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Jede nach B (n ; p ) verteilte Zufallsgröße läßt sich - wie in 14 . 5 gezeigt - als Summe
n

£ X t von n unabhängigen Zufallsgrößen X l schreiben , die alle nach B ( 1 ; p ) ver-
i = 1
teilt sind ; dabei bedeutet X t

~ »Anzahl der Treffer beim z-ten Versuch «. Nach
Satz 205. 1 bzw . 209. 1 errechnet sich dann der Erwartungswert ji bzw. die Varianz

a 2 dieser Zufallsgröße zu <g { £ X t j = £ SX t bzw. zu Var ( £ V, j =
"

_
\ i = 1 ) i = 1 V = i )

— 2j VarV , . Mit diesen Ausdrücken für n und <x2 gewinnt der Integralgrenzwert -
i = 1

satz ( Satz 294. 1 ) folgende Gestalt :

lim P
«- >oo

I
— oo < j = i »= i ^ x

' t Var Xi

_J- t2
e 2 d t = <P (x)

Diese Beziehung besagt : Die standardisierte kumulative Verteilungsfunktion
einer Summe von n unabhängigen nach B ( 1 ; /;) verteilten Zufallsgrößen ist für
großes n annähernd gleich der Galoschen Integralfunktion .
Die Voraussetzung , daß die einzelnen Summanden binomial verteilt sein müssen ,
ist eine sehr starke Forderung . Es lag nahe zu untersuchen , ob ein Integralgrenz¬
wertsatz in der obigen Gestalt auch unter schwächeren Voraussetzungen über die
Summanden gilt . Es zeigte sich , daß die Forderung , grob gesprochen , die »Streu¬
ung« jedes einzelnen Summanden müsse beschränkt sein , ausreicht . Dies ist der
wesentliche Inhalt des 1920 von Georg Pölya (1887- 1985) erstmals im Druck so
genannten zentralen Grenzwertsatzes . Darin betrachtet man nicht mehr eine Sum¬

me aus endlich vielen Zufallsgrößen , sondern die Teilsummenfolgen Sn
■■= £ X{

i —1
einer unendlichen Folge von unabhängigen Zufallsgrößen Xt (i = 1,2, . . .) .

Satz 301 . 1 : Zentraler Grenzwertsatz.
Xx sei eine Folge von Zufallsgrößen (i = 1,2, . . . ) . Endlich viele der Xt
seien stets unabhängig . S * sei die standardisierte Zufallsgröße zu

'■= X± + . . . + Xn , also

i Xi - i sXi
g * i ~ 1_ t = 1_

]/t Var V;

Falls es reelle Zahlen A , B, C gibt , so daß für alle i
0 < A < VarJf ; < B und S ( \X t - <? V ; |

3
) < C erfüllt ist , dann gilt

lim P (S * gx ) = <P {x) .
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Der Integralgrenzwertsatz von de Moivre und Laplace erweist sich als Spezialfall
des zentralen Grenzwertsatzes . Daß ein solch allgemeiner Satz gilt , wurde schon
früh vermutet . 1810 bewies Laplace ( 1749 - 1827 ) einen zentralen Grenzwertsatz für
gleichverteilte Zufallsgrößen * . 1887 stellt eTschebyschow (1821 - 1894) den allgemei¬
nen zentralen Grenzwertsatz auf und beweist ihn , leider lückenhaft , für eine be¬
stimmte Klasse von Zufallsgrößen * * . Sein Schüler Andrei Andrejewitsch Markow
( 1856 - 1922 ) * * * kann 1898 die Lücken schließen . 1901 gelingt Tschebyschows
Schüler Alexandr Michailowitsch Ljapunow (1857- 1918 ) sogar unter noch schwä¬
cheren Voraussetzungen der vollständige Beweis* * * * . Moderne Arbeiten konn¬
ten dann die oben angegebenen Voraussetzungen über die Zufallsgrößen X t noch
weiter abschwächen . - Der Beweis dieses sehr tief liegenden Satzes übersteigt bei
weitem unsere Möglichkeiten .
Der zentrale Grenzwertsatz macht verständlich , daß die standardisierte kumu¬
lative Verteilungsfunktion einer binomial verteilten Zufallsgröße für großes n
durch die Gaußsche Integralfunktion <P approximiert werden kann . Darüber
hinaus offenbart er , warum bei so vielen empirisch gewonnenen Zufallsgrößen die
standardisierte kumulative Verteilungsfunktion näherungsweise durch <P aus¬
gedrückt werden kann . Man kann nämlich annehmen , daß solche Zufallsgrößen
sich als Summe einer großen Zahl voneinander unabhängiger Zufallsgrößen er¬
geben , deren Verteilungen alle ungefähr gleich streuen , wobei die einzelnen
Summanden nur einen verschwindend kleinen Einfluß auf die Summe ausüben
dürfen . Diese letztere Bedingung ist im wesentlichen die Einschränkung , die
Ljapunow den X t auferlegen mußte !
Wir verdeutlichen nun den zentralen Grenzwertsatz an einem

Beispiel : Die Voraussetzungen des zentralen Grenzwertsatzes sind z . B . erfüllt ,
wenn alle X t gleichverteilt sind und endlichen Erwartungswert sowie endliche ,
von 0 verschiedene Varianz besitzen . In diesem Fall hängen die Größen Var V,-
und <? ( | X ; — <? V ; |

3) nicht von i ab und sind daher trivialerweise beschränkt .
Eine möglichst einfache Zufallsgröße , die sich als Summe solcher X t darstellen
läßt , gewinnen wir folgendermaßen .
Bei einem Laplace -Würfel werden die Augenzahlen wie folgt gewertet :
□ = [ü] = l,H = |x] = 2 , [7 ] = |0 = 3 . Xt bedeute den Augenwert beim z-ten Wurf .
Die X t sind gleichmäßig verteilt ; für jeden Wert ist p = ß Ferner gilt SX t = 2

n
und Var V ; = f . Die Zufallsgröße Sn

■■= £ x t bedeutet die Summe der Augen -
i = 1

werte der ersten n Würfe . Es interessiert nun , wie gut sich die kumulative Ver¬
teilungsfunktion der zugehörigen standardisierten Zufallsgröße S * mit wach¬
sendem n durch <P approximieren läßt .
Statt dessen kann man auch die Approximation der Dichtefunktion von S„durch (-/) „„ mit wachsendem n untersuchen . Dazu müssen wir die Wahrschein¬
lichkeitsverteilungen der S„ aufstellen .
* Memoire sur les approximations desformules qui sont fonctions de tres grands nombres, et sur leur application auxprobabilites .
** Sur deux theoremes relatifs aux probabilites (Originalarbeit auf russisch ).*** MapKOB (Betonung auf dem a) - Siehe Seite 395 .
**** JlanyHOB (Betonung auf o) - Nouvelleforme du theoreme sur la limite de probabilite . - Siehe Seite 395 .
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Für S , gilt P (Sj = k) = | für k = 1,2 , 3 .
Für S2 gilt P {S2 = k) = £ PpTi = j A X 2 = k - j ) für k = 2 , 3, . . . , 6 .

j = i

Wegen der stochastischen Unabhängigkeit von und X 2 erhält man daraus

P (S2 = k) = £ = 7 ) ' = k - j ) für k = 2, . . . , 6 .
j = i

Man nennt die rechts stehende Summe eine Faltung der Wahrscheinlichkeitsver¬
teilungen von A , und X 2 .
Wegen der stochastischen Unabhängigkeit von X u X 2 und X 3 erhält man die
Wahrscheinlichkeitsverteilung von S 3 durch Faltung der Wahrscheinlichkeits¬
verteilungen von S2 und X 3 :

P (S3 = k) = £ £ P (X ! = SAX 2 = tAX 3 = k - (s + t )) =
t = 1 S = 1

= t i P (X 1 = s) - P (X 2 = t) - P (X 3 = k - (s + t)) =
t = 1 s = 1

= i
(

i p & i = $ ■nx 2 = j -
^

• p (x 3 = k - j ) =

= t p (S2 = j ) - P (X 3 = k - j ) für k = 3, . . . ,9 ,
1 = 2

was auch anschaulich klar ist .
Für S4 ergeben sich 2 Möglichkeiten der Faltung , nämlich entweder

P (S4 = k ) = £ P (S 3 = j ) ■P (X 4 = k - j ) für k = 4, . . . , 12 oder
1 = 3

P (54 = k) = £ P (S2 = yj • / >(S 2 = fc — y ) für k = 4, . . . , 12 .
1 = 2

Schließlich erhält man noch für die Wahrscheinlichkeitsverteilung von S8

P (5 8 = k) = £ = yj • P (S4 = k — j ) für k = 8, . . . ,24 .
1 = 4

Die numerische Auswertung der obigen Ausdrücke zeigt Tabelle 303 . 1 .
Zur Bestimmung der approximierenden (p ,m -Funktionen benötige n wir die je¬
weiligen Erwartungswerte SS n und Standardabweichungen er„ == j/Var S„ ; ihre
Werte sind in Tabelle 304. 1 wiedergegeben . In Tabelle 305 . 1 sind schließlich die
Werte P (S„ = k) und cp ,w (k ) einander gegenübergestellt .

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 •/ >($, = *) 1 1 1
9P (S2 = k) 1 2 3 2 1

27 P (S3 = k) 1 3 6 7 6 3 1
81 P (SA= k) 1 4 10 16 19 16 10 4 1

6561 P (Ss = k) 1 8 36 112 266 504 784 1016 . 1107

Tab . 303 . 1 Wahrscheinlichkeitsverteilungen der S„ . - Für Ss ist symmetrisch zu ergänzen !
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n SS„ Var S„ ov = l/VarS „
i 2 | H/6 « 0,8165
2 4 f ! j/3 » 1,1546
3 6 2 1/2 « 1,4142
4 8 f | j/6 « 1,6330
8 16 fj/3 2,3094

Tab . 304 . 1 Erwartungswerte und
Standardabweichungen der S„

Figur 304. 1 zeigt , wie die Stabdia¬
gramme der Zufallsgrößen S„ mit
wachsendem n immer besser durch
die zugehörigen Dichtefunktionen
(pßG angenähert werden .
Die Konvergenz muß natürlich nicht
in jedem Fall so gut sein wie in unse¬
rem Beispiel . In der Praxis wird man
sehr häufig erst bei einer großen An¬
zahl n mit einer befriedigenden Ap¬
proximation rechnen können . Dies
trifft vor allem zh beim Messen einer
physikalischen Größe , wenn man
annimmt , daß nur viele zufällige
und kleine Fehler sich addieren .
Ebenso ist es bei der industriellen
Flerstellung von Massenartikeln .
Man darf dabei von der Annahme
ausgehen , daß die Abweichungen
vom Sollwert nur bedingt sind durch
viele Einzeleinwirkungen , die jede

Fig . 304 . 1 Veranschaulichung des zentralen Grenzwertsatzes für gleichverteilte Zufalls¬
größen Xi
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k 1 2 k 2 3 4
P (S l = k) 0,333 0,333 *0 ii 0,111 0,222 0,333
<P2 ; i (/fl 0,231 0,489 (P4 ;$ |/3 0,077 0,237 0,345

k 3 4 5 6 k 4 5 6 7 8
IIoc*nO 0,037 0,111 0,222 0,259 P (Sß = k) 0,012 0,049 0,123 0,198 0,235

<P6 ; j/2 0,030 0,104 0,222 0,282 <p 8;fi/if 0,012 0,045 0,115 0,203 0,244

k 8 9 10 11 12 13 14 15 16
S'IIG? 0,00015 0,0012 0,0059 0,017 0,041 0,077 0,119 0,155 0,169

<Pl6 ; i |/3 0,00043 0,0018 0,0059 0,017 0,038 0,075 0,119 0,157 0,173

Tab . 305 . 1 Wahrscheinlichkeitsverteilungen der Zufallsgrößen S„ und approximierende
Funktionswerte <pM„ (k). Alle Tabellen sind symmetrisch fortzusetzen .

für sich nur eine geringe »Streuung « besitzen und deren Einfluß auf den Sollwert
jeweils verschwindend gering ist .
Aus diesem Grund haben viele in der Natur und Technik vorkommende Zu¬
fallsgrößen eine Verteilung , deren Dichtefunktion bzw . kumulative Verteilungs¬
funktion recht gut durch <p fm bzw . approximiert werden . Die entsprechenden
standardisierten Funktionen werden dann durch cp bzw . <P approximiert . Es
liegt nahe zu vermuten , daß cp auch Dichtefunktion einer »Grenzzufallsgröße «
sein wird . Dann wäre fP die zugehörige kumulative Verteilungsfunktion . Da (P
alle Werte zwischen 0 und 1 kontinuierlich annimmt , müßte die »Grenzzufalls¬
größe « auch »kontinuierlich « sein , d . h . , sie müßte als Wertemenge IR haben . Ihr
müßte daher ein überabzählbares Q als Definitionsmenge zugrunde gelegt wer¬
den . Solche Zufallsgrößen kennen wir bis jetzt nicht . In einer erweiterten Theorie
betrachtet man jedoch auch solche Zufallsgrößen . Man nennt sie stetige Zu¬
fallsgrößen. Beispiele hierfür sind Lebensdauern , Entfernung des Einschusses
vom Mittelpunkt einer Zielscheibe usw . Adolphe Quetelet ( 1796 - 1874) und Francis
Galton ( 1822- 1911 ) haben gefunden , daß viele in der Natur vorkommende Grö¬
ßen Verteilungen besitzt , die sehr gut durch dargestellt werden können .
Henri Poincare ( 1854- 1912) nannte solche Verteilungen normal * . Man definiert :

Definition 305 . 1 : Eine stetige Zufallsgröße mit <Pßa als kumulativer Vertei¬
lungsfunktion heißt normal verteilt .

Bemerkungen:
1 . In der Theorie der stetigen Zufallsgrößen muß man natürlich Erwartungswert

und Standardabweichung neu definieren . Es treten dabei statt der Summen
Integrale auf . Die Parameter // und a von <Pßrr erweisen sich dann als Erwar¬
tungswert und Standardabweichung der Zufallsgröße , die (P/m als kumulative
Verteilungsfunktion hat . Nachweis in Aufgabe 316/41 .

* Calcul des Probabilites - Vorlesungen während des 2. Semesters 1893- 1894, herausgegeben 1896, Seite 76. - Siehe
Seite 395 .
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2 . Ist n = 0 und <j = 1 , so heißt die zugehörige Zufallsgröße standardisiert ; viel¬
fach nennt man sie auch normiert . <P0 ; 1 = $ heißt daher Standardnormalver¬
teilung.

Bei der Anwendung der Normalverteilung auf real vorkommende Zufallsgrößen ,
deren kumulative Verteilungsfunktion F näherungsweise gleich <Pßa ist , muß man
zwei Fälle unterscheiden . Ist die Zufallsgröße X stetig , d . h . , kann sie jeden Wert
xe [R annehmen , dann wird man Fix ) durch <P ( —— — ] approximieren .

Nimmt dagegen eine Zufallsgröße nur diskrete Werte keZ an , dann wird man' k — n + 0,5
'

F {k) durch $ approximieren , wie bei der Approximation der

Binomialverteilung . Durch den Summanden ■— = im Argument von (I>
G ZG

wird berücksichtigt , daß man bei der Berechnung von F (k ) als letztes Rechteck
das ganze Rechteck über k nehmen muß . (Vgl . Figur 306. 1 .) Man nennt den
Summanden Z — Stetigkeitskorrektur .

k- [1+0,5
imBild ist o=2

Fig . 306 . 1 Veranschaulichung der Stetigkeitskorrektur . Rechts ist ein Ausschnitt der Dichte¬
funktion gezeichnet , links die zugehörige standardisierte Dichtefunktion mit der approximie¬
renden cp-Funktion .

Nimmt die Zufallsgröße zwar diskrete , aber nicht ganzzahlige Werte an , dann
kann man durch geeignete Wahl der Einheiten erreichen , daß die Werte ganz¬
zahlig werden , und dann wieder die Stetigkeitskorrektur anwenden .

Beispiel : Mit einer Maschine werden Stifte hergestellt . Die Länge X der Stifte
läßt sich als Zufallsgröße auffassen , die annähernd normal verteilt ist . Ihr Mittel¬
wert sei ß = 10 mm , ihre Standardabweichung er = 0,02 mm . Ein Stift muß
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mehr als 9,97 mm lang sein , damit er brauchbar ist . Wie groß ist die Wahrschein¬
lichkeit für einen zu kurzen Stift ?
Nehmen wir zunächst an , X sei stetig verteilt , d . h . , daß jede Länge Vorkommen
kann . Dann gilt :

P (X ^ 9,97 ) = F (9,97) « = * ( - 1,5) = 1 - * ( 1,5 ) = 1 - 0,93318=
= 0,06682 « 6,7% .

Gehen wir aber davon aus , daß die Meßgenauigkeit 0,01 mm beträgt , dann
nimmt die Zufallsgröße nur diskrete Werte an , die in der Einheit 0,01 mm ganz¬
zahlig sind . In diesem Fall ist es sinnvoller , die Stetigkeitskorrektur zu verwenden :
P (X S 997) = F (997) « = * ( - 1,25) = 1 - * ( 1,25) =

= 1 - 0,89434 = 0,10566 « 10,6 % .
Für stetige Zufallsgrößen hat es keinen Sinn , eine Wahrscheinlichkeitsverteilung
zu betrachten , da ja die Wahrscheinlichkeit , daß die stetige Zufallsgröße einen
bestimmten Wert annimmt , für jeden Wert 0 ist Es hat nur einen Sinn , danach
zu fragen , mit welcher Wahrscheinlichkeit die stetige Zufallsgröße Werte aus
einem bestimmten Intervall annimmt . Dabei ist es belanglos , ob man abgeschlos¬
sene oder offene Intervalle betrachtet , weil ja P (X = x) = 0 gilt . Also ist z. B .
P (X ^ x) = P (X < x ) .

Für beliebige Zufallsgrößen konnten wir auf
Seite 185 die Wahrscheinlichkeit P ( \X — /i \ < ta )
mit Hilfe der Bienayme -Tschebyschow-\Jng \ei-
chung abschätzen zu

P ( \X - p \ < ta ) Zl - j T .

Für normal verteilte Zufallsgrößen können wir
nun genauere Werte für diese Wahrscheinlich¬
keiten berechnen . Man findet sie in Abhängigkeit
von t tabellarisiert in den Stochastik -Tabellen
auf Seite 45 als «r -Bereichstabelle . Insbesondere
erhält man

Satz 307 . 1 : Ist X eine normal verteilte
Zufallsgröße , so gilt auf Promille gerundet

P ( \ X - n \ < a ) = 68,3 %
P ( \ X — [x \ < 2a ) = 95,5 %
P {\X — ii \ < 3o ) = 99,7 % . 99,7%

Fig . 307 . 1 Illustration zu Satz 307 . 1

Figur 307. 1 veranschaulicht diesen Satz .



308 15 . Die Normal Verteilung

Beweis : Unter Verwendung von Satz 300. 1 erhält man

P (\ X — n \ < ff) = P (n ~ a < X < fi + <j) =
= + ff) - ®ßa {ß - ff) =

ß + (J - A _ ^ ( n - a - fi
o ) { a

= <P ( 1) - <P ( - 1) =
= 2 <P ( l ) — 1 =
= 2 • 0,84134 - 1 =
= 0,68268 .

Analog erhält man

P {\X - n \ < 2a ) = 2 $ (2) - 1 = 0,95450 und
P ( \X - fi \ < 3 <t ) = 2 <P {3) — 1 = 0,99730 .

Auf Grund des Integralgrenzwertsatzes 294. 1 gilt Satz 307. 1 auch für Zufalls¬
größen , die binomial verteilt sind , wenn n groß ist .
Übrigens sind die Werte aus Satz 307 . 1 bis auf Ungenauigkeiten inr Promillebe¬
reich gerade die von de Moivre 1733 angegebenen Abschätzungen . (Siehe
Seite 277.) Darüber hinaus bestätigt Satz 307. 1 die richtige Erkenntnis de Moivres ,
daß die Standardabweichung er die »Abschätzung reguliert « .

Mit Hilfe der in diesem Kapitel gewonnenen Erkenntnisse ist es nun möglich ,
Aufgaben über das wahre Risiko , die wir in 14 . 8 .unter Umständen nur grob mit
Hilfe der Tschebyschow-Ungleichung bewältigen konnten , unter Verwendung
der Normalverteilung zwar genauer , dafür aber nur näherungsweise zu lösen .
Man beachte , daß darin kein Widerspruch liegt ! Die Ungleichung von Bienayme-
Tschebyschow liefert eine Abschätzung , die oft grob ist , die Normalverteilung
hingegen einen Näherungswert , der der gesuchten Wahrscheinlichkeit meist bes¬
ser entspricht als der Wert der Tschebyschow-Abschätzung ; wir wissen aber
nicht , ob die gesuchte Wahrscheinlichkeit unter oder über dem Näherungswert
der Normalverteilung liegt , und schon gar nicht , um wieviel sie sich davon unter¬
scheidet . Darüber hinaus rechnet man , um lästige Fallunterscheidungen zu ver¬
meiden , gegebenenfalls ohne Stetigkeitskorrektur , da man sich ja bewußt ist , daß
die Werte sowieso nur einen Näherungscharakter haben .
In den angesprochenen Aufgaben treten Ungleichungen vom Typ

P {\X - Sh bzw . P {\ Hn - p \ ^ e)
auf . Je nach den gegebenen Größen erhält man verschiedene Problemstellungen .
Man vergleiche dazu 14 . 8 . , wo die nachfolgenden Beispiele mit der Tschebyschow-
Ungleichung behandelt wurden .

Beispiel 1 : Wie groß ist die Wahrscheinlichkeit dafür , daß die relative Häufigkeit
für die Sechs beim lOOfachen Wurf eines L-Würfels um weniger als 0,05 von der
Wahrscheinlichkeit für eine Sechs abweicht ?
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Lösung : Gesucht ist der kleinste Wert für r\ , so daß P {\H100 - < 0,05 ) P \ - rj .
Dazu nähern wir P {\X - / P | < 5) durch die Gaußsehe Integralfunktion <P
an . Berücksichtigen wir , daß X nur ganzzahlige Werte annehmen kann , dann
erhalten wir für den letzten Ausdruck die Form P ( 12 ^ X ^ 21 ) . Mit a = f ]/5
gewinnen wir die Näherung

P ( 12 ^ X g 21 ) « <P
01 100 _i 1— 6 ~T~ 2 0 u - m + i

= <P ( 1,2969) — <£ ( — 1,3864 ) =
= 0,90266 - 1 + 0,91717 =
= 0,81983 .

Rechnet man hingegen bequemlichkeitshal¬
ber so , als sei die Trefferanzahl X normal ver¬
teilt , dann erhält man unter Ausnutzung der
Symmetrie von (pflc7 (vgl. Figur 309. 1)
P ( \X - ^ \ < 5) «

W - 5) -
1 - 2 <2>

100
6

Fig . 309. 1

11/5
2 ^ (1 j/5 ) - 1 = 0,82026 .

P ^ X - ^ < 5) « l - 2 <2> (T - 5) - 100' 6

1̂

Die Tschebyschow- \Jng \<i \chung lieferte seinerzeit 44,4% ; der wahre Wert beträgt
hingegen 0,82210 . (Vgl . Seite 253 .)

Beispiel 2 : Wie oft muß ein L-Würfel mindestens geworfen werden, damit mit
einer Sicherheit von mindestens 60 % das arithmetische Mittel der Augenzahlen
um weniger als 0,25 vom Erwartungswert 3,5 abweicht ?
Lösung : Gesucht ist ein kleinstes n , so daß P ( \Xn — 3,51 < 0,25 ) + 60 % wird.

Auf Grund von Satz 212. 1 und Satz 212.2 gilt $ Xn = 3,5 und a ( Xj = 35
12

'

Nimmt man wegen des zentralen Grenzwertsatzes an , daß Xn näherungsweise
normal verteilt ist , dann kann man der Tabelle der cr-Bereiche bei normalverteil¬
ten Zufallsgrößen (Stochastik -Tabellen , Seite 45 ) für P ( \Xn — 3,51 < | ) + 60 %
den Wert t ;> 0,8416 entnehmen . Das ergibt dann mit ta = 0,25 die Bedingung

0,8416 • - L
yn

rg 0,25 o n ^ 33,05 . . . = 34 .

Die Tschebyschow-\Jng \Q\chxmg lieferte seinerzeit nmin = 117 .

Eine weitere Aufgabe desselben Typs enthält

Beispiel 2a : Wie oft muß man einen L-Würfel mindestens werfen , um mit einer
Sicherheit von mindestens 95 % zu erreichen , daß die relative Häufigkeit für eine
Sechs sich von ihrer Wahrscheinlichkeit um höchstens / unterscheidet ?

Lösung : Gesucht ist zu s = ^ ein kleinstes n , so daß P ( \Hn
- p | ^ e) ^ 95% , d. h.
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P (\ X - np \ ^ ne) A 95% wird . Wollte man diese Aufgabe so genau wie mög¬
lich lösen , dann müßte man vorher schon wissen , ob np ± ns ganzzahlig werden
oder nicht . Will man hier weiterkommen , so bleibt also nur anzunehmen , daß die
Zufallsgröße X — Anzahl der Treffer annähernd normal verteilt ist . Aus der
cr- Bereichstabelle erhält man dann mit P {\X — p \ % -̂ n ) A 95% für t die Be¬
dingung t % 1,9600. Somit

tö « A1 ,% l/ ^ n o n A 53,3 . . . => nmin = 54 .

Zusatz : Falls man nicht weiß , ob es sich um einen L-Würfel handelt , muß man
auf die Abschätzung pq ^ i zurückgreifen . Es ergibt sich dann

A 1,96 - \ ]/n o n A 96,04 = 97 .

Natürlich kommt man auch ohne die cr-Bc-
reichstabelle zum Ziel . Unter Ausnutzung der
Symmetrie von cpß<7 erhält man (vgl. Fi¬
gur 310. 1 ) :

<P p + ns — p A97,5 % ; für einen

L-Würfel also

3 ]/n<P - r - , > 0,975 o > 1,960051/5 ) ~
51/5 -

fi- ne |X [t+n£

Fig . 310 . 1 P ( \X — ju | ^ ne) = 95%.

nmin = 54 .

Auch die beiden Fragestellungen hinsichtlich der gesuchten Intervalle können
nun unter Umständen genauer behandelt werden .
Beispiel 3 : In welchem Intervall um p = \ liegt bei lOOmaligem Werfen eines
L-Würfels die relative Häufigkeit für die Augenzahl 6 mit einer Mindestwahr -
scheinlichkeit von 60% ?

Lösung: Gesucht ist ein kleinstes e, so daß P (\ / / 100 — | | < e) A 60% wird . Wir
formen um zu P ( \X — j < 100 «) L 0,6 und nehmen zur Vereinfachung an ,daß X angenähert normal verteilt ist . Für 60% erhalten wir aus der rr- Bereichs -
tabelle t A 0,8416. Also

100e = ta A 0,8416 - fj/5 => £ A 0,03136 . . .
Bedenkt man wieder , daß H 100 nur Hundertstelwerte aus [0 ; 1] annehmen kann ,so erhält man : Mit einer Wahrscheinlichkeit von mindestens 60% liegen die Werte
von Hio o (»Sechs«) im Intervall [0,14 ; 0,19] .
Die Tschebyschow-Ungle

'
ichung lieferte seinerzeit mit s A 0,0589 . . . das Intervall

[0, 11 ; 0,22] .

Beispiel 4 : Für welches Intervall kann man mit einer Sicherheit von mindestens
90% schließen , daß es die Wahrscheinlichkeit für eine Sechs enthält , wenn sichbei 100 Würfen h 10 0 ({ 6 }) = 0,18 ergeben hat ?
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Lösung : Gesucht ist für das Konfidenzintervall ~
] Hn - e ; Hn + e [ ein e , so daß

^ ( | tfioo ( { 6 } ) - / > ! < £) ^ 90 % o P {\X - 100/ » | < 1006 ) ^ 90 %

erfüllt ist ; dabei gibt X die Anzahl der Treffer an . Der cr-Bereichstabelle ent¬
nimmt man t 2: 1,6449. Also

100e = td ^ 1,6449 ]/ 100/ >( 1 — p ) e ^ 0,16449 \/p {l - p ) .
Da p ( \ — p ) ist die eingangs gestellte Bedingung sicherlich erfüllt , wenn
man e = 0,0823 wählt . Es ergibt sich also ein etwa halb so großes grobes Konfi¬
denzintervall / (0,18 ) <= ] 0,0977 ; 0,2623 [ wie bei der Abschätzung mit Hilfe der
Tschebyschow-Ungleichung .

Wir behandeln nun die Aufgabenstellung von Beispiel 4 allgemein so wie seiner¬
zeit auf Seite 258.
Gesucht ist also zum Konfidenzniveau 1 — t] ein e, so daß

P {\H„ — p \ < s) ^ . 1 — r] o R ( | X — np | < ne ) S: 1 — tj
erfüllt ist . Dazu entnimmt man der u-Bereichstabelle den zur Sicherheit 1 — rj
gehörenden r -Wert , der natürlich von rj abhängt . Bezeichnen wir ihn mit t {rj) ,
dann gilt

ne 2: t (rj) \/np ( l — p ) o e ^
~ P)

1fn
Man erhält daraus zu jedem Wert h„ von / /„
- das grobe Konfidenzintervall I (h„) , wenn man p ( 1 — p ) durch \ abschätzt , also

m = K - t {y ) .

2 lA
’ h „ + tiri)

- das Näherungskonfidenzintervall I (h„) , wenn man p durch die relative Häufig¬
keit h„ annähert , also

m = ,
- h„) _ u |

]/n
’ "

1A

- das echte Konfidenzintervall 3 (/?„) , dessen Grenzen die Lösungen der quadra¬
tischen Gleichung

= sind.
1/ n

Eine leichte Rechnung liefert mit den Werten von Beispiel 4

7 (0,18 ) c ] 0,116 ; 0,244[ bzw . 3 (0,18 ) <= ] 0,125 ; 0,252[ ,

also wiederum kleinere Werte als die Abschätzung durch die Ungleichung von
Bienayme-Tschebyschow.
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