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Besonders problematisch ist der Begriff der Gleichwahrscheinlichkeit , wenn der

Ergebnisraum unendlich viele Ergebnisse enthält . Zwei historische Paradoxa , in

denen geometrische Probleme mit unendlichen Ergebnisräumen behandelt wer¬
den , sind im Anhang II (Seite 388 ) dargestellt .

Aufgaben

Zu 8 . 1 .
\A I

• 1 . Zeige mit den Kolmogorow-Axiomen , daß P : A i—> -— Icß , eine Wahrscheinlich¬

keitsverteilung ist .
^

2 . Aus dem Wort »STOCHASTIK « werde auf gut Glück ein Buchstabe ausgewählt . Wie

groß ist die Wahrscheinlichkeit dafür , daß
a) das K gewählt wird , b) ein T gewählt wird ,
c) ein Konsonant gewählt wird , d) S oder T gewählt wird ?

3. Aus dem Wort »KLASSE « werden auf gut Glück zwei Buchstaben ausgewählt .

a) Auf wie viele Arten ist eine solche Auswahl möglich?
b) Wie groß ist die Wahrscheinlichkeitdafür , daß

1) ein A darunter ist , 2) ein S darunter ist , 3) zwei Konsonanten gewählt werden ?

4 . Eine natürliche Zahl n ( 10 < n :£ 20 ) werde willkürlich gezogen . Wie groß ist die Wahr¬

scheinlichkeit dafür , daß
a) eine gerade Zahl gezogen wird,
b) eine Primzahl gezogen wird ,
e) eine durch 4 teilbare Zahl gezogen wird ,
d) eine durch 4 und 7 teilbare Zahl gezogen wird ?

5 . Wie groß ist die Wahrscheinlichkeit dafür , daß das Quadrat einer beliebig aus

( 1,2, . . . , 100 } herausgegriffenen Zahl als Einerziffer a) 4 , b) 5 , c) 2 hat ?

6. Eine Laplace -Münze mit den Seiten Wappen und Zahl wird zweimal geworfen . Berechne

die Wahrscheinlichkeit folgender Ereignisse :
A ■■= »Es fällt genau einmal Wappen «
B »Es fällt mindestens einmal Wappen «
C — »Es fällt höchstens einmal Wappen «

7 . Eine Laplace -Münze mit den Seiten Wappen und Zahl wird dreimal geworfen . Berechne

die Wahrscheinlichkeit folgender Ereignisse :
A ■■= »Es fällt genau zweimal Zahl «
B := »Es fällt mindestens zweimal Zahl «
C — »Es fallt höchstens zweimal Zahl «

8 . In einem Spiel wird eine L-Münze dreimal geworfen . Erscheint zweimal nacheinander

Zahl , so erhält der Spieler einen Preis . Wie groß ist die Wahrscheinlichkeit dafür ?

9. Zwei Laplace -Würfel werden gleichzeitig geworfen . Berechne die Wahrscheinlichkeit da¬

für, daß die Augensumme durch 3 ( 5 bzw. 6) teilbar ist.
10 . Leibniz ( 1646- 1716 ) dachte , es sei mit zwei Würfeln ebenso leicht , eine 11 wie eine 12 zu

werfen . Entscheide , ob er recht hatte . (Vgl . Aufgabe 12/1 und siehe Seite 76.)

• 11 . Spieler hatten entdeckt, daß beim Wurf mit 3 Würfeln die Augensumme 10 leichter zu

erreichen ist als die Augensumme 9 . Galilei ( 1564- 1642) fand dafür die richtige Erklä¬

rung (siehe Seite 76) . Zeige durch Berechnung der Wahrscheinlichkeiten der beiden Augen¬

summen , welch kleiner Unterschied durch die Spieler damals bemerkt worden war . (Vgl.

auch Aufgabe 12/2 .)
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12 . a) Welche Augensumme ist beim Wurf zweier Würfel am wahrscheinlichsten?
Jb ) Theodor bietet folgende Wetten mit gleichen Einsätzen an :

1) Die Augensumme 6 fällt eher als die Augensumme 7.
2) Die Augensumme 8 fällt eher als die Augensumme 7.
3) Die Augensummen 6 und 8 fallen eher als zum zweiten Mal die Augensumme 7 .
Welche Wette würdest du eingehen? Begründe deine Antwort !

13. Aus dem Tractatus de ratiociniis in aleae ludo von Christiaan Huygens ( 1629- 1695 ) :
a) »Aufgabe XIV : Wenn ich und ein anderer abwechselnd 2 Würfel werfen unter der Be¬

dingung , daß ich gewinne , wenn ich die 7 werfe, er aber , wenn er 6 wirft , und ich ihm
den ersten Wurf lasse, wie verhalten sich dann die Gewinnchancen ?« *

Hinweis : Jakob Bemoulli ( 1655- 1705) löste diese und die nächste Aufgabe mit Hilfe einer
geometrischen Reihe.
\ V) »Problem I : A und B spielen mit zwei Würfeln unter der Bedingung , daß A gewinnt ,

wenn er sechs Augen wirft , B jedoch , wenn er sieben Augen wirft ; A beginnt das Spiel
mit einem Wurf , dann tut B zwei Würfe hintereinander , dann ebenso A zwei Würfe ,
und so fort , bis schließlich einer gewinnt . Wie verhält sich die Hoffnung von A zu der
von B ?«

14 . Aus einem Bridge -Kartenspiel(52 Karten) wird eine Karte gezogen . Berechne die Wahr¬
scheinlichkeit folgender Ereignisse :
A ■■= »Die gezogene Karte ist eine Herzkarte «
B ■— »Die gezogene Karte ist ein König «
C != »Die gezogene Karte ist Herz -König «
D ■■= »Die gezogene Karte ist eine Herzkarte oder ein König «
E ■■= »Die gezogene Karte ist entweder eine Herzkarte oder ein König «
F ■= »Die gezogene Karte ist eine Herzkarte , aber kein König «
G ■■= »Die gezogene Karte ist ein König , aber keine Herzkarte «
H ~ »Die gezogene Karte ist weder eine Herzkarte noch ein König « .

15. Zwei (drei) Jungen und drei Mädchen sind eingeladen. Sie treffennacheinander ein. Jede
Reihenfolge des Eintreffens ist gleichwahrscheinlich . Wie wahrscheinlich treffen
a) abwechselndein Junge und ein Mädchen ein ,
b) die drei Mädchen direkt nacheinander ein?

16. In einem Benzolring seien zwei der sechs Kohlenstoffatome radioaktiv. Wie groß ist die
Wahrscheinlichkeit dafür , daß die beiden nebeneinanderliegen ?

17 . Die Oberfläche eines Würfels wird rot eingefärbt .
Dann werde der Würfel durch 6 ebene Schnitte in *
27 kongruente Teilwürfel zerlegt . Wie groß ist die ?
Wahrscheinlichkeit dafür , daß ein willkürlich her - s
ausgegriffener Teilwürfel s
a) keine gefärbte Fläche hat , t
b) genau 2 rote Flächen hat ? ,

18. Auf dem leeren Schachbrett steht der schwarze 2
König auf a8 (c 3) . Die weiße Dame werde auf gut ,Glück auf eines der restlichen 63 Felder gestellt. Mit
welcher Wahrscheinlichkeit bietet sie Schach ?

abeds/gh

a b e d * f g h

+■ ■ ■ ■

* Huygensschickt diese Aufgabe am 18. 4. 1656 an Gilles Personne de Roberval (1602 - 1675 ), um seine Lösung bestätigtzu bekommen . Als er nichts horte , wendet er sich an Mylon. Mittlerweile hatte Pierre de Carcavy (um 1600 - 1684 ) dieseAufgabe an Pierre de Fermat (1601 - 1665) gesandt , der im Juni 1656 zugleich mit der Lösung Carcavy zwei weitereProbleme zuschickt . Huygens erhält sie von diesem im Brief vom 22 . 6. 1656 . Am 6. 7. 1656 schickt er die Lösung anCarcavy. Als Problem I und III nimmt er sie in seinen Traktat auf .
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19. Zwei fehlerhafteTransistoren sind mit zwei guten zusammengepacktworden. Man prüft
die Transistoren der Reihe nach , bis man weiß , welche die zwei fehlerhaften sind . Mit
welcher Wahrscheinlichkeit ist man nach Prüfung des zweiten Transistors , mit welcher

Wahrscheinlichkeit erst nach Prüfung des dritten Transistors fertig?

Zu 8 . 2
20 . Von A nach B führen 7 Wege . Von B nach C führen 4 Wege.

a) Wie viele Wege führen von A nach C über B ?
b) Von C nach D führen 9 Wege . Wie viele Wege führen von A nach D über B und C ?

21 . Wie viele drei -(vier )stellige Zahlen gibt es mit verschiedenen Ziffern , wenn
a) die Null nicht auftritt , b) auch die Null verwendet wird ?

22. Wie viele verschiedene 5stellige Zahlen kann man aus den Ziffern 1, 2, 3, 4, 5 bzw .

0, 1, 2, 3 , 4 bilden , wenn
a) in jeder Zahl alle Ziffern verschieden sein sollen,
b) die Bedingung a) nicht erfüllt sein muß?

23 . Gib alle Anagramme an , die durch Permutation der Buchstaben entstehen:

a) ABC b) ROMA *
24. Gib alle möglichen Anagramme der folgenden Wörter an:

a) AAS b) OTTO c) POPOP
25 . Bilde alle Paare ohne (mit) Wiederholung aus a) ABC , b) ROMA.
26. John Wallis (1616 - 1703 ) bearbeitet in A discourse of combinations , alternations , and

aliquot parts , einem Anhang seines Treatise of Algebra* *
, zwei Aufgaben des Gerhardus

Johannes Vossius ( 1557- 1649) aus dessen de Scientiis Mathematicis von 1650 :

a) Ein Wirt verspricht 7 Gästen , sie so viele Tage freizuhalten, wie sie in veränderter

Ordnung Platz nehmen können . Vossius behauptet , der Wirt sei seiner Verpflichtung
nach 14 Jahren ledig . Wie lautet die von Wallis korrekt angegebene Lösung ? ***

b) Die 24 Buchstaben des Alphabets [U = V, I = J] sollen permutiert werden. Wenn

jemand pro Minute 5 solcher .Permutationen hinschreiben könnte und mit dem Permu¬

tieren mit der Erschaffung der Welt begonnen hätte , so wäre das Unterfangen jetzt

noch nicht beendet . Wallis fügt hinzu , daß das sogar noch gilt , wenn man jede Minute ,
die seit der Erschaffung der Welt verflossen ist , zu 10 Millionen Jahren rechnen würde ,

a) Wallis rechnet das Jahr zu 365^ Tagen und nimmt für das Alter der Welt die damals

üblichen 6000 Jahre . Beurteile die beiden Lösungen !

ß) Zu welchem Ergebnis kommt man in beiden Fällen , wenn man für das Alter des

Universums , wie heute üblich , 21 Milliarden Jahre annimmt ?
27 . Berechne :

a) (Y ) b) (V ) c> ( lg) d) (*7
) e) (| g) OO -

28. In einer Klasse wird ein Mathematik-Hausheft und ein Mathematik-Schulheft geführt .

Heftumschläge gibt es in 7 verschiedenen Farben . Leider hat der Lehrer vergessen zu

sagen , welche Farben für die Umschläge verwendet werden sollen . Wie viele Möglich¬

keiten gibt es, wenn
a) Haus- und Schulheft immer verschiedenfarbigeingebunden sein sollen,
b) diese Einschränkungnicht gilt?

* John Wallis (1616 - 1703 ) behauptet 1685 in seinem Anhang zum Treatise of Algebra, 7 dieser Anagramme ergeben

sinnvolle lateinische Wörter . Welche sind es?

** Siehe Fußnote * auf Seite 91.
*** Vermutlich geht die Aufgabe auf Luca Pacioli (um 1445 - 1517 ) zurück , der in seiner Summa (fol. 43v) folgende

Aufgabe vorrechnet : Jemand lädt 10 Personen ein und will ihnen so viele verschiedene Gerichte vorsetzen , wie

diese Personen in verschiedener Anordnung nebeneinandersitzen können . Wie viele Gerichte sind es ? Pacioli zeigt

dann noch die Lösung für 11 Personen und sagt , daß man das Verfahren fortsetzen könne .
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29. Ein vorbildlicher Leistungskursschüler führt in Mathematik 6 Hefte , und zwar je ein
Schul- und Hausheft für Stochastik , Analytische Geometrie und Infinitesimalrechnung .
Er hat für die Heftumschläge 7 Farben zur Verfügung . Wie viele Möglichkeiten gibt es ,
wenn
a) alle Hefte verschiedenfarbig eingebunden sein sollen,
b) keine Einschränkunggilt ,
c) Schul - und Hausheft des gleichen Fachbereichs die gleiche Farbe tragen sollen , die

Fachbereiche aber durch Farben unterschieden werden ?
30 . Auf wie viele Arten kann man 2 Buchstaben aus »COMPUTER « auswählen, wenn

a) keine Einschränkungbesteht,
b) beide Buchstaben Konsonanten sein müssen,
c) beide BuchstabenVokale sein müssen,
d) ein Buchstabe ein Vokal und der andere ein Konsonant sein muß?

31 . Löse Aufgabe 30 für »MISSISSIPPI« , wenn man die Buchstaben I bzw. S bzw. P
a) nicht unterscheidet, b) unterscheidet.

32 . Ein König beschließt in seinemReich eine Gebietsreform. Dabei soll jede neu zu bildende
Provinz eine Fahne erhalten . Zur Verfügung stehen die heraldischen Farben Rot , Blau ,
Schwarz , Grün , Gold , Silber und Purpur .
a) In wie viele Provinzen kann das Land höchstens eingeteilt werden, wenn die Fahne

eine Trikolore sein soll und
1) keine weitere Bedingung gestellt wird ,
2) der oberste Streifen der Trikolore golden sein muß,
3) einer der 3 Streifen der Trikolore golden sein muß?

b) Wie viele neue Provinzenkönnen gebildet werden, wenn die Fahne zwar aus 3 Streifen
bestehen , der untere und der obere Streifen aber gleichfarbig sein sollen ?

33. 6 Jungen und 4 Mädchen sollen in 2 Mannschaften zu 5 Spielern aufgeteilt werden . Auf wie
viele Arten geht das , wenn in jeder Mannschaft mindestens ein Mädchen mitspielen soll?

34 . Eine Reisegruppevon 12 Personen verteilt sich auf 2 Abteile eines Eisenbahnwagens. In
jedem Abteil gibt es 3 Sitzplätze in Fahrtrichtung und 3 entgegen der Fahrtrichtung . Von
den 12 Personen wollen auf alle Fälle 5 in Fahrtrichtung und 4 gegen die Fahrtrichtung
sitzen. Wie viele Plazierungsmöglichkeiten gibt es , wenn man die Sitze unterscheidet ?

35. Bei einem Lochstreifen besteht eine Codegruppe aus 5 (8 ) Stellen, die gelocht werden
können . Wie viele Zeichen lassen sich so codieren ?

36 . Bei einem Binärcode arbeitet man mit 2 Zeichen. Es sollen die 26 Buchstaben des
Alphabets , die 10 Ziffern und 27 Sonderzeichen (z . B . » , + , [ , ? , . . .) codiert werden
(IBM-Lochkartencode ) . Wie groß muß k mindestens gewählt werden , damit alle Zeichen
des oben angegebenen Zeichenvorrats durch gleich lange Binärwörter (/c-Tupel aus einer
2-Menge) codiert werden können ?

37. Auf Anregung Leonhard Eulers (1707- 1783 ) veröffentlichte 1756 der Komponist Jo¬
hann Philipp Kirnberger ( 1721 - 1783 ) eine Anleitung , wie man mit 2 Würfeln Menuette
komponieren könne , wenn man für jeden der 16 Takte 11 musikalische Figuren zur
Verfügung stellt . Joseph Haydn ( 1732- 1809 ) und Wolfgang Amadeus Mozart ( 1756
bis 1791 ) ahmten dies nach . Wie viele Menuette lassen sich komponieren ?

38 . a) In München -Stadt waren 1981 folgende Kombinationen als Autokennzeichen zu¬
lässig* : Nach dem Ortskennzeichen M folgen 2 Buchstaben und dann eine der ganzen
Zahlen aus [ 100 ; 4999] . Bei der Buchstabenkombination sind verboten B , F , G , I ,
O , Q . Nicht verwendet werden HJ , KP , KZ , NS , SA , SS , WC . CD und CC dürfen nur
Haltern aus dem diplomatischen bzw . konsularischen Dienst zugeteilt werden .

* Die Ausgabe von Nummernschildern begann weltweit 1899 in München mit einer schwarzen Eins auf gelbemGrund (Farben der Stadt München ) 10,3 x 7,3 cm.
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ß) Wie viele Kennzeichen sind möglich , wenn
der Zahlenvorrat [ 100 ; 9999] ausgeschöpft
wird ?

a) Wie viele Kennzeichen können damit an nor¬
male Staatsbürger ausgegeben werden ?

b) Für den Landkreis München galt : Nach dem M steht entweder 1 Buchstabe und eine
3 - oder 4stellige Zahl oder 2 Buchstaben und eine ganze Zahl aus [1 ; 99] . Nicht zu¬

lässig sind die in a) aufgeführten Ausnahmen . Löse a) für den Landkreis .
c) Warum sind die obigen Kombinationen nicht gestattet ?

39 . Beweise das Symmetriegesetz: 40. Beweise die Additionsformel :

41 . Zeige : (a + b) n = £41 . Zeige : (a + b) n = £
k- Hinweis : Überlege , wie oft der Summand akb" k

bei der Multiplikation entsteht .

42 . Beweise:

c) I ( - Ü

43 . Die Binomialkoeffizienten lassen sich auf
einfache Weise in einem Dreieck anord¬
nen . Es heißt Pascal -Stifelsches Dreieck
oder auch Arithmetisches Dreieck *

**

*. Un¬
ter Verwendung der Formel aus Aufgabe
40 lassen sich die Binomialkoeffizienten
der (n + l ) -ten Zeile aus denen der n-ten
Zeile berechnen . Berechne das Pascal -
Stifelsche Dreieck bis zur 7. Zeile.

44 .Von n Elementen seien jeweils n t unun -
k

terscheidbar , d . h . , £ n i = n -
i = 1

a) Zeige : Die Anzahl aller unterscheidbaren Permutationen ist

b) Wende die 1635 von Marin Mersenne (1588 - 1648) gefundene Formel auf Aufgabe

113/24 an und berechne die entsprechenden Anzahlen .

* Michael Stifel (14877 - 1567 ) zitiert diese Formel 1544 in Arithmetica integra (folium lOlr ) als Eine gewisse Regel des

Hieronymus' Cardanus . Geronimo Cardano (1501- 1576 ) bringt sie als 170. Satz seines Opus novum de proportionibus
erst 1570 , bemerkt aber : » Ich habe sie schon andernwärts gelehrt ; [. . .] kann aber die Stelle nicht finden .«

** Die oben angegebene Anordnung stimmt weder mit der von Michael Stifel in seiner Arithmetica integra (1544)
noch mit der Pascals in dessen Traite du triangle arithmetique (1654) überein . Die früheste erhaltene Darstellung
dieser Anordnung findet sich in YangHuis Untersuchung der Arithmetischen Regeln der Neun Bücher aus dem Jahre

1261, die aber auf Qia Xsian [sprich : Tschia Hsien] (um 1100 ) zurückgeht . Dieselbe Anordnung der Binomialkoeffi¬

zienten ist im Kostbaren Spiegel der vier Elemente des Zhu Shi-Jie [sprich : Tschuh -dschieh] aus dem Jahre 1303

enthalten . Die erste gedruckte Darstellung in Europa schmückt das Titelblatt des Neuen Rechenbuchs von 1527 des

Peter Apian (1495 - 1552 ). Niccold Tartaglia (1499 - 1557 ) bringt ebenfalls diese Darstellung in seinem General Trattato
di numeri et misure (1556 ). - Bekannt war das Arithmetische Dreieck bereits den Arabern des 11. Jh .s und den

Indern des 2. vorchristlichen Jh .s - Vgl . Bild 116. 1 und die Abbildung auf Seite 228 .
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Bild 1164 Das Arithmetische Dreieck desKtng Hui ( 1261) und des Peter Apian ( 1527 ) [ 1.Reihe ] ,
des Michael Stifel ( 1544) , des Blaise Pascal ( 1654) [2 . Reihe] , des Niccold Tartaglia ( 1556 ) .
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45 . Wie viele Wörterbücher (der Art : Sprache A —> Sprache B) benötigt ein Übersetzungs¬
institut für die direkte Übersetzung aus jeder von 6 Sprachen in jede dieser 6 Sprachen ?
Wie viele zusätzliche Wörterbücher müssen angeschafft werden , wenn 3 weitere Sprachen
dazukommen ?

46 . Ein Ausschuß von 10 Parlamentariernsoll aus 2 Parteien zusammengesetztwerden . Die
FSU hat 8 Fachleute , die CSP hat 6 Fachleute anzubieten . Auf Grund der Mehrheitsver¬
hältnisse kann die FSU 7 und die CSP 3 Sitze im Ausschuß beanspruchen . Wie viele ver¬
schiedene Zusammensetzungen des Ausschusses sind möglich , wenn
a) keine weitere Bedingung gemacht wird ,
b) ein bestimmtes Mitglied der CSP auf alle Fälle im Ausschuß sitzen soll,
c) 2 bestimmte Kandidaten der CSP von der FSU grundsätzlichabgelehnt werden ?

47. Aus einer Gruppe von 4 Frauen und 4 Männern wollen 4 Personen Tennis spielen.
a) Wie viele Möglichkeiten gibt es , wenn

1) keinerlei Einschränkungen bestehen, 2) keine Frau mitspielen soll,
3) genau eine Frau mitspielen soll , 4) genau 2 Frauen mitspielen sollen,
5) genau 3 Frauen mitspielen sollen , 6) alle 4 Frauen mitspielen sollen?

b) Welcher Zusammenhang besteht zwischen dem Ergebnis von 1) und den Ergebnissen
von 2) —6) ?

• 48. Ein Bridgespiel besteht aus 52 Karten , von denen vier Asse sind . Man entnimmt 13 Kar¬
ten . In wieviel Fällen enthalten diese 13 Karten
a) kein As , b) genau ein As , c) mindestens ein As,
d) höchstens ein As , e) genau 2 Asse , f) alle 4 Asse ?

$49 . An einem runden Tisch nehmen 6 bzw. 7 Personen Platz . Anordnungen , bei denen jeder
die gleichen Nachbarn hat , betrachten wir als gleich. Wie viele verschiedene Plazierungen
der Personen gibt es in jedem der beiden Fälle , wenn
a) keine weitere Bedingung gestellt wird,
b) 2 bestimmte Personen auf alle Fälle nebeneinandersitzenwollen,
c) 3 bestimmte Personen auf alle Fälle beliebig nebeneinandersitzenwollen,
d) eine bestimmte Person auf alle Fälle jedesmal zwei bestimmte Personen als Nachbarn

haben will?
• 50 . a) 5 gleiche Äpfel sollen auf 3 Kinder verteiltwerden. Auf wie viele Arten ist das möglich?

b) k Kugeln sollen auf n Urnen verteilt werden . Auf wie viele Arten ist das möglich, wenn
man die Kugeln nicht unterscheidet ?

51 . Pausanias( 110- 180) berichtet in seiner Beschreibung Griechenlands (VII , 25,10 ) von einem

Astragalorakel * :

»Geht man von Bura [in Achaia ] zum Meer hinab , so ist da [ . . .] ein nicht großer
Herakles in einer Höhle . [ . . .] Man kann dort mit einer Tafel und Astragali Orakel¬

sprüche erhalten . Wer den Gott befragen will , betet vor der Statue und nimmt dann 4

von den reichlich vor dem Herakles liegenden Astragali und läßt sie auf einen Tisch

fallen . Zu jeder Konfiguration dieser 4 Astragali ist auf einer Tafel ein passender Wort¬

laut als Erklärung angegeben .«

a) Wie viele Orakelsprüche mußten von den Priestern erstellt werden , wenn zu jedem

Ergebnis eine andere Prophezeiung gehörte ?
b) Aus dem 2 . Jh . n . Chr . sind Orakel für 5 Astragali erhalten , die bis auf das in Bulgarien

gefundene alle aus der heutigen südlichen Türkei stammen (siehe Figur 118 . 1) . Als

Beispiel seien die Sprüche 50 und 52 der dort üblichen Orakelliste wiedergegeben :

* Der Unsinn dieser Astragalorakel - vergleichbar mit den Horoskopen unserer Regenbogenpresse - erlebte im 2. Jh .
n .Chr . in den alten Orakelheiligtümern , die teilweise aus dem 6 . Jh .v. Chr . stammten , eine Renaissance und verbreitete
sich über das südliche Kleinasien . Von den alten hölzernen Weissagetafeln, die pinax oder grammateia hießen , blieb
nichts erhalten . Glücklicherweise wurden die neueren in Stein gehauen .
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Fig . 118 . 1 Fundstätten von Astragalora -
keln in Kleinasien . Anscheinend gab es im
2 . Jh . n . Chr . in jeder Stadt des südlichen
Kleinasiens ein Astragalorakel . An 16 Plät¬
zen konnte man es bis jetzt nachweisen .

’Anabura

• Sagalassos

•Tefem-Ormeleis

»Termessos
Kozagac Haeia

Ankara

44466 24 Kronos , der Kinderfresser
Drei Vierer, zwei Sechser. Das ist der Rat der Gottheit :
Bleib zu Haus und geh nicht irgendwohin ,
Damit nicht die reißende Bestie und die rächende Furie über Dich kommen ;
Denn ich sehe , daß das Vorhaben weder gefahrlos noch sicher ist .

66661 25 Der lichtspendende Mondgott
Vier Sechser, und der fünfte Wurf eine Eins . Das bedeutet :
Wie Wölfe über Lämmer herfallen und mächtige Löwen
Gehörnte Ochsen bezwingen , so wirst Du alles überwinden .
Mit Hilfe des Hermes , des Zeussohnes , werden Deine Wünsche erfüllt .

Wie viele Prophezeiungen enthielt diese Orakelliste ?
c) Astragalorakelgab es nicht nur in Heiligtümernsondern auch auf öffentlichen Plätzen.

Hier mußte jeder seine eigenen Astragali verwenden . In Termessos (Pisidien ) schmückte
eine Orakelliste für 7 Astragali die Mauer des Stadttores . Wie viele Prophezeiungen
enthielt sie ?

d) Die unter b) angeführten Sprüche könnten uns auf die falsche Idee bringen, daß es
auf die Reihenfolge der Wurfergebnisse angekommen sei . Wie viele Prophezeiungen
hätte man dann im Fall von 4 , 5 bzw. 7 Astragali erstellen müssen ?

• e) Neben der Astragalomanteia ist auch die Kybomanteia mittels öseitiger Würfel be¬
zeugt . Wie viele Orakelsprüche hat man bei 4 , 5 bzw. 7 Würfeln benötigt ? Wie viele
wären es bei Berücksichtigung der Reihenfolge ? *

52 . Für Christen war das Würfelspieleine Erfindung des Teufels . Bischof Wibold von Cambrai
(971- 972 ) stellte es jedoch in den Dienst der Kirche : Jeder Kombination , die man mit
3 Würfeln erzielen kann , ordnet er eine christliche Tugend zu . Der Sieger soll den Verlierer
bis zum 6 . Tag ermahnen , die nicht erwürfelten Tugenden durch gutes Verhalten zu er¬
werben . Wie viele Tugenden gab es für Bischof WiboltP.

* Niccolö Tartaglia (1499 - 1557) gibt 1556 in seinem General trattato di numeri, etmisure (II , fol . 17r) ein Verfahren
an , wie man , ausgehend von einem Würfel , alle möglichen Kombinationen für beliebig viele Würfel finden kann .
Er behauptet , dies in der Nacht vom Faschingsdienstag auf den Aschermittwoch des Jahres 1523 gefunden zu haben .
Die Ergebnisse bei 4 , 5 und 6 Würfeln erarbeitete 1559 auch Jean Buteo (1492 - 1572 ) in seiner Logistica (ed . 1560 ).
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Zu S. 3.

53 . a) Zwei Karten eines Bridgespiels werden gleichzeitig gezogen. Berechne die Wahr¬
scheinlichkeit folgender Ereignisse :
/ l •= »Beide Karten sind Herzkarten «
ß := »Beide Karten sind Damen «
C -= »Herzdame , Herzkönig «

b) Ein Spieler erhält 13 Karten. Wie groß ist die Wahrscheinlichkeit, daß sie alle von
derselben Farbe sind ?

c) Aus dem Tractatus de ratiociniis in aleae ludo ( 1657) von Christiaan Huygens* :

»Problem III : A wettet mit B , daß er aus 40 Spielkarten , von denen je 10 von der¬
selben Farbe sind , vier Karten verschiedener Farbe herausziehen wird .«

Wie müssen sich die Einsätze verhalten , damit die Wette fair ist ?
54 . Eine Laplace -Münze wird lOmal geworfen . Berechne die Wahrscheinlichkeit dafür , daß

beim fc-ten Wurf zum ersten Mal Wappen erscheint ,
a) für k = 1,2, . . . , 10 , b) allgemein.

55 . Ein Prüfer gibt eine Liste von 8 Fragen heraus . Bei der Prüfung wird er dem jeweiligen
Kandidaten 2 davon vorlegen . Dieser muß eine davon bearbeiten .
a) Meier bereitet sich auf eine der 8 Fragen vor. Wie groß ist die Wahrscheinlichkeitda¬

für , daß er seine Frage gestellt bekommt ?
b) Huber bereitet sich auf 6 der 8 Fragen vor. Wie groß ist die Wahrscheinlichkeitdafür ,

daß er mindestens eine vorbereitete Frage vorgelegt bekommt ?
c) Wie viele Fragen muß Schmid wenigstens vorbereiten, damit er mit einer Wahrschein¬

lichkeit , die größer als 50% ist , auf mindestens eine vorbereitete Frage stößt ?

56 . In einer Reisegesellschaft von 5 Personen sind 2 Schmuggler , darunter Herr Meier . Wie

groß ist die Wahrscheinlichkeit dafür , daß ein Zollbeamter , der auf gut Glück 3 Personen

kontrolliert ,
a) mindestens einen Schmuggler, b) Herrn Meier, c) beide Schmugglerertappt ?

57 . In einer Familie sind 2 Söhne und 3 Töchter . Jeden Tag wird ausgelost , wer abspülen
muß . Wie groß ist die Wahrscheinlichkeit dafür , daß
a) es den ältesten Sohn an zwei aufeinanderfolgendenTagen trifft ,
b) es irgendein Kind an zwei aufeinanderfolgendenTagen trifft ,
c) an zwei aufeinanderfolgendenTagen Söhne abspülen müssen?

58. Drei L-Würfel werden gleichzeitig geworfen . Berechne die Wahrscheinlichkeiten folgen¬
der Ereignisse :
A — »Keine Sechs« ß ■■= »Genau 1 Sechs«
C — »Genau zweimal sechs« D ■■= »Alle drei Würfel zeigen sechs«

59. Aus sechs Ehepaaren werden zwei Personen ausgelost . Mit welcher Wahrscheinlichkeit

handelt es sich um
a) zwei Damen , b) zwei Herren ,
c) eine Dame und einen Herrn , d) ein Ehepaar?

60 . Drei Mädchen und drei Jungen setzen sich auf gut Glück nebeneinander auf eine Bank .

Berechne die Wahrscheinlichkeit dafür , daß
a) die drei Mädchen nebeneinandersitzen,
b) links außen ein Mädchen sitzt,
c) eine bunte Reihe entsteht.

* Pierre de Fermat (1601 - 1665 ) stellte Christiaan Huygens (1629- 1695 ) diese Aufgabe über seinen Mittelsmann Pierre
de Carcavy {um 1600 - 1684) im Brief vom Juni 1656 . Huygens schickte die Lösung an Carcavy am 6 . 7. 1656 .
Siehe hierzu auch die Fußnote auf Seite 112 .
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61 . Neben der alten Genueser Zahlenlotterie »5 aus 90« gibt es aber auch noch andere
Zahlenlotterien :
Land Lottotyp Land Lottotyp

Bundesrepublik 6 aus 49 , 6 aus 45 Kanada 6 aus 49 , 6 aus 36 ,
7 aus 38 (s . S . 39) 4 aus 10

DDR (s . S . 39) 6 aus 49 , 5 aus 90 , Österreich 6 aus 45
5 aus 45 , 5 aus 35 Polen 6 aus 49 , 5 aus 35

Finnland 6 aus 60 Rumänien 6 aus 45 , 5 aus 45
Italien 5 aus 90 Schweiz, Belgien 6 aus 40
Jugoslawien 5 aus 36 Tschechoslowakei 6 aus 49 , 5 aus 35
Niederlande 6 aus 41 UdSSR , Frankreich 6 aus 49

Ungarn 5 aus 90

a) Berechne fürjeden Lottotyp die Wahrscheinlichkeitfür einen Haupttreffer. In welchem
Verhältnis stehen diese Wahrscheinlichkeiten zur Wahrscheinlichkeit für einen Haupt¬
treffer bei »6 aus 49« ?

b) Berechne für jeden Lottotyp die Wahrscheinlichkeit für »Genau 4 Richtige« . In
welchem Verhältnis stehen diese Wahrscheinlichkeiten zur Wahrscheinlichkeit für
dieses Ereignis bei »6 aus 49« ?

c) Löse Aufgabe b) für das Ereignis »Genau 2 Richtige weniger als die maximal mög¬
lichen Richtigen « .

62 . Berechne die Wahrscheinlichkeitfür die Gewinnklasse II »5 Richtige mit Zusatzzahl« und
die Gewinnklasse III »5 Richtige « beim Lotto »6 aus 49 « .

63 . Beim Poker* erhält jeder Spieler eine »Hand« von 5 Karten aus den 52 französischen
Karten des Bridgespiels . Fünf gleichfarbige Karten in ununterbrochener Reihenfolge bil¬
den eine »Farbfolge « ( = straight flush) . Dabei darf das As nur am Anfang einer Farbfolge
als Eins oder nur am Ende nach dem König stehen . Vier gleichwertige Karten bilden einen
»Viererpasch« ( = four of a kind ) .
a) Wie viele Viererpasche und wie viele Farbfolgen gibt es ?
b) Warumgilt trotz des Ergebnissesin a) beim Poker eine Farbfolge mehr als ein Vierer¬

pasch ? Berechne die Wahrscheinlichkeiten dafür , daß ein Spieler eine Farbfolge bzw.
einen Viererpasch als »Hand « erhält , und begründe damit die Regel .

64. a) Berechne in der Situation von Beispiel 4 (Seite 100) die Wahrscheinlichkeit dafür , daß
der erste schwarze König an /c-ter Stelle erscheint ,

b) Wie groß ist die Wahrscheinlichkeitdafür , daß der zweite schwarze König an i-ter
Stelle erscheint ?

65. Das Problem von de Mere . Berechne die Wahrscheinlichkeit dafür , daß
a) bei 4 Würfen mindestens eine 6 auftritt ,
b) bei 24 Würfen mit 2 Würfeln mindestens eine Doppelsechs auftritt .
Gib dazu jeweils einen geeigneten Ergebnisraum an .

66 . Berechne die Wahrscheinlichkeit dafür , daß beim Skatspiel (32 Karten ) 2 Buben im Skat
( = 2 weggelegte Karten ) liegen* * .

* Poker ist ein internationales Kartenglücksspiel amerikanischer Herkunft , das in der Öffentlichkeit verboten ist.
4- 8 Personen können am Spiel teilnehmen . Die nicht verteilten Karten werden verdeckt als Talon aufgelegt .
** Das Skatspiel entstand ab 1815 in der Kartendruckerstadt Altenburg (Thüringen ) aus dem Tarockspiel , das seit
dem letzten Viertel des 14. Jahrhunderts belegt ist . Sein Name hängt mit dem italienischen Wort scarto = Ausschuß ,
Weggelegteszusammen . Das Skatspiel besteht aus 32 Blatt . Jeder der 3 Spieler erhält 10 Karten , die restlichen 2 Kar¬
ten werden weggelegt und bilden den Skat . Das Skatspiel kann mit französischen oder deutschen Karten gespieltwerden . Dabei entsprechen den französischen Farben Kreuz , Pik , Herz und Karo die deutschen Farben Eichel , Blatt
(auch Grün ), Herz (auch Rot ) und Schelle. (In der Schweiz ist das Blatt durch eine Rose und das Herz durch ein Wap¬
pen ersetzt .) Höchste Trümpfe sind die Buben (im deutschen Spiel die Unter ) in der angegebenen absteigenden Far¬
benreihenfolge. Die Dame wird im deutschen Spiel durch den Ober ersetzt .
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• 67. Ein Skatspieler hat nach Aufnahme des Skats 8 von 1 1 Trümpfen in der Hand . Der dritt¬
höchste Trumpf jedoch fehlt ihm . Wie groß ist die Wahrscheinlichkeit dafür , daß einer

der beiden Gegenspieler alle 3 restlichen Trümpfe in der Hand hat und daher die Mög¬
lichkeit hat , einen Trumpfstich zu machen ?

•68 . Berechne die Wahrscheinlichkeitdafür , daß bei 10 (20 ; n) Würfen mit einem L-Würfel
mindestens eine 1 und mindestens eine 6 auftritt .

69 . Wie wahrscheinlich ist es , daß die Geburtstage von 12 Personen in 12 verschiedenen

Monaten liegen ? (Man nehme gleiche Wahrscheinlichkeit für jeden Monat an !)
70 . 5 Mädchen und 5 Jungen setzen sich auf gut Glück um einen runden Tisch . Berechne die

Wahrscheinlichkeit für eine bunte Reihe .
• 71 . Herr Huber parkt täglich vor seinem Haus im Parkverbot . Er hat deswegen schon 9 Straf¬

mandate erhalten . Er stellt fest , daß keines davon an einem Montag , Dienstag , Mittwoch

oder Samstag ausgefertigt wurde . Wie groß ist die Wahrscheinlichkeit dafür , daß

eine solche Feststellung getroffen werden kann , wenn man annimmt , daß die Wahr¬

scheinlichkeit für die Ausfertigung eines Strafmandats für jeden Tag der Woche gleich

groß ist?
72. Wie groß ist die Wahrscheinlichkeit dafür , beim

a) Toto (unter der Voraussetzung von Beispiel 3 , Seite 99)
b) Lotto (6 aus 49)
keinen einzigen Treffer zu haben ?

• 73 . Wie groß ist die Wahrscheinlichkeit dafür , daß unter n Personen mindestens eine ist , die

mit mir am gleichen Tag Geburtstag hat ?
Ab welchem n lohnt es sich , darauf zu wetten ?

74 . Ein Laplace -Floh springt auf der Zahlengeraden in Einheitssprüngen mit gleicher Wahr¬

scheinlichkeit nach links und rechts . Er beginnt bei 0 . Mit welcher Wahrscheinlichkeit ist

er nach 6 Sprüngen bei a) 6 b) — 2 c) 0 d) 5 ?

75 . In einer Schublade befinden sich 4 schwarze , 6 braune und 2 graue Socken . 2 (4) Socken

werden im Dunkeln herausgenommen . Mit welcher Wahrscheinlichkeit erhält man 2

gleichfarbige Socken ?

76 . a) Frau Meier hat 10 verschiedene Handschuhpaare in einer Schublade . Sie will ausgehen

und nimmt 2 (4) Handschuhe auf gut Glück heraus . Wie groß ist die Wahrscheinlich¬

keit dafür , daß sie
1) kein passendes Paar herausgreift ,
2) mindestens ein passendes Paar herausgreift ?

b) Löse a) allgemein für den Fall , daß Frau Meier aus n verschiedenenHandschuhpaaren
2m Handschuhe herausgreift .

77 . Ist es günstig , darauf zu wetten , daß beim n-maligen Werfen eines Laplace -Würfels lauter

verschiedene Augenzahlen erscheinen ? (n = 2, 3,4 , 5 , 6,7 )

*78 . Berechne die Wahrscheinlichkeit dafür , daß bei lOmaligem Wurf mit einem Laplace -

Würfel jede Augenzahl mindestens einmal auftritt .

79. 10 Sportler treten zu einer Veranstaltung an . Die Startnummern 1 bis 10 werden durch

Los vergeben .
a) Wie groß ist die Wahrscheinlichkeit dafür , daß mindestens einer der Sportler den

Platz in der Siegerliste erreicht , den seine Startnummer angibt ?

b) Wie viele Sportler müssen antreten, damit es günstig ist , darauf zu wetten, daß min¬

destens einer den Rang erreicht , den seine Startnummer angibt ?

*80 . a) Berechne beim Bernoulli-Eulerschen Problem der vertauschten Briefe die Wahrschein¬

lichkeit dafür , daß genau k Briefe im richtigen Umschlag stecken .
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b) Wie groß ist die Wahrscheinlichkeit, daß von den 10 Sportlern der Aufgabe 79
1 ) genau die Hälfte , 2) mehr als die Hälfte
den Platz in der Siegerliste erreichen , den ihre Startnummer angibt ?

• 81 . 1980 hatten sich 8 Mannschaften für das Viertelfinale des UEFA -Pokals * qualifiziert ;
5 davon waren deutsche . Bei der Auslosung ergab sich der für die deutschen Mann¬
schaften günstigste Fall , daß nur eine einzige Paarung zustande kam , bei der ein deutscher
Verein gegen einen deutschen Verein spielen mußte ,
a) Welche Wahrscheinlichkeithat dieses Ereignis ?

Jb) Verallgemeinerungdes Problems: 2" Mannschaftenstehen im 2" " Hel-Finale ; darunter
befinden sich k (0 < k ^ 2"

) deutsche Mannschaften . Der für Deutschland günstigste
Fall ist derjenige , bei dem möglichst selten deutsche Mannschaften gegeneinander an-
treten müssen . Berechne die Wahrscheinlichkeit dafür .

82 . n verschiedene Teilchen werden willkürlich auf z Zellen verteilt .
a) Wie groß ist die Wahrscheinlichkeit einer Anordnung , bei der in der ;-ten Zelle ni

Teilchen sind ( ;' = 1, . . . , z) ? (Maxwell -Boltzmann-St&tistik )
b) Berechne diese Wahrscheinlichkeitbei 5 Zellen und 4 Teilchen für alle wesentlich ver¬

schiedenen Anordnungen . Wie viele Anordnungen gibt es zu jedem Typ ?
c) Löse b) für 4 Zellen und 5 Teilchen.
d) Stelle für n = 2 und z = 3 die Verhältnisseauch graphisch dar .

83. n ununterscheidbare Teilchen werden willkürlich auf z Zellen verteilt .
a) Wie groß ist die Wahrscheinlichkeiteiner bestimmten Anordnung , wenn jede unter¬

scheidbare Anordnung gleiche Wahrscheinlichkeit hat ? (Bose-Einstein -Statistik , 1924)
b) Löse 82 . b) in diesem Fall, c) Löse 82 . c) in diesem Fall, d) Löse 82. d)

84 . n ununterscheidbare Teilchen sollen auf z Zellen verteilt werden (n g z) , wobei sich in
einer Zelle höchstens ein Teilchen befinden darf .
a) Wie groß ist die Wahrscheinlichkeiteiner bestimmten Anordnung , wenn jede unter¬

scheidbare Anordnung gleiche Wahrscheinlichkeit hat ? (Fermi-Dirac -Statistik , 1926)
b) Löse 82 . b) , 82 . c) und 82 . d) für diesen Fall.

Zu 8 . 4 .
85. Eine Urne enthält 11 weiße und 15 schwarze Kugeln. Wie wahrscheinlich ist es, daß sich

unter 10 willkürlich herausgegriffenen Kugeln genau 5 weiße befinden ?
86 . Wie groß ist die Wahrscheinlichkeit dafür , daß ein bestimmter Spieler beim Skatspiel

a) genau 3 Buben ,
b) 3 bestimmte Buben und den vierten nicht,
c) mindestens 3 Buben erhält ?

87 . Ein Prüfer testet 100 Geräte , unter denen sich 10 defekte befinden . Er wählt willkürlich
10 aus und akzeptiert die Lieferung nur dann , wenn die Probe kein defektes Gerät ent¬
hält . Mit welcher Wahrscheinlichkeit wird die Lieferung angenommen ?

88 . Eine Firma stellt fest , daß bei einer bestimmten Lieferung von Dosen eines Fertiggerichts
versehentlich Giftstoffe in die Dosen gelangten . Sie sperrt sofort den Verkauf dieser
Dosen . Ein Kaufmann hat von n Dosen , unter denen sich k aus der betreffenden Liefe¬
rung befinden , m Dosen (m ^ n — k) verkauft .
a) Berechne die Wahrscheinlichkeit, daß keine der vergifteten Dosen verkauft wurde

1) allgemein , 2) für n = 20 ; m = 10 ; k = 6 .
b) Wie groß ist die Wahrscheinlichkeitdafür , daß im Fall a) 2)

1 ) mindestens 1 vergiftete Dose , 2) genau 1 vergiftete Dose ,
3) weniger als 4 vergiftete Dosen , 4) alle 6 vergifteten Dosen verkauft wurden ?

Union Europeenne de Football Association , 1954 gegründete internationale Vereinigung der Fußballverbände .
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89 . 2n (4n) Spieler werden bei einem Turnier in 2 (4) Gruppen zu je n Spielern eingeteilt . Wie

groß ist die Wahrscheinlichkeit dafür , daß die beiden stärksten Spieler in derselben Gruppe

spielen müssen ? Berechne diese Wahrscheinlichkeit für n = 4 und n = 8 .

90 . In einer Urne befinden sich 11 weiße und 15 schwarze Kugeln . Man darf llmal je 1 Kugel

mit bzw. ohne Zurücklegen ziehen . Welches Ziehungsverfahren ist günstiger , falls man

einen Preis erhält , wenn sich unter den gezogenen Kugeln
a) genau 5 weiße Kugeln , b) genau 6 schwarze Kugeln , c) keine weiße Kugel,
d) mindestens 3 weiße Kugeln , e) höchstens 3 weiße Kugeln befinden?

91 . Eine Familie hat 5 Kinder . Die Wahrscheinlichkeit für einen Jungen sei 0,5 . Wie groß ist

die Wahrscheinlichkeit dafür , daß
a) es 2 Mädchen und 3 Jungen sind , b) es 5 Mädchen sind ,
c) das mittlere Kind ein Junge ist?
d) Welche Werte erhält man , wenn man für eine Knabengeburt die realistische Wahr¬

scheinlichkeit 0,514 verwendet ?
92 . Beim Würfelspiel »Einsame Filzlaus « gewinnt derjenige , der zuerst eine 1 ( = »einsame

Filzlaus «) würfelt . Wer nach 10 Würfen noch keine 1 hat , muß eine Strafe zahlen .

a) Wie groß ist die Wahrscheinlichkeit, bei diesem Spiel Strafe zahlen zu müssen?

b) Wie wahrscheinlich ist es , bei den ersten 3 Würfen mindestens eine 1 zu werfen ?

c) Ab welcher Wurfzahl ist es günstig, darauf zu wetten, daß mindestens einmal eine 1

erscheint ?
93 . Eine Firma stellt Bolzen mit 20% Ausschuß her . Wie groß ist die Wahrscheinlichkeit da¬

für , daß unter 20 (200) herausgegriffenen Bolzen sich

a) kein Ausschußstückbefindet, b) genau 4 (40) Ausschußstückebefinden?

94 . Zu Olims Zeiten * wurde einem Gefangenen die Chance gegeben freizukommen . Er hatte
zwei Möglichkeiten :
a) Er greift aus einer Urne , die 4 weiße und 2 schwarze Kugeln enthält, eine Kugel her¬

aus . Ist sie weiß , so kommt er frei.
b) Vor ihm stehen 2 Urnen . Die erste enthältgleichviel schwarze und weiße Kugeln. Die

zweite ist die Urne aus a) . Er zieht aus beiden Urnen je eine Kugel und kommt frei,

wenn die Farben gleich sind .
Welcher Fall ist für ihn günstiger ?

95 . Die Polizei führt in einer Spielhölle eine Razzia durch . Sie testet die verwendeten Würfel

nach folgendem Schema : Jeder Würfel wird 12mal geworfen ; er wird für gut befunden ,

wenn 1- , 2- oder 3mal die 6 erscheint . Die Polizei stellt fest , daß 24% der Würfel nach

diesem Verfahren als schlecht anzusehen sind . Kann der Vorwurf des Betrugs aufrecht¬

erhalten werden ?
96 . Bei einem bestimmten Verfahren , Transistoren herzustellen , ergibt sich erfahrungsge¬

mäß ein Ausschußanteil von 50% . Ein neues Verfahren soll angeblich besser sein . Eine

erste Probe zeigt , daß von 10 nach dem neuen Verfahren hergestellten Transistoren 3

defekt waren . Wie groß ist die Wahrscheinlichkeit dafür , daß 3 oder weniger defekt sind ,

wenn das erste Verfahren angewendet wird ? Das zweite Verfahren wird für besser gehal¬

ten , wenn diese Wahrscheinlichkeit unter 10 % liegt . Kann man das zweite Verfahren

demnach schon als besser bezeichnen ?
97. Eine Urne enthält 5 grüne und 4 rote Kugeln . Man zieht 4 Kugeln

a) ohne Zurücklegen, b) mit Zurücklegen
und erhält dabei die Farbfolge : ggrg. Wie wahrscheinlich ist diese Farbfolge in jedem

der beiden Fälle ?

ScherzhafteRedeweise für »vor undenklichen Zeiten«, entstanden aus olim (lat .) = einst.
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98 . Eine Urne enthält 8 blaue und 2 gelbe Kugeln . Man löse die folgenden Aufgaben sowohl
für Ziehen ohne Zurücklegen wie auch für Ziehen mit Zurücklegen .
a) A , B und C ziehen in dieser Reihenfolge je eine Kugel aus der Urne . Wer eine

gelbe Kugel zieht , erhält einen Preis . Wie groß sind die Chancen von A , B und C ,
einen Preis zu erhalten ?

b) Wie groß sind die Gewinnchancenvon A , B und C , wenn das Spiel nach dem 1. Ziehen
einer gelben Kugel , spätestens nach dem Zug von C zu Ende ist ?

c) Wie groß sind die Gewinnchancen für A , B und C , wenn in dieserReihenfolge so lange
gezogen wird , bis ein Spieler die erste gelbe Kugel zieht ?

99. Christiaan Huygens ( 1629- 1695) stellte am Ende seines Tractatus de ratiociniis in ludo
aleae ( 1657) seinen Lesern 5 Probleme , deren zweites lautet :

»Drei Spieler A , B und C nehmen 12 Steine , von denen 4 weiß und 8 schwarz sind,
und spielen unter der Bedingung , daß derjenige Sieger sei , der als erster mit verbunde¬
nen Augen einen weißen Stein ergreift ; dabei solle zuerst A , dann B und schließlich
C ziehen , dann wieder A und so fort . Gefragt wird , in welchem Verhältnis ihre Chancen
zueinander stehen .«

Jan Hudde ( 1628- 1704) schickte Huygens im Frühjahr 1665 seine Lösung . Daraufhin
machte sich Huygens selbst an die Lösung der Aufgabe und kommt zu einem anderen
Ergebnis . Überzeugt , richtig gerechnet zu haben , schickte er seine Werte am 4. 4. 1665
an Hudde. Gleich am nächsten Tag fand Hudde den Grund für die Diskrepanz : Die Auf¬
gabe war nicht vollständig formuliert !
a) Huygens hatte bei seiner (im Manuskript erhaltenen) Lösung so gerechnet, als würde

mit Zurücklegen gezogen . Welche Werte erhielt Huygens ?
b) Hudde hatte die Aufgabe so verstanden, als würde ohne Zurücklegen gezogen . Zu

welchen Werten gelangte er ?
• c) Jakob Bernoulli ( 1655- 1705) fügt sowohl in seinem Tagebuch, den Meditationes, wie

auch in seiner Ars Conjectandi diesen beiden Interpretationen eine dritte hinzu : Jeder
der 3 Spieler nimmt sich zu Beginn 12 Steine und zieht dann jeweils von den seinigen
in der angegebenen Reihenfolge , ohne die gezogenen Steine wieder in die Urne zurück¬
zulegen .* Zu welchen Werten gelangte Bernoulli?

100 . Für das Funktionieren eines Gerätes A ist die Funktionsfähigkeit des Bauteils B unbe¬
dingt nötig . Aus diesem Grund ist B «-fach vorhanden . Die Wahrscheinlichkeit für das
Ausfallen von B innerhalb eines Tages sei p.
a) Wie groß ist die Wahrscheinlichkeitdafür , daß das Gerät A innerhalb eines Tages

funktionsunfähig wird
1) für n = 2 ; p = 0,5 , 2) für n = 3 ; p = % 3) allgemein?

b) Wie groß muß n sein , wenn für p = 0,5 die Wahrscheinlichkeit für die Funktions¬
fähigkeit von A innerhalb eines Tages 95% betragen soll?

101 . Eine Obstgroßhandlung erhält Äpfel in Steigen zu je 100 Stück . Ein Kontrolleur über¬
prüft die Steigen durch Entnahme einer Stichprobe von 20 Äpfeln pro Steige . Eine
bestimmte Steige enthalte genau 5 schlechte Äpfel .
a) Wie groß ist die Wahrscheinlichkeit dafür, daß sich bei dieser Steige genau ein

schlechter Apfel in der Stichprobe befindet ?
b) Welche Wahrscheinlichkeitergäbe sich, wenn die Stichprobe mit Zurücklegen ent¬

nommen würde ?

* Bei dieser Beschreibung der 3 möglichen Interpretationen des Huygensschen Problems taucht unseres Wissens
zum ersten Mal in der Wahrscheinlichkeitsrechnung der Begriff Urne auf . In den Meditationes (geschrieben vor dem
26 . 8. 1685) steht noch , daß die Steine in ihr Gefäß zurückzulegen seien - electos calculos in loculum suum reponendos
esse - , in der Ars Conjectandi heißt es dann , daß sie wieder in die Urne zurückzulegen seien - calculos electos [. . .]in urnam recondendos esse.
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c) Eine Steige , bei der in der Stichprobe mindestens 2 schlechte Äpfel gefunden wer¬
den , wird zurückgewiesen . Wie groß ist die Wahrscheinlichkeit dafür , daß eine Stei¬

ge mit genau 5 schlechten Äpfeln zurückgewiesen wird ? Untersuche Fall a) und b).
102. Unter den N Kugeln einer Urne seien S schwarze .

a) Es werde eine Kugel ohne Zurücklegen gezogen , ihre Farbe notiert, aber nicht be¬

kanntgegeben . Berechne nun die Wahrscheinlichkeit dafür , beim 2 . Zug eine schwarze

Kugel zu ziehen .
b) Es werden der Reihe nach n (rr̂ N ) Kugeln gezogen. Wie groß ist die Wahrschein¬

lichkeit , beim k-ten Zug (k :£ n) eine schwarze Kugel zu ziehen , wenn man über die

Ergebnisse der anderen Züge nichts weiß ?
103. Unter den N Kugeln einer Urne seien S schwarze .

a) Wie groß ist die Wahrscheinlichkeitdafür , eine schwarze Kugel zu ziehen?
b) Es werde eine schwarze Kugel ohne Zurücklegen gezogen. Berechne nun die Wahr¬

scheinlichkeit dafür , beim 2 . Zug wieder eine schwarze Kugel zu ziehen . Wie groß
ist der Unterschied der beiden Wahrscheinlichkeiten ?

c) Berechne den Unterschied Ap der in a) und b) gefundenenWerte zunächst allgemein,

dann für ~ = 1% ; 5 % ; 50% ; 95% und N = 100 ; 500 ; 1000 .

104 . Um die Existenz medialer Begabungen zu beweisen , wird folgendes Experiment ange¬

stellt : Eine Laplace -Münze wird lOmal geworfen und die Ergebnisfolge nicht bekannt¬

gegeben . 500 Versuchspersonen raten die geworfenen Ergebnisse unabhängig vonein¬

ander . Es wird vereinbart , daß mediale Begabung anzuerkennen sei, wenn wenigstens
9 Treffer erzielt werden . Wie groß ist die Wahrscheinlichkeit dafür , daß wenigstens eine

Versuchsperson als »medial « erkannt wird , obwohl keine der Versuchspersonen eine

mediale Begabung hat ?
Zu 8 . 5 .

• 105. Gib die Menge der Ergebnisse aus ß 7 an (siehe Lösung 7 der Aufgabe auf Seite 110) ,

die bei der in der Schlußbetrachtung dieser Aufgabe angesprochenen Vergröberung
mit dem Element e ß ; identifiziert werden .
ftj3 = 4 ; a>4 = {1,2 } ; a>5 = 110000 ; co 6 = 4 .

106. Eine Laplace -Münze werde zweimal geworfen . Wie

groß ist die Wahrscheinlichkeit dafür , daß mindestens
einmal Wappen erscheint ?
Lösung von d 'Alembert ( 1717- 1783)* im Artikel Croix
ou Pile der Encyclopedie (Bd . 4,1754 ) : Der erste Wurf

bringt sicher Wappen oder Zahl . Nur im Fall Zahl
ist ein zweiter Wurf überhaupt nötig . Er bringt ent¬
weder Wappen oder Zahl . Von den drei Fällen sind
zwei günstig . Die gesuchte Wahrscheinlichkeit ist
also f . - Nimm kritisch dazu Stellung !

107. Drei Laplace -Münzen werden gleichzeitig geworfen .
Mit welcher Wahrscheinlichkeit zeigen alle drei Mün¬
zen die gleiche Seite?
Nimm kritisch Stellung zu folgender Lösung der Auf¬

gabe : Zwei der drei Münzen zeigen sicher die gleiche
Seite. Es kommt also nur darauf an , ob die dritte
Münze auch diese Seite zeigt oder nicht . Es gibt also
einen günstigen Fall von zwei möglichen . Die ge¬
suchte Wahrscheinlichkeit ist somit 50 % .

* Siehe Seite 394.

Bild 125. 1 Ergebnisse beim
2fachen Münzenwurf
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108 . In einem Kasten liegen drei Karten, die folgendermaßen beschriftet sind:
- Die erste Karte trägt auf beiden Seiten eine Null .
- Die zweite Karte trägt auf beiden Seiten eine Eins .
- Die dritte Karte trägt auf einer Seite eine Null und auf der anderen eine Eins .
Eine Karte wird auf gut Glück gezogen und so auf den Tisch gelegt , daß man nicht sieht,
was auf der Unterseite steht . Die Oberseite zeigt eine Eins . Theodor behauptet , die
Wahrscheinlichkeit dafür , daß auch auf der Rückseite eine Eins stehe , sei 50% ; denn es
gebe für die Rückseite zwei Möglichkeiten , von denen eine günstig sei . Was meinst du
dazu ?

109 . In einer Urne liegen zwei rote und zwei schwarze Kugeln . Zwei Kugeln werden ohne
Zurücklegen gezogen . Mit welcher Wahrscheinlichkeit p haben die beiden gezogenen
Kugeln gleiche Farbe ? Diskutiere die folgenden 7 Lösungsvorschläge :
Lösung 1 \ Es gibt zwei Fälle : Die Kugeln haben entweder gleiche oder verschiedene
Farbe . Ein Fall ist günstig , d . h . p = j .
Lösung 2 : Es gibt drei Fälle : Beide Kugeln sind rot ; beide Kugeln sind schwarz , oder
die beiden Kugeln haben verschiedene Farbe . Zwei Fälle sind günstig , also ist p — f .
Lösung 3 : Es gibt vier Fälle : rot -rot , rot -schwarz , schwarz -rot und schwarz -schwarz.
Zwei Fälle sind günstig , also ist p = f = -j .
Lösung 4 : Man denke sich die Kugeln durchnumeriert : lr , 2r , 3s , 4s . Es gibt sechs
Fälle : lr2r , lr3s , lr4s , 2r3s , 2r4s , 3s4s . Zwei Fälle sind günstig , also ist p = § = -j .
Lösung 5 : Die eine gezogene Kugel hat irgendeine Farbe . Für die andere Kugel gibt es
zwei Möglichkeiten , von denen eine günstig ist . Also ist p = j .
Lösung 6 : Die eine gezogene Kugel hat
irgendeine Farbe . Dann ist die andere
Kugel eine von den drei restlichen .
Davon ist eine günstig , also ist p = j .
Lösung 7: Man stellt die Entnahme
der beiden Kugeln als zweistufiges Ex¬
periment durch einen Baum dar und
wendet die Pfadregeln an :
Man erhält P = i + i = i -

110 . In einer Urne liegt eine Kugel, die entwederweiß oder schwarz ist . Man legt eine weiße
Kugel dazu , mischt und zieht eine Kugel . Sie ist weiß . Würdest du darauf wetten , daß
die Kugel , die noch in der Urne liegt , auch weiß ist ? Begründe deine Antwort !

111 . Probleme du bäton brise : Ein Stab der Länge a e IN mit a ^ 3 soll auf gut Glück in drei
Teile der Längen a u a2, a3 (a t .e INI) zerbrochen werden .
VerfahrenA : Die beiden Teilpunkte % und T2 werden willkürlich aus den a — 1 Mög¬
lichkeiten ausgewählt .
Verfahren B : Teilpunkt % werde willkürlich aus den a — 1 Möglichkeiten ausgewählt .
Dann wählt man wieder willkürlich eines der beiden Teilstücke und teilt es noch mal
auf gut Glück , falls es noch teilbar ist . Andernfalls erhält man nur zwei Stücke und
sicher kein Dreieck .
a) Wie groß ist in jedem Fall die Wahrscheinlichkeitdafür , daß sich aus den drei Teilen

ein (nicht entartetes ) Dreieck bilden läßt , wenn a = 5 ist ?
b) Was ergibt sich für a = 3 ; 4 ; 6 ; 7 ?
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