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15.6. Der zentrale Grenzwertsatz und die Normalverteilung

Jede nach B(n: p) verteilte ZufallsgroBe 1aBt sich — wie in 14.5 gezeigt — als Summe
n
> X, von n unabhiingigen ZufallsgroBen X; schreiben, die alle nach B(1: p) ver-

teilt sind: dabei bedeutet X,:=»Anzahl der Treffer beim i-ten Versuch«. Nach
Satz 205.1 bzw. 209.1 errechnet sich dann der Erwartungswert u bzw. die Varianz

%

fo.n L5 " £n
o® dieser ZufallsgroBe zu c‘i( }:\\) = ) £X; bzw. zu ‘»";11'( XE] =
1= 1 o]

= 2L VarX;. Mit diesen Ausdriicken fiir 4 und ¢~ gewinnt der Integralgrenzwert-

=1

satz (Satz 294.1) folgende Gestalt:

: Z T“l_ E(T)‘I \ | ¢ —-%r“:
im P| —co<.i=1 _ i=t% <x | = — ~ e © dt = &(x)
n—*ar IlIlII.- z l‘...-'él r- -X': ] e 1% -u.-'
\ =1 J

Diese Beziehung besagt: Die standardisierte kumulative Verteilungsfunktion
einer Summe von n unabhiingigen nach B(1; p) verteilten ZufallsgréBen ist fiir
grofles n annihernd gleich der Gaufischen Integralfunktion.

Die Voraussetzung, daB die einzelnen Summanden binomial vertei
ist eine sehr starke Forderung. Es lag nahe zu untersuchen, ob ein Integralgrenz-
wertsatz in der obigen Gestalt auch unter schwiicheren Voraussetzungen iiber die
Summanden gilt. Es zeigte sich, dal} die Forderung, grob gesprochen, die »Streu-
ung« jedes einzelnen Summanden miisse beschriankt sein, ausreicht. Dies ist der
wesentliche Inhalt des 1920 von Georg Polya (1887-1985) erstmals im Druck so
genannten zentralen Grenzwertsatzes. Darin betrachtet man nicht mehr eine Sum-

t sein miissen.

n
me aus endlich vielen ZufallsgréBen, sondern die Teilsummenfolgen S, = Y X,
i=1

2

einer unendlichen Folge von unabhingigen Zufallsgrofen X; (i = 1, )
Satz 301.1: Zentraler Grenzwertsatz.

X; sei eine Folge von ZufallsgroBen (i = 1,2,...). Endlich viele der X;
selen stets unabhingig. S} sei die standardisierte Zufallsgréfle zu
'S‘rl A= -‘{| | ey .A:

also

n*

Falls es reelle Zahlen A4, B, C gibt, so dab fiir alle 7
0 <A< Var X; < B und S(|X;,—& !; |‘] < C erfiillt ist, dann gilt

lim P(5F = x) = P(x)-
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Der Integralgrenzwertsatz von de Moivre und Laplace erweist sich als Spezialfall
des zentralen Grenzwertsatzes. DaB ein solch allgemeiner Satz gilt, wurde schon
frith vermutet. 1810 bewies Laplace (1749-1827) einen zentralen Grenzwertsatz fiir
gleichverteilte ZufallsgroBen*. 1887 stellte Tschebyschow (1821-1894) den allgemei-
nen zentralen Grenzwertsatz auf und beweist ihn, leider liickenhaft, fiir eine be-
stimmte Klasse von ZufallsgroBen**. Sein Schiiler Andrei Andrejewitsch Markow
(1856-1922)*** kann 1898 die Liicken schlieBen. 1901 gelingt Tschebyschows
Schiiler Alexandr Michailowitsch Ljapunow (1857-1918) sogar unter noch schwi-
cheren Voraussetzungen der vollstindige Beweis**** Moderne Arbeiten konn-
ten dann die oben angegebenen Voraussetzungen iiber die ZufallsgroBen X, noch
weiter abschwichen. — Der Beweis dieses sehr tief liegenden Satzes iibersteigt bei
weitem unsere Moglichkeiten.

Der zentrale Grenzwertsatz macht verstéindlich, daB die standardisierte kumu-
lative Verteilungsfunktion einer binomial verteilten ZufallsgréBe fiir groBes n
durch die Gaufische Integralfunktion @ approximiert werden kann. Dariiber
hinaus offenbart er, warum bei so vielen empirisch gewonnenen ZufallsgroBen die
standardisierte kumulative Verteilungsfunktion niherungsweise durch @ aus-
gedriickt werden kann. Man kann ndmlich annehmen, daB solche ZufallsgréBen
sich als Summe einer groBen Zahl voneinander unabhiingiger ZufallsgréBen er-
geben, deren Verteilungen alle ungefihr gleich streuen, wobei die einzelnen
Summanden nur einen verschwindend kleinen Einfluf auf die Summe ausiiben
diirfen. Diese letztere Bedingung ist im wesentlichen die Einschriankung, die
Liapunow den X, auferlegen mulite!

Wir verdeutlichen nun den zentralen Grenzwertsatz an einem

Beispiel: Die Voraussetzungen des zentralen Grenzwertsatzes sind z.B. erfiillt,
wenn alle X; gleichverteilt sind und endlichen Erwartungswert sowie endliche,
von 0 verschiedene Varianz besitzen. In diesem Fall hiingen die GréBen Var X,
und &(|X; — & X;|?) nicht von i ab und sind daher trivialerweise beschrinkt.
Fine moglichst einfache ZufallsgroBe, die sich als Summe solcher X, darstellen
laBt, gewinnen wir folgendermaBen.

Bei einem Laplace-Wiirfel werden die Augenzahlen wie folgt gewertet:
Cl=[E=1, = [E=2, [ = =3. X, bedeute den Augenwert beim i-ten Wurf,
Die X; sind gleichmaBig verteilt; fiir jeden Wert ist p = 4. Ferner gilt £X;, =2

n
und Var X; = 5. Die ZufallsgroBle S, = \L X; bedeutet die Summe der Augen-
i=1
werte der ersten n Wiirfe. Es interessiert nun, wie gut sich die kumulative Ver-
teilungsfunktion der zugehérigen standardisierten ZufallsgroBe §F* mit wach-
sendem »n durch @ approximieren 14Rt.
Statt dessen kann man auch die Approximation der Dichtefunktion von S

n

durch ¢,, mit wachsendem n untersuchen. Dazu miissen wir die Wahrschein-
lichkeitsverteilungen der S, aufstellen.

de trés grands nombres, er sur leur application aux

*® Sur deux théorémes relatifs aux probah

**+* Mapkos (Betonung auf dem a) - Si

lités (Originalarbeit auf russisch),
Seite 395,

Gk e .'hlllj\ HOB (Betonung auf o) - Nowvelle forme du théoréme sur la limite de probabilité. - Siche Seite 395
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Fir S, gilt P(S, =k)=4 fir k=1,2,3
3
Fiir S, gilt P(S; k) = E P(X, = | X, = k —j) fir k=2.3.....6.
I=1

Wegen der stochastischen Unabhingigkeit von X, und X, erhilt man daraus

3
P(S; =ky= Y P(X,= ) PX; =k—}) filt k= 2:..0:6%

j=1
Man nennt die rechts stehende Summe eine Faltung der Wahrscheinlichkeitsver-
etflungen von X, und X,.
Wegen der stochastischen Unabhingigkeit von X, X, und X, erhilt man die
Wahrscheinlichkeitsverteilung von S, durch Faltung der Wahrscheinlichkeits-
verteilungen von S, und X;:

3 3
Sy =T = l :\_‘ PX,=sAaXo=tAaXs=k=(s+1)=
1 1 s=1
30048
=3 ¥ PX;=35)PX,=0-P(X;=k—(+1)=
I=1 =1
G 3 %
=YY PXy=9)PX;=j=9)) P(Xs=k—j) =
j=2 \s=1 /

Y P(§, =j): P(X3=k—)) fir k=2 .09
2 ] 3 .
j=2
was auch anschaulich klar ist.

Fiir §, ergeben sich 2 Méglichkeiten der Faltung, nimlich entweder

PSy=ky=Y P(Sy=j) P(X,=k—j) firk=4,.,12 oder
=3
J'”[-S._J — f\.} = E -PES, = ]l'j .P|-Sl2 =k — l|":| |‘l]l JI"- — N |"‘r

SchlieBlich erhiilt man noch fiir die Wahrscheinlichkeitsverteilung von Sg

Jra

P(S, =k) = \_ P(S, =) P(S, =k—j) fir k=28,...,24.

Die numerische Auswertung der obigen Ausdriicke zeigt Tabelle 303.1.

Zur Bestimmung der approximierenden ¢, -Funktionen benétigen wir die je-
weiligen Erwartungswerte &S, und Standardabweichungen g, := |/VarS,; ihre
Werte sind in Tabelle 304.1 wiedergegeben. In Tabelle 305.1 sind schlie3lich die
Werte P(S, = k) und ¢,,(k) einander gegeniibergestellt.

| 2 4 6 9 = onlat (2. 13 14 5 16

K

s
wn

3 P(S, = k) e o b S

9-PS,=k) 2 3 2 1

27-P(S;=1) [ A T s R

81-P(S, = k) {4 g0t 1619 16 10 4 : >
6561 P(S, =k) { 2 36 112 266 504 784 1016 1107

T'ab. 303.1 Wahrscheinlichkeitsverteilungen der S,. — Fiir Sy ist symmetrisch zu erganzen !




¥ & S“ Var Dy Tyt | Var .{3“
[l i 2 i t)l/6 = 08165
0k Eoa 2 4 : /3= 1,1546
Je.if 3 6 2 /2 ~ 1,4142
il met 4 8 51/6 =~ 1,6330
| I [E= ’ 8 16 1§ £1/3 = 2.3004
| S,=X; 5 :
.} | ' Tab, 304.1 Erwartungswerte und
I.' \ Standardabweichungen der S,
| \
01 / \
el ek Figur 304.1 zeigt, wie die Stabdia-
| s X = . = . o ! x
— s = ~— : T gramme der ZufallsgréBen S, mit

wachsendem n immer besser durch
die zugehorigen Dichtefunktionen

/M (0. angenihert werden.
/ : Die Konvergenz mufy natiirlich nicht
5;=X+ X, in jedem Fall so gut sein wie in unse-
[ ' rem Beispiel. In der Praxis wird man
sehr hiiufig erst bei einer grollen An-
zahl n mit einer befriedigenden Ap-
N X proximation rechnen konnen. Dies
i Y52 Sk 5k ' i trifft vor allem zli beim Messen einer
physikalischen GréBe, wenn man
P, 5 (x}PIS;=x) annimmt, daB nur viele zufallige
und kleine Fehler sich addieren.
Ebenso ist es bei der industriellen
Herstellung wvon Massenartikeln.
01 : L Man darf dabei von der Annahme
o [\ ausgehen, dall die Abweichungen
' vom Sollwert nur bedingt sind durch
viele Einzeleinwirkungen, die jede

1P,z P52

e
P e

=
T

o ;
= / -
— 4 .,
B | 1 [ Tyt X
i ! T T T 1 T 1 L T
B 10 12 1k 15 1B 20 22 ril

Fig. 304.1 Veranschaulichung des zentralen Grenzwertsatzes fiir gleichverteilte Zufalls-
grofien X,
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k ] k 2 3 4
P{S,=k) | 0,333 | 0333 PiS;=k)| 0,111 | 0,222 | 0,333
@t ve | 0,231 | 0,489 4215 | 0.077 | 0,237 | 0,345

k J 3 4 5 6 k 4 5 6 7 8
P(S,=k) | 0,037 | 0,111 | 0,222 | 0,259 P(S,=Fk) | 0,012 | 0,049 | 0,123 | 0,198 | 0,235
@3 | 0,030 0,104 | 0222 | 0,282 ®g.31%6 | 0012 | 0,045 | 0,115 | 0,203 | 0,244

k l 8 |8 {0 Il 12 13 14 15 16
P(Ss=Kk) | 0,00045 | 0,0012 | 0.0059 | 0.017 0.041 0,077 0.119 0,155 0.169
Picoas | 0,00043 | 0,0018 | 0,0059 | 0,017 0,038 0,075 0,119 0,157 0,173

Tab. 305.1 Wahrscheinlichkeitsverteilungen der Zufallsgrofen S, und approximierende
Funktionswerte ¢,, (k). Alle Tabellen sind symmetrisch fortzusetzen.

fiir sich nur eine geringe »Streuung« besitzen und deren EinfluB auf den Sollwert
Jeweils verschwindend gering ist.

Aus diesem Grund haben viele in der Natur und Technik vorkommende Zu-
fallsgroBen eine Verteilung, deren Dichtefunktion bzw. kumulative Verteilungs-
funktion recht gut durch ®,, bzw. @ approximiert werden. Die entsprechenden
standardisierten Funktionen werden dann durch ¢ bzw. @ approximiert. Es
liegt nahe zu vermuten, daB ¢ auch Dichtefunktion einer »GrenzzufallsgroBe«
sein wird. Dann wire @ die zugehérige kumulative Verteilungsfunktion. Da @
alle Werte zwischen 0 und 1 kontinuierlich annimmt, miifite die »Grenzzufalls-
grofle« auch »kontinuierlich« sein. d. h.. sie miiBte als Wertemenge R haben. Ihr
miilite daher ein iiberabzihlbares @ als Definitionsmenge zugrunde gelegt wer-
den. Solche ZufallsgréBen kennen wir bis jetzt nicht. In einer erweiterten Theorie
betrachtet man jedoch auch solche ZufallsgroBen. Man nennt sie stetige Zu-
fallsgroBen. Beispiele hierfiir sind Lebensdauern, Entfernung des Einschusses
vom Mittelpunkt einer Zielscheibe usw. Adoiphe Quetelet (1796—1874) und Francis
Galton (1822-1911) haben gefunden, daB viele in der Natur vorkommende Gro-
Ben Verteilungen besitzt, die sehr gut durch @, dargestellt werden konnen.
Henri Poincaré (1854—1912) nannte solche Verteilungen normal*. Man definiert:

Definition 305.1: Eine stetige ZufallsgroBe mit @ . als kumulativer Vertei-
lungsfunktion heiBt normal verteilt.

Bemerkungen :

I. In der Theorie der stetigen Zufallsgréfen mufBl man natiirlich Erwartungswert
und Standardabweichung neu definieren. Es treten dabei statt der Summen
Integrale auf. Die Parameter u und ¢ von @,, erweisen sich dann als Erwar-
tungswert und Standardabweichung der Zufallsgréfe, die @, als kumulative
Verteilungsfunktion hat. Nachweis in Aufgabe 316/41.

* Calenl des Probabilités Vorlesungen withrend des 2. Semesters 18931894, herausgegeben 1896, Seite 76. — Siehe

Seite 395
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2. Ist g = 0 und ¢ = 1, so heiBt die zugehorige ZufallsgréBe standardisiert: viel-
fach nennt man sie auch normiert. @,., = ® heif}t daher Standardnormalver-
teilung.

Bei der Anwendung der Normalverteilung auf real vorkommende ZufallsgroBen,
deren kumulative Verteilungsfunktion F niherungsweise gleich @, ist, muB3 man
zwei Fille unterscheiden. Ist die Zufallsgrofie X stetig, d. h., kann sie jeden Wert

e ; : (x—pu) s
x € [R annehmen, dann wird man F(x) durch fﬁ( £ ) approximieren.
a

Nimmt dagegen eine ZufallsgroBe nur diskrete Werte ke Z an, dann wird man

, (k—p+05) T : : T
F(k) durch @ approximieren, wie bei der Approximation der
a .
: . : . : 0,5 futy
Binomialverteilung. Durch den Summanden = 5— 1m Argument von @
a LO i

wird berticksichtigt, daB man bei der Berechnung von F(k) als letztes Rechteck
das ganze Rechteck iiber k nehmen muf. (Vgl Figur 306.1.) Man nennt den

A st
Summanden —— Stetigkeitskorrektur,

- il

[ i | |

k=y e k-1 k k+1
k-p+05 .

-----I-J-u - im Bild st 022 k+05

-——1—

Fig. 306.1 Veranschaulichung der Stetigkeitskorrektur. Rechts ist ein Ausschnitt der Dichte-
funktion gezeichnet, links die zugehorige standardisierte Dichtefunktion mit der approximie-
renden ¢@-Funktion.

Nimmt die ZufallsgroBe zwar diskrete, aber nicht ganzzahlige Werte an, dann
kann man durch geeignete Wahl der Einheiten erreichen. daf} die Werte ganz-
zahlig werden, und dann wieder die Stetigkeitskorrektur anwenden.

Beispiel: Mit einer Maschine werden Stifte hergestellt. Die Linge X der Stifte
1af3t sich als ZufallsgroBe auffassen, die annihernd normal verteilt ist. Thr Mittel-
wert sel pu = 10 mm, ihre Standardabweichung ¢ = 0,02 mm. Ein Stift muB
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mehr als 9,97 mm lang sein, damit er brauchbar ist. Wie groB ist die Wahrschein-
lichkeit fiir einen zu kurzen Stift?
Nehmen wir zunéichst an, X sei stetig verteilt, d.h., daB jede Linge vorkommen
kann. Dann gilt:

.97 —10,

P(X £997) = F(9.97) = &(—— —)=@®(—-15)=1—-&(1,5) = 1—-0,93318=

0,02
= (0,06682 ~ 6,7%

0-

I

¢

Gehen wir aber davon aus, daBl die MeBgenauigkeit 0,01 mm betriigt, dann
nimmt die ZufallsgréBe nur diskrete Werte an, die in der Einheit 0,01 mm ganz-
zahlig sind. In diesem Fall ist es sinnvoller, die Stetigkeitskorrektur zu verwenden:

P(X £ 997) = F(997T) » (——F">2) = &(—1,25) = 1 — ®(1,25) =
= 1—0,89434 = 0,10566 ~ 10,6%.

Fir stetige ZufallsgroBen hat es keinen Sinn, eine Wahrscheinlichkeitsverteilung
zu betrachten, da ja die Wahrscheinlichkeit, dal} die stetige ZufallsgroBe einen
bestimmten Wert annimmt, fiir jeden Wert 0 ist. Es hat nur einen Sinn, danach
zu fragen, mit welcher Wahrscheinlichkeit die stetige ZufallsgroBe Werte aus
einem bestimmten Intervall annimmt. Dabei ist es belanglos, ob man abgeschlos-
sene oder offene Intervalle betrachtet, weil ja P(X = x) = 0 gilt. Also ist z B.
BIX =3} = Pk = x)

wpx)

Fiir beliebige ZufallsgréBen konnten wir auf
Seite 185 die Wahrscheinlichkeit P(|X — u| < ta)
mit Hilfe der Bienaymé-Tschebyschow-Unglei-
chung abschitzen zu

1

P(|X —u|l<ta)=1-— PR

Fiir normal verteilte ZufallsgroBen kénnen wir
nun genauere Werte fiir diese Wahrscheinlich-
keiten berechnen. Man findet sie in Abhéingigkeit
von ¢ tabellarisiert in den Srochastik-Tabellen
auf Seite 45 als g-Bereichstabelle. Insbesondere
erhilt man

Satz 307.1: Ist X eine normal verteilte
ZufallsgroBe, so gilt auf Promille gerundet
P(lX —u|l< o) = 683%
P(| X —ul<20) = 95,5

P(| X —u|<3ag) =99.7%.

Figur 307.1 veranschaulicht diesen Satz.

Fig. 307.1 Illustration zu Satz 307.1
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Beweis: Unter Verwendung von Satz 300.1 erhilt man

PHX_' ,“l <o) = Plu—o< X< W+ g) =
= (fl

"

(H+0)— D, (1t—0) =
Lpliba =N e
= d)[.‘ = ) (j':(l‘ = )_
= ®(l)—d(—1) =

=2¢(1)—1 =

= 2084134 — | =

= (1,68268 .

Analog erhilt man
P(|X —u|l<20)=29(2)—1 = 095450 und
P(|lX —ul<30)=20(3)—1 = 0,99730.

Auf Grund des Integralgrenzwertsatzes 294.1 gilt Satz 307.1 auch fiir Zufalls-
groBen, die binomial verteilt sind, wenn »n groB ist.

Ubrigens sind die Werte aus Satz 307.1 bis auf Ungenauigkeiten im: Promillebe-
reich gerade die von de Moivre 1733 angegebenen Abschitzungen. (Siche
Seite 277.) Dariiber hinaus bestitigt Satz 307.1 die richtige Erkenntnis de Moivres,
daB die Standardabweichung o die »Abschiitzung reguliert«.

Mit Hilfe der in diesem Kapitel gewonnenen Erkenntnisse ist es nun maglich,
Aufgaben iiber das wahre Risiko, die wir in 14.8.unter Umstinden nur grob mit
Hilfe der Tschebyschow-Ungleichung bewiltigen konnten, unter Verwendung
der Normalverteilung zwar genauer, dafiir aber nur niherungsweise zu losen.
Man beachte, daB darin kein Widerspruch liegt! Die Ungleichung von Bienaymé-
T'schebyschow liefert eine Abschétzung, die oft grob ist, die Normalverteilung
hingegen einen Ndaherungswert, der der gesuchten Wahrscheinlichkeit meist bes-
ser entspricht als der Wert der Tschebyschow-Abschiitzung; wir wissen aber
nicht, ob die gesuchte Wahrscheinlichkeit unter oder iiber dem Niherungswert
der Normalverteilung liegt, und schon gar nicht, um wieviel sie sich davon unter-
scheidet. Dariiber hinaus rechnet man, um listige Fallunterscheidungen zu ver-
meiden, gegebenenfalls ohne Stetigkeitskorrektur, da man sich ja bewubBt ist, daB
die Werte sowieso nur einen Niherungscharakter haben.

In den angesprochenen Aufgaben treten Ungleichungen vom Typ

Pl X—ulza=n bzw. P(lH,—pl=¢& =n

auf. Je nach den gegebenen GréBen erhilt man verschiedene Problemstellungen.
Man vergleiche dazu 14.8. . wo die nachfolgenden Beispiele mit der Tschebyschow-
Ungleichung behandelt wurden.

Beispiel 1: Wie groB ist die Wahrscheinlichkeit dafiir, daB die relative Hiufigkeit
fir die Sechs beim 100fachen Wurf eines L-Wiirfels um weniger als 0,05 von der
Wahrscheinlichkeit fiir eine Sechs abweicht ?
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Losung: Gesucht ist der kleinste Wert fiir », so daB P(|H, 55 — 3| <0,05) =1 —n.
Dazu nidhern wir P(|X —18°%| <35) durch die Gaufische Integralfunktion @
an. Berlicksichtigen wir, dal X nur ganzzahlige Werte annehmen kann, dann
erhalten wir fiir den letzten Ausdruck die Form P(12 £ X < 21). Mit ¢ = 3 /5
gewinnen wir die Niherung

{71 — 400 . 1Y 1] — 100
PIR2SX <2)mop(=—° ?J—r,r:( e T2) =
— == & /= 5 S -
Y e
= @(1,2969) — &(—1,3864) = I/T\\
= 0,90266 — 1 + 091717 = Jrieey
— 0,81983. -
/ E \
Rechnet man hingegen bequemlichkeitshal- { i \d
ber so, als sei die Trefferanzahl X normal ver- P(IX-%[<5) \
teilt, dann erhalt man unter Ausnutzung der ! \
Symmetrie von ¢, (vgl. Figur 309.1) , :
H=5 u= g 5 5
(| X — 100 - &y ~
PIX — 181 <9) = Fig 309.1
/(100 _ 5y _ 100°
e ]rf;([ o ..j] 6 )_- (100 __ &y _ 190
$1/5 ) P(IX —129 <5 ~ 1— zrp(- e e

ST
¥)/3

=2P(3]/5)—1 = 0,82026.
Die Tschebyschow-Ungleichung lieferte seinerzeit 44,4%,; der wahre Wert betrigt
hingegen 0,82210. (Vgl. Seite 253.)

Beispiel 2: Wie oft muf} ein L-Wiirfel mindestens geworfen werden, damit mit
einer Sicherheit von mindestens 609, das arithmetische Mittel der Augenzahlen
um weniger als 0,25 vom Erwartungswert 3,5 abweicht?
Losung: Gesucht ist ein kleinstes n, so dafl P(| X, —3.5| <0.25) = 607, v.;n‘d.
) 2 5 1 1/35
Auf Grund von Satz 212.1 und Satz 212.2 gilt £ X, = 3,5 und ¢(X,) = .l-'-:” /
Nimmt man wegen des zentralen Grenzwertsatzes an, dal} X, ndherungsweise
normal verteilt ist, dann kann man der Tabelle der o-Bereiche bei normalverteil-
7 f -t X L O ) iy [ "5 W L | ¥ 2 = 1= 0
ten ZufallsgroBen (Stochastik-Tabellen, Seite 45) fiir P(| X, —3.5| < 3) = 607,
den Wert ¢ = 0,8416 entnehmen. Das ergibt dann mit f¢ = 0,25 die Bedingung

fi2i

Er . .
08416 - I I,.-"Ilr':i' <025 <= p=3305.. = n.-= 3.
ol
Die Tschebyschow-Ungleichung lieferte seinerzeit 7y, = 117.

Eine weitere Aufgabe desselben Typs enthalt

Beispiel 2a: Wie oft muB man einen L-Wiirfel mindestens werfen, umlnui einer
Sicherheit von mindestens 95% zu erreichen, dal} die relative Hiufigkeit fiir eine
Sechs sich von ihrer Wahrscheinlichkeit um héchstens 1 unterscheidet?

. s : : . ! : 1 e 0./
Losung: Gesucht ist zu ¢ = ein kleinstes n, so da3 P(|H,—p|=¢) = 957, d.h
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P(|X —np| = ne) = 95% wird. Wollte man diese Aufgabe so genau wie mog-
lich I5sen, dann miite man vorher schon wissen, ob np 4+ ne ganzzahlig werden
oder nicht. Will man hier weiterkommen, so bleibt also nur anzunehmen. dafB die
ZufallsgroBe X :=Anzahl der Treffer annihernd normal verteilt ist. Aus der
o-Bereichstabelle erhilt man dann mit P(|X — u| < &n) = 95% fiir t die Be-
dingung ¢ = 1,9600. Somit

e i T

min

s /5
ion =196]/5%n <

i
3
\
|| v
h
(e
el

Zusaiz: Falls man nicht wei3, ob es sich um einen L-Wiirfel hande elt, muB man
aul die Abschiatzung pg < & zuriickgreifen. Es ergibt sich dann

i =196 3)/n < n>2904 = n_. =97.

min

I
|
" . ]
Natiirlich kommt man auch ohne die ¢-Be- f
reichstabelle zum Ziel. Unter Ausnutzung der ]
Symmetrie von ¢,, erhilt man (vgl Fi- :
T -} -
gur 310.1): 5%
(p+ne— p) :
e — - -~ &0 .
¢ ( —! ] = 97,59, ; fiir einen ] i N
a 0 5% [ 2EW——
y, | 1 x
U-ng 1} f+nE

L-Wiirfel also 2 :
Fig. 310.1 P(|X — p| < ne) = 95%.

= 19600 = n . = 54,

min

’ } l 5 y ’ -
rp( - ) > 0,975 <
Ve

Ln
Ln

L
——
e

Auch die beiden Fragestellungen hinsichtlich der gesuchten Intervalle konnen
nun unter Umstinden genauer behandelt werden.

Beispiel 3: In welchem Intervall um p = ¢ liegt bei 100maligem Werfen eines

L- ‘»’vmida die relative Haull;kul fiir die Augenzahl 6 mit einer Mindestwahr-
scheinlichkeit von 60%

Losung: Gesucht ist ein kleinstes &, so daf3 P(|H, 40 — 5| < &) = 60% wird. Wir
formen um zu P(|X —192| < 100¢) > 0.6 und nehmen zur \f’uunmdmnc' an,
dall X angendhert normal verteilt ist. Fiir 607, erhalten wir aus der o-Bereichs-

tabelle # = 0,8416. Also
100e =10 208416-3]/5 = ¢=0,03136...

Bedenkt man wieder, da3 H oo nur Hundertstelwerte aus [0; 1] annehmen kann,
0 erhiilt man: Mit einer ‘v'vd]u-sclwlnllLM{:JL von mindestens 60% liegen die Werte
von H oo (»Sechs«) im Intervall [0,14; 0,19].

Die ;’schvm schow-Ungleichung lieferte seinerzeit mit & > = 0,0589. .. das Intervall
[0.11; 0,22].

Beispiel 4: Fiir welches Intervall kann man mit einer Sicherheit von mindestens
907; schlieBen, daB es die Wahrscheinlichkeit fiir eine Sechs enth ilt, wenn sich
bei 100 Wiirfen f,,({6}) = 0,18 ergeben hat?
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Losung: Gesucht ist fiir das Konfidenzintervall |H, — ¢: H, + ¢[ ein ¢, so daB

P(|H,o0({6}) —p| <8) 290% <= P(X—100p|<100¢) = 90%,

erfiillt ist; dabei gibt X die Anzahl der Treffer an. Der o-Bereichstabelle ent-
nimmt man ¢ = 1,6449. Also

1006 = 16 = 1,6449]/100p(1 — p) <> ¢ =0,16449] ;r}[i —p).
Da p(l — p) < %, ist die eingangs gestellte Bedingung sicherlich erfiillt, wenn
man ¢ = 0,0823 wihlt. Es ergibt sich also ein etwa halb so groBes grobes Konfi-
denzintervall 7(0,18) = ]0,0977; 0,2623[ wie bei der Abschidtzung mit Hilfe der
T'schebyschow-Ungleichung.

Wir behandeln nun die Aufgabenstellung von Beispiel 4 allgemein so wie seiner-
zeit auf Seite 258.

Gesucht ist also zum Konfidenzniveau 1 — # ein g, so da}
P|lH,—pl<e)zl—n = P(|X —np|l<ng)=1—n

erfiillt ist. Dazu entnimmt man der o-Bereichstabelle den zur Sicherheit 1 —y
gehorenden ¢-Wert, der natiirlich von n abhingt. Bezeichnen wir ihn mit ¢(n),
dann gilt

_ tm}/p(l —p)

ne=2tn)|/np(l —p) <= &=
|/ n

Man erhilt daraus zu jedem Wert A, von H,
g . \ 1 : L . S L ~Ale
das grobe Konfidenzintervall /(h,), wenn man p(1 — p) durch § abschiitzt, also

in) in)
s M ——=;
2l/n 2/n|

Ih,) = |k

das Niiherungskonfidenzintervall 7(h,), wenn man p durch die relative Haufig-
keit A, anndhert, also
1))/ h, (1 —h,) tin) )/ h,(1 — h,iiy

fl’.’a”] = |h, , i ST
l. n l n

das echte Konfidenzintervall J(/1,). dessen Grenzen die Losungen der quadra-
tischen Gleichung
tn)|/p(l —p)

[-u

sind.

|f|r” 3 f”ll =

Eine leichte Rechnung liefert mit den Werten von Beispiel 4
1(0,18) =10,116; 0,244 bzw. J(0,18) =]0,125: 0,252]

also wiederum kleinere Werte als die Abschitzung durch die Ungleichung von

Bienaymé-Tschebyschow.
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