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unsinnig anzunehmen , daß eine startende Kugel weiß , in welchem Fach gerade
Defizit herrscht , um bevorzugt dorthin zu springen .
Unterstellt man dem schwachen Gesetz der großen Zahlen also einen Buchhal¬
tercharakter , so müßte man wider alle Vernunft annehmen , daß stochastische
Geräte Gewissen und Gedächtnis hätten , wie es Joseph Bertrand (1822- 1900)
einmal treffend formulierte * . Wäre dem so , entgegnete 1785 Leonhard Euler ( 1707
bis 1783 ) in seinen Opuscula Analytica * * der Auffassung d ’Alemberts ,
»dann müßte jeder nach einem Jahr , ja nach einem Jahrhundert stattfindende Zug vom Er¬
gebnis aller Züge abhängen , die seit undenklichen Zeiten an irgendwelchen Orten dieser Erde
stattgefunden haben ; Absurderes kann sicherlich kaum gedacht werden .«

14. 8 . Anwendungen der Ungleichung von Bienayme- Tschebyschow
Die Ungleichung von Bienayme -Tschebyschow kann , je nach Bedarf , unter¬
schiedlich formuliert werden . Wir stellen die drei häufigsten Formulierungen der
Bienayme -Tschebyschow- Ungleichung in der Form , in der sie sich am leichtesten
merken lassen , zusammen :

1) Ist X eine Zufallsgröße mit S X = p und ist a > 0 , dann gilt
Vor yP ( \X - p \ ^ a) ^ (Satz 184. 1)

2) Ist H n die relative Häufigkeit eines Ereignisses mit der Wahrscheinlich¬
keit p in einer Bernoulli -Kette der Länge n und ist e > 0 , dann gilt
P ( | H „ - p |̂ e) ^ ^ ^ - A ^ . (Satz 248. 1)ne 4 ne

3) Ist X„ das arithmetische Mittel n gleichverteilter , paarweise unabhängi¬
ger Zufallsgrößen X t mit S' Xf = p und Var A , = a 2 und ist a > 0 , dann
gilt

P ( | Xn - p | S a) ^ . (Aufgabe 271/71 )

Viele Aufgaben der Wahrscheinlichkeitsrechnung handeln davon , daß das wahre
Risiko , d . h . , daß die Wahrscheinlichkeit dafür , daß die Werte einer ZufallsgrößeX von ihrem Erwartungswert p um mindestens a abweichen , eine gewisseSchranke p nicht überschreiten soll , kurz , daß

P ( \X - p \ ^ a ) ^ p ( 1)
sein soll . Anders ausgedrückt : Die Wahrscheinlichkeit , daß die Werte von Xsich um weniger als a von p unterscheiden , soll einen gewissen Mindestwert be¬sitzen , d . h . ,
* »On fait trop d’honneur ä la roulette : eile n’a ni conscience ni memoire .« (Calcul des Probabilites , p.XXII , 1889)** Die Abhandlung lautet Solutio quarundam quaestionum difficiliontm in Calculo Probabilium . - Friedrich II . batEuler 1749 und 1763 um Rat bezüglich der Errichtung von Lotterien , um die Finanznot seines Staates zu beheben .Aus der Beschäftigung mit diesem Problem entstanden Eulers wahrscheinlichkeitstheoretische Arbeiten .
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P { \X - n \ < ä] ^ \ - rj . (2)
Da man nun auf Grund von Satz 184 . 1 weiß , daß das wahre Risiko höchstens so
groß wie das Tschebyschow -Risiko rT ist , ist Bedingung ( 1 ) für das wahre Risiko
sicher erfüllt , wenn man das Tschebyschow-Risiko rT höchstens so groß wie die
Schranke rj werden läßt , also (meist ) weniger fordert , nämlich

P ( \X - n \ ^ a) Zr T Zr, .

Es ist uns natürlich bewußt , daß man dadurch unter Umständen viel zu grobe
Abschätzungen erhält . Wo möglich , wird man außerdem versuchen , mit rT = rj
auszukommen .
Nun zu den Aufgaben ! Der einfachste Aufgabentyp ist derjenige , bei dem aus ge¬
gebenen Daten eine Schranke für das wahre Risiko gesucht wird .
Beispiel 1 : Wie groß ist die Mindestwahrscheinlichkeit dafür , daß die relative
Häufigkeit für eine Sechs beim lOOfachen Wurf eines L-Würfels um weniger als
0,05 von der Wahrscheinlichkeit für eine Sechs abweicht ?
Lösung : An sich könnte man die gesuchte Wahrscheinlichkeit direkt berechnen .
Mit X ■■= »Anzahl der Sechsen bei 100 Würfen « erhalten wir

P ( \H X00 — i | < 0,05) = — i I < ab) = Pd X - TI < 5) =

= P ( llf < X < 21 -f ) =

= £ B ( 100 ; i ; /c) = F1
1
/
°o

(21) - F1
1
/
° °

( ll ) =
k = 12

= 0,89982 - 0,07772 = 0,82210.

Hätten wir keine Tabellen , z . B . wenn n = 80 wäre , so müßten wir eine sehr
mühsame Rechnung durchführen . Da ist man dann oft froh , wenn man die ge¬
suchte Wahrscheinlichkeit durch eine untere Schranke abschätzen kann . Wir
suchen nun also eine untere Schranke für P ( \H 100 — i \ < 0,05 ) . Dazu gehen wir
zum Gegenereignis über und suchen eine obere Schranke für P {\ H U)0 — | j A 0,05 ) .

1 . 5
Das Tschebyschow -Risiko r .r = - -—-—T ist eine solche obere Schranke . Wir7 T WO - 0,052
erhalten rT = f < 0,556 . Also ist

p ( \H100 - i \ < 0,05) £ 1 - $ = f > 44,4% .
Das bedeutet :
Mit einer Wahrscheinlichkeit von mehr als 44,4% liegen beim lOOfachen Wurf
eines L-Würfels die Weite h l00 (»Sechs«) der relativen Häufigkeit H 100 (»Sechs«)
im Intervall ]£ - 0,05 ; \ + 0,05 [ = ] ^ ; was durch FiSur 2541 veran '
schaulicht wird .

In einer Vielzahl von Aufgaben wird nach der Zahl n der Versuche gefragt , die
nötig sind , um das wahre Risiko nicht größer als r] werden zu lassen .
Beispiel 2 : Wie oft muß ein L-Würfel mindestens geworfen werden , damit mit
einer Sicherheit von mindestens 60 % das arithmetische Mittel der Augenzahlen
um weniger als 0,25 vom Erwartungswert 3,5 abweicht ?
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- -0,05

60 60
Fig . 254. 1 Die Wahrscheinlichkeit , daß beim lOOmaligemWerfen eines L-Würfels die relative
Häufigkeit der Sechs um weniger als -jq von ihrer Wahrscheinlichkeit £ abweicht , ist minde¬
stens f .

Lösung: Gesucht ist ein kleinstes n, so daß P { \ Xn — 3,51 < 0,25) ^ 60% = 1 — rj.Da die Varianz der Zufallsgröße Augenzahl den Wert ff hat (Aufgabe 194/44),erhalten wir aus der Tschebyschow- Ungleichung

P ( \Xn - 3,5 f ^ 0,25 ) g —

Setzen wir das rechts stehende Tschebyschow-Risiko höchstens gleich der Schranke
f/ ( = 40%) , dann gewinnen wir für n die folgende Abschätzung

- ^ 0,4o ^ f = 116 | , also rt ^ 117 .12 • 0,25 • n
Somit gilt : Wirft man mindestens 117mal einen L -Würfel , so ist die Wahrschein¬
lichkeit dafür , daß das arithmetische Mittel der Augenzahlen vom Erwartungswert
3,5 um weniger als 0,25 abweicht , mindestens 60% , was Figur 255. 1 veranschau¬
lichen soll .

Schwieriger als diese beiden Aufgabentypen sind diejenigen , in denen s- bzw.
a -Intervalle gesucht sind . Dabei sind zwei Fragestellungen zu unterscheiden .
1 . Fragestellung: Es ist dasjenige Intervall um p (bzw. p) gesucht , in das die
relative Häufigkeit Hn (bzw . das arithmetische Mittel X ) mit einer vorgegebenen
Sicherheitswahrscheinlichkeit von mindestens 1 — rj trifft . Man sucht also ein
e , so daß die Bedingung

\H„ ~ p \ < e op ~ e < Hn < p + e
mit einer vorgegebenen Mindestwahrscheinlichkeit 1 — p erfüllt wird .
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- - 0.01

Fig. 255 . 1 Soll die Wahrscheinlichkeit , daß das arithmetische Mittel der Augenzahlen eines
L-Würfels vom Erwartungswert 3,5 um weniger als \ abweicht , mindestens 60% betragen , so
muß mindestens 117mal gewürfelt werden .
Gezeichnet ist vom Stabdiagramm der Wahrscheinlichkeitsverteilung P [X 117 = x) nur
jeder dritte der 586 Stäbe (die bei x e {Ltt ?, ir ?>. . . , 6 } liegen), sofern er mindestens 5 ■10 “ 5
mißt.

Beispiel 3 : In welchem Intervall um p = £ liegt bei lOOmaligem Werfen eines
L-Würfels die relative Häufigkeit für die Augenzahl 6 mit einer Mindestwahr¬
scheinlichkeit von 60% ?
Lösung : Gesucht ist ein e , so daß

P ( \H 100 - i | < S) = P (i - e < H l00 < i + e) ^ 60 %
wird . Statt dessen können wir auch

^ ( l^ ioo — il ^ e) ^ 40%

fordern . Das ist sicher erfüllt , wenn das Tschebyschow-Risiko höchstens 40%
wird , also

1^ 2 ^ 0,4 A ^ ^ 1/2 = 0,0589 . . .

Für e = 0,059 ist die Bedingung sicherlich erfüllt , d . h . , mit einer Wahrschein¬
lichkeit von mindestens 60% ergeben sich Werte A 100 (»6«) der relativen Häufig¬
keit tf 100 (»6«) zwischen 0,107 und 0,226. Figur 256 . 1 veranschaulicht diesen
Sachverhalt . - Bedenkt man noch , daß H 100 nur Werte aus {0 , hTo , tüö >• • • >Tho > 1 }
annehmen kann , so läßt sich verschärfend sagen , daß mit einer Wahrscheinlich¬
keit von mindestens 60% die relative Häufigkeit / / 100(»Sechs«) Werte im Inter¬
vall [0,11 ; 0,22] annimmt .



256 14 . Binomialverteilung

P ( IH100- | l < f ) = 90 %

l < Ü ) 5 60 %

■0.1

6 12

T 1 ft
6
~24 6

ÖT

Fig . 256 . 1 Beim lOOmaligen Werfen eines L-Würfels ist die Wahrscheinlichkeit mindestens
60% , daß die relative Häufigkeit des Ereignisses »Sechs« von seiner Wahrscheinlichkeit \ um
weniger als s = ^ j/2 abweicht . - Punktiert ist dasjenige g-Intervall angegeben , das man
wählen muß , falls man eine Wahrscheinlichkeit von mindestens 90 % fordert .

Die Aufgabenstellung von Beispiel 3 lautet allgemein P ( \ H „ — p \ < e) 3: 1 — r]
bzw . P ( \H „ — p \ Sie) <! rj . Mit dem Ansatz rT = ti , also — = p , erhält man

ns

was zum Intervall I (p )

führt . Es wird also jedem p ein Intervall / (/;) zugeordnet , in das die Werte hnder relativen Häufigkeit H n mindestens mit der Wahrscheinlichkeit 1 — jj hin¬
einfallen . Figur 257. 1 veranschaulicht diesen Zusammenhang p i—> I {p ) . Die
Hüllkurve all dieser Intervalle ist eine Ellipse mit der Gleichung

piX - p)
IK ~ P

2. Fragestellung: Der andere Fall der Intervallbestimmung besteht darin , daß
man bei einer Versuchsserie der Länge n einen Wert h„ der relativen HäufigkeitHn ermittelt hat und nun ein g-Intervall um diesen Wert h„ angeben möchte , von
dem man mit einer vorgegebenen Mindestwahrscheinlichkeit sagen kann , daß
es die unbekannte , aber feste Wahrscheinlichkeit p enthält . Solche Zufallsinter¬
valle nannte 1934 Jerzy Neyman * (1894- 1981 ) Vertrauensintervall oder Konfidenz¬
intervall für p .
* gesprochen nejman
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Fig.
Der
also
Für

n = 100 | r) =10 %

Graph der Relation p i—> I (p ) ist die Punktmenge {{p | hn) | h„ e I {p ) n [0 ; 1] a p e [0 ; 1] } ,
das grau unterlegte Gebiet einschließlich des schwarzen Randes .
P = I ist / (| ) = ]| — tö ]/3Ö ; | + to ]/30 [ c: ]0,613 ; 0,887 [ rot hervorgehoben .

In dieses Intervall fällt die relative Trefferhäufigkeit mindestens mit der Wahrscheinlichkeit
90%, wenn P (»Treffer«) = f ist .
- : Geht man bei h„ = J ein , so erhält man das zugehörige echte Konfidenzintervall auf
der p -Achse (vgl. Figur 260. 1) .

Man konstruiert dazu vor der Ausführung des Zufallsexperiments ein möglichst
enges Zufallsintervall ~

\ H„ — e ; H „ + ;: [ . das die unbekannte , aber feste Wahr¬
scheinlichkeit p mindestens mit der Wahrscheinlichkeit 1 — r\ überdeckt , für das
also P ( \Hn - p \ < e) = P (H n - e < p < H „ + £) ^ l - ri gilt .
Bei der 1 . Fragestellung lag das s - Intervall um den bekannten Wert p fest . Der
Zufall steckte im Hineintreffen der relativen Häufigkeit Pl„ in dieses Intervall .
Bei der 2 . Fragestellung ist zwar auch p fest , aber nicht bekannt . Der Zufall be¬
stimmt jetzt den Wert h„ der relativen Häufigkeit H n und damit mindestens mit
der Wahrscheinlichkeit 1 — rj das e-Intervall um h„ , das so auf der Zahlengeraden
liegt , daß es den gesuchten p -Wert überdeckt . Dabei hängt der Radius s natür¬
lich von r\ ab . (Das Verfahren ähnelt also dem Jagen einer Fliege mit einer Flie¬
genklatsche : Die Fliege ist das p , die Klatsche das E- Intervall , die Klatschen¬
mitte trifft zufallsgesteuert bei jedem Schlag auf das jeweilige hn .)

Beispiel 4 : Die ersten 100 Würfe von Tabelle 10. 1 ergaben /u 0o ( { 6} ) = B,18. Für
welches Intervall kann man mit einer Sicherheit von mindestens 90% schließen ,
daß es die Wahrscheinlichkeit p für eine Sechs enthält ?

Lösung : Gesucht ist ein e, so daß P {H IW ( { (>} ) — s < p < 77100 ( { 6 } ) + e) (ä 90 %
wird . Dazu betrachten wir wieder das Gegenereignis , also

p <\ Hioo - P \ 10% ,
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n =100 n = 10 %

Fig . 258 . 1 Grobe Konfidenzintervalle . Der Graph der Relation h„ > I (h„) ist die Punktmenge
{(/zn |^ ) |/ ; e/ (/2n) n [0 ; 1] A /i„ e [0 ; 1] } , also das grau unterlegte Gebiet einschließlich des
schwarzen Randes . Für h 100 = f ist / (f ) = ] | — ]/lÖ ; | + 2üj/lÖ [ <= ] 0,591 ; 0,909 [ rot
hervorgehoben . Man kann mit einer Sicherheit von mindestens 90 % darauf vertrauen , daß
dieses Intervall die Wahrscheinlichkeit p = P (»Treffer «) überdeckt , wenn die relative Häufig¬
keit des Treffers zu h 100 = f gemessen wurde .

was sicherlich erfüllt ist , wenn - £ 5 . < ^
, < 10% .

Wir erhalten g % io 1/40 = 0,158 . . . Zum Zufallsergebnis h UM ( \ 6 \ ) = 0,18 ge¬
hört also das Intervall ] 0,021 ; 0,339[ , von dem wir sagen können , es wurde auf
Grund eines Verfahrens erhalten , das mit einer Wahrscheinlichkeit von min¬
destens 90 % zu einem Intervall führt , das die wahre Wahrscheinlichkeit p für
die Augenzahl 6 bei diesem Würfel enthält .
Löst man die Aufgabenstellung von Beispiel 4 allgemein mit dem Ansatz
P ( \H „ — p \ > g) < ^

, = n , so erhält man g = — \= und damit1 - ~ ne 2 ~ 4 « g2
21/W

das grobe Konfidenzintervall I (hn) = h„ -
2 l/W

K +
21/ nrf

Es wird also jedem Wert hn ein Intervall I (hn) zugeordnet , das den unbekann¬
ten Wert p mindestens mit der Wahrscheinlichkeit 1 — rj enthält . Figur 258. 1
veranschaulicht diesen Zusammenhang hn y~~* I (h„) . Die Hüllkurve dieser groben
Konfidenzintervalle ist ein Parallelenpaar mit der Gleichung \p — hn \ =

»Genauere« Näherung. Weil p unbekannt ist , mußten wir den Ausdruck pq aus
rT durch den Wert \ abschätzen . Kennte man p , so wäre für p + j eine genauere
g-Bestimmung durch Pß_

ne2 = r\ möglich . Man erhielte s Nach dem
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n = 100 | ti - 10 %
P

US

<x

Fig . 259 . 1 Näherungskonfidenzintervalle . Der Graph der Relation h„ i- > I (hn) ist die Punkt¬
menge {(h„ \p ) \pel (hn) n [0 ; 1] a h„ e [0 ; 1] } , also das grau unterlegte Gebiet einschließlich
des schwarzen Randes . Für h 100 = | ist f (f ) = ]£ - ^ |/3Ö ; f + <k |/30 [ c ] 0,613 ; 0,887 [
hervorgehoben . Man kann mit einer Sicherheit von etwa 90% darauf vertrauen , daß dieses
Intervall die Wahrscheinlichkeit p — P (»Treffer«) enthält , wenn die relative Häufigkeit des
Treffers zu h 100 = f gemessen wurde .

schwachen Gesetz der großen Zahlen ist aber h„ ein Näherungswert für p . Er-

K ( 1 ~ K)setzen wir also p durch hn , so wird e

0,18 • 0,82
100 ■0,1

Mit den Werten aus Beispiel 4 gewinnen wir s

wie erwartet , ein kleineres Konfidenzintervall um 0,18 für p = E ( { 6 } ) . Wir kön¬
nen damit sagen : Das Intervall ] 0,059 ; 0,301 [ wurde durch ein Verfahren ermit¬
telt , das mit einer Sicherheit von ungefähr mindestens 90 % zu einem Intervall
führt , das die wahre Wahrscheinlichkeit für die Augenzahl 6 bei diesem Würfel
enthält .
Die genauere Näherung führt im allgemeinen Fall also zu einem

Kif - K)K0 - ~ K )
NäherungskonfidenzintervaH T(hn)

Figur 259. 1 zeigt den Zusammenhang hn k -> / (/?„ ) . Die Hüllkurve dieser Nähe -
KQ - K)

rungskonfidenzintervalle ist eine Ellipse mit der Gleichung \p — h „ j =

die mit der Ellipse aus Figur 257. 1 übereinstimmt , wenn man die Achsenbezeich¬
nungen p und h„ miteinander vertauscht . Diese Näherung ist vor allem für sehr
kleine und sehr große h„ nicht sehr sinnvoll . In Figur 259. 1 entartet z . B . für
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n = 100 | ri =10 %

Fig . 260 . 1 Echte Konfidenzintervalle und die Konfidenzellipse \p — h„ \ = . Das graunrj
unterlegte Gebiet einschließlich des schwarzen Randes ist die Menge der Konfidenzinter¬
valle . Für h 10 o = | ist das zugehörige Konfidenzintervall 3 (f ) = ] -& — Jjj/34 ; n - +
+ 55 j/34 [ <= ] 0,594 ; 0,860 [ rot hervorgehoben . Man kann mit einer Sicherheit von min¬
destens 90% darauf vertrauen , daß dieses Intervall die Wahrscheinlichkeit p = P (»Treffer «)
überdeckt , wenn die relative Häufigkeit des Treffers zu h i00 = f gemessen wurde .

hn = 0 das Vertrauensintervall für p zu einem Punkt . Das würde heißen , daß
für h„ = 0 die Wahrscheinlichkeit p mit der Sicherheit 1 — r\ (in unserem Bei¬
spiel also 90%) den Wert 0 hätte , was sicher zuviel gesagt ist , wie die grobe Ab¬
schätzung von Figur 258 . 1 zeigt , die als grobes Konfidenzintervall für diesen Fall
noch das Intervall 0 ; - zuläßt .’ 2 \/nr \
Das echte Konfidenzintervall erhält man , wenn man das oben gefundene e
verwendet und damit die Ungleichung | h„ — p \ < e löst . Die Grenzen dieses
offenen Intervalls sind somit die Lösungen der Gleichung

Bezeichnen wir die beiden Lösungen dieser quadratischen Gleichung für p mit
/q und p 2 (wobei p x < p 2 sein soll) , dann wird jedem hn
das echte Konfidenzintervall 3 (/j„) = j/q ; /j 2 [
zugeordnet .
Man gewinnt dieses echte Konfidenzintervall übrigens graphisch , wenn man die
Relation zwischen hn und p aus Figur 257. 1 von der /q -Achse her liest . Zeichnet
man die /q -Achse , wie üblich , als Rechtswertachse , dann wird die Hüllellipse von
Figur 257. 1 an der Winkelhalbierenden gespiegelt . Es entsteht Figur 260. 1 , die



Aufgaben 261

n =100 T) =10 %
P

. 0.1. 0.5 3
4

h„

Fig . 261 . 1 Der Zusammenhang zwischen grobem , Näherungs - und echtem Konfidenzinter¬
vall einschließlich der Hüllkurven Parallelenpaar , Näherungskonfidenzellipse (schwarz) und
echte Konfidenzellipse (rot ) . - Hervorgehoben ist der Wert hn

— f .

die echten Konfidenzintervalle samt der Konfidenzellipse mit der Gleichung
PX ~ p) als Hüllkurve zeigt .

In unserem konkreten Beispiel finden wir das echte Konfidenzintervall durch
PiX - p)
100 ■0,1

Lösen der quadratischen Gleichung 10,18 — p \ . Eine leichte Rech¬

nung liefert p 1 = 0,08965 . . . und p 2 = 0 .32852 . . . Damit können wir sagen :
Das 90 % -Konfidenzintervall ] 0,089 ; 0,329[ wurde durch ein Verfahren ermittelt ,
das mit einer Sicherheit von mindestens 90 % zu einem Intervall führt , das die
wahre Wahrscheinlichkeit für die Augenzahl 6 bei diesem Würfel enthält . Das
bedeutet : Führt man sehr oft dieses Verfahren durch , so werden mindestens 90 %
der so gefundenen Intervalle p enthalten . (Vgl . Aufgaben 275/96 und 97.)
Die vermeintlich genauere Schranke 0,301 von 7(0,18 ) darf uns nicht täuschen !
Sie ist ja nur ein Näherungswert . Zur Klärung zeigt Figur 261 . 1 den Zusammen¬
hang zwischen dem Parallelenpaar der groben Abschätzung , der Hüllellipse sog.
»genaueren « Näherung und der Konfidenzellipse .

Aufgaben
Zu 14 . 1 .

1 . Eine Urne enthält 6 schwarze , 8 weiße und 10 rote Kugeln . Mit welcher Wahrschein¬
lichkeit erhält man bei ömaligem Ziehen mit Zurücklegen genau 3 rote Kugeln ?

2 . Eine Maschine stellt Stanzteile mit einem Ausschußanteil von 5 % her . Wie groß ist die
Wahrscheinlichkeit , daß 4 zufällig ausgewählte Teile ausnahmslos in Ordnung sind ?
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