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352 17 . Das Testen von Hypothesen

Beim üblichen Signifikanzniveau 5 % können wir die Nullhypothese »Lady X.
rät blind « nicht ablehnen . Ist man jedoch mit einem Signifikanzniveau von 5,5 %
oder höher zufrieden , so kann man die Nullhypothese »Lady X . rät blind « ab¬
lehnen und der Dame Begabung bescheinigen . Die statistische Sicherheit unseres
Urteils »Lady X . ist begabt « beträgt dann höchstens 94,5 % . Was heißt das ?
Wenn viele Ladies sich unserer Prüfung unterzögen , attestierten wir ca . 5,5 %
dieser Damen fälschlicherweise eine gewisse Begabung , weil sie 8 oder mehr Tas¬
sen richtig benennen , obwohl sie blind raten .
Was ist aber mit den begabten Damen ? Dieser Frage wollen wir im nächsten
Abschnitt nachgehen .
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Beispiel 3 : Dem Teetassentest aus Beispiel 2 stellt sich eine Lady , die tatsächlich
über eine gewisse Begabung verfügt und mit der Wahrscheinlichkeit p = 0,6 die
Tassen richtig benennt . Mit welcher Wahrscheinlichkeit wird man ihre Bega¬
bung verkennen , wenn wir wie in Beispiel 2 als kritischen Bereich die Menge
K = [8 ; 10] nehmen ?
Die Wahrscheinlichkeit ß '

, einen solchen Fehler 2 . Art zu begehen , ergibt sich zu

ß ' = Pt % (ZeK ) = P0
10

6 (Z ^ 7) = Fq °
6 (7 ) « 83,3 % .

Solchen schwach begabten Damen wird mit unserem Test also oft unrecht getan !
Wäre die Begabung der Dame größer , z . B . p = 0,9 , so würden wir sie auch besser
erkennen ; es ergäbe sich nämlich ß ' = Fq % {1) x 7,0 % . Weil wir aber über die
Begabung der Damen , die sich dem Test unterziehen , nichts wissen , müssen wir
uns einen Überblick über alle Wahrscheinlichkeiten für einen Fehler 2 . Art ver¬
schaffen . Da diese Wahrscheinlichkeiten offensichtlich von p abhängen , betrach¬
ten wir die Funktion

ß ' : p » P} °
{ZeK ) , D, . = ] i ; 1] .

Mit Hilfe einer Wertetabelle können wir den Graphen dieser Funktion zeichnen
(Tabelle 353 . 1 und Figur 353 . 1 ).

Man erkennt , daß die Wahrscheinlichkeit ß ' für einen Fehler 2 . Art um so größer
wird , je weniger sich die Begabung vom blinden Raten (p = j ) unterscheidet . Da
die Definitionsmenge Dß , links offen ist , gibt es keine größte Irrtumswahrschein¬
lichkeit 2 . Art . Als Ersatz dafür nimmt man das Supremum aller Irrtumswahr¬
scheinlichkeiten 2 . Art , also den Wert 1 — a '

. Er ist in unserem Fall etwa 94,5 % .
Man riskiert also , mit einer Wahrscheinlichkeit bis zu 94,5 % begabte - wenn auch
sehr schwach begabte - Damen zu Unrecht für unbegabt zu halten . Wir können
trotzdem zufrieden sein : Der unangenehme Fall , daß eine Dame nur flunkert
und wir ihr dennoch hohe Sensibilität bescheinigen , tritt nur mit 5,5 % Wahr¬
scheinlichkeit ein . Daß wir andererseits u . U . einer wirklich begabten Dame ein
Unrecht antun , nehmen wir in Kauf in der Gewißheit , daß sich das Genie so oder
so eines Tages durchsetzen wird .
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p ß ' = Pp
°

(Z ^ 7)

0,51 o,94
55 90
60 83
65 74
70 62
75 47
80 32
85 18
90 07
95 01
99 0001

1 0

Tab . 353 . 1 Wahrscheinlichkeit ß ' für
einen Fehler 2. Art beim kritischen
Bereich K = [8 ; 10]

0,9453-

Fig . 353. 1 Graph der Funktion ß ’ : p i—> Pp
°

(Z e K)

Setzt sich die Gegenhypothese nur aus endlich vielen einfachen Hypothesen zu¬
sammen wie bei Theodors Urne in Beispiel 1 von Seite 346 , dann besteht der
Graph von ß ' nur aus diskreten Punkten , so wie ihn Figur 347 . 1 zeigt . In einem
solchen Fall gibt es natürlich eine größte Irrtumswahrscheinlichkeit 2 . Art .
Es hat sich in der Statistik eingebürgert , die auf der Gegenhypothese H 1 defi¬
nierte Funktion p i—> ß ' (p ) auf die Menge aller beim Test betrachteten Hypo¬
thesen , d . h. auf die zulässige Hypothese H ■■= H 0 u 77, fortzüsetzen . Diese Funk¬
tion heißt dann Operationscharakteristik des Tests , kurz OC des Tests .

Definition 353 . 1 : Es sei auf dem ErgebnisraumQ der Testgröße Z eine Menge
von Wahrscheinlichkeitsverteilungen als zulässige Hypothese H gegeben .
Diese Verteilungen lassen sich durch einen Parameter p kennzeichnen .
A c Q sei ein Ereignis . Dann heißt die Funktion

OC : p h » Pp (A ) , Doc = H

die Operationscharakteristik des Ereignisses A bezüglich H . Ihr Graph
heißt OC -Kurve . *

Bemerkung : Der Parameter p muß nicht unbedingt eine Wahrscheinlichkeit
sein . So werden z . B . Poisson -Verteilungen durch den Parameter »Erwartungs¬
wert ß« , Normalverteilungen durch die Parameter p und a 2 gekennzeichnet .
Figur 354. 1 veranschaulicht am Beispiel des Ereignisses A — [4 ; 7] und an der
Schar B (16 ; p ) , pe [0 ; 1 ] , als zulässiger Hypothese das Zustandekommen der

* In der Literatur verwendet man vielfach noch die ursprünglich von Jerzy Neyman und E. S. Pearson zur Kenn¬

zeichnung der Güte oder Macht eines Tests eingeführte powerfunction = Gütefunktion g. Für sie giltg (/?) — 1 —OC(p).
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Fig . 354 . 1 Veranschaulichung der Entstehung der OC des Ereignisses A ■■= [4 ; 7] bezüglichder zulässigen Hypothese H ~ {B ( 16 ; p ) |p e [0 ; 1] }. Bedeutet fp die Dichtefunktion der
Binomialverteilung B ( 16 ; p ) , so läßt sich die Operationscharakteristik mittels eines Integrals

7,5
schreiben , nämlich OC : p \- > j fp (t ) dt .
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Operationscharakteristik : Zu jedem p gehört als Funktionswert

OC (p ) = Pp
i6

(ZeA ) = X B ( 16 ; />; /) •
i = 4

Bei einem Signifikanztest spricht man von der Operationscharakteristik der Ent¬
scheidungsregel 5 mit dem kritischen Bereich K , wenn man A = K wählt . Ihre
Funktionswerte OC (p) = P

p (K ) sind dann in Abhängigkeit von p die Wahr¬
scheinlichkeiten , mit denen man die Nullhypothese beibehält , gleich , ob diese
Entscheidung die richtige ist oder nicht . Für p e H l ist der Funktionswert Pp (K)
jeweils die Irrtumswahrscheinlichkeit 2 . Art , daß man nämlich die Nullhypothese
nicht ablehnt , obwohl sie nicht zutrifft . Für pe H 0 ist der Funktionswert Pp (K)
jeweils gleich der Sicherheit 1 — a! (p) , mit der die zutreffende Nullhypothese nicht
abgelehnt wird . Dabei ist a' (p ) die zu p e / / 0 gehörende Irrtumswahrscheinlichkeit
l . Art .

Übrigens kann auch die Nullhypothese H0 selbst zusammengesetzt sein . Neh¬
men wir etwaim Teetassentest von Beispiel 2 (17 . 4. 2 . ) als zulässige Hypothese
H ■■-= [0 ; 1] und als Nullhypothese H0 ■■= [0 ; 2] , dann ergäbe sich als Opera¬
tionscharakteristik des Ereignisses »Z g 7« die Funktion OC : p i- > Fp

°
{l ) ,

Z>oc = [0 ; 1 ] , deren Graph Figur 355 . 1 wiedergibt . Nun gibt es auch unendlich
viele Irrtumswahrscheinlichkeiten 1 . Art . Zur Charakterisierung des Tests genügt
es offenbar , die größte dieser Wahrscheinlichkeiten anzugeben .
Je nach Lage des kritischen Bereichs K haben die Graphen der Operations¬
charakteristik , kurz OC -Kurven genannt , eine typische Gestalt . Nehmen wir als

zulässige Hypothese die Menge aller Binomialverteilungen B {n ; p ) mit p e [0 ; 1] ,
so gibt es 4 besonders wichtige Typen . Der Nachweis der aufgeführten Eigen¬
schaften wird Aufgabe 372/48 Vorbehalten .

1) K == [0 ; /c] => OC : / » i—»• 1 — / £ (*:)
Ist K linksbündig , so ist die OC -Kurve
echt monoton steigend .

2) K := [k ; n\ => OC : p i- > Fj (k - 1)
Ist K rechtsbündig , so ist die OC -Kurve
echt monoton fallend .

3) K ■■= [0 ; kj ] u [k2 ; «] =>

OCl .ph - i ^ fcj - l ) - / ^ ! )

Ist K getrennt , so hat die OC -Kurve
einen inneren Hochpunkt .

4) K ■■= [k x ; k2] =>

OC : ^ h-> iJ ,
(k 1 - l ) + l - /5 ,

( fc2)

Ist K ein inneres Intervall , so hat die
OC -Kurve einen inneren Tiefpunkt .

Fig. 355 . 1 Operationscharakteristik des

Ereignisses »Z < 7« bezüglich H = [0 ; 1].
Vgl . Fig . 353 . 1
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Fig . 356 . 1 Die 4 wichtigen Typen von OC -Kurven bezüglich H = {B (n ; p ) \pe [0 ; 1] }, ver¬
anschaulicht mittels Binomialverteilungen B ( 10 ; p)

Wie man sich leicht überlegt , sind diese 4 Operationscharakteristiken Polynome
n-ten Grades in p . Figur 356 . 1 veranschaulicht sie für n = 10 .

Die OC -Kurve gibt uns einen Hinweis auf die Güte des Tests . Je steiler sie näm¬
lich in ihren Flanken ist , desto schneller werden die Irrtumswahrscheinlichkeiten
2 . Art klein . Im Idealfall wären für jedes peH 0 die Irrtumswahrscheinlichkeit
a ' (p ) = 0 und für jedes peH 1 die Irrtumswahrscheinlichkeit ß ' ip) = 0 . Dann
würde man nur richtige Urteile abgeben ! Die zugehörige OC -Kurve hätte über
H 0 konstant den Wert 1 und über H t konstant den Wert 0 . Figur 356.2 zeigt die
ideale OC -Kurve für eine einfache Nullhypothese , Figur 356. 3 für eine zusam¬
mengesetzte Nullhypothese .

10C (p)

P
)-

H„=[0;Po]

- 6 •
H,=]p0;1]

Fig . 356 .2 Ideale OC -Kurve für eine ein- Fig . 356 .3 Ideale OC -Kurve für eine zu¬
fache Nullhypothese H0 sammengesetzte Nullhypothese H0

Die OC -Kurven erweisen sich daher als praktisches Hilfsmittel , bei gegebener
Stichprobenlänge optimale Annahmebereiche zu finden . Figur 357. 1 zeigt die
OC -Kurven der Ereignisse »Z = 0« , »Z A 1 « , . . . , »Z rg 5« bezüglich der Schar
der Binomialverteilungen B (5 ; p ) , p e [0 ; 1 ] , als zulässiger Hypothese H . Man
entnimmt ihr z . B . , daß man für die Entscheidung zwischen den Hypothesen
H0 = {0,15 } und / / , = {0,4 } am besten das Ereignis »Z A 2« heranzieht , wenn
die Wahrscheinlichkeit für einen Fehler 1 . Art unter 5 % liegen soll . Ohne diese
Bedingung würde man sich für »Z gl 1 « entscheiden , weil dann a ' + ß ' minimal
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Fig. 357 . 1 Alternativtest für H0 = {0,15 } ,
Hi = {0,4 } und A = [0 ; k] mit k s {0,1,2 ,
3 , 4, 5}. Auswahl des optimalen Tests für
die Schranke a. = 5%

Fig . 357 .2 Illustration des Einflusses der
Stichprobenlänge n auf die Trennschärfe
H0 = {0,15 } ; Hi = {0,4 } ; A = [0 ; 0,2 «] ;
ne {5 ; 10 ; 20 ; 50 ; 100} .

wird . Ein Ereignis ist desto besser für eine Entscheidungsregel geeignet , je stärker

die OC -Kurve von dem einen der beiden in Frage kommenden p -Werte bis zum

anderen abfällt . Andererseits läßt sich der Einfluß der Stichprobenlänge n auf

die Trennschärfe des Tests an Hand der zugehörigen OC -Kurven beobachten

(Figur 357.2) . Wie erwartet fallen die OC -Kurven für größere n steiler von 1 auf

0 ab und trennen daher die Hypothesen besser . Für « —> oo hätte man einen

idealen Test mit senkrecht abfallender OC -Kurve . Die Trennung ist perfekt , die

Fehler haben die Wahrscheinlichkeit 0 .

17 . 5 . Überblick über die behandelten Testtypen
Siehe Seite 358 f.

17 . 6 . Verfälschte Tests
Bei einem Signifikanztest hat die Sicherheit des Urteils »Ablehnung der Null¬

hypothese « mindestens den Wert 1 — a , wobei a das Signifikanzniveau des

Tests ist . Da man natürlich gern möglichst sichere Urteile abgibt , wird man be¬

strebt sein , das Signifikanzniveau a möglichst klein zu halten . Wählt man nun a

und damit auch den kritischen Bereich K sehr klein , dann muß man leider in Kauf

nehmen , daß nur noch in seltenen Fällen die Nullhypothese abgelehnt werden

kann ; d . h . , der Test wird sehr häufig kein brauchbares Ergebnis liefern . Dieser

Sachverhalt könnte einen Tester nun in die Versuchung bringen , erst einmal den

Ausfall der Stichprobe abzuwarten und dann den kritischen Bereich K möglichst

eng um das Stichprobenergebnis herumzulegen und damit das Signifikanzniveau
recht klein zu machen . Der Versuchsausgang erschiene dann in einem besonders
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