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15.5. Die Funktionen ¢, und @,

Beim Beweis des lokalen und des integralen Grenzwertsatzes haben wir die
binomial verteilten ZufallsgréBen standardisiert. Die Niherungsfunktionen ¢
und @ approximierten also die standardisierte Dichtefunktion ¢, bzw. die
standardisierte kumulative Verteilungsfunktion u — F}'(x) der binomial verteil-
ten ZufallsgroBe. Macht man nun die Standardisierung bei den Funktionen ¢
bzw. & riickgingig, dann erhilt man Funktionen, die die urspriingliche Dichte-
funktion f, bzw. die urspriingliche kumulative Verteilungsfunktion x — F(x)
approximieren. Thre Terme gewinnt man durch folgende Uberlegungen.

Auf Grund des lokalen Grenzwertsatzes lassen sich die Werte B(n; p: k) durch
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(0 ( = ) approximieren. Wir haben in 15.3. die Funktion ¢ in Abhingigkeit
g
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vom Argument u = K diskutiert. Natiirlich kann man auch x als unab-
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hingige Variable nehmen. Man erhélt dann eine auf [R definierte Funktion ¢,,,
die noch von den beiden Parametern u und ¢ abhingt.

Definition 299.1: ¢, (x) = : P ( % _—'—ﬂj '

Die Eigenschaften von ¢,, ergeben sich auf Grund der Uberlegungen von Seite 290
iiber die Funktion ¢, die in der Form von Definition 299.1 sich als ¢, , schreibt.
Der Graph von ¢,, geht nun aus dem Graphen von ¢ durch folgende geome-
trische Konstruktion hervor: Zunichst wird der Graph von ¢ in x-Richtung um
i verschoben. Dann wird der Abstand a eines Graphenpunkts von der Symme-
trieachse x = yu mit ¢ multipliziert und gleichzeitig seine Ordinate ¢(a) durch
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Fig. 299.1 Zusammenhang der Graphen von ¢,, mit dem Graphen von @
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o dividiert, d.h., der Punkt (a|¢(a)) geht iiber in den Punkt (+al— (0 (a)).
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(Vergleiche Figur 299.1.) Der Graph von ¢, ist also achsensymmetrisch zur Ge-
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raden x = u; dort nimmt ¢, das Maximum — an. An den Stellen y—g
ocl/2n

und p+ o liegen die Wendepunkte mit den Ordinaten _
ol/2ne

Mit Hilfe der Funktion ¢, schreibt sich die Aussage des lokalen Grenzwertsatzes
kurz in der Form:

B(n; p; k) = ¢, (k).

Die Funktion @ wurde als Integralfunktion der Funktion ¢ definiert. Analog
setzen wir fest:

n 1 1A
g : J - (=)
Definition 300.1: @, _(x):= 0, 0)dt = @E dr
. - I:"7| 11-.: &
Offensichtlich ist @,., die Gaufsche Integralfunktion .
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Satz 300.1: @, (x) = rp( )
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Beweis: Mit Hilfe der Substitution u :— r_"' erhilt man
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Man gewinnt den Graphen von ¢, aus dem Graphen von @ durch Parallelver-
schiebung in x-Richtung um y; anschlieBend wird der Abstand a eines Graphen-
punktes von der Geraden x = y mit ¢ multipliziert, der Ordinatenwert @(a)

jedoch bleibt unveriindert. (Siche Figur 300.1.)
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Fig 300.1 Zusammenhang der ( sraphen von @, mit dem Graphen von @
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