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X (co) = X ((ö ! | a 2 )) = und

Y (co) = Y((a x | a 2 )) = a 2 .

Ihre Summe X + Y ist eine neue
Zufallsgröße Z über (Q,P ) .
Dabei ist
Z (co) = (X + Y) (co) = X (co) + Y (co) .
Figur 203. 1 veranschaulicht diesen
Zusammenhang . Die Wertetabelle
von Z sieht folgendermaßen aus :

-Ck' -Yu

Fig . 203 . 1
Zur Summe zweier Zufallsgrößen
Z (co) = (X + Y) (co) = V (co) + Y (tu)

Die Wahrscheinlichkeitsfunktion Wz von Z ergibt sich gemäß

^ z (z) = Yu wx,r (Xi,yj ) ; so ist z . B .
Xi + yj = z

Wz m = E WX ' ¥ {x t , yj ) =
x i + yj ~ 10

= Wx<y (4,6) + WXt y ( 5,5) + Wx , y (6,4 ) =

= J6 + T5 + T6 =

— 36 •

Man erhält :
z 2 3 4 5 6 7 8 9 10 u 12

wz {z) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Erstaunlicherweise ist Z nicht gleichmäßig verteilt , obwohl die Summanden
X und Y gleichmäßig verteilt sind (vgl . Figuren 173 . 1 und 173 .2) .

12 . 4 . Sätze über Maßzahlen

Für Erwartung und Varianz lassen sich einige einfache Sätze leicht beweisen ,
durch die deren Berechnung in vielen Fällen erleichtert wird .

12 . 4 . 1 . Sätze über die Erwartung

Der Erwartungswert einer konstanten Zufallsgröße a ist als ihr Mittelwert na¬
türlich die Konstante selber , d . h . , Sa = a.
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Addiert man zu jedem Wert einer beliebigen Zufallsgröße X die Konstante 3 ,
so ist es anschaulich klar , daß auch ihr Mittelwert SX um 3 wächst ; man ver¬
mutet , daß S (X + a) = SX + a allgemein gilt .
Verdreifacht man hingegen jeden Wert einer Zufallsgröße X , so ist es klar , daß
auch der Mittelwert verdreifacht wird ; man vermutet , daß S {aX ) = a - SX all¬
gemein gilt . Wir beweisen

Satz 204. 1 : Für jede Zufallsgröße X und jede Konstante ae IR gilt :
( 1 ) Sa = a
(2) S (X + a) = S (X ) + a
(3 ) S (aX ) = a - SX

Beweis :
( 1 ) . Sa = a ■W(a ) = a ■ 1 = a .
(2) . Mit g (X ) ~ X + a gilt nach Satz 178 . 1

S (X + a) = £ (Xi + a) W(x i) = £ x, ^ (jc,) + a £ W{x^ = SX + a - 1 =
i = l i = 1 i = 1

= SX + a .
(3) . Mit g (X ) — aX gilt nach Satz 178 . 1

S {aX ) = £ ax i W{xj) = a £ X ; fF (x ;) = a - SX .
i = 1 i = 1

Der Mittelwert der Summe zweier Zufallsgrößen müßte wohl die Summe der bei¬
den Mittelwerte sein , wie Beispiel 1 und Beispiel 2 von Seite 173 für die Zufalls¬
größe »Augensumme zweier L-Würfel « vermuten lassen . Daß dies auch all¬
gemein gilt , ist die Aussage von

Satz 204 . 2 : Sind X und Y Zufallsgrößen über demselben Wahrscheinlich -
keitsraum (ß , P ) , dann gilt

S (X + Y) = S X + SY

Beweis :
Nach der Bemerkung 6 von Seite 172 gilt
S (X + Y) = £ (X + Y) (<o) - P {{<o } ) =

= X [X (co) + 7 (®)] - P ( { ro}) =
o) sfi

= £ V (m ) • / >
( { « } ) + ^ Kjco ) • / >( { © } ) =

o>eß coeß

= SX + SY .

Aus Satz 204. 1 und Satz 204.2 folgt sofort , daß die Erwartung eine lineare Funk¬
tion ist :

S (aX + bY) = aSX + bSY
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Diese Formel gestattet , den Erwartungswert der Zufallsgröße Z := aX + bY zu
berechnen , ohne daß man die Wahrscheinlichkeitsverteilung dieser Zufalls¬
größe Z kennt ! Darüber hinaus läßt sich sogar der Erwartungswert einer Zufalls¬
größe berechnen , die Summe von mehr als 2 Zufallsgrößen ist , ohne daß man
ihre (meist recht komplizierte ) Wahrscheinlichkeitsverteilung zu kennen braucht .
Es gilt nämlich

Satz 205 . 1 : Sind X 1, X 2 , . . . ,X „ Zufallsgrößen über demselben Wahr¬
scheinlichkeitsraum (Q , P ) , dann gilt

SfaiX ^ ""b ^2 -̂ - 2 ~b ~b Xn) — Ü ^SX ^ a2 SX 2 . ~h anS Xn ,
kurz

a ( 2Q = £ a . SX, .
i = 1 i = 1

Beweis:
Wir verwenden das Beweisverfahren von Satz 204.2 .

i { £ 0i Xd = E (a 1 X 1 + a2 X 2 + . . . + an Xn) (co) - P ( { co} ) =
i —1 coeQ

= E [a,X 1 (co) + a 2 X 2 (c0) + . . . + an Xn (co)
-
] - P ( { o>} ) =

coeQ

= E la iX ^ ca) - P {{w} ) + a2 X2 ((o) - P {{ (ß } ) + . . . + an Xn {a>) - P {{ (£>} )]
coeQ

= « i E 2f 1 (co) - F ( { ffl }) + . . . + a„ E =
coeQ coeQ

= $ X i "h CI2 $ X 2 "b • • * "h Cln ß X n .

Merkregel : Erwartungswert einer Summe = Summe der Erwartungswerte

Man könnte nun vermuten , daß ein ähnlicher Satz auch für das Produkt von
Zufallsgrößen gilt . Beispiel 1 und Beispiel 3 von Seite 173 f. zeigen aber , daß dem
nicht so ist , weil dort SX = 3,5 , dagegen
S {X ■X ) = S {X 2

) = 15i * 3,5 2 = {SX )
2 ist .

Erfreulicherweise gilt aber wenigstens

Satz 205 . 2 : Sind X und Y stochastisch unabhängige Zufallsgrößen über
demselben Wahrscheinlichkeitsraum (Q , P ) , so gilt

S (X - Y) = SX - SY.

Beweis:
S {X - Y) = x 1 y 1 WXtY (x 1, y 1) + x 1 y 2 WX ' r (x 1 , y2) + . . . + x„ ym fVXr y (x„,y m) =
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Diese Doppelsumme läßt sich wegen der vorausgesetzten Unabhängigkeit von
X und Y nach Definition 200. 1 umformen zu

n m
«f (X • 7 ) = X E {xr yj) ■Wx {xd ■WY{yj ) =

i = 1 J = 1
n m

= E x,wx {xd - E yjWrtyj) =
■= i j = i

= SX - SY .

Satz 205 .2 läßt sich nicht umkehren ! Die Zufallsgrößen sind nämlich nicht not¬
wendig unabhängig , wenn das Produkt der Erwartungswerte gleich dem Er¬
wartungswert des Produkts ist . Wir zeigen dies an folgendem

Beispiel : Die Zufallsgrößen X und Y besitzen die gemeinsame Wahrscheinlich¬
keitsverteilung :

0 l 2 Wx (x)

0 .0 1 0 1
2

2 1
4 0 1

4
1
2

WY(y) 1
4

1
7

1
4

Damit gilt für das Produkt X ■ Y :

xy 0 2 4

WX . Y(xy ) 1 0 |
Für die Erwartungswerte ergibt sich :
£ X = 0 - i + 2 - i = 1 ;
SY = 0 - i + 1 - i + 2 - i = 1 ;
S (X - Y) = 0 - | + 2 - 0 + 4 - i = 1 .
Offenbar gilt SX • SY = S {X - Y) . Die Zufallsgrößen X und Y sind jedoch nicht
unabhängig ; es gilt nämlich

P (X = 0) = | ; P ( 7 = 0) = i ; aber P (X = 0 a Y = 0) = 0 * } .
Wie schon erwähnt , können wir mit Hilfe der letzten Sätze die Berechnung von
Erwartungswerten oft wesentlich vereinfachen . So erhält man leichter als im
Beispiel 2 von Seite 173 den Erwartungswert der Zufallsgröße »Augensumme «
beim Doppelwurf nach Satz 204.2 zu 3,5 + 3,5 = 1 . X bzw . Y sind dabei die
Augenzahlen des 1 . bzw . 2 . Wurfs . Es gilt also X ((a \b)) = a bzw . Y((a \b)) = b .
Entsprechend erhält man für den Erwartungswert der Zufallsgröße »Augenpro¬
dukt « beim Doppelwurf nach Satz 205.2 den Wert 3,5 • 3,5 = 12,25 . Dieser Wert
unterscheidet sich vom Erwartungswert 151 des Quadrats der Augenzahl beim
einfachen Würfelwurf (siehe Beispiel 3 , Seite 174) . Die Zufallsgrößen X = Augen¬
zahl beim 1 . Wurf und Y = Augenzahl beim 2 . Wurf sind nämlich unabhängig ,
während die Zufallsgröße X natürlich von sich selber abhängig ist .

12 . 4 . 2 . Sätze über die Varianz
Auf Seite 181 haben wir angekündigt , daß die Berechnung der Varianz einer Zu¬
fallsgröße oftmals einfacher durchgeführt werden kann als durch direkte Be-
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rechnung gemäß ihrer Definition (Definition 180 . 1 ) . Mit Hilfe der Sätze aus
12. 4. 1 . über die Erwartung können wir die dazu nötige Formel herleiten.

Die Varianz einer Zufallsgröße X ist definiert als Erwartung des Abweichungs¬
quadrates (X — SX )

2
, d . h . als S ((X — ji)

2
) . Was ergibt sich , wenn wir allgemein

die Erwartung eines beliebigen Abweichungsquadrats (X — a)
2 berechnen ?

« l(X ~ «)
2] = * ( [(* — ß) + (l* — a)] 2

) =
= S [(X - n)

2 + (n — a )
2 + 2 (X — fi) (ß - a)] =

= S [(X - /r)
2 ] + S [{ji - ß)

2 ] + 2S [ (X - n) {[x - ß )] =
= S [(X - n)

2 ] + {fi - ß )
2 + 2 (SX - n) (p - fl) =

= VarX + (ß — a )
2 .

Aus der gewonnenen Gleichung S [(X — a )
2] = Var X + {fi — a)

2 läßt sich eine
interessante Minimaleigenschaft des Erwartungswerts /i ablesen . Da nämlich
der 2 . Summand nie negativ wird und den Wert 0 nur für a = fi annimmt , gilt
offenbar , daß das mittlere Abweichungsquadrat einer Zufallsgröße von einer
Zahl fl dann am kleinsten wird , wenn diese Zahl a gleich dem Erwartungswert
fi der Zufallsgröße ist . Das Streuungsmaß »Varianz « ist also dem Erwartungs¬
wert einer Zufallsgröße besonders gut angepaßt !

Durch Umstellen gewinnt man aus der letzten Gleichung

Satz 207 . 1 : Verschiebungssatz.
VarX = (f [ (X - a )

2] - {SX - a)
2

Für den Fall a = 0 liefert Satz 207. 1 die versprochene einfache Berechnungs¬
möglichkeit für die Varianz einer Zufallsgröße . Es gilt dann nämlich

Satz 207 . 2 : VarX = (X 2) - (<f X )
2 = <f (X 2

) - fi
2

Die Berechnung von VarX nach Satz 207.2 ist meist dann günstig , wenn X
ganzzahlige Werte annimmt , SX jedoch nicht ganzzahlig ist . So ist es beim
chuck -a-luck , für das wir nochmals VarX berechnen ; man vergleiche damit
die Berechnung auf Seite 181.

VarX = l - ff § + 4 - ^ + 9 -
2j 6 - ( - i ^ )

2 =

_ 269 ■ 216 - 289~ 216 2 =

_ 57 815 ^— 46656 ~

« 1,24 .
Die Sätze 204. 1 bis 205.2 zeigten einige wichtige Eigenschaften der Erwartung
auf. Welche analogen Eigenschaften gelten für die Varianz ?
Eine konstante Zufallsgröße nimmt einen einzigen Wert a an , der auch ihr
Mittelwert ist . Die Abweichungen davon sind also 0 ; daher ist auch das mittlere
Abweichungsquadrat 0 .
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Addiert man zu jedem Wert einer Zufallsgröße X die Konstante 3 , so wird der
Graph der Wahrscheinlichkeitsfunktion von X (bzw . das Stabdiagramm oder
das Histogramm ) um 3 nach rechts verschoben . Es ist anschaulich klar , daß in
der verschobenen Verteilung das mittlere Abweichungsquadrat bezüglich des
verschobenen Erwartungswertes ju + 3 genauso groß ist wie das mittlere Ab¬
weichungsquadrat in der ursprünglichen Verteilung bezüglich des ursprünglichen
Erwartungswertes /i . Man vermutet , daß Var (A + a ) = Var X allgemein gilt .
Verdreifacht man hingegen jeden Wert einer Zufallsgröße X , so ist klar , daß auch
jede Abweichung verdreifacht wird . Damit wird jedes Abweichungsquadrat ver-
neunfacht , also auch das mittlere Abweichungsquadrat . Man vermutet , daß
Var (aX ) = c/ 2 VarX allgemein gilt .
Wir beweisen

Satz 208 . 1 : Für jede Zufallsgröße X und jede Konstante aelß gilt :
( 1) Vara = 0
(2) Var (X + ä) = VarX
(3) Var (aX ) = a 2 VarX

Beweis : Mit Hilfe von Satz 204. 1 erhält man
( 1 ) Varn = g [(a — ga )

2] = g [ (a — a )
2] = g0 = 0 .

(2) Var (X + a) = g ( [(X + a) — g (X + n)] 2) =
= S {[X + a - SX - d] 2

) =
= <f ( [X - gX ] 2

) =
= VarX .

(3) Var (aX ) = g ( [aX - g (aX )] 2
) =

= g ( [aX - agX ~
\ 2

) =
= g (a2 [X — <# X] 2 ) =
= a2 g {[X - gX ] 2) =
= a2 - VarX .

Satz 208 . 1 zeigt einerseits , daß die Varianz im Gegensatz zur Erwartung keine
lineare Funktion sein kann , andererseits , daß Var (X + a ) = VarX + Varn gilt .
Man könnte also vermuten , daß wenigstens der Varianzwert einer Summe von
Zufallsgrößen gleich der Summe der Varianzwerte dieser Zufallsgrößen ist . Unter
der einschränkenden Bedingung der Unabhängigkeit gilt tatsächlich

Satz 208 . 2 : Sind X und Y stochastisch unabhängigeZufallsgrößen auf dem¬
selben Wahrscheinlichkeitsraum (Q , P) , dann gilt

Var (X + 7 ) = VarX + Vary .

Beweis : Wir setzen ß ■■= gX und v ~ gY und berechnen damit unter Verwen¬
dung der Sätze 204. 1 und 204.2 :
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Var (A + Y) = g ([(A + F) - (A + F)] 2) =
= g ( [X + Y — fi — v] 2

) =
= 6°

( [_(X - fi) + ( Y - v)] 2
) =

= * [(* - + ( Y ~ v)
2 + 2 {X - n) ( Y - v)] =

= g [(X - p)
2] + g [( F — f)

2] + 2 g [(X - n) ( Y — v)] =
= Var A + VarF + 2 <f [ (A — p) ( Y — v)] .

Aus Aufgabe 214/15 folgt , daß mit X und F auch X - p und F - v stochastisch
unabhängig sind . Wir können also auf den letzten Summanden Satz 205.2 an¬
wenden und erhalten

Var (A + F) = Var A + VarF + 2 $ {X — p) ■<a (Y — v) ,

woraus man , wieder unter Benützung von Satz 204. 1 ,

Var (A + F ) = Var X + VarF + 2 {8X - f£) ■{gY - v)

erhält . Da die beiden Faktoren des letzten Summanden den Wert 0 haben , ist
die Behauptung bewiesen .

Satz 208.2 wird mit Vorteil angewendet , wenn es gelingt , eine Zufallsgröße als
Summe von zwei unabhängigen einfacheren Zufallsgrößen darzustellen . Dann
läßt sich nämlich ihre Varianz aus der Varianz der Summanden berechnen , ohne
daß man die meist komplizierte Wahrscheinlichkeitsverteilung der Summe zu
kennen braucht . So kann man z . B . die Varianz der »Augensumme beim Dop¬
pelwurf « als Summe der Varianzen der unabhängigen Zufallsgrößen »Augenzahl
beim /-ten Wurf « ( i = 1 , 2) einfacher als durch Rückgriff auf ihre Definition (vgl.
Aufgabe 194/45 ) berechnen :

Var (Augensumme) = Var (A + F) = Var X + VarF = 2 • Var X =
= 2 - ^ [(A - 3,5)

2] =

= 2 • i • (2,5 2 + 1,5 2 + 0,5 2 + 0,5 2 + 1,5 2 + 2,5 2
) =

= | • (6,25 + 2,25 + 0,25 ) =
_ 35— 6 ■

Die Behauptung von Satz 208.2 läßt sich auf mehr als 2 Zufallsgrößen erweitern .
Als Voraussetzung genügt dabei aber schon die paarweise Unabhängigkeit der
auftretenden Summanden . 1853 bewies Irenee -Jules Bienayme ( 1796 - 1878)

Satz 209 . 1 : Sind X x , X 2 , ■■■,X n stochastisch paarweise unabhängige Zufalls¬
größen über demselben Wahrscheinlichkeitsraum (Q , P ) , dann ist die
Varianz der Summe dieser Zufallsgrößen gleich der Summe ihrer Varianzen :

V&r (X 1 + X 2 + ■■■ + A„) = VarZ 1 + VarX 2 + . . . + VarA „ ,

kurz : Var ( £ A ;) = £ VarA ; .
i = l i = 1
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Beweis : Unter Verwendung von fij ■■= SX t ergibt sich mit Satz 204 . 1 und Satz 205 . 1

Var
^

= g X t - <? ( £ X;)
^

T£ *<- £ J
\ li = 1 i = 1 _

= <? L (X ; - ^ )
2 + 2 - X (2fi - ft ) - (V, - /r,) =

V = 1 i < j )

= £ s [(X , - ft )
2] + 2 • £ g [(X , - ft ) (Xy - ft )] .

i = 1 i < j

Aus Aufgabe 214/15 folgt , daß mit den X t auch die Zufallsgrößen X t — ft paarweise unab¬
hängig sind . Nach Satz 205 .2 läßt sich der 2 . Term umformen , und man erhält

Var f £ Xt) = £ Var X , + 2 • £ S (X , - ft ) - g {Xj - ft ) =

= Y, VarX ( + 2 • £ {gX i - ft ) ■(fiX , - ft ) =
i = 1 i < j

= £ VarX ; .

Für die Aussage von Satz 205 .2 über den Erwartungswert des Produkts zweier
Zufallsgrößen mußte die Unabhängigkeit dieser Zufallsgrößen vorausgesetzt
werden . Die komplizierte Maßzahl Varianzwert benötigt diese Voraussetzung be¬
reits beim Satz über die Summe (Satz 208 .2) . Die Unabhängigkeit reicht als Vor¬
aussetzung nicht mehr aus , wenn man einen zu Satz 205.2 analogen Satz über die
Varianz des Produkts zweier Zufallsgrößen aufstellen will ; dies zeigt das folgende
Beispiel : Eine L-Münze werde zweimal geworfen . Die Zufallsgrößen X und Y
beschreiben die Ausfälle des 1 . bzw . des 2 . Wurfs . Dabei werde eine 1 notiert , falls
Adler fallt , sonst eine 0 . Dann gilt :

X 0 l y 0 l

Wx (x)

SX = SY

1
2

1“ 2 *

1
2 WY(y) 1

2
1
2

VarX = Var Y = \ .

Für die gemeinsame Wahrschein¬
lichkeitsfunktion Wx y erhält man :

X
y 0 l Wy (y )

0 1
4

1
4

1
2

1 1
4

1
4

1
2

Wx (x) 1
2

1
2
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Die WXY —Tabelle ist eine Produkttafel der Rand Wahrscheinlichkeiten , also sind
X und F unabhängige Zufallsgrößen .
Für das Produkt X ■Y gilt :

x - y 0 1

Wx . Y(x - y) 3 1
4 4

£ (X - Y) = i = SX - SY .
Var (X ■Y) = g [(X ■F) 2 ] - \g {X ■F)] 2 = * - ^ = Ä ■

Dagegen ist VarX ■VarF = \ • i = jg .

12 . 4 . 3 . Zusammenfassung
In den beiden vorausgehenden Abschnitten 12 . 4 . 1 . und 12 . 4 . 2 . wurde eine Reihe
von Sätzen über Erwartung und Varianz von Zufallsgrößen bewiesen , die wir in
der folgenden Tabelle übersichtlich zusammenstellen wollen . Dabei geben wir
zusätzlich die entsprechenden Sätze für die Standardabweichung a an .

a , be IR

Erwartung g Varianz Var Standardabweichung a

g a = a Vara = 0 q II o
g (X + a ) = gX + a Var (X + a) = VarX cr (X + a) = <t (X )
g (aX ) = a ■gX Var (aX ) = a2 VarX a (aX ) = \a \ - <r (X )
g (X + Y) = gX + gY

£ x l) = £ # x ,
:= i / i = i

& ist eine lineare
Funktion , d . h .,
g (aX + bY) = agX + bgY

X und Y stochastisch unabhängig
Y) = Var (X + Y) = VarX + VarF a (X + Y) = j/VarX + Var F

bzw.
_2 _ 2 , _ 2&X + Y ~ ^ X ' ^ Y

Alle Xi paarweise stochastisch unabhängig =>

Var £ X, - I Var V(

bzw.

' Z VarX,.
i = 1

_2
VSX; Ia 2

x .

12 . 5 . Das arithmetische Mittel von Zufallsgrößen
Bei der Messung einer Größe geht heute jedermann von der Vorstellung aus , daß
das arithmetische Mittel aus n Einzelmessungen »genauer « ist als eine Einzel -
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