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* 18 . Parameterschätzung

18. 1 . Problemstellung

Im vorausgegangenen Kapitel haben wir dargestellt , wie man Testprobleme
lösen kann . Wir wenden uns nun der anderen typischen Fragestellung der Mathe¬
matischen Statistik zu , dem Schätzproblem , das wir auch nur für einfache Fälle
angehen wollen .
Im einfachsten Fall handelt es sich darum , auf Grund eines Stichprobenergebnis¬
ses die Wahrscheinlichkeit p eines Ereignisses zu schätzen . Im Urnenmodell
bedeutet dies , den Anteil p einer Kugelsorte zu schätzen . Als erster hat Thomas
Bayes ( 1702 - 1761 ) diese Aufgabe in seiner erst 1763 erschienenen berühmten
Schrift An Essay towards solving a problem in the Doctrine of Chances gestellt
und unter der Voraussetzung , daß alle Werte von p aus [0 ; 1] gleichwahr¬
scheinlich in Frage kommen , durch eine Intervallschätzung für p gelöst . Erst 1934
gelang es Jerzy Neyman ( 1894- 1981 ) , das Problem allgemein durch Einführung
der Konfidenzintervalle , wie wir sie in 14 . 8 . beschrieben haben , zu lösen .
Allgemeiner geht es darum , auf Grund von Stichprobenergebnissen gewisse Para¬
meter der Wahrscheinlichkeitsverteilung einer Zufallsgröße zu schätzen . Solche
Parameter sind beispielsweise der Parameter p einer Binomialverteilung , der Er¬
wartungswert /r, der Median und die Quantile , die Standardabweichung und die
Schiefe einer irgendwie gearteten Verteilung , ja sogar der Umfang der Grund¬
gesamtheit .
Sei nun 9 ein solcher zu schätzender Parameter der Wahrscheinlichkeitsvertei¬
lung einer Zufallsgröße X . Zu seiner Schätzung ziehen wir aus X eine Zufalls¬
stichprobe (X 1 1X 2 1 . . . | X„) . Sie liefere das Stichprobenergebnis (a t \ a 2 \ . . . \ aJ -
Aus diesen Stichprobenwerten a t soll nun kein Intervall für 9 , sondern durch
eine geeignete Formel ein Näherungswert S , eben ein Schätzwert , für den un¬
bekannten Parameter 9 errechnet werden . Man spricht dann von einer Punkt¬
schätzung für 9 . Dieser Schätzwert ist somit eine Funktion der at ; es gilt also
9 = Tn (a 1, a 2 , . . . ,a „) . Dabei soll der Index n anzeigen , daß eine Stichprobe
der Länge n gezogen wurde . Der auf diese Weise errechnete Schätzwert § hängt
natürlich vom Zufall ab ; denn a ; ist ja der zufällige Wert aus der Wertemenge
® = {x 1 ; x 2 , . . . , x s} von X , den die Zufallsgröße Xt angenommen hat . § ist also
aufzufassen als ein beobachteter Wert der aus den n Zufallsgrößen X t gebilde¬
ten Stichprobenfunktion Tn (X u X 2 , . . . ,X ^ , die als Funktion von Zufallsgrößen
selbst wieder eine Zufallsgröße ist . Sie heißt im Zusammenhang mit dem Schätz¬
problem daher »Schätzgröße « oder auch »Schätzfunktion « . Wir merken uns

Definition 376 . 1 : Ist (X x \ X 2 | . . . | XJ eine Stichprobe aus der Zufallsgröße
X , dann heißt jede reellwertige Funktion

Tn
- {X, \ X 2 \ . . . \ Xn) ^ Tn {X l , X2 , . . . ,X n)

Schätzfunktion oder auch Schätzgröße für den reellen Parameter 9 der Wahr¬
scheinlichkeitsverteilung der Zufallsgröße X .
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Eine so weit gefaßte Definition gibt uns keine Hilfe , wie man zu zweckmäßigen
Schätzfunktionen gelangt . Und sie sagt uns erst recht nicht , welcher Schätzfunk¬
tion wir den Vorzug geben sollen , falls wir gar mehrere Schätzfunktionen gefun¬
den haben .

18,2 . Das Maximum - Likelihood -Prinzip

Ein besonders brauchbares Verfahren zur Gewinnung von Schätzgrößen führte
1760 Johann Heinrich Lambert (1728 - 1777 ) und unabhängig davon 1777 Daniel
Bernoulli ( 1700- 1782 ) in die Wahrscheinlichkeitsrechnung ein . Carl Friedrich

Gauß ( 1777- 1855 ) benützte es mehrfach , so z . B . 1798 zu seinem ersten Beweis
der Methode der kleinsten Quadrate . Verallgemeinert hat das Verfahren aber
erst 1912 Ronald Aylmer Fisher ( 1890 - 1962) zum

Maximum -Likelihood-Prinzip oder Prinzip der maximalen Mutmaßlichkeit:
Eine Zufallsstichprobe (X x \ X 2 \ . . . \ Xn) aus der Zufallsgröße X , deren Ver¬

teilung vom Parameter 9 abhängt , zeitigte das Stichprobenergebnis
(flj | a 2 | • • • | a„) . Als Schätzwert für den Parameter 9 dient dann jeder Wert
9 , für den die Wahrscheinlichkeit

P^ (2fj =z a i a X2 ■— a2 a . . . a Xn =- «„)

des tatsächlich eingetretenen Stichprobenergebnisses maximal wird .

Jedem möglichen Wert des Parameters 9 wird also bei bekanntem Stichproben¬
ergebnis eine Wahrscheinlichkeit zugeordnet . Diese Zuordnung

L : 9 i- > P {X x = a x a X 2 = a2 a . . . a Xn = an)

heißt Likelihood -Funktion L . Eine Maximumstelle dieser Funktion L muß

nicht notwendig existieren ; andererseits kann es auch mehrere solcher Stellen

geben . Ein nach dem Maximum -Likelihood - Prinzip bestimmter Schätzwert

^ (a u a 2 , . . . ,a „ ) heißt Maximum -Likelihood -Schätzwert die zugehörige Zufalls¬

größe 9 {X 1 , X 2 , . . . , X n) dann Maximum -Likelihood -Schätzgröße .
Betrachten wir zum besseren Verständnis den besonders einfachen Fall , daß wir

als Parameter 9 den Anteil p einer Kugelsorte in einer Urne schätzen wollen .

(Es sei 0 < p < 1 .) Wir entnehmen der Urne eine Kugel und betrachten die Zu¬

fallsgröße

fl , falls die Kugel der Sorte angehört ,

[0 sonst .

X ist nach B ( 1 ; p ) verteilt . Eine Stichprobe (X , 1X2 \ . . . \ X„) der Länge n aus der

Zufallsgröße X besteht im « -maligen Ziehen einer Kugel aus der Urne mit Zu¬

rücklegen . Die Wahrscheinlichkeit , daß bei einem gegebenen Kugelanteil p sich

das Stichprobenergebnis (a 1 1a 2 | . . . a ; e { 0 ; l } , einstellt , wird durch die

Likelihood -Funktion L in Abhängigkeit von p ausgedrückt :
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L (p ) --= PP {X t = a 1 AX 2 = a 2 A . . . a X„ = a„) .

Da in der Stichprobe die X t stochastisch unabhängig sind , erhält man

L (p ) = Pp (X , = aj - Pp (X2 = a 2 ) - . . . - Pp (Xn = an) .

Betrachten wir nun ein spezielles Stichprobenergebnis mit genau k Einsen , dann
gilt
L (p ) = p \ l - pf - k .

Das Maximum dieser Wahrscheinlichkeit finden wir durch Differenzieren von
L (p ) nach p . Für 0 < k < n erhalten wir - die Fälle k = 0 und k = n erledigt
man analog -

= kp k ~ 1
{ \ — p ) n ~ k — (n — k)p k

{ \ - pf - k - 1 =
dp

= — p k ~ 1
( l — p )

" ~ k ~ 1
(np — k) .

Als Nullstelle ergibt sich p = — ; der Vorzeichen Wechsel von ^ ^ J>) ze j„^ daßn dp
es sich um eine Maximumstelle handelt .

k 1 "
p {a 1, a2 , . . . ,a „) = — = — ^ a , ist der Maximum -Likelihood -Schätzwert für den

n n ; = i
Kugelanteil p in der Urne . Die zugehörige Maximum -Likelihood -Schätzgröße

p {X u X2 , . . . . XJ = — Yj X t ist aber nichts anderes als die uns längst bekannten i = t
Zufallsgröße relative Häufigkeit H„ .
Es ist erfreulich , daß auch das Maximum -Likelihood - Prinzip die relative Häufig¬
keit eines Ereignisses als brauchbare Schätzgröße für die Wahrscheinlichkeit
eines Ereignisses liefert . Auf Grund der Interpretationsregel für Wahrscheinlich¬
keiten , die durch die Gesetze der großen Zahlen wissenschaftlich abgesichert ist ,
war die relative Häufigkeit immer schon ein brauchbarer »Meßwert « für die
Wahrscheinlichkeit eines Ereignisses .

18 . 3 . Beurteilungskriterien für Schätzfunktionen

Das Maximum -Likelihood -Prinzip ist ein Verfahren zur Gewinnung von Schätz¬
funktionen . Wie sollen wir uns aber entscheiden , wenn wir uns durch verschiedene
Betrachtungsweisen mehrere Schätzfunktionen verschafft haben ? Eine Fest¬
legung auf eine Schätzfunktion ist nicht eindeutig möglich , da die Eignung einer
Stichprobenfunktion zur Schätzung eines Parameters nach sehr unterschiedlichen
Gesichtspunkten beurteilt werden kann . In den Jahren 1921 und 1925 hat Ronald
Aylmer Fisher ( 1890 - 1962 ) vier Kriterien zur Beurteilung von Schätzfunktionen
entwickelt .
1 . Von einer Schätzgröße Tn für den Parameter 3 wird man erwarten , daß ihre
Werte , d . h . also die Schätzwerte , nach beiden Seiten um den unbekannten Wert
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9 streuen , und zwar so , daß der Erwartungswert ST n der Zufallsgröße Schätz¬
größe T„ gleich dem unbekannten Parameter 9 ist . Schätzfunktionen , die diese
Bedingung nicht erfüllen , weisen im Mittel einen systematischen Fehler , eine
Tendenz nach einer Seite auf . Es lohnt sich daher

Definition 379 . 1 : Eine Schätzgröße Tn für den Parameter 9 einer Wahr¬
scheinlichkeitsverteilung einer Zufallsgröße X heißt erwartungstreu , wenn
ST „ = 9 ist .

Statt erwartungstreu findet man auch die Termini unverzerrt , biasfrei oder
unbias(s)ed . *
2 . Der allgemeine Wunsch , daß mit wachsendem Stichprobenumfang n die
Wahrscheinlichkeit dafür , daß der aus der Stichprobe gewonnene Schätzwert in
der unmittelbaren Umgebung des zu schätzenden Parameters 9 liegt , schlägt
sich nieder in

Definition 379 .2 : Eine Folge von Schätzgrößen Tn für den Parameter 9 heißt
konsistent * * oder asymptotisch zutreffend bezüglich 9 , wenn für s > 0 gilt:

n
limP ( | r „

- 9 | ^ e) = 0

3. Bekanntlich ist die Varianz einer Zufallsgröße ein Maß dafür , wie stark die

Werte der Zufallsgröße um ihren Erwartungswert streuen . Man wird daher unter

den erwartungstreuen Schätzgrößen diejenigen bevorzugen , die eine kleine

Varianz besitzen . Mit ihnen wird man den gesuchten Parameter »genauer « tref¬

fen . Fisher nannte eine erwartungstreue Schätzfunktion effizient oder wirksamst ,
wenn es keine andere erwartungstreue Schätzfunktion gibt , deren Varianz noch

kleiner ist .
In der Praxis nimmt man oft in Kauf , daß eine Schätzgröße nicht erwartungstreu
ist , wenn sie dafür eine sehr kleine Varianz besitzt und ihr Erwartungswert nahe

genug beim zu schätzenden Parameter liegt ; dann kann nämlich der mittlere

Fehler kleiner sein als der bei einer erwartungstreuen , aber sehr weit gestreuten
Schätzfunktion .
4. Auf den Begriff der Suffizienz wollen wir nicht eingehen.

In den folgenden Abschnitten wenden wir die gewonnenen Kriterien auf Schätz¬

größen für die Parameter p , p und a 2 an .

18. 4 . Die relative Häufigkeit Hn als Schätzgröße

Nach dem Maximum -Likelihood - Prinzip ist die relative Häufigkeit Hn eine

brauchbare Schätzgröße für den Parameter Wahrscheinlichkeit p eines Ereig¬

nisses . Ist H„ erwartungstreu und konsistent ?

* Das englische bias [gesprochen : babs ] = Neigung, Schräge, Tendenzstammt vermutlich vom lateinischen bifax =

doppelblickend, schielend ab , das aus bis ( = zweierlei) und facies ( = Gesicht) entstanden sein soll.

** consistere = sich hinstellen , an einer Stelle zum Stehen kommen .
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1 . Die Schätzgröße Hn hat als Stichprobenfunktion die Gestalt

H„ = H„ (X 1, X 2 , . . . ,X „) = 1 £ x { .
n i = 1

Sie ist also ein spezielles arithmetisches Mittel , nämlich das der sämtlich nach
B ( l ; p ) verteilten Zufallsgrößen Xh die den Erwartungswert SX i = p und
Varianz Var V; = pq besitzen , wie in 14 . 5 . gezeigt wurde . Damit erhalten wir
nach Satz 212. 1

<SH n = p .

Da wir p schätzen , ist also / / „ erwartungstreu bezüglich p .
2 . Zum Nachweis der Konsistenz von Hn schätzen wir den zu untersuchenden
Grenzwert mit Hilfe der Bienayme - Tschebyschow-Ungldchung ab . Für die in
dieser Ungleichung auftretende Var H „ gilt nach Satz 212.2 : Var hln = Da¬
mit erhalten wir

0 ^ lim P {\ Hn - p | ^ e) g lim

was zu zeigen war .
Ohne Beweis teilen wir mit , daß H„ auch effizient ist .

18. 5. Das Stichprobenmittel

Eine Zufallsgröße X besitze den Erwartungswert fi . Zu seiner Schätzung zieht
man aus X eine Stichprobe (X 1 \ X 2 \ . . . \ Xn) und bildet als Stichprobenfunktion
das arithmetische Mittel Xn = Xn (X 1 , X 2 , . . . ,X n) = — £ X t , das in diesem Zu -

n : = i
sammenhang auch »Stichprobenmittel « heißt . Da die X ( die gleiche Verteilung
wie X haben , lassen sich wieder die Sätze 212. 1 und 212.2 anwenden , und wir
erhalten SX n = p und

VarX „ . . VarX- =—!- = lim - T-0 ^ lim P ( \Xn — p | ^ e) ^ lim
e2 ne 2

Ohne Beweis teilen wir mit , daß das Stichpfobenmittel auch effizient ist , und
halten fest

Satz 380 . 1 : Ist (X 1 | X2 | . . . | Xn) eine Stichprobe aus der Zufallsgröße X,
dann ist das Stichprobenmittel Xn

■■= — X t eine erwartungstreue , kon -
n ; = ii = 1

sistente und effiziente Schätzgröße für den Erwartungswert p der Vertei¬
lung von X .

Satz 380. 1 beinhaltet auch die Erkenntnisse aus 18 . 4 . ; denn die relative Häufig¬
keit H„ ist ein spezielles Stichprobenmittel und schätzt den Erwartungswert p
der nach B ( 1 ; p ) verteilten Zufallsgröße X .
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Auf Grund der bei den Beweisen verwendeten Sätze 212 . 1 und 212 .2 gilt die Erwartungstreue
von X n auch für Stichproben , bei denen die X t nicht unabhängig sind , und die Konsistenz
von X „ für Stichproben , bei denen die X ; nur paarweise unabhängig sind.

18 . 6 . Die Stichprobenvarianz
Wir wollen nun eine Schätzgröße für die Varianz a 2 einer Zufallsgröße X aus¬

findig machen . Wenn möglich , soll sie erwartungstreu sein . Dazu ziehen wir aus
X eine Stichprobe (Xj | X 2 1 . . . | X„) . Die X,- sind Kopien von X ; also ist
ßX t = SX = /j. und er

2 = VarX = VarX ; = ^ [(X ; - /r)2] .
Da wir in 18 . 5. unbekannte Erwartungswerte durch das Stichprobenmittel ge¬
schätzt haben , ist es naheliegend , als Schätzfunktion für er

2 das Stichproben -

1
mittel V — — Y (X ; — n)

2 der Zufallsgrößen (X ; - /i)
2 zu verwenden . Wie in

n j = i
Aufgabe 384/4 gezeigt werden soll, ist V eine erwartungstreue Schätzgröße für

<7 2 Darüber hinaus ist sie konsistent und effizient.
In den meisten Fällen ist aber auch /i nicht bekannt . Wir schätzen dann fi ge¬
mäß 18 . 5. durch das Stichprobenmittel X „ , das wir an Stelle von ji in den Aus¬

druck für V einführen . Wir erhalten somit als Schätzfunktion für a 2 die Stich¬

probenfunktion

s 2 == i [(X , - X„)
2 + . . . + (X„

- X„)
2 ] = i Z (X, ~ X„)

2 .
n « ; = i

Zur Vereinfachung der Schreibweise läßt man üblicherweise beim Stichproben¬
mittel X n den Index n weg und schreibt

s 2 = - i (X ; — X ) 2 .
n ^ 1

Um zu prüfen , ob S 2 eine erwartungstreue Schätzgröße ist , formen wir die Summe

um . Wir gehen dabei genauso vor wie bei der Herleitung des Verschiebungssatzes
207. 1 :

s 2 = - i [ (X , — p) — (X — /i )] 2 =
n 1= 1

= - t i (X i - + (X - ß)2 - 2 (X - ß) (X i - pj] =

= - \ t (X i - ß)
2 + t (X — ß)

2 — 2 (X — ß) t (X t - ß) =
n |_ i = 1 i = l i = 1

= - t (X i - ß)2 + - - n (X - ß)2 - ~ - {X - ß) (nX - nß ) =
« Ai n n

= - £ (X i - ß)
2 + (X - fi)

2 - 2 (X - M)
2 =

n i = i

= (X ; — ß)2 — (X — ß)2 .
n jt 'i
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Wir prüfen S 2 auf Erwartungstreue :

S {S2 ) = g i - X (Xi - tf - ix - tfn i = 1

ft I (Xt - fi)
2

i = X
- # [(X - /t)

2] =

= - ■ I « - A4)
2] - * [(* - A4)

2] =
" i = 1

= 1 X Var X ; — ,? [(* - M)
2] =

n 1= 1

= ; X <T2 - <f [(X - /t)2] =
n i = 1

= <r2 - «f [ (x - M)
2 ] .

Da fi = <% X , ist der Subtrahend nichts anderes als Var V , wofür nach Satz 212.2
gilt VarX = — VarX = - a2

. Damit wird
n n

<g {S 2) = <j2 - - (j2 =
n

n — 1 ,= - <x .n
n — 1 ~

Wegen des Faktors - ist S 2 keine erwartungstreue Schätzgröße für a2
. Mann

würde a 2 stets zu klein schätzen, und dies um so mehr, je kleiner die Länge n der
Stichprobe ist . Der Mangel läßt sich aber für n > 1 leicht beheben : Wir multi¬
plizieren S2 mit —-— und erhalten eine erwartungstreue Schätzgröße für a2 ,n — 1
die sogenannte Stichprobenvarianz S 2.
Wir halten fest

Satz 382 . 1 Ist ( X l \ X2 \ . . . \ Xj eine Stichprobe aus der Zufallsgröße X mit
1 "

X -= - ' X dann ist für n V 2 die Stichprobenvarianz
s 2 -= ^ ~

j
- i (x i - v 2

n i i = 1
eine erwartungstreue Schätzgröße für die Varianz <r2 der Verteilung von X.

Für große n ist der Unterschied zwischen S2 und S2 natürlich unerheblich . So¬
wohl die Stichprobenvarianz V 2 wie auch S 2 sind konsistent (vgl. Aufgabe 385/14 ),aber nicht effizient , was wir ohne Beweis mitteilen.
Es liegt nun die Vermutung nahe , man könne die StichprobenstreuungS ~ j/S 2
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als erwartungstreue Schätzgröße für die Standardabweichung a benützen . Dies
ist leider falsch , wie wir an einem Beispiel zeigen :
Es sei X ■■= »Zahl der Adler beim Wurf einer evtl , unsymmetrischen Münze « .
X ist nach B ( 1 ; p ) verteilt . (X , | X 2 ) sei eine Stichprobe der Länge 2 aus X . Mit
X = j (X 1 + X 2 ) erhält man

S 2 = (.X ! - X )2 + (X 2 - X )2 = i (X , - X 2)2 ,
S = $ ]/2 \ X 1 - X 2 \ .

S nimmt offensichtlich nur die Werte 0 und 1 an . Damit errechnet man

iS = 11/ 2 [_P (X 1 = 1 a X2 = 0) + P (X t = 0aI 2 = 1)] =

= P ( 1 ~ P ) l/2 .

Dagegen ist a (X ) = j/p (l - p ) .
Die Verschiedenheit von iS und a läßt sich nicht so wie die von SS 2 und a z

durch einen für alle p gültigen Faktor beseitigen .

Die Berechnung des Wertes von S 2
. Bei mehrfacher Messung einer (z . B . physi¬

kalischen ) Größe unter gleichen Bedingungen ist es üblich , aus der Meßreihe die
Werte x und ,v von X bzw . S zu bestimmen und das Meßresultat in der Form

x + s zu schreiben .

So findet man z . B . für das Wirkungsquantum h die Angabe

A - = ( 1,05443 + 0,00004) • 10 " 34 Js .Zk

s ist meist sehr mühsam zu berechnen , wenn man die in Satz 382 . 1 enthaltene
Definition von S 2 direkt benützt , da x im allgemeinen keine glatte Zahl ist . Man
hat viele unbequeme Subtraktionen auszuführen . Die folgende Umformung er¬
leichtert die Arbeit . Sie entspricht genau der oben vorgeführten Umformung
von S 2 .

(n - 1 ) • s2 = £ (x t - x)
2 =

; = 1

= £ (x i - a)
2 + 2 X (Xi ~ a) (a - x ) + n (a - x)

2 .
i = 1 i —1

Der zweite Term ist gleich

2 (a — x ) £ (x t — a) = 2 (a — x) (nx — na ) = — 2n (a — x)2 .
i —1

1 n
Also erhält man schließlich mit x = — £ xt

n i = 1

s = ■ Z (^ i - x )
2 =

i = 1
Z (X; - a )

2 - n {x - af
i = 1
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Diese Formel gilt für eine beliebige Zahl a . Man
wählt a als glatte Zahl in der Nähe von x und
kann damit die rechte Seite verhältnismäßig
einfach ausrechnen . Ein Beispiel zeigt Ta¬
belle 384 . 1 .
Tab . 384 . 1 Punktbewertungen x t von 10 Personen bei
einem Gedächtnistest . Die Hilfszahl a = 35 wird be¬
reits zur Berechnung von x mit Vorteil verwendet .
(Vgl . Aufgabe 215/20)
x = 35 - ^ = 34,5 ;
s2 = i ( 1473 - 10 - 0,5 2

) ;
j = 12,8 .

Xi x t — a (x t - a )
2

12 - 23 529
21 - 14 196
28 - 7 49
30 - 5 25
34 - 1 1
37 + 2 4
39 + 4 16
39 + 4 16
49 + 14 196
56 + 21 441

Summe : - 5 1473

Aufgaben
Zu 18 . 3 . - 18 . 6 .

1 . Bestimme bei folgenden Stichproben aus einer Zufallsgröße Schätzwerte für den Erwar¬
tungswert und die Varianz :
a) 3 ; 5 ; 3 ; 6 ; 9 . b) 0,3 ; 0,7 ; - 0,4 ; 0,8 ; - 0,2 .
c) 300 ; 700 ; - 400 ; 800 ; - 200 d) 1 ; 1 ; 1 ; 1 ; 1 .

2 . Bestimme Schätzwerte für Erwartungswertund Varianz der Zufallsgröße »Bremsweg bei
einer Geschwindigkeit von 50 km/h « , wenn sich folgende Meßwerte in m ergaben :
15,5 14,0 14,1 14,9 13,4 15,0 14,4 14,4 15,8 15,9 .

3 . Welchen Erwartungswert und welche Varianz erhält man bei « Messungen für das Stich¬
probenmittel Z , wenn für die Zufallsgröße X gilt :
a) SX = 2,71 ; VarZ = 1,5 ; n = 10 . b) <? Z = l ; VarZ = 1 ; « = 100 .
c) SX = 1 ; VarZ = 1 ; « = 1000 . d) gX = 0 ; VarZ = 1 ; « = 1000 .

4 .
5.

6.

1 "
Zeige, daß V •— — £ (Z ; — p)

2 eine erwartungstreue Schätzfunktion für crf ist.
n i = 1

a) Eine Zufallsgröße Z ist binomial nach B ( 1 ; 0,25 ) verteilt . Bestimme Erwartungswert,
Varianz und Standardabweichung von Z . Berechne für eine Stichprobe der Länge 3
die Wahrscheinlichkeitsverteilungen und die Erwartungswerte des Stichproben¬
mittels Z 3 , der Stichprobenvarianz S 2 und der Stichprobenstreuung S.

b) Löse a) für eine Stichprobe der Länge 2 , wenn Z nach B (2 ; 0,25 ) verteilt ist .
Eine Zufallsgröße Z besitze die Verteilung P (X = xß — pjfürj = l, . . . ,s . (X l \X 2 \ . . . \Xn)
sei eine Stichprobe der Länge « , ferner sei Nj ■— Anzahl der Z ;, welche den Wert Xj an¬

nehmen . Aj bedeute das Ereignis » 1
Xj - Pj 2: a« .

a) Formuliere für P (Aß die Tschebyschow -Ungleichung.
b) Formulieremit den Aj das Ereignis A ■■= »Die Stichprobenverteilungweicht nirgends

um a oder mehr von der Wahrscheinlichkeitsverteilung ab« .
• c) Finde für P (Ä ) eine Abschätzung, die zeigt, daß das Ereignis A für genügend große «

eine beliebig nahe an 1 gelegene Wahrscheinlichkeit hat . Die Stichprobenverteilung kon¬
vergiert »in Wahrscheinlichkeit« gegen die Wahrscheinlichkeitsverteilung.

7 . Eine Zufallsgröße sei nach B ( 100 ; 0,4 ) verteilt . Wie lang muß eine Stichprobe mindestens
sein, damit die Varianz des Stichprobenmittels kleiner als 0,01 ist ?

8 . Die Wahrscheinlichkeit für eine Knabengeburt ist 0,514 . Die Zufallsgröße Z nehme den
Wert 1 an , wenn ein Knabe geboren wird , sonst habe sie den Wert 0.
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Aufgaben 385

Berechne Erwartungswert und Standardabweichung des Stichprobenmittels für eine
Stichprobe der Länge 100 .

9 . a) Man wirft eine Münze lmal und nimmt Z •= »Anzahl der Adler« als Schätzgröße für
den Parameter p ■■= P (»Adler«) . Welche Werte kommen bei der Schätzung also stets
heraus ? Z scheint keine sehr gute Schätzgröße zu sein. Man zeige , daß sie aber erwar¬
tungstreu ist !

b) Untersuche, ob T ~ tX 1 + ( 1 — t )X 2 eine erwartungstreue Schätzfunktion für SX
ist , wenn (Z x | X 2) eine Stichprobe der Länge 2 aus der. Zufallsgröße X ist.

10 . Eine Schätzgröße Y sei nicht erwartungstreu bezüglich des Parameters 3 . Warum kann
man nicht einfach Yl — Y — SY + 3 als neue , und zwar erwartungstreue Schätzgröße

Y • 3
benützen , oder auch Y-, ■■= - ?2 SY

11 . Der »Idealwert « np für die Anzahl des Eintretens eines Ereignisses der Wahrscheinlich¬
keit p bei n unabhängigen Versuchen wird durch die Anzahl Z des wirklichen Eintretens

geschätzt . Ist diese Schätzung erwartungstreu ?
12 . Die Kugeln in einer Urne sind von 1 an fortlaufend numeriert . Es werden n Kugeln ohne

Zurücklegen gezogen und ihre Nummern aufgeschrieben . Es soll die unbekannte An¬
zahl r aller Kugeln in der Urne geschätzt werden .*

a) Als Schätzgröße bietet sich G •■= »Größte gezogene Kugelnummer« an. Es gilt nach

Aufgabe 192/31 SG = f ^
n + 1

G ist also nicht erwartungstreu . Konstruiere aus G eine erwartungstreue Schätz¬

größe G .

Berechne Var G .
c) Eine andere plausible Schätzgröße für % ist das doppelte arithmetische Mittel 2 X aus

allen gezogenen Kugelnummern . Zeige durch Berechnung des Erwartungswertes , daß

auch diese Schätzgröße erst nach einer kleinen Abänderung erwartungstreu ist.

d) Eine längereRechnung (Durchführungnicht verlangt ) ergibt :

(t + 1) (t - n)
12 «

Var V =

Berechne hieraus die Varianz der erwartungstreuen Schätzgröße aus c) und vergleiche
sie mit VarG aus b) . Sind die beiden Schätzgrößen für t gleichwertig?

13. Aus der Urne der vorigen Aufgabe wird die Stichprobe mit Zurücklegen gezogen. Zeige,

gilt und daß die mit X gebildete erwartungstreue Schätzgrößedaß Var X =

stärker streut als die von Aufgabe 12 . c) .

14. Zeige, daß S 2 und S 2 konsistente Schätzgrößen für o2 sind .
Hinweis : Zerlege die in der Tschebyschow-Ungleichung auftretende Var S2 in zwei Teile,

so daß in einem dieser Teile nur über lauter verschiedene Indizes summiert wird .

* Dieses Schätzproblem spielte im 2. Weltkrieg eine Rolle , als man aus den Seriennummern von erbeuteten Waffen

auf den Umfang der Waffenproduktion schließen wollte .


	[Seite]
	18. 1. Problemstellung
	Seite 376
	Seite 377

	18. 2. Das Maximum-Likelihood-Prinzip
	Seite 377
	Seite 378

	18. 3. Beurteilungskriterien für Schätzfunktionen
	Seite 378
	Seite 379

	18. 4. Die relative Häufigkeit Hₙ als Schätzgröße
	Seite 379
	Seite 380

	18. 5. Das Stichprobenmittel
	Seite 380
	Seite 381

	18. 6. Die Stichprobenvarianz
	Seite 381
	Seite 382
	Seite 383
	Seite 384

	Aufgaben
	Seite 384
	Seite 385


