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Figur 247 . 1 zeigt , wie gut diese Näherung
ist .
Wir haben bereits oben (Seite 244) gezeigt,
daß er bei festem n für p = j am größten
wird. Also muß M (n ; p ) bei festem n für
p = j bezüglich p am kleinsten werden ,
was Beobachtung 5 . entspricht . Anderer¬
seits wächst a bei festem p mit n echt
monoton ; also nimmt M {n ; p ) echt mo¬
noton ab (Beobachtung 10 . ) .
Anschaulich ist dies alles klar : Da die
Histogramme immer breiter werden , ihre
Flächeninhalte aber konstant den Wert 1
haben , sollte das höchste Rechteck des
Histogramms immer niedriger werden .

Fig . 247 . 1 Güte der Näherungsformel
für die Maxima von Binomialverteilungen
Einzelpunkte : Maximalwerte M (n ; p)
der Binomialverteilungen B (n ; p ) .
Durchgezogene Kurven : zugehörige
Näherungen (<7j/27t )

_ 1.
Beachte: Auf der n-Achse logarithmischer
Maßstab !

M (n ; p)

p = 0,05
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14 . 7. Die Ungleichung von Bienayme - Tschebyschow für binomial
verteilte Zufallsgrößen und das Gesetz der großen Zahlen

Wenden wir die Ungleichung von Bienayme - Tschebyschow, nämlich

P {\X - n \ ^ a) ^ VarX

auf binomial nach B (n ; p ) verteilte Zufallsgrößen X an , dann lassen sich p und
VarX durch np bzw . npq ersetzen , und wir erhalten

P {\X - np | ^ a) ^ .a
Die Ungleichung | X — np [ a beschreibt kurz das Ereignis { m j | X (m ) — np | 2: a ) .
Dividiert man die in der Mengenklammer stehende Ungleichung durch n , so
wird weiterhin dasselbe Ereignis beschrieben , also
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(co | X (co) — np f ^ a} co

Weil durch diese Umformung das Ereignis nicht verändert wurde , bleibt auch
die Wahrscheinlichkeit dieselbe , und es gilt

X
~
w

~ p > ± < ”££= n2

xDa X die Anzahl der Treffer in einer Bernoulli -Kette der Länge n ist,stellt — = : Hn
die Zufallsgröße »Relative Häufigkeit von Treffer in einer Bernoulli -Kette von
n Versuchen , bei denen der Treffer jeweils die Wahrscheinlichkeit p hat « dar .
Die Wertemenge von H n ist demnach die Menge (0 , 1 } , die Wahr¬
scheinlichkeitsverteilung von H n ergibt sich zu P {H „ = £) = B (« ; p ; k) . Den¬
noch ist H n nicht binomial verteilt ! hn bezeichne weiterhin einen bestimmten
Wert von H „ . Der Bequemlichkeit halber set-

e und erhalten damitzen wir —
n

pq p ( 1 - p )
n e ne n e

Oft kennt man p nicht . Dann schätzt man
p (l — p) durch seinen Maximalwert i ab (vgl .
Figur 248 . 1 ) .

Zusammenfassend gilt also
Fig . 248 . 1 Graph der Funktion
P 'r+ PlX - p)

Satz 248 . 1 : Bienayme - Tschebyschow-Un^ eichmg für die relative Häufig¬
keit. Für die relative Häufigkeit Hn (»Treffer«) in einer Bernoulli-Kette der
Länge n mit dem Parameter P (»Treffer «) = p gilt :

P ( \Hn - p \ ^ e) S M " 1
ne 2 4 « e2

Bemerkung: Das Tschebyschow-Kisiko rT = ^ ar
2
^- wird hier zu rT = und

ne
beträgt höchstens

4ne 2

Sowohl in der Interpretationsregel für Wahrscheinlichkeiten (5 . 2 . ) wie auch beim
Versuch der Definition der Wahrscheinlichkeit eines Ereignisses durch v. Mises
wird ein intuitiver Zusammenhang zwischen relativer Häufigkeit und Wahr¬
scheinlichkeit sichtbar . Satz 248 . 1 gibt uns nun die Möglichkeit , diesen Zu¬
sammenhang zu erkennen . Dazu schreiben wir die Tschebyschow-Ungleichung
von Satz 248 . 1 für das Gegenereignis auf , also

P {\H n - p \ < E) ^ l - P\ .ne
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Diese Ungleichung können wir folgendermaßen interpretieren : Die Wahrschein¬
lichkeit dafür , daß sich die relative Häufigkeit des Treffers um weniger als ein
beliebig kleiner , aber fest gewählter Wert s von der Wahrscheinlichkeit p des
Treffers unterscheidet , wächst mit zunehmender Länge n der Bernoulli -Kette
und kommt dem Wert 1 beliebig nahe . Damit erweist sich die relative Häufigkeit
für hinreichend großes n als guter »Meßwert « für die Wahrscheinlichkeit . Dieser
Sachverhalt ist die Aussage des sog . Hauptsatzes der Ars Conjectandi , den Jakob
Bernoulli ( 1655 - 1705 ) wohl um 1685 gefunden hat , und den man heute schwaches
Gesetz der großen Zahlen nennt .*

Satz 249 . 1 : Schwaches Gesetz der großen Zahlen von Jakob Bernoulli.
Ist A der Treffer einer Bernoulli -Kette der Länge n mit P (A) = p und
Hn {A ) seine relative Häufigkeit , dann gilt für jedes £ > 0 :

lim P ( \H n — p \ < e) = l
n - >oo

Man könnte nun versucht sein , e = 0 zu setzen , in der Hoffnung , mit zunehmen¬
dem n schließlich p exakt zu bestimmen . Bernoulli hat bereits daraufhingewiesen ,
»daß sich dann das Gegenteil ergäbe « ,

nämlich lim P ( \H n — p \ = 0) = lim P {H „ = p ) = 0 ,
n -*■co n -*■oo

was mit unserer Beobachtung über max { B (n ; p ; x)} von Seite 246f . überein¬
stimmt , und daß wir den Wert von p
»nur mit einer bestimmten Annäherung erhalten , d . h . zwischen zwei Grenzen einschließen
können , welche aber beliebig nahe beieinander angenommen werden dürfen « .

Der scheinbare Widerspruch klärt sich auf , wenn man bedenkt , daß im endlichen
Intervall ] / ? — e ; p + e [ für großes n sehr viel mögliche Werte von H n liegen ,

1 2 s
die alle im Abstand — aufeinanderfolgen . Es gibt also ungefähr -y - = 2 ns:

Werte für H n in diesem Intervall , von denen jeder zwar eine verschwindend kleine
Wahrscheinlichkeit hat , die Summe all dieser Wahrscheinlichkeiten aber nahezu
1 ergibt .

Was besagt im Sinne der Analysis eigentlich lim P {\H „ — p \ < e) = 1 ? Diese
n -* oo

Gleichung drückt doch aus , daß sich bei fest vorgegebenem positiven s zu jeder
beliebigen Schranke r\ > 0 eine Länge n0 für Bernoulli -Ketten des Parameters p

* Bernoulli hat , wie er selbst in der Ars Conjectandi (ed . 1713 ) wohl um 1703/4 schreibt , dieses Problem schon 20
Jahre mit sich herumgetragen . Wie stolz er auf diesen Satz war , zeigen seine Worte am Schluß des Beweisesin seinen
Tagebüchern :

»Hoc inventum pluris facio quam si ipsam circuli quadraturam dedissem , quod si maxime reperiretur , exigui
usus esset.«
»Diese Entdeckung gilt mir mehr , als wenn ich gar die Quadratur des Kreises geliefert hätte ; denn wenn diese
auch gänzlich gefunden würde , so wäre sie doch sehr wenig nütz .«

Der Name Gesetz der großen Zahlen stammt von Simeon-Denis Poisson (1781- 1840), der 1837 einen allgemeinen Satz
veröffentlichte , den er la loi des grands nombres nannte , und von dem das Bernoullische Gesetz der großen Zahlen ein
Spezialfall ist.
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finden läßt , so daß für alle n ^ n0 die Wahrscheinlichkeit dafür , daß sich die
relative Trefferhäufigkeit um weniger als e von der Wahrscheinlichkeit p für einen
Treffer unterscheidet , mindestens 1 — rj wird , daß also P {\H „

— p \ < s) S: 1 — tj
gilt . Nehmen wir z . B . tj = tq , so bedeutet P ( \H n — pj < s) ^ 90% nach der
Interpretationsregel für Wahrscheinlichkeiten : Bestimmt man sehr oft die rela¬
tive Häufigkeit H n des Treffers in Bernoulli -Ketten einer Länge li 2: «0 zum sel¬
ben Parameter p , so erhält man in ungefähr mindestens 90% aller Fälle Werte
h„ , die in das Intervall \ p - c : p + c [ fallen . Diesen Sachverhalt drückt man da¬
durch aus , daß man sagt , H„ konvergiere in Wahrscheinlichkeit nach p , oder auch ,
Hn konvergiere stochastisch nach p. Figur 250 . 1 veranschaulicht diese Art von
Konvergenz .

Fig . 250 . 1 Zum Schwachen Gesetz der großen Zahlen : Es gibt ein n0 , so daß für alle rt ä n0die Wahrscheinlichkeit dafür , daß die Werte hn der relativen Häufigkeit Hn in das Intervall
]p — e ; / >+ e [ fallen, mindestens 1 — r\ beträgt . - Anschaulich : Der Anteil der Schlangen ,die durch das 2e -Tor um p hindurchgehen , ist für rt±in 0 etwa 1 — t\ *

Aus der stochastischen Konvergenz von H n darf auf keinen Fall geschlossen
werden , daß von dem gefundenen n0 ab die relative Häufigkeit für noch größere
Längen in dem Intervall ]/ ? — e ; / >+ s [ bleibt , d . h . , daß etwa lim HJA ) = P (Ä)

n -* oo
gelte ! Eine etwas schwächere Behauptung als diese hat im Jahre 1909 Emile Borei
( 1871- 1956) für p = \ gefunden . Sie wurde 1917 von Francesco Paolo Cantelli
( 1875 - 1966 ) für 0 < p < 1 verallgemeinert und heißt

Das starke Gesetz der großen Zahlen :
P ( hm H n = p ) = 1

n -> oo

Es besagt , daß die relative Häufigkeit fast sicher gegen die zugehörige Wahr¬
scheinlichkeit konvergiert .
Wir verzichten auf den Beweis , da wir dazu unendliche Ergebnisräume benötigten .
* Jede gezeichnete Schlange ist folgendermaßen entstanden : Zu jedem n werden n unabhängige Versuche gemacht ,und dann h„ bestimmt . Z . B . : Um /i 100 zu bestimmen , müssen 100 unabhängige Versuche gemacht werden . Umdann eine Schlange bis n = 100 zeichnen zu können , müssen 1 + 2 + . . . + 100 = 5050 Versuche ausgeführt werden !Man darf die Schlangen von Figur 250.1 nicht mit denen der Figuren 31. 1, 33. 1, 34. 1 und 71. 1 verwechseln , die dieEntwicklung von hn darstellen . So ist z . B . in Figur 31.1 die Entstehung von h800(»Adler «) = \ dargestellt ; dieSchlange gibt also die Entwicklung für diesen einen Wert an .
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Das schwache Gesetz der großen Zahlen rechtfertigt unsere Interpretationsregel
für Wahrscheinlichkeiten , d . h . die statistische Bestimmung von Wahrscheinlich¬
keiten . Um mit Jakob Bernoulli zu sprechen : Wir können die Wahrscheinlichkeit

»a posteriori fast ebenso genau finden , als wenn sie uns a priori bekannt «
wäre . Es liefert uns also gewissermaßen eine Meßvorschrift für die Wahrschein¬
lichkeit von solchen Ereignissen , die unter gleichen Bedingungen beliebig oft
wiederholbar sind . Die Wahrscheinlichkeit solcher Ereignisse läßt sich damit
wie eine physikalische Konstante messen !
Bei flüchtiger Betrachtungsweise könnte man meinen , daß im Gesetz der großen
Zahlen ein Zirkelschluß vorliegt , da es eine Aussage über einen Zusammenhang
zwischen der relativen Häufigkeit eines Ereignisses und seiner Wahrscheinlichkeit
macht , den man über die Interpretationsregel schon zur Grundlage der Defini¬
tion der Wahrscheinlichkeit gemacht hat . Ein solcher circulus vitiosus liegt aber
nicht vor , weil wir als Grundlage der mathematischen Theorie der Wahrschein¬
lichkeit die Wahrscheinlichkeit eines Ereignisses im Axiomensystem von Kolmo-
gorow völlig unabhängig vom Begriff der relativen Häufigkeit definiert haben .
Das Gesetz der großen Zahlen zeigt nun , daß diese abstrakte Definition der
Wahrscheinlichkeit genau den realen Hintergrund erfaßt , für dessen Beschrei¬
bung man die Wahrscheinlichkeitstheorie geschaffen hatte . Wir können nun auch
noch verstehen , warum wir das Empirische Gesetz der großen Zahlen , die Sta¬
bilisierung der relativen Häufigkeit um einen festen Wert , nicht präzise formu¬
lieren konnten . Wir benötigen zu diesem Zweck nämlich den Begriff der Wahr¬
scheinlichkeit . Das schwache Gesetz der großen Zahlen drückt diese Stabilisie¬
rung aus ; es besagt ja gerade , daß große Abweichungen der relativen Häufigkeit
von diesem festen Wert nach einer sehr langen Versuchsreihe sehr unwahrschein¬
lich sind .
Die Aussage des schwachen Gesetzes der großen Zahlen wird von vielen Leuten
mißverstanden . So neigen manche Lottospieler wie einst d ’Alembert ( 1717- 1783)
dazu , gerade diejenigen Zahlen zu tippen , die bei den bis dahin erfolgten Aus¬
spielungen sehr selten erschienen sind . Sie meinen nämlich , das schwache Gesetz
der großen Zahlen arbeite wie ein Buchhalter , der darauf achtet , daß alle Zahlen
gleich oft gezogen werden . Das schwache Gesetz der großen Zählen arbeitet aber
anders , nämlich gewissermaßen durch Überschwemmung * : Defizite oder Über¬
schüsse , die sich bei den absoluten Häufigkeiten im Laufe der Zeit ergeben , wer¬
den in der relativen Häufigkeit dadurch ausgebügelt , daß sie als Differenzen im
Zähler bei sehr großem Nenner keine Rolle mehr spielen . So hat z . B . die Zahl 13 ,
wie die Tabelle zu Aufgabe 38/7 zeigt , nach 1225 Ziehungen ein Defizit von 29
gegenüber dem Sollwert von 150 . Das bedeutet für die relative Häufigkeit ein
Defizit von jffj < 2,4% . Dasselbe Defizit von 29 würde bei 10000 Ziehungen in
der relativen Häufigkeit nur mehr 0,29% ausmachen ; nach 1 Million Ziehungen
spielt dieses Defizit mit 0,0029% aber keine Rolle mehr .
Analog sorgt beim Galtonbrett das schwache Gesetz der großen Zahlen dafür ,
daß auf lange Sicht , wenn immer mehr Kugeln durch den Nagelwald laufen , die
Fächer immer genauer nach B (« ; -§) gefüllt werden . Dabei ist es offensichtlich

* swamping effect - L .H . C. Tippett prägte 1943 diesen Begriff .
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unsinnig anzunehmen , daß eine startende Kugel weiß , in welchem Fach gerade
Defizit herrscht , um bevorzugt dorthin zu springen .
Unterstellt man dem schwachen Gesetz der großen Zahlen also einen Buchhal¬
tercharakter , so müßte man wider alle Vernunft annehmen , daß stochastische
Geräte Gewissen und Gedächtnis hätten , wie es Joseph Bertrand (1822- 1900)
einmal treffend formulierte * . Wäre dem so , entgegnete 1785 Leonhard Euler ( 1707
bis 1783 ) in seinen Opuscula Analytica * * der Auffassung d ’Alemberts ,
»dann müßte jeder nach einem Jahr , ja nach einem Jahrhundert stattfindende Zug vom Er¬
gebnis aller Züge abhängen , die seit undenklichen Zeiten an irgendwelchen Orten dieser Erde
stattgefunden haben ; Absurderes kann sicherlich kaum gedacht werden .«

14. 8 . Anwendungen der Ungleichung von Bienayme- Tschebyschow
Die Ungleichung von Bienayme -Tschebyschow kann , je nach Bedarf , unter¬
schiedlich formuliert werden . Wir stellen die drei häufigsten Formulierungen der
Bienayme -Tschebyschow- Ungleichung in der Form , in der sie sich am leichtesten
merken lassen , zusammen :

1) Ist X eine Zufallsgröße mit S X = p und ist a > 0 , dann gilt
Vor yP ( \X - p \ ^ a) ^ (Satz 184. 1)

2) Ist H n die relative Häufigkeit eines Ereignisses mit der Wahrscheinlich¬
keit p in einer Bernoulli -Kette der Länge n und ist e > 0 , dann gilt
P ( | H „ - p |̂ e) ^ ^ ^ - A ^ . (Satz 248. 1)ne 4 ne

3) Ist X„ das arithmetische Mittel n gleichverteilter , paarweise unabhängi¬
ger Zufallsgrößen X t mit S' Xf = p und Var A , = a 2 und ist a > 0 , dann
gilt

P ( | Xn - p | S a) ^ . (Aufgabe 271/71 )

Viele Aufgaben der Wahrscheinlichkeitsrechnung handeln davon , daß das wahre
Risiko , d . h . , daß die Wahrscheinlichkeit dafür , daß die Werte einer ZufallsgrößeX von ihrem Erwartungswert p um mindestens a abweichen , eine gewisseSchranke p nicht überschreiten soll , kurz , daß

P ( \X - p \ ^ a ) ^ p ( 1)
sein soll . Anders ausgedrückt : Die Wahrscheinlichkeit , daß die Werte von Xsich um weniger als a von p unterscheiden , soll einen gewissen Mindestwert be¬sitzen , d . h . ,
* »On fait trop d’honneur ä la roulette : eile n’a ni conscience ni memoire .« (Calcul des Probabilites , p.XXII , 1889)** Die Abhandlung lautet Solutio quarundam quaestionum difficiliontm in Calculo Probabilium . - Friedrich II . batEuler 1749 und 1763 um Rat bezüglich der Errichtung von Lotterien , um die Finanznot seines Staates zu beheben .Aus der Beschäftigung mit diesem Problem entstanden Eulers wahrscheinlichkeitstheoretische Arbeiten .
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