und B das Spiel beim Stand
(Siege von A):(Siege von B) = a: f = (mn—a):(n — b)

ab; dabei bedeuten a bzw. b die Anzahlen derjenigen Partien, die A bzw. B noch gewin-
nen miifiten, um Sieger zu sein. Wie ist der Einsatz bei Spielabbruch »gerecht« aufzu-
teilen?

a) Leite dazu einen der folgenden Ausdriicke fiir die Wahrscheinlichkeit eines Sieges von

A her:
b 1 f 15 | \
I} + - LY f d T o a+ b
de Morvre (1711): \_’ |: i :]l.'? Bk I{fll‘
k=0 ) LS f
bt fa+k— 1)
Montmort (1713): p*+ ¥ | ; ](‘;"
k= | ! J

o

b) Lose damit die folgenden historischen Aufgaben. Vergleiche deine gefundene Losung

mit den seinerzeit gemachten Vorschligen iiber die Aufteilung des Einsatzes.

A. Beide Spicler sind gleich geschickt.

I. Luca Pacioli (1494);
n==6a0=5Ff=2

II. Gerolamo Cardano (1539):
Dn=10,0=7,=9; Vorschlag 1:6
NDn=10,0=3, f =6; Vorschlag5:14

Vorschlag 5:2
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II. Niccolo Tartaglia (1556):
Dn=6,a=25,=3; Vorschlag 2: 1
2)n =60, =50, f =30; Vorschlag 2:1
$3)n=60,0=10, 5 =0; Vorschlag7
IV. Giobattista Francesco Peverone (1558)*:
10,a=7,=9; Vorschlag: 1:6
V. Am 29.7. 1654 schrieb Blaise Pascal einen Brief an Pierre de Fermat, in dem er
mehrere Aufgaben dieses Typs loste:
D=3 a=25=1; Vorschlag' 3:1
2yn=3,00=2,8=0; Vorschlag 7:1
PIn=3a=1,=0; Vorschlag l!'i
4) Ist a = n — 1 und f = 0, so soll im Verhiiltnis (2" — 1): 1 aufgeteilt werden.

e3) Ist = 1 und = 0 bei einem Spiel von n Partien, so soll der Anteil von A
- ] (Zn—3)11 2 .
am Einsatz 1 | 1 betragen. Dabei bedeute
A 2n—=2)1" =
A B T falls n ungerade,
nit=—< et
(286 falls n gerade,

gelesen »n Doppelfakultiite.
VL. Jakob Bernoulli gibt in seiner Ars Conjectandi (1713) einen einfacheren Ausdruck
fir A’s Anteil aus V. 5) an: Es fehle dem B nur ein Spiel mehr als dem A (d.h..

; E = - R 1 (2a\)
es 1St & = a+ 1), dann erhilt A vom Einsatz den Anteil = ( L S ”

Zeige die Richtigkeit dieser Behauptung.

B. Beide Spieler sind nicht gleich geschickt.

L. Abraham de Moivre (1667-1754) veréffentlichte** 1711 als erster eine solche Auf-
gabe als Problem II in De Mensura Sortis:
Dem A fehlen 4 Siege und dem B 6 Siege zum Gewinn. Die Chance des A, eine
Partie zu gewinnen, verhilt sich zu der von B wie 3:2.
Wie ist der Einsatz gerecht aufzuteilen?

II. Zur Einiibung der in der Einleitung der 2 Auflage der Doctrine of Chances (1738)
aufgestellten Formeln rechnet de Moivre einige einfache Fiille durch.

1) »Case IX'™ A and B play together, A wants | Game of being up. and B 2; but
the Chances whereby B may win a Game,

> double to the number of
Chances whereby A may win the same: “tis requird to assign the respective
Probabilities of winning, «

2) »Case X', Supposing that A wants 3 Games of being up, and B 7; but that the
proportion of Chances which A and B respectively have for winning a Game
are 3 to 5, to find the respective Probabilities of winning the Set.«

s |

HI. Welche Aufteilung des Einsatzes wire beim Problem von Pacioli gerecht, wenn
man auf Grund des Spielstandes bei Spielabbruch annimmt. daB sich die Ge-
schicklichkeiten der Spieler wie die Spielstinde verhalten?

Due brevi e facili Trattari, il Primo d 'Arithmetica, ' Aliro di Geomerria

e IJ'IL unter a) angege ‘ormel von de Muoivre teilte bereits Johann Berno

Mt in

Essay 13) auf

Auch Jakob "lg‘”'”"'l"' beschiftigte sich mit ur vie der Abschnitt IV seines Lerire a un

Amy sur les Parties du Jeu de Paume zeipt, der als lecrandl abgedruckt wurde
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Zu 14.6.

67. a) Welche Beziehung mul3 zwischen # und p bestehen, damit bei einer Binomialvertei-
lung der wahrscheinlichste Wert k,, nicht der dem Erwartungswert am nichsten
liegende k-Wert ist?

b) Zeige, daB im Fall der Aufgabe a) der wahrscheinlichste Wert k., der zweitnichste
k-Wert ist.

68. a) Zeige: Die Schiefe der Binomialverteilung B(n; p) ist positiv fiir 0 < p <% und negativ
firs<p<l.

b) Zeige: Die Schiefe einer nach B(n: 1 — p) verteilten ZufallsgroBe ist gleich der nega-
tiven Schiefe einer nach B(n; p) verteilten ZufallsgroBe.

¢) Berechne die Schiefe fiir die Verteilungen B(16; p) aus Figur 242.1.

d) Berechne die Schiefe fiir die Verteilungen B(n:1) aus Figur 243.1.

#69. a) Bestimme Median, 1. und 3. Quartil und das Quantil der Ordnung 90% fiir eine nach

B(16; p) binomial verteilte Zufallsgrofe mit pe 5.5, ..., lqﬂ-f mit Hilfe der Tabellen
von Figur 242.1.

b) Verfahre ebenso mit den Verteilungen von Figur 243.1.

¢) Bestimme mit Hilfe von Tabellen dieselben Werte fiir ZufallsgréBen, die binomial
nach B(8;0,35), B(50; 0.1), B(100: 0.9) und B(200: 0.6) verteilt sind.

Zu 14.7.
e70. Jakob Bernoulli (1655-1705) formulierte das Gesetz der grofen Zahlen folgendermafien:

»Es verhalte sich die Zahl der fruchtbaren Fille zur Zahl der unfruchtbaren Fille wie
r: s, also zur Zahl aller Fiille wie & - =L, was zwischen den Grenzen ’—‘ und rr—l
liegt. Dann kdnnen so viele Versuche gemacht werden, dafll es beliebig (2. B. ¢-mal)
wahrscheinlicher ist, daB die Anzahl der [ruchtbaren Beobachtungen innerhalb dieser
Grenzen als auBerhalb falle, d.h., daB die Anzahl der fruchtbaren zur Anzahl aller
Beobachtungen ein Verhiiltnis haben wird, das weder groBer als 21 noch kleiner als

et

Bernoulli beweist dies, indem er die Anzahl n der Versuche bestimmt, die dazu ndtig
sind. Er findet: » mul3 mindestens so grol3 wie die grolere der beiden folgenden Zahlen

¥, und v, sein.

7, { s{m; —1)) : . lgls—1)e Aont e N

vy =y + I '|..f_ wobel "y Z - TRET Ay E NG,
_ A ) le(r + 1) —lgr
rim, — 1)\ ; . lg{r —1)c S

5 1= [ Moe——+ J ].f_ waober Mm; = = [ A My EliNg -
o s+ 1 lg(s + 1) —lgs

Zum AbschluB seines unvollendeten Werks zeigt er, daB, wenn r:s den Wert 1.5 hat,

man nicht :5 = 3:2, sondern wie 30: 20 oder gar wie 300: 200 setzen solle, um dadurch

die Grenzen einzuengen. Im Falle 30: 20 bestimmt er dann die Anzahl der Versuche fiir

¢ = 1000, 10* und 10°.

a) Bestimme die Anzahl n der Versuche fiir die angegebenen ¢-Werte.

ob) Bestitige Bernoullis Behauptung, daB, ausgehend von ¢ = 1000, bei Erhéhung des

¢-Wertes um eine Zehnerpotenz die Anzahl der Versuche um 5708 erhéht werden mul.

¢) Lase a) und b) fiir das Verhiltnis 300: 200.

a) Beweise: Sind die ZufallsgréBen X (i=1.2,...,n) paarweise unabhingig und gleich-
verteilt mit £X, = u und VarX; = ¢, dann gilt fir ihr ‘trilhrncljsu]mxw Mittel

=

n
X = % Y X, folgende Tschebyschow-Ungleichung: P(|X, —p|<a) = | S
it |
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b) Wie lautet das fiir X, geltende schwache Gesetz der groBen Zahlen? Welche mel-
technische Bedeutung hat dieses Gesetz?
¢) Beweise mit Hilfe der Ungleichung aus a) den Satz 248.1.

Zu 14.8.

In einer Urne liegen 2000 schwarze und 3000 weiBe Steinchen. Man zieht 200mal ein
Steinchen mit Zuriicklegen.
a) Schiitze mut Hilfe der Tschebyschow-Ungl

ichung die Wahrscheinlichkeit d
dall mindestens 60 und hochstens 100 schwarze Steinchen gezogen werden.
b) Berechne diese Wahrscheinlichkeit exakt.

3. Em L-Wiirfel werde n-mal geworfen und die relative Hiufigkeit der Sechs bestimmt.

Schitze mit Hilfe der [_:Ilg_‘EL‘iL'hllﬂt_" von Bienaymé-Tschebyschow die Wahrscheinlichkeit
dafiir ab, den »Idealwert« 1 um mehr als
moglich, die exakten Wahrscheinlichkeiten.

a)n 10, b) n = 200, ¢)n = 1000.

zu verfehlen. Berechne anschlieBend, lalls

74. In einer Urne sind 1000 Kugeln, darunter 300 weiBe. Man zieht n-mal eine Kugel mit

Zurlicklegen.

a) Mit welcher Mindestwahrscheinlichkeit kann man nach f:\-:')'.'c'."‘.'j.\'{',I'.lrw.' [1|'q1]'1|‘1-;:.f_¢{-.'[i_,
daf die Anzahl der weiBen Kugeln nicht mehr als i + 0,05 - n und nicht weniger als
w—0.05-n betrigt?

b) Zeichne die Graphen der Funktionen i
werte fiir m = 100, 200 und 1000 an.

Fpound #— 1 — rp. Gib die Funktions-

In einem Behilter befinden sich 10® Molekiile eines Gases. Sie fliegen vollig regellos
durcheinander. Ein Zufallsexperiment bestehe darin, zu einem beliebigen Zeitpunkt zu
bestimmen, wie viele Molekiile in der linken Hiilfte des Behiilters sind. Fiir jedes Molekiil
seien die Aufenthaltswahrscheinlichkeiten fiir die beiden Behilterhilften gleich
und die Molekiile mégen sich unabhiingig voneinander bewegen. (Diese Annahme ist

07

roll.

ein Gas verniinftig, weil die Molekiile nur fiir winzige Zeitspannen an ZusammenstoBen
beteiligt sind und den iiberwiegenden Teil der Zeit frei dahinfliegen.)

a) Wie grof} ist nach der Tschebyschow-Ungleichung die Wahrscheinlichkeit héchstens,
weniger als 49,95%; oder mehr als 50,05% aller Molekiile in der linken Behilterhilfte
zu finden? Was besagt das Ergebnis?

Mit welcher Wahrscheinlichkeit sind rechts und links genau gleich viele Molekiile?
(Rechenausdruck geniigt.)

b

'

C

.

Es wird in dem Behilter ein winziger Teilbereich ins Auge gefaBt, der im »Idealfall« n,
Molekiile enthalten wiirde. Im ganzen Behilter sind es n Molekiile. Wie groB ist die
Wahrscheinlichkeit, ein bestimmtes Molekiil in dem ausgewiihlten Teilbereich anzu-
treffen? Wie groB ist héchstens die Wahrscheinlichkeit, daB der Idealwert der Mole-
kiilzahl im Teilbereich um mindestens 0,1% unter- oder iiberschritten wird?

Die Wahrscheinlichkeit die in ¢) besprochene »Schwankung« der Molekiilzahl
soll gleich 0,5 sein. Gib mit Hilfe der dort vorgenommenen Abschitzung eine obere
Schranke fiir die Anzahl n, der Molekiile an. Welche Kantenlinge hat ein Wiirfel mit
50 vielen Molekiilen unter Normalbedingungen (273 K und 1013 mbar)?

a) Wie oft mufl man eine Miinze werfen, damit man die Wahrscheinlichkeit fiir »Adler«
mit einer Sicherheit von mindestens 909/ auf 2 Prozentpunkte* genau durch die rela-
tive Hiaufigkeit von »Adler« anniihern kann?

d

n der Umgangssprache

gibt man die Differenz zwischen zwei Prozentzahlen in Prozentpunkten an. Man beachte

5%, dann steigt sie um 1 Prozentpunkt, aber um 25
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b) Ersetze in a) Miinze durch Wiirfel und »Adler« durch »Sechs« und lése dafiir die Auf-
gabe.

¢) Welchen Wert fiir » erhiilt man in b), wenn man davon ausgeht, daB P(»Sechs«)
hochstens 209, betrigt?

. Wie oft mull man eine L-Miinze mindestens werfen. damit sich mit einer Sicherheit von

mindestens 997 die relative Haufigkeit von »Adler« um weniger als | Prozentpunkt von
der Wahrscheinlichkeit fiir »Adler« unterscheidet?

- a) Es soll mit mindestens 60%, Sicherheit ausgesagt werden, daff man auf Grund einer

Stichprobe die Wahrscheinlichkeit eines Ereignisses in ein Intervall der Linge 0,04
einschlieBen kann. Wie grofl mul die Stichprobe mindestens sein?

b) Wie éndert sich die Stichprobenlinge, wenn man bei gleicher Sicherheit das Intervall
fiitr p nochmals auf die Hilfte reduzieren will?

79. Eine Lieferung enthilt einen unbekannten Anteil p defekter Stiicke. Man méchte durch

eine Stichprobe der Linge n den Anteil p bis auf 55 genau mit einer Sicherheitswahr-

scheinlichkeit von mindestens 959, bestimmen. Bestimme n. (Rechne mit Zurticklegen!)

l. a) Wie viele Personen muf3 man mindestens befragen, um den Stimmenanteil einer Partei

mit einem Fehler von hochstens 5 Prozentpunkten vorhersagen zu kénnen, wenn
diese Vorhersage eine Sicherheit von mindestens 95% haben soll?

b) Wie éindert sich diese Mindestanzahl, wenn man mit 859 Sicherheit zufrieden ist?

¢) Welche Mindestanzahlen ergeben sich bei a) und b), wenn man eine Genauigkeit von
2 Prozentpunkten fordert?

a) In einer Kleinstadt gibt es 10000 Wihler. Der Biirgermeisterkandidat Theodor mochte
durch eine Befragung von n willkiirlich ausgewiihlten Personen das Wahlergebnis
mit einer Sicherheit von 97,5% bis auf + 1000 Theodor-Wihler vorhersagen lassen.
Welche Zahl » ist hinreichend?

b) Bei der letzten Wahl stimmten 6000 der 10000 Wihler fiir Theodor. Wie viele Be-
fragungen sind jetzt hinreichend, wenn Theodor durch seine Leistungen im Amt
davon ausgehen kann, dal} seine Beliebtheit
1) sich nicht verindert hat,

2) gestiegen ist, und er mit mindestens 8000 Theodor-Wahlern rechnet?

Die Wahrscheinlichkeit eines Treffers in einer Bernowfli-Kette habe den Wert p =%.

Jakob Bernoulli berechnete die Anzahl der Versuche, die nétig sind, damit es ¢-mal

wahrscheinlicher 1st, daB die relative Hiufigkeit des Treffers in das Intervall |"I, L)

fallt als daB sie auBerhalb fallt. (Vergleiche dazu Aufgabe 271/70.)

Schiitze mit Hilfe der Ungleichung von Tschebyschow diese Zahl ab fiir r:s = 20:30

(bzw. 200:300) und ¢ = 10*, 10* und 10°. Dabei ist r + s = t. Vergleiche die erhaltenen

Werte mit den von Bernoulli gefundenen,

Zur Stabilitit einer Folge von Hiufigkeiten.

a) Eine ideale Miinze wird 500mal geworfen. In welchem Bereich liegt die erzielte Anzahl
von Adlern mit 99%iger Sicherheit? Wie ist es bei 2000 Wiirfen?

b) Lose a) fiir einen idealen Wiirfel hinsichtlich der Anzahl der Sechsen.

¢) Lise b) fiir ein ideales Tkosaeder.,

In einer Urne befinden sich 100 Kugeln, davon 20 weiBe. Es wird 200mal eine Kugel mit

Zuriicklegen gezogen.

a) In welchem beziiglich u symmetrischen Intervall liegt mit einer Mindestwahrschein-
lichkeit von 90%, die Anzahl der gezogenen weillen Kugeln?

b) Berechne die exakte Wahrscheinlichkeit dafiir, daB die Anzahl der gezogenen weillen
Kugeln in dem unter a) gefundenen Intervall liegt.

¢) Bestimme mit Hilfe von Tabellen ein méglichst kleines Intervall fiir die Sicherheits-

wahrscheinlichkeit von 90%, aus a).
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85. Jemand bietet uns eine Urne mit Kugeln dar. Einige davon sind weill. Wir diirfen 100mal
eine Kugel mit Zuriicklegen ziehen und sollen auf Grund unserer »Stichprobe« erraten,
welches Intervall (in Abhédngigkeit von h,4,) den Anteil p der weiBlen Kugeln mit einer
Sicherheit von mindestens 50% bzw. 90% enthdlt. Gib die Intervalle an.

86. a) Der 800fache Miinzenwurf von Tabelle 11.1 hat zufillig genau 400mal »Adler« ergeben.
Welches Intervall enthiilt die Wahrscheinlichkeit von »Adler« bei dieser Miinze mit
mindestens 99,69, Sicherheit? Bestimme das grobe, das Niherungs- und das echte
Konfidenzintervall.

b) Welche Intervalle ergeben sich, wenn man nur
1) 95%7, 2)-90%, 3) 80%, Sicherheit fordert?
87. Ein Wiirfel wird 300mal geworfen. Dabei fillt 250mal die Eins.

a) Bestimme mit Hilfe der Tschebyschow-Ungleichung das grobe Konfidenzintervall,
so dall man mit einer Sicherheit von 99% darauf vertrauen kann, daB p = P(»Eins«)
diesem Intervall angehort.

b) Bestimme das Naherungskonfidenzintervall.

¢) Bestimme das echte Konfidenzintervall.

ed) Zeichne fiir die gegebenen Daten das Parallelenpaar, die Niherungsellipse und die
Konfidenzellipse wie in Figur 261.1.

- Jemand will sein Schiitzverfahren so einrichten, dal bei einer Stichprobenlinge von 100

die Irrtumswahrscheinlichkeit schlimmstenfalls 1% betrigt. Die Urteile haben die Form:
| Wahrscheinlichkeit des Ereignisses minus Haufigkeit des Auftretens in der Stichprobe | < a
Wie mub a gewahlt werden?
Der Wiirfel von Tabelle 10.1 ist offensichtlich unsymmetrisch, wie Tabelle 32.1 zeigt. Trotz
der Bevorzugung von »Zwei« wird man annehmen diirfen, daB P(»Zwei«) < 0,25 ist,
und sicherlich ist P(»Vier«) < 0,15. Man ermittle unter diesen Voraussetzungen Inter-
valle, die P(»Zwei«) bzw. P(»Vier«) mit mindestens 99% Sicherheit enthalten.
Aus einer Zeitungsmeldung vom 30.1.71;
»Das Interesse an Apollo 14 ist in der Bundesrepublik nach wie vor stark. Nach dem
Ergebnis der Befragung von 1024 Einwohnern, ob sie sich fiir die Mondlandung ge-
nauso interessierten wie fiir das letzte Unternehmen dieser Art, sagten 282, sie interes-
sierten sich mehr dafiir. «
Nehmen wir an, die 1024 Befragten seien eine echte Zufallsauswahl aus der Bevélkerung.
In welchem Intervall kann man dann mit mindestens 97,5% Sicherheit den wahren Pro-
zentsatz p derjenigen Bundesdeutschen vermuten, die sich damals besonders stark fiir
die Mondlandung interessiert haben?
Berechne dazu
a) das grobe b) das Niherungs- ¢) das echte Konfidenzintervall.
Von einer Urne mit 1000 Kugeln sei von vornherein bekannt, daB sie hochstens 200
weille Kugeln enthiilt. Es wird eine Stichprobe von 100 Stiick mit Zuriicklegen entnom-
men. Man schitzt die Anzahl der weiBen Kugeln in der Urne zu X = 1000 - h, o4, falls
hyoo =%, andernfalls zu 200 und gibt iiber die Urne folgendes Urteil ab:
»| geschitzte Zahl minus wirkliche Zahl weiBer Kugeln | < 50«
Gib mit Hilfe der Tschebyschow-Ungleichung eine obere Schranke fiir die Irrtumswahr-
scheinlichkeiten an.
Man hat die Vermutung, daB in einer Urne, die nur schwarze und rote Kugeln enthilt,
doppelt soviel rote wie schwarze Kugeln liegen. Man zieht 300mal eine Kugel mit Zu-
riicklegen und entschlieBt sich, die Vermutung nicht abzulehnen, wenn man mehr als
180- und weniger als 220mal eine rote Kugel zieht.
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a) Schiitze die Wahrscheinlichkeit ab, mit der man irrtiimlicherweise von der Vermutung
abgeht.

b) Wie miiite man die Entscheidungsregel abindern, damit die Wahrscheinlichkeit aus
a) kleiner als 5% bzw. 5%,, wird?

93. Jemand méchte testen, ob eine Miinze eine Laplace-Miinze ist. Dazu wirft er sie 500mal
und hilt sie fiir eine Nicht-L-Miinze, falls weniger als 230mal oder mehr als 270mal
nAdler« fllt.

a) Schiitze die Wahrscheinlichkeit ab, mit der irrtiimlicherweise eine L-Miinze fiir eine
Nicht-L-Miinze gehalten wird.

b) Andere die Entscheidungsregel so ab, daB die Wahrscheinlichkeit aus a) kleiner als
10% bzw. 5% wird.

94. Im September 1964 haben sich 41°
strale ausgesprochen.

a) Gib das grobe Konfidenzintervall an, das mit einer Wahrscheinlichkeit von minde-
stens 90% den wahren Anteil p der Beflirworter der Todesstrafe enthélt.

b) Berechne das Niherungskonfidenzintervall mit s, = p.

¢) Berechne das echie Konfidenzintervall.

d) Lose a), b) und ¢), falls 41% von 10000 Befragten fiir die Todesstrafe gewesen wiren.

95. Eine Reprisentativum{rage unter 4000 Biirgern ergab, daB 600 bei der nichsten Wahl
den Kandidaten A wihlen wiirden.

a) Welches Intervall enthilt die Wahrscheinlichkeit fiir einen A-Wihler mit einer Sicher-
heit von 90%.7

b) In welchem Bereich liegen mit 90°%, Sicherheit die absoluten A-Wihlerzahlen, wenn
alle 80000 Wahlberechtigten auch wihlen?

¢) Mit welcher Mindestsicherheit kann man behaupten, daB bei einer Umfrage unter
4000 Biirgern die relative Hiufigkeit fiir einen A-Wihler im [ 14%: 162, ]-Intervall liegt,
falls die tatséichliche Wahrscheinlichkeit fiir einen A-Wiihler 15°% betriigt?

von 1000 befragten Bundesdeutschen fiir die Todes-

Auf Grund der langwierigen Rechinungen empfiehlt sich bei den folgenden Aufgaben Gruppen-
arbeit oder Auswertung mit Hilfe eines Computers.

i%. Fasse Tabelle 10.1 als eine Serie von 20 Versuchen zu je 60 Wiirfen auf. Bestimme unter
Verwendung der linken Hilfte von Tabelle 32.1 die 20 Werte von H (»Sechs«). Berechne
die 75%- bzw. 90%-Konfidenzintervalle fiir p = P(»Sechs«) und trage sie jeweils in ein
Koordinatensystem ein, dessen Abszisse die Nummer der Versuchsserie angibt und des-
sen Ordinatenachse eine p-Achse ist.

iq?- In Tabelle 33.1 sind 8 Versuchsserien zu je 100 Wiirfen aus den 800 Wiirfen von Tabelle
I1.1 konstruiert worden. Fasse sie durch Halbieren als 16 Serien zu je 50 Wiirfen auf und
gib die 16 Werte an, die Hs,(»Adler«) angenommen hat. Berechne die 75%;- bzw. 90%;-
Konfidenzintervalle fiir p = P(»Adler«) und trage sie jeweils in ein Koordinatensystem
ein, dessen Abszisse die Nummer der Versuchsserie angibt und dessen Ordinatenachse
eine p-Achse ist.
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