UNIVERSITATS-
BIBLIOTHEK
PADERBORN

®

Stochastik

Barth, Friedrich
Munchen, [20]03

12. 1. Die gemeinsame Wahrscheinlichkeitsverteilung

urn:nbn:de:hbz:466:1-83580

Visual \\Llibrary


https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83580

12. Mehrere Zufallsgrofien iiber demselben
Wabhrscheinlichkeitsraum

12.1. Die gemeinsame Wahrscheinlichkeitsverteilung

Wir betrachten zwei verschiedene* ZufallsgroBen X und Y iiber (€. P) mit ihren
Wabhrscheinlichkeitsfunktionen W, und W,

Beispiel 1: Fiir einen einfachen Wiirfelwurf sollen folgende Gewinnpline gelten

a) Zufallsgrofle X: Fillt eine gerade Zahl, so gewinnt der Spieler eine Mark:
andernfalls verliert er eine Mark.

b) ZufallsgroBe ¥: Fillt eine Primzahl, so gewinnt der Spieler eine Mark: andern-
falls verliert er eine Mark.

Die Wertetabellen der ZufallsgréBen X bzw. Y haben folgendes Aussehen:

@ 1 2 3 4 5 §
x = X(w) — 1 | — 1] ] —1 |
= Y (wm) —1 1 I —1 l —1

Fir die Wahrscheinlichkeitsfunktionen W, bzw. W, ergibt sich somit:
X —1 1= ¥ — 1 +1
Wy (x) Wy () ; ;

Trotz X 7Y gilt also hier Wy = W,. X und Y sind demnach »gleichverteilt«.
Man definiert nimlich

Definition 198.1: Zwei ZufallsgroBen X und Y iiber demselben Wahr-
scheinlichkeitsraum (€Q, P) heiBen gleichverteilt oder auch identisch verteilt.
wenn ihre Wahrscheinlichkeitsverteilungen W, und W, {bereinstimmen.
X und Y heilen dann Kopien voneinander.

Beispiel 1 zeigt uns, daB aus der Gleichheit der W ahrscheinlichkeitsverteilungen
nicht auf die Gleichheit der ZufallsgroBen geschlossen werden darf.

Wir wollen uns nun einem Experiment zuwenden. bei dem zwei ZufallsgroBen
gleichzeitig betrachtet werden.

Beispiel 2: In einer Klasse von 25 Schiilern sind 10 Midchen, 15 Schiiler sind
katholisch und 8 Schiiler evangelisch. 6 der Midchen sind katholisch. der Rest
der Midchen evangelisch.

Ein Schiiler @ werde beliebig ausgewdhlt. Wir definieren die ZufallsgroBen
»Geschlecht« G und nRthmns/uLphm;"kuw R folgendermafen:

Glo) [0, falls @eMenge der Midchen
r\) = %
|1, falls we Menge der Jungen

Zwei ZufallsgroBen heiBen gleich, wenn sie als Funktionen gleiwch sind, d.h., wenn thre Wertetabellen {iberein-
stimmen.
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|, falls e Menge der Katholiken 0.5 4 o.r
R(w):=1 2, falls e Menge der Protestanten
‘ 3 sonst
.
Die Wahrscheinlichkeitsverteilungen von G und
R ergeben sich zu:
: 3
g 0 1 i .
! : : ’
Wslg) 0,40 0,60
F ' | 2 3
Woel(r) 060 0,32 0,08

Zur Erstellung einer Schulstatistik wird sowohl
nach Geschlecht als auch nach Religionszuge-
horigkeit gefragt. Diese Fragestellung bedingt
eine gleichzeitige Betrachtung beider Zufalls- Fig 199.1 Graphische Darstellung
grofien. der gemeinsamen Wahrscheinlich-
3 keitsvertellung W 5

Um solche Fragestellungen modellmiiBig erfassen zu konnen, definiert man die
gemeinsame Wahrscheinlichkeitsverteilung zweier Zufallsgrofien X und Y.
Dazu betrachtet man das Ereignis, daB X den Wert x und gleichzeitig ¥ den
Wert y annimmt, d.h. das Ereignis {@|X(w)= x A ¥(w) = y}, das wir analog
zu frither kurz »X = x A ¥ = y« schreiben. Mit dieser Bezeichnung legen wir fest:

Definition 199.1: Sind X und ¥ zwei ZufallsgroBen iiber demselben Wahr-
scheinlichkeitsraum (£, P), so heilt

Wy yi (x| ) PX =xaY=y)
die gemeinsame Wahrscheinlichkeitsfunktion oder die gemeinsame Wahr-
scheinlichkeitsverteilung der ZufallsgréoBen X und Y.
In unserem Beispiel ergibt sich fiir W (g.r)=P(G=gAR=1) folgende
Wertetabelle:

g I 2 3
0 0,24 0.16 0
1 0,36 0,16 0,08

Figur 199.1 zeigt den Graphen von W p in einem dreidimensionalen Koordi-
natensystem.

Addiert man in der obigen Wertetabelle fiir W, die Wahrscheinlichkeiten einer
Spalte 7, so erhiilt man als Summe den Wert Wg(r). Andererseits erhilt man
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Ii[ (g), wenn man die Wahrscheinlichkeiten der Zeile g addiert. Die vollstiindige
'abelle sieht dann so aus:

. r - "
o~ I 2 3 W.(g)
0 024 0:16 0 04

[ [ 036 0,16 008 0,6
We(r) | 0,60 032 0,08 [

Der gefundene Zusammenhang zwischen W, W, und W, , gilt offenbar all-
gemein:

m
Satz 200.1: Wilx) = Y Wy vlxs ;)
J=1
n
W) = Y Wy y(x;, 3))
F=
Die Summation erstreckt sich dabei iiber alle ¥; aus dem Wertebereich von
¥ bzw. iiber alle x; aus dem Wertebereich von X.

Bemerkung: Auf Grund von Satz 200.1 nennt man die einfachen Wahrschein-
lichkeitsfunktionen W; und W, manchmal in diesem Zusammenhang auch
Rand- oder Marginalwahrscheinlichkeitsverteilungen.

12.2. Stochastische Unabhiingigkeit von Zufallsgrofien

In Kapitel 10. wurde die stochastische Unabh: ingigkeit von Ereignissen definiert
und untersucht. Wir nannten die Ereignisse 4 und B stochastisch unabhingig,
wenn der Produktsatz P(4 B) = f"l A)- P(B) gilt. Nun erzeugt jede Zufalls-
groble X mittels der Aussagen »X = X;« eine Menge von Ereignissen. Es liegt
daher nahe, die stochastische U nahlhm:ngi\u{ zweier ZufallsgroBen X und Y

dadurch zu definieren, dal man fiir jedes mdogliche Paar von Ereignissen »X = x;«
und »Y = y.« die stochastische [ Unabhingigkeit fordert:

Definition 200.1: Zwei ZufallsgréBen X und ¥, die auf demselben Waht-
scheinlichkeitsraum (Q, P) definiert sind. heiBen stochastisch unabhingig,

wenn [ir alle x;, y; gilt:

P(X =x,AY=y)=P(X =x) P(Y =
oder kiirzer: Wy v (xi, 1)) = Wy(x) - We(p)

Bei mehr als zwei ZufallsgroBen unterscheidet man wie bei Ereignissen zwischen
paarweiser Unabhingigkeit und Unabhiingigkeit in ihrer Gesamtheit geméB
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