
Stochastik

Barth, Friedrich

München, [20]03

17. 4. Signifikanztest

urn:nbn:de:hbz:466:1-83580

https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83580


17 .4 . Signifikanztest 345

Figur 345 . 1 zeigt in einer vereinfachten Darstellung die Feh¬
lerwahrscheinlichkeiten und die Sicherheiten , je nachdem ,
welche der beiden Hypothesen vorliegt .

Zum Abschluß geben wir noch einen Überblick über wich¬
tige Aufgabentypen beim Alternativtest . Der Einfachheit
halber handle es sich um Hypothesen über den Parameter p
einer Binomialverteilung .

Typ 1 : Stichprobenlänge n und kritischer Wert k sind gege¬
ben ; gesucht sind die Fehlerwahrscheinlichkeiten a! und ß '.

—-A— — A-
Q —

Typ 2 : Gegeben sind die Stichprobenlänge n und eine obere
Schranke a für die Wahrscheinlichkeit a '

, einen Fehler 1 . Art
zu begehen . Gesucht ist der sog . beste kritische Wert k , für
den a ' höchstens a und ß ' möglichst klein werden .

Typ 3 : Gegeben ist je eine obere Schranke a bzw. ß für die
Fehlerwahrscheinlichkeiten a ' bzw . ß '

. Gesucht ist eine mög¬
lichst kleine Stichprobenlänge n und ein dazu passender
kritischer Wert k . (Oft wird sich keine eindeutige Lösung
ergeben .) 0

Typ 4 : Gegeben sind die Stichprobenlänge n , die jeweiligen
Schäden bei den Fehlern 1 . bzw . 2. Art und die Wahrschein¬
lichkeiten für das tatsächliche Vorliegen der beiden Hypo¬
thesen . Gesucht ist derjenige kritische Wert k , für den der zu
erwartende Schaden minimal wird .

Fig . 345 . 1 Schematische Skizze für die Wahrscheinlichkeiten der
Fehler und der Sicherheiten beim Alternativtest .

17 . 4 . Signifikanztest

Die Situation eines Alternativtests , sich zwischen zwei einfachen Hypothesen ent¬
scheiden zu müssen , kommt in der Praxis selten vor , weil die Welt um uns dafür
zu kompliziert ist . Sehr viel häufiger stellt sich einem jedoch das folgende
Problem : Auf Grund irgendwelcher Erfahrungen oder Überlegungen hegt man
eine Vermutung , die nun durch einen Test , den sog. Signifikanztest , entweder be¬

stätigt oder widerlegt werden soll. Für diese Vermutung prägte R. A . Fisher

( 1890 - 1962) den Ausdruck Nullhypothese . Der Signifikanztest dient - wie sich

zeigen wird — dazu , die Frage zu beantworten , ob man mit gutem Grund eine

solche Nullhypothese ablehnen kann oder nicht .
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17 . 4 . 1 . Zusammengesetzte Hypothesen beim zweiseitigen Test

Der einfachste Fall eines Signifikanztests besteht zunächst einmal darin , daß die
Nullhypothese , über die entschieden werden soll , einfach ist , wogegen als Gegen¬
hypothese mehrere , meist sogar unendlich viele Hypothesen in Frage kommen .
Eine solche aus mehreren einfachen Hypothesen bestehende Hypothese heißt
zusammengesetzt.

Beispiel 1 : Zweiseitiger Test einer einfachen Nullhypothese über eine unbekannte
Wahrscheinlichkeit. Eine Urne enthalte 10 Kugeln , darunter womöglich auch
rote . Theodor behauptet , die Urne enthalte genau 7 rote Kugeln . Diese Behaup¬
tung ist also die einfache Nullhypothese . Die Gegenhypothese besteht aus 10
möglichen einfachen Hypothesen ; es können nämlich weniger oder mehr als 7
rote Kugeln in der Urne sein . Bezeichnet man den Anteil der roten Kugeln in
der Urne mit p , dann kann man diese beiden Hypothesen folgendermaßen kurz
charakterisieren :
Nullhypothese H 0 : p = jq
Zusammengesetzte Gegenhypothese H 1 : p e {0 , yö, -̂ , ■■■, tö , fö > ~iö ’ 1 }
Noch kürzer lassen sich die beiden Hypothesen abstrakt als Mengen von Para¬
metern darstellen ; in unserem Fall

H0 = {ttj } und = { 0 , xj , -nj, . . . ,
-fo , y|j , pjj , 1 } .

Die Menge II — H0 u H l ist die Menge aller zulässigen Parameter ; sie heißt
zulässige Hypothese.
Zur Durchführung des Tests ziehen wir eine Stichprobe von 6 Kugeln , der Ein¬
fachheit halber mit Zurücklegen . Testgröße Z ist die Anzahl der roten Kugeln
in der Stichprobe , für die 11 Wahrscheinlichkeitsverteilungen B (6 ; p ) möglich
sind . Damit läßt sich die zulässige Hypothese H auch als Menge aller Binomial¬
verteilungen B (6 ; p ) mit p e { 0,yVj , ■■■, re , 1 \ schreiben . Da iZ = 4,2 ist , falls
H0 vorliegt , halten wir die Ergebnisse »4 rote « bzw . »5 rote Kugeln « in der Stich¬
probe für verträglich mit H0 . Größere Abweichungen vom Erwartungswert S' Z
bezeichnet man als signifikante Abweichungen* . Wir halten sie normalerweise
nicht mehr für verträglich mit H0 . Da die Gegenhypothese sowohl kleinere als
auch größere p - Werte als pp enthält , wird man als Annahmebereich für H l zwei
getrennt liegende Intervalle wählen . Tests mit solchen Annahmebereichen heißen
zweiseitig. In unserem Beispiel liegt somit folgende Entscheidungsregel nahe :

[ Z g {0,1,2 , 3 } u { 6 } => Entscheidung für H x
[Z e {4,5 } => Entscheidung für H0

Wie beim Alternativtest haben wir auch hier 2 Möglichkeiten , Fehlentscheidun¬
gen zu treffen .

Fehler 1 . Art : Die Nullhypothese H0 trifft tatsächlich zu , aber Z g { 0,1,2 , 3,6 } ,
d . h . , es hat sich trotzdem eine signifikante Abweichung ergeben . Man würde

* significare (lat.) = anzeigen , verkünden .
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sich also fälschlicherweise für H l entscheiden . Die Wahrscheinlichkeit für einen
derartigen Fehler 1 . Art ergibt sich zu

* ' = 1,2 , 3,6 } ) = F *
7 (3 ) + B (6 ; 6) =

= 0,25569 + 0,11765 =
= 0,37334 « 37,3 % .

Fehler 2 . Art : Eine der 10 einfachen Hypothesen aus der zusammengesetzten Ge¬
genhypothese H 1 trifft tatsächlich zu , aber Ze {4 ; 5 } . Man müßte sich für H0
entscheiden . Und wie groß ist der Fehler , den man dann begeht ? Das ist gar
nicht so leicht zu beantworten ! Denn die Wahrscheinlichkeit für einen Fehler
2 . Art hängt nun davon ab , welche der einfachen Hypothesen , die die zusammen¬
gesetzte Hypothese H 1 bilden , tatsächlich vorliegt . Diese möglichen Fehler¬
wahrscheinlichkeiten ß ' hängen also von p ab :

ß '
{p ) = P/ ({4 ; 5 } ) = Fp

6
{5) - Fp

6
(3) .

Eine leichte Rechnung liefert Tabelle 347 . 1 , deren graphischer Ausdruck Figur
347 . 1 ist .

p ß ’
(p)

0 0
0,1 0,00127
0,2 0,01690
o.3 0,06974
o,4 0,17510
o,5 0,32813
0,6 0,49766
o,8 0,63898
o,9 0,45271
I 0

50%”

Tab . 347 . 1 und Fig . 347 . 1 Abhängigkeit der Wahrscheinlichkeit für einen Fehler 2. Art von
der tatsächlich vorliegenden einfachen Gegenhypothese zur Nullhypothese »p = 0,7«

Weil man mit dem Schlimmsten rechnen muß , interessiert man sich für den Maxi¬
malwert der Wahrscheinlichkeit für einen Fehler 2 . Art . In unserem Fall ist dies

J8
'
(Ä ) = 0,63898 « 63,9 % .

Dieser Wert ist so groß , daß man sich trotz der oben aufgestellten Entscheidungs¬
regel guten Gewissens nicht für H 0 entscheiden kann . Dieses schlechte Gewissen
bringt der Statistiker dadurch zum Ausdruck , daß er in diesem Fall sagt : »Man
kann die Nullhypothese H 0 nicht ablehnen (nicht verwerfen) .« Ronald Aylmer
Fisher ( 1890- 1962) schreibt dazu 1935 in The Design of Experiments :

»[. . .] it should be noted that the null hypothesis is never proved or established , but is possibly
disproved in the course of experimentation . Every experiment may be said to exist only in
Order to give the facts a chance of disproving the null hypothesis .«



348 17 . Das Testen von Hypothesen

Die Entscheidung eines Signifikanztests besteht also nicht in der Entscheidung für
H0 oder für / /, , sondern nur in der Ablehnung der Nullhypothese H0 . Eine
solche Entscheidung fällt man genau dann , wenn die Testgröße Z einen der signi¬
fikanten Werte aus {0,1 , 2 , 3,6 } annimmt . Man nennt diesen Annahmebereich
der Gegenhypothese den kritischen Bereich K . Wir müssen also die oben aufge¬
stellte Entscheidungsregel revidieren ! Bei einem Signifikanztest lautet sie

{ ZeK => Nullhypothese H0 wird abgelehnt .
[ Z eK => Nullhypothese H0 kann nicht abgelehnt werden .

In Worten : Ist der Ausfall der Stichprobe signifikant , so wird die Nullhypothese
abgelehnt , andernfalls beibehalten .
Im Falle ZeK fällt also eigentlich gar keine Entscheidung ! Weil dem so ist ,
interessiert man sich beim Signifikanztest nur für den Fehler 1 . Art , die Null¬
hypothese auf Grund eines signifikanten Ausfalls der Stichprobe zu verwerfen ,
obwohl sie zutrifft . Fußend auf den Erkenntnissen von Poisson ( 1781- 1840)
führte 1840 sein Schüler , der Arzt Louis -Dominique-Jules Gavarret *

, in seinem
Werk Principes generaux de statistique medicale ein , für die Wahrscheinlichkeit a!
dieses Fehlers l . Art eine obere Schranke a festzulegen . Diese obere Schranke a
nannte man später Signifikanzniveau des Tests . Die heute besonders häufig
verwendeten Signifikanzniveaus von 5% und 1% führte R . A . Fisher ein . Zu
einem vor Versuchsbeginn festgelegten Signifikanzniveau a wählt man einen
möglichst großen kritischen Bereich K so , daß die Wahrscheinlichkeit für einen
Fehler 1 . Art unter dem a-Niveau liegt . Stellt sich dann ein Versuchsergebnis ein ,
das zur Ablehnung der Nullhypothese führt , so sagt man , dieses Versuchsergebnis
sei signifikant auf dem Niveau a . Das Ergebnis des Tests wird in diesem Fall
üblicherweise so ausgedrückt :

»Die Nullhypothese H0 kann auf dem Signifikanzniveau a abgelehnt werden .«

Die statistische Sicherheit des Urteils hat dann mindestens den Wert 1 — a .

Versuchen wir nun zu a = 25% einen kritischen Bereich K für Theodors Ver¬
mutung H 0 — { 10 } bzw . H0 = »Z ist nach B (6 ; * ) verteilt « zu konstruieren .
Dem Problem angemessen setzt sich der kritische Bereich K aus zwei Intervallen
[0 ; /^ ] und [ /c 2 ; 6] zusammen . Es gäbe viele Möglichkeiten , die Fehlerwahr¬
scheinlichkeit a ' auf die beiden Teilintervalle aufzuteilen . Üblich ist es , k , und k2
so zu bestimmen , daß in jedem Teilbereich die Fehlerwahrscheinlichkeiten
höchstens ja sind . Das führt zu

PHo(Z g kJ ^ 12,5 % und PHo(Z ^ k2 ) S 12,5 % .
^ F0

6
n (kJ ^ 12,5 % und 1 - F0

6
7 (k2 - 1 ) £ 12,5 % .

Das ergibt mit Hilfe der Stochastik -Tabellen die Bedingungen
k1

-̂ 2 und fc2 = 6 , also K = [0 ; 2] u [6 ; 6] = {0,1,2 , 6 } .

* 28. 1. 1809 Astaffort - 31. 8. 1890 Valmont . Vor seinem Medizinstudium Artillerie -Offizier; 1843 wurde er auf den
Lehrstuhl für Physique medicale der Medizinischen Fakultät von Paris berufen .
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Hätte Theodors Stichprobe beispielsweise 2 rote Kugeln geliefert , so könnte
man seine Vermutung H0 , die Urne enthalte 7 rote Kugeln , auf dem 25 % -Niveau
ablehnen . Die Sicherheit des Urteils »Ablehnung von H 0« beträgt mindestens

Je niedriger das Signifikanzniveau , d . h . , je kleiner a ist , desto schärfer ist der
Test , aber desto seltener wird man H0 verwerfen können . Dies entspricht der
Erfahrung des täglichen Lebens : Klare Urteile kann man nur selten abgeben ,
verschwommene Aussagen (d . h . großes Signifikanzniveau !) sind hingegen sehr
leicht zu machen .
Wir fassen die Erkenntnisse aus Beispiel 1 zusammen in

Definition 349 . 1 :
Beschränkt man sich bei einem Test darauf , nur für die eine der beiden
Hypothesen die Wahrscheinlichkeit a ' der fälschlichen Ablehnung klein zu
machen , so spricht man von einem Signifikanztest . Man nennt diese Hypo¬
these dann Nullhypothese . Die gewählte obere Schranke a für die Irrtums¬
wahrscheinlichkeit a! heißt auch Signifikanzniveau . Ein Versuchsergebnis ,
das zur Ablehnung der Nullhypothese führt , heißt signifikant auf dem
Niveau a . Der Ablehnungsbereich für die Nullhypothese heißt kritischer
Bereich K des Tests , sein Komplement K gelegentlich Annahmebereich.
Besteht K aus einem einzigen Intervall , so heißt der Test einseitig . Wird K
durch K in zwei Intervalle aufgeteilt , dann heißt der Test zweiseitig .

Wie konstruiert man einen Signifikanztest ?

1 . Man formuliert eine Nullhypothese H 0 und die Gegenhypothese H t bzw . die

zulässige Hypothese H . Dabei - so / . Neyman 1939 in Genf auf einer vom
Völkerbund veranstalteten Tagung -

»hat sich mehr oder weniger eingebürgert , als Nullhypothese diejenige Hypothese zu
wählen , bei der die Fehler l .Art von größerer Bedeutung sind als die Fehler 2. Art .«

2. Man legt eine Testgröße Z fest.
3 . Man legt das Signifikanzniveau a des Tests fest.
4. Man konstruiert einen möglichst großen kritischen Bereich K so , daß

PBo (ZeK ) £ <x .
Besteht K aus zwei Teilintervallen K 1 und K2 , dann bestimmt man sie so ,
daß P (Z e Ky ) ^ \ a und P (Z e K 2) V i a erfüllt sind .

5 . Man entscheidet nach folgender Regel :

ZeK => / /0 wird abgelehnt .
ZeK => ll () kann nicht abgelehnt werden .

6 . Sicherheit des Urteils :
1 — a heißt statistische Sicherheit des Urteils »Ablehnung von H0 « , weil min¬

destens mit der Wahrscheinlichkeit 1 — a das Vorliegen von H 0 erkannt würde .
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Zur Veranschaulichung der statistischen Sicherheit stellen wir uns vor , daß n
Urnen zum Testen vorliegen . n 0 dieser Urnen enthalten tatsächlich 7 rote Kugeln .

Fig . 350 . 1 Zur Veranschaulichung des Be¬
griffs der statistischen Sicherheit

(In Figur 350. 1 mit (7 ) gekennzeichnet .) Auf Grund der Interpretationsregel für
Wahrscheinlichkeiten werden etwa a ' = 37,3 % dieser Urnen falsch bezeichnet .
Der Anteil der falsch bezeichneten Urnen des anderen Typs hängt davon ab , wie
viele rote Kugeln die Urne jeweils enthält .

Natürlich ist ein Test kein todsicheres Verfahren zur Trennung der beiden Hypo¬
thesen ; denn man muß immer Fehlermöglichkeiten in Kauf nehmen . Hören wir
dazu J . Neyman und E . S. Pearson :

»The tests themselves give no final verdict , but as tools help the worker who is using them to
form his final decision ; [. . .] .What is of chief importance in Order that a sound judgment may
be formed is that the method adopted , its scope and its limitations , should be clearly under -
stood «.*

17 . 4 . 2 . Zusammengesetzte Hypothesen beim einseitigen Test

Beispiel 2 : Einseitiger Test einer einfachen Nullhypothese über eine unbekannte
Wahrscheinlichkeit. Der Teetassen -Test von R . A . Fisher* * : Lady X . behauptet ,
sie könne es am Geschmack erkennen , ob der Tee zuerst in der Tasse war und die
Milch dazugegeben wurde oder ob man umgekehrt den Tee auf die Milch ge¬
gossen habe .
Wir glauben das nicht . Wir setzen , anders als R . A. Fisher , Lady X . 10 Tassen Tee
mit Milch vor , die in beliebiger - uns bekannter - Weise gefüllt worden sind .
* On the use and Interpretation of certain fest criteria for purposes of Statistical inference. Biometrika 20A (1928).
** Sir Ronald Aylmer Fisher (1890 - 1962 ) wählte in The Design of Experiments (1935 ) dieses Beispiel zur Einführung :
»A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion
was first added to the cup . We will consider the problem of designing an experiment by means of which this assertion
can be tested .«
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Lady X . probiert und macht 8mal eine richtige Angabe . Können wir Lady X. die
von ihr behauptete geradezu übernatürliche Fähigkeit zugestehen ?
Im Gegensatz zu Beispiel 1 aus 17 . 3 . 1 . ist das Ergebnis der Stichprobe bereits be¬
kannt . Eine solche Situation ist in der Praxis auch oft anzutreffen . Man könnte
nun zwar auch hier Vorgehen wie in Beispiel 1 , zu einem vorgegebenen Signifi¬
kanzniveau a einen kritischen Bereich bestimmen und überprüfen , ob das be¬
kannte Ergebnis des Zufallsexperiments zur Ablehnung der Nullhypothese
hinreicht . Statt dessen geht man oft anders vor und bestimmt zu dem eingetrete¬
nen Stichprobenergebnis das niedrigste Signifikanzniveau , auf dem man gerade
noch die Nullhypothese ablehnen könnte . Wir wollen diese andere Art eines
Signifikanztests hier weiter verfolgen . Dazu legen wir uns wieder ein mathema¬
tisches Modell für dieses reale Zufallsexperiment zurecht . Das Probieren der
Tassen entspricht einer Bernoulli -Kette der Länge 10 ; Treffer beim z-ten Versuch
ist das Ereignis »Lady X . beurteilt die z

'-te Tasse richtig « . Wenn Lady X . sich aufs
bloße Raten verlegte , könnte sie genausogut mit einer Laplace -Münze werfen . In
diesem Fall hätte also der Parameter der Bernoulli -Kette den Wert j . Besitzt
Lady X . hingegen eine Begabung der behaupteten Art , so ist die Wahrscheinlich¬
keit p für einen Treffer verschieden von j . p < j würde bedeuten , daß Lady X.
den Sachverhalt zwar mit gewisser Sicherheit richtig erkennen kann , ihn aber
verkehrt benennt . Das hätte sie wohl bei eigenen Versuchen längst selbst be¬
merkt . Es ist somit sinnvoll , als zulässige Hypothese die Menge H — {p \\ ^ p S 1 }
zu nehmen . Der Wert p ist also ein Maß für die Begabung von Lady X . ; je grö¬
ßer p ist , um so begabter ist sie . Wir wählen als Nullhypothese »Lady X . hat
keine Begabung « , kurz »Lady X . rät blind « , also H0 ■■= {J } , da uns hier ein Fehler
1 . Art , nämlich eine unbegabte Dame für begabt zu halten , schlimmer erscheint als
ein Fehler 2. Art , nämlich einer begabten Dame die Begabung abzusprechen . Neh¬
men wir als Testgröße Z die Anzahl der richtig geratenen Tassen , so besagt H0 , Z
besitzt die Wahrscheinlichkeitsverteilung B ( 10 ; ^) . Die Gegenhypothese lautet
»Lady X . ist begabt « also H i ■■= H \H 0 . Sie läßt sich nicht mehr durch endlich
viele Parameterwerte beschreiben ; alle Zahlen p e ] j ; 1] sind möglich . Es gibt
somit für die Zufallsgröße Z unendlich viele Wahrscheinlichkeitsverteilungen zu
dieser Hypothese , nämlich alle B ( 10 ; p ) mit p > \ - Da alle p -Werte der Gegen¬
hypothese auf derselben Seite bezüglich der Nullhypothese »p = j « liegen,
wählt man sinnvollerweise als kritischen Bereich ein Intervall K ■■= [k ; 10] , so daß
das Ereignis »Z 2; /c« zur Ablehnung der Nullhypothese führt . Würde man näm¬
lich als kritischen Bereich das Ereignis K ' ~ [0 ; kJ u [fc2 ; 10] wählen , so würde
man im Falle ZeK ' die Nullhypothese ablehnen , also Lady X . auch dann

Begabung bescheinigen , wenn sie nur wenige oder gar keine Tasse richtig benannt
hat , was sicherlich nicht erwünscht ist . Da K aus einem einzigen Intervall be¬
steht , handelt es sich also um einen einseitigen Test .
Unser Stichprobenergebnis lautet »Z = 8« . Wir müssen somit einen kritischen
Bereich wählen , der 8 enthält . Ein möglichst niedriges Signifikanzniveau erzielt

man , wenn man den kritischen Bereich möglichst klein wählt . Also entschließen
wir uns zu K ■■= [8 ; 10] . Für die Wahrscheinlichkeit a '

, einen Fehler 1 . Art zu

begehen , ergibt sich damit
V = PHo(Z e K ) = P$ {Z £ 8) = 1 - F0

10
s (l ) « 5,5 % .
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Beim üblichen Signifikanzniveau 5 % können wir die Nullhypothese »Lady X.
rät blind « nicht ablehnen . Ist man jedoch mit einem Signifikanzniveau von 5,5 %
oder höher zufrieden , so kann man die Nullhypothese »Lady X . rät blind « ab¬
lehnen und der Dame Begabung bescheinigen . Die statistische Sicherheit unseres
Urteils »Lady X . ist begabt « beträgt dann höchstens 94,5 % . Was heißt das ?
Wenn viele Ladies sich unserer Prüfung unterzögen , attestierten wir ca . 5,5 %
dieser Damen fälschlicherweise eine gewisse Begabung , weil sie 8 oder mehr Tas¬
sen richtig benennen , obwohl sie blind raten .
Was ist aber mit den begabten Damen ? Dieser Frage wollen wir im nächsten
Abschnitt nachgehen .

17 . 4 . 3 . Die Operationscharakteristik eines Tests

Beispiel 3 : Dem Teetassentest aus Beispiel 2 stellt sich eine Lady , die tatsächlich
über eine gewisse Begabung verfügt und mit der Wahrscheinlichkeit p = 0,6 die
Tassen richtig benennt . Mit welcher Wahrscheinlichkeit wird man ihre Bega¬
bung verkennen , wenn wir wie in Beispiel 2 als kritischen Bereich die Menge
K = [8 ; 10] nehmen ?
Die Wahrscheinlichkeit ß '

, einen solchen Fehler 2 . Art zu begehen , ergibt sich zu

ß ' = Pt % (ZeK ) = P0
10

6 (Z ^ 7) = Fq °
6 (7 ) « 83,3 % .

Solchen schwach begabten Damen wird mit unserem Test also oft unrecht getan !
Wäre die Begabung der Dame größer , z . B . p = 0,9 , so würden wir sie auch besser
erkennen ; es ergäbe sich nämlich ß ' = Fq % {1) x 7,0 % . Weil wir aber über die
Begabung der Damen , die sich dem Test unterziehen , nichts wissen , müssen wir
uns einen Überblick über alle Wahrscheinlichkeiten für einen Fehler 2 . Art ver¬
schaffen . Da diese Wahrscheinlichkeiten offensichtlich von p abhängen , betrach¬
ten wir die Funktion

ß ' : p » P} °
{ZeK ) , D, . = ] i ; 1] .

Mit Hilfe einer Wertetabelle können wir den Graphen dieser Funktion zeichnen
(Tabelle 353 . 1 und Figur 353 . 1 ).

Man erkennt , daß die Wahrscheinlichkeit ß ' für einen Fehler 2 . Art um so größer
wird , je weniger sich die Begabung vom blinden Raten (p = j ) unterscheidet . Da
die Definitionsmenge Dß , links offen ist , gibt es keine größte Irrtumswahrschein¬
lichkeit 2 . Art . Als Ersatz dafür nimmt man das Supremum aller Irrtumswahr¬
scheinlichkeiten 2 . Art , also den Wert 1 — a '

. Er ist in unserem Fall etwa 94,5 % .
Man riskiert also , mit einer Wahrscheinlichkeit bis zu 94,5 % begabte - wenn auch
sehr schwach begabte - Damen zu Unrecht für unbegabt zu halten . Wir können
trotzdem zufrieden sein : Der unangenehme Fall , daß eine Dame nur flunkert
und wir ihr dennoch hohe Sensibilität bescheinigen , tritt nur mit 5,5 % Wahr¬
scheinlichkeit ein . Daß wir andererseits u . U . einer wirklich begabten Dame ein
Unrecht antun , nehmen wir in Kauf in der Gewißheit , daß sich das Genie so oder
so eines Tages durchsetzen wird .



17 .4 . Signifikanztest 353

p ß ' = Pp
°

(Z ^ 7)

0,51 o,94
55 90
60 83
65 74
70 62
75 47
80 32
85 18
90 07
95 01
99 0001

1 0

Tab . 353 . 1 Wahrscheinlichkeit ß ' für
einen Fehler 2. Art beim kritischen
Bereich K = [8 ; 10]

0,9453-

Fig . 353. 1 Graph der Funktion ß ’ : p i—> Pp
°

(Z e K)

Setzt sich die Gegenhypothese nur aus endlich vielen einfachen Hypothesen zu¬
sammen wie bei Theodors Urne in Beispiel 1 von Seite 346 , dann besteht der
Graph von ß ' nur aus diskreten Punkten , so wie ihn Figur 347 . 1 zeigt . In einem
solchen Fall gibt es natürlich eine größte Irrtumswahrscheinlichkeit 2 . Art .
Es hat sich in der Statistik eingebürgert , die auf der Gegenhypothese H 1 defi¬
nierte Funktion p i—> ß ' (p ) auf die Menge aller beim Test betrachteten Hypo¬
thesen , d . h. auf die zulässige Hypothese H ■■= H 0 u 77, fortzüsetzen . Diese Funk¬
tion heißt dann Operationscharakteristik des Tests , kurz OC des Tests .

Definition 353 . 1 : Es sei auf dem ErgebnisraumQ der Testgröße Z eine Menge
von Wahrscheinlichkeitsverteilungen als zulässige Hypothese H gegeben .
Diese Verteilungen lassen sich durch einen Parameter p kennzeichnen .
A c Q sei ein Ereignis . Dann heißt die Funktion

OC : p h » Pp (A ) , Doc = H

die Operationscharakteristik des Ereignisses A bezüglich H . Ihr Graph
heißt OC -Kurve . *

Bemerkung : Der Parameter p muß nicht unbedingt eine Wahrscheinlichkeit
sein . So werden z . B . Poisson -Verteilungen durch den Parameter »Erwartungs¬
wert ß« , Normalverteilungen durch die Parameter p und a 2 gekennzeichnet .
Figur 354. 1 veranschaulicht am Beispiel des Ereignisses A — [4 ; 7] und an der
Schar B (16 ; p ) , pe [0 ; 1 ] , als zulässiger Hypothese das Zustandekommen der

* In der Literatur verwendet man vielfach noch die ursprünglich von Jerzy Neyman und E. S. Pearson zur Kenn¬

zeichnung der Güte oder Macht eines Tests eingeführte powerfunction = Gütefunktion g. Für sie giltg (/?) — 1 —OC(p).
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OC (0,7 )

OC (0 .8 )

OC (0,9 )

OC (0,1 )

OC (0,2 )

OC (0,3 )

OC (0,4 )

OC (0,5 )

OC (0,6 )

Fig . 354 . 1 Veranschaulichung der Entstehung der OC des Ereignisses A ■■= [4 ; 7] bezüglichder zulässigen Hypothese H ~ {B ( 16 ; p ) |p e [0 ; 1] }. Bedeutet fp die Dichtefunktion der
Binomialverteilung B ( 16 ; p ) , so läßt sich die Operationscharakteristik mittels eines Integrals

7,5
schreiben , nämlich OC : p \- > j fp (t ) dt .
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Operationscharakteristik : Zu jedem p gehört als Funktionswert

OC (p ) = Pp
i6

(ZeA ) = X B ( 16 ; />; /) •
i = 4

Bei einem Signifikanztest spricht man von der Operationscharakteristik der Ent¬
scheidungsregel 5 mit dem kritischen Bereich K , wenn man A = K wählt . Ihre
Funktionswerte OC (p) = P

p (K ) sind dann in Abhängigkeit von p die Wahr¬
scheinlichkeiten , mit denen man die Nullhypothese beibehält , gleich , ob diese
Entscheidung die richtige ist oder nicht . Für p e H l ist der Funktionswert Pp (K)
jeweils die Irrtumswahrscheinlichkeit 2 . Art , daß man nämlich die Nullhypothese
nicht ablehnt , obwohl sie nicht zutrifft . Für pe H 0 ist der Funktionswert Pp (K)
jeweils gleich der Sicherheit 1 — a! (p) , mit der die zutreffende Nullhypothese nicht
abgelehnt wird . Dabei ist a' (p ) die zu p e / / 0 gehörende Irrtumswahrscheinlichkeit
l . Art .

Übrigens kann auch die Nullhypothese H0 selbst zusammengesetzt sein . Neh¬
men wir etwaim Teetassentest von Beispiel 2 (17 . 4. 2 . ) als zulässige Hypothese
H ■■-= [0 ; 1] und als Nullhypothese H0 ■■= [0 ; 2] , dann ergäbe sich als Opera¬
tionscharakteristik des Ereignisses »Z g 7« die Funktion OC : p i- > Fp

°
{l ) ,

Z>oc = [0 ; 1 ] , deren Graph Figur 355 . 1 wiedergibt . Nun gibt es auch unendlich
viele Irrtumswahrscheinlichkeiten 1 . Art . Zur Charakterisierung des Tests genügt
es offenbar , die größte dieser Wahrscheinlichkeiten anzugeben .
Je nach Lage des kritischen Bereichs K haben die Graphen der Operations¬
charakteristik , kurz OC -Kurven genannt , eine typische Gestalt . Nehmen wir als

zulässige Hypothese die Menge aller Binomialverteilungen B {n ; p ) mit p e [0 ; 1] ,
so gibt es 4 besonders wichtige Typen . Der Nachweis der aufgeführten Eigen¬
schaften wird Aufgabe 372/48 Vorbehalten .

1) K == [0 ; /c] => OC : / » i—»• 1 — / £ (*:)
Ist K linksbündig , so ist die OC -Kurve
echt monoton steigend .

2) K := [k ; n\ => OC : p i- > Fj (k - 1)
Ist K rechtsbündig , so ist die OC -Kurve
echt monoton fallend .

3) K ■■= [0 ; kj ] u [k2 ; «] =>

OCl .ph - i ^ fcj - l ) - / ^ ! )

Ist K getrennt , so hat die OC -Kurve
einen inneren Hochpunkt .

4) K ■■= [k x ; k2] =>

OC : ^ h-> iJ ,
(k 1 - l ) + l - /5 ,

( fc2)

Ist K ein inneres Intervall , so hat die
OC -Kurve einen inneren Tiefpunkt .

Fig. 355 . 1 Operationscharakteristik des

Ereignisses »Z < 7« bezüglich H = [0 ; 1].
Vgl . Fig . 353 . 1
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Fig . 356 . 1 Die 4 wichtigen Typen von OC -Kurven bezüglich H = {B (n ; p ) \pe [0 ; 1] }, ver¬
anschaulicht mittels Binomialverteilungen B ( 10 ; p)

Wie man sich leicht überlegt , sind diese 4 Operationscharakteristiken Polynome
n-ten Grades in p . Figur 356 . 1 veranschaulicht sie für n = 10 .

Die OC -Kurve gibt uns einen Hinweis auf die Güte des Tests . Je steiler sie näm¬
lich in ihren Flanken ist , desto schneller werden die Irrtumswahrscheinlichkeiten
2 . Art klein . Im Idealfall wären für jedes peH 0 die Irrtumswahrscheinlichkeit
a ' (p ) = 0 und für jedes peH 1 die Irrtumswahrscheinlichkeit ß ' ip) = 0 . Dann
würde man nur richtige Urteile abgeben ! Die zugehörige OC -Kurve hätte über
H 0 konstant den Wert 1 und über H t konstant den Wert 0 . Figur 356.2 zeigt die
ideale OC -Kurve für eine einfache Nullhypothese , Figur 356. 3 für eine zusam¬
mengesetzte Nullhypothese .

10C (p)

P
)-

H„=[0;Po]

- 6 •
H,=]p0;1]

Fig . 356 .2 Ideale OC -Kurve für eine ein- Fig . 356 .3 Ideale OC -Kurve für eine zu¬
fache Nullhypothese H0 sammengesetzte Nullhypothese H0

Die OC -Kurven erweisen sich daher als praktisches Hilfsmittel , bei gegebener
Stichprobenlänge optimale Annahmebereiche zu finden . Figur 357. 1 zeigt die
OC -Kurven der Ereignisse »Z = 0« , »Z A 1 « , . . . , »Z rg 5« bezüglich der Schar
der Binomialverteilungen B (5 ; p ) , p e [0 ; 1 ] , als zulässiger Hypothese H . Man
entnimmt ihr z . B . , daß man für die Entscheidung zwischen den Hypothesen
H0 = {0,15 } und / / , = {0,4 } am besten das Ereignis »Z A 2« heranzieht , wenn
die Wahrscheinlichkeit für einen Fehler 1 . Art unter 5 % liegen soll . Ohne diese
Bedingung würde man sich für »Z gl 1 « entscheiden , weil dann a ' + ß ' minimal
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Fig. 357 . 1 Alternativtest für H0 = {0,15 } ,
Hi = {0,4 } und A = [0 ; k] mit k s {0,1,2 ,
3 , 4, 5}. Auswahl des optimalen Tests für
die Schranke a. = 5%

Fig . 357 .2 Illustration des Einflusses der
Stichprobenlänge n auf die Trennschärfe
H0 = {0,15 } ; Hi = {0,4 } ; A = [0 ; 0,2 «] ;
ne {5 ; 10 ; 20 ; 50 ; 100} .

wird . Ein Ereignis ist desto besser für eine Entscheidungsregel geeignet , je stärker

die OC -Kurve von dem einen der beiden in Frage kommenden p -Werte bis zum

anderen abfällt . Andererseits läßt sich der Einfluß der Stichprobenlänge n auf

die Trennschärfe des Tests an Hand der zugehörigen OC -Kurven beobachten

(Figur 357.2) . Wie erwartet fallen die OC -Kurven für größere n steiler von 1 auf

0 ab und trennen daher die Hypothesen besser . Für « —> oo hätte man einen

idealen Test mit senkrecht abfallender OC -Kurve . Die Trennung ist perfekt , die

Fehler haben die Wahrscheinlichkeit 0 .

17 . 5 . Überblick über die behandelten Testtypen
Siehe Seite 358 f.

17 . 6 . Verfälschte Tests
Bei einem Signifikanztest hat die Sicherheit des Urteils »Ablehnung der Null¬

hypothese « mindestens den Wert 1 — a , wobei a das Signifikanzniveau des

Tests ist . Da man natürlich gern möglichst sichere Urteile abgibt , wird man be¬

strebt sein , das Signifikanzniveau a möglichst klein zu halten . Wählt man nun a

und damit auch den kritischen Bereich K sehr klein , dann muß man leider in Kauf

nehmen , daß nur noch in seltenen Fällen die Nullhypothese abgelehnt werden

kann ; d . h . , der Test wird sehr häufig kein brauchbares Ergebnis liefern . Dieser

Sachverhalt könnte einen Tester nun in die Versuchung bringen , erst einmal den

Ausfall der Stichprobe abzuwarten und dann den kritischen Bereich K möglichst

eng um das Stichprobenergebnis herumzulegen und damit das Signifikanzniveau
recht klein zu machen . Der Versuchsausgang erschiene dann in einem besonders
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