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1 . Kapitel
Aufgaben zu 1 . 1

8/1 . Richtiger Umlaufsinn bei BLEI , BEIL , BILE.

8/2 . PIRA , PIAR , PRIA , PISA , ISAR .

i) nein k) nein

9/4 . a + a * + ß + ß * + y + y * + 5 + <5 * = 4 - 180°

ot + ß + y + ö + x * + ß * + y * + ö * = 720°

Wegen a + ß + y + ö = 360° gilt aber auch a * + ß * + y * + ö * = 360° .

Aus e < a + b , e < c + d , f < b + c , f < a + d folgt
durch Addition 2e + 2f < 2u , also e + f < u .

folgt durch Addition 2e + 2f > u , also e + f > — .

c) Aus e ! + fx > a , e2 + f2 > c folgt durch Addition e + f > a + c .
Aus fx + e2 > b , f2 + > d folgt durch Addition e + f > b + d .
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9/6 . a) Dreieck BCD ist konstruierbar aus b , y und c . Die Kreise um D mit r = d
bzw . um B mit r = a schneiden sich in A .

b) Dreieck ABC ist konstruierbar aus a , ß und b . Der Kreis um B mit r = 11
schneidet den freien Schenkel von a in D .

c) Dreieck ABC ist konstruierbar aus a , ß und b . Der Kreis um C mit r = 2
schneidet den freien Schenkel von y in D .

d) Dreieck ABC ist konstruierbar aus a , b und AC . Der Kreis um B mit r = 10
schneidet den freien Schenkel von Winkel ACD in D .

e) Dreieck ABD ist konstruierbar aus a , d und Winkel ADB . Die freien Schenkel
von Winkel CDB und Winkel CBD schneiden sich in C.

9/7 . Dreieck ABD ist konstruierbar aus a , a und d . Der Thaieskreis über [BD ]
schneidet den Kreis um D mit r = 2,5 in C.

9/8 . KLMN ist ein Parallelogramm .

9/9 . Es ergeben sich die Punkte S a (5 | 6,5) , S b (2,51 6) , S c (3,513,5 ) , S d (4,514) und
S (414,5) . Die Vierecke haben parallele Seiten : SaSb | | AB , SbS c | | BC , S cSd | | CD ,
S d S a | | DA und damit auch gleich große Winkel . Außerdem sind die Seiten des
Vierecks ABCD jeweils gerade dreimal so lang wie die des Vierecks S a S b S cS d .

9/10 . Es ergeben sich die Punkte E (417) , Ta (715 ) , Tb ( 10111 ) , Tc (5111 ) , Td (215 ) , T (618 ) ,
Sa (9111 ) , S b (419) , Sc (6 | 5) , Sd (919) und S (8 | 9) . Viereck Ta Tb Tc Td ist ein Paral¬
lelogramm . Die Ecken des Vierecks S a S b S c S d liegen auf den Seiten dieses Par¬

allelogramms . Die Punkte E , T und S liegen auf einer Geraden , wobei T der

Mittelpunkt der Strecke [ES] ist .

Aufgaben zu 1 .2

17/1 . a) 7 = 75 °
, ß = <5 = 105 ° b) a = y = 108 °

, ß = ö = 72°

c) ß = y = ö = 90 ° d) a = 8 = 135 °
, ß = y = 45 ° .

17/2 . a) Rechteck b) Rechteck c) Rechteck d) Rechteck

e) Raute f) Rechteck g) Quadrat .

17/3 . Gleichschenkliges Trapez .

17/4 . a) nein (z . B . gleichschenkliges Trapez ) b) ja c) ja
d) ja e) nein (z . B . gleichschenkliges Trapez ) f) ja (Rechteck )

g) nein (z . B . Drachenviereck ) h) ja (Raute ) .

17/5 . Die Wege sind gleich (unabhängig von der Lage von P auf [AB] ) .

17/6 . a) Raute b) Raute c) Rechteck d) Raute .

17/7 . Es gilt : AB = DC = PQ und AB = DC = PQ . Also ist AB = PQ und AB | | PQ
und damit ABPQ ein Parallelogramm .
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17/8. Es sei Z der Diagonalenschnittpunkt . Bei einer Punktspiegelung an Z wird das
Parallelogramm auf sich abgebildet , der Kreis ist Fixkreis bei derselben Punkt¬
spiegelung .
Deshalb ist Z identisch mit dem Kreismittelpunkt M . Die Diagonalen des Paralle¬
logramms sind also Kreisdurchmesser , und das Parallelogramm hat nach Thaies
rechte Winkel ; es ist damit ein Rechteck .

17/9. a) Wenn ein TrapezABCD bei A einen rechten Winkel hat , so ist wegen AB | | DC
die Gerade AD auch Lot zu DC => £ D = 90 ° .

b) Rechteck .

18/10. ff = 2a (bzw . ff = 180 ° — 2a) .

18/11. Wenn a und c die Grundseiten des Trapezes ABCD sind , gilt :

a + <5 ß + v
a + <5 = 180 ° und ß + y = 180 °

, also - = 90 ° = - — - .
2 2

=> £ (wa , wä) = 90°
, (wß , wy) = 90 °

, d . ,h . die Schnittpunkte der Winkelhal¬
bierenden liegen auf den Thaieskreisen über den Schenkeln .

18/12. B (3,511 ) , C (715,5) .

18/13 . Man findet die 4 gesuchten Punkte als Schnittpunkte der beiden Parallelenpaare.

18/14 . a) Teildreieck ABD konstruieren b) Teildreieck ACD konstruieren
c) Teildreieck ABC konstruieren d) Teildreieck BCM konstruieren
e) Teildreieck BCM konstruieren
f) a antragen , Kreis um B mit r = b , Parallele zu a im Abstand 5

g) a antragen , a antragen , Parallele zu a im Abstand 6
h) 2 Parallele im Abstand 6 zeichnen , B wählen und Kreis um B mit r = b , Kreis

um B mit r = f
i) 2 Geraden mit dem Schnittwinkel a zeichnen , dazu die Parallele im Abstand 5

bzw . 7 konstruieren

j) Parallelenpaar im Abstand 4 zeichnen , A wählen , Kreis um A mit r = e ergibt
C . Der Thaieskreis über [AC ] und der Kreis um C mit r = 2 schneiden sich im
Hilfspunkt E auf AD .

18/16 . a) B (2,717) , b) B (4,l 12 ) , U (4,l 18)

a ö
18/17 . Wegen a + <5 = 180 ° gilt - + - = 90 °

, d . h . , w„ und ws schneiden sich unter einem

Winkel von 90 °
. Dasselbe gilt für die übrigen Schnittpunkte .

18/18 . dEDC ist gleichschenklig , also ED = EC; ZlFBD ist gleichschenklig , also
FB = FD .
Insgesamt gilt also : AE + ED + DF + AF = AC + AB .



18/19 . Die Diagonale [BD] wird jeweils von den parallelen Seitenhalbierenden gedrit¬
telt . Da die Lage der Teilungspunkte eindeutig ist , müssen sich die Seitenhalbie¬
renden auf [BD] schneiden .

19/20 . a) Beide Dreiecke sind gleichschenklig und haben die gleichen Winkel (a ist der

Winkel an der Spitze ) .
180 ° - <x 180 ° - a

b) * NCD + * DCB + £ BCM = - -- + a + - -- = 180° .

19/21 . a) M sei der Schnittpunkt von [AC ] und [BD] , Bei der Punktspiegelung an M
wird der Thaieskreis k t über [AD ] auf den Thaieskreis k 2 über [BC] abgebil¬
det , die Gerade AC fällt mit ihrem Bild zusammen . Der Schnittpunkt E ist also
das Bild von Schnittpunkt F. Da D bei derselben Punktspiegelung auf B abge¬

bildet wird , gilt DF = BE .
b) Da nach a) FBED ein punktsymmetrisches Viereck ist , muß es ein Parallelo¬

gramm sein .

19/22 . a) Wegen a = y und ß = 8 gilt :

£ FDE £ EBF ,

= 360° - a - - ö ,2£ DEB = 360°

<5 3
£ BFD = 360° - - - y - ß = 360° - a - - 8

2 2

Also ist Viereck FBED ein Parallelogramm .
b) W ist Symmetriezentrum von [DB ] . Da FBED ein Parallelogramm ist , muß W

auch Symmetriezentrum von [EF ] sein .
c) AFCE ist ein punktsymmetrisches Viereck (Symmetriezentrum W) .

19/23 . Das neue Dreieck enthält 3 Parallelogramme , nämlich ABCB '
, ABA ' C und

AC ' BC '
. Für den Umfang von Dreieck A ' B ' C ' gilt also :

u = 2c + 2b + 2a = 2 (a + b + c) .

19/24 . G liegt punktsymmetrisch zu E , F liegt punktsymmetrisch zu H ; also ist EFGH ein

punktsymmetrisches Viereck .

19/25 . Der Schnittpunkt von AM C und ma sei S . AM a M c D ist ein Parallelogramm , weil

AM a | | M CD und AM a = DM C. Da [AM C] von S halbiert wird , muß auch die
andere Diagonale [DM C] durch das Symmetriezentrum S laufen . (Analoge Be¬

gründung für den anderen Schnittpunkt .)

6



t-

:r

VI
il-
30

e-

o-

W

nd

eil
iie
k -

19/26 . a) M sei der Mittelpunkt des Quadrats . Bei einer Drehung um M mit (p = 90°

wird D auf D ' = A und A auf A ' = B abgebildet . T ' liegt also auf AB und V '

auf DC (analoge Begründung ) . Weiter gilt T ' V' = TV und TV _LT ' V '
. Da

auch UU ' Lot von TV ist , gilt UU '
| | T ' V '

. [UU '] und [T ' V '] sind also paralle¬
le Querstrecken und somit gleich lang .

b) Man zeichnet z . B . von W aus
die Lotstrecke [WU ] mit
WU ' = TV .
Auf UU ' liegt eine Quadratseite ;
auf dem Lot k von V auf UU '

liegt die 2 . Quadratseite , auf dem
Lot I von W auf k die 3 . Quadrat¬
seite und auf dem Lot von T auf I
die 4 . Quadratseite .

19/27 . a) Z sei der Mittelpunkt von [AC] . Die Punktspiegelung an Z bildet [AB] auf

[CD ] ab , M wird wegen AM = CP auf P abgebildet . Ebenso wird Q bei dersel¬
ben Punktspiegelung auf N abgebildet . AMQ wird also auf £ CPN abgebil¬
det , d . h . £ AMQ = CPN .

b) Nach a) ist Viereck MNPQ punktsymmetrisch , also ein Parallelogramm .
c) Da das Parallelogramm MNPQ dasselbe Symmetriezentrum Z wie ABCD hat,

schneiden sich seine Diagonalen ebenfalls in Z .

20/28 . a) Der Kreis um M (518,5) mit r = 6,5 schneidet das Parallelogramm in den Ek-
ken des gesuchten Rechtecks .

b) Der Kreis um M (518,5) mit r = 3 schneidet das Parallelogramm in 4 Punkten .
Dies sind zwei Paare von gegenüberliegenden Ecken der Raute . Die anderen
Eckpunkte liefern die Schnittpunkte der zur ersten senkrechten Diagonale
(durch M ) mit dem Parallelogramm .

20/29 . a) Auf Grund der Spiegelungen sind die Seiten des Dreiecks La Lb Lc Mittellinien
in den Teildreiecken von Dreieck Sa S b S c , also halb so lang wie diese .
Wegen der Parallelität der Seiten sind die Winkel gleich groß ,

b) Auf Grund der Spiegelungen sind die Seiten des Dreiecks ABC Mittellinien in
den Teildreiecken von Dreieck S A S B S C, also halb so lang wie diese .
Wegen der Parallelität der Seiten sind die Winkel gleich groß .

20/30 . a) Da gegenüberliegende Seiten gleich lang und parallel sind , ergibt sich ein Par¬
allelogramm .

b) Die Mittellinie m des Trapezes ist halb so lang wie AD '
, also

1 1
m =

2 (a + c '
) =

2
+ c) '
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1/1 \ 3 1 1/1 \ a 3
20/31 . ni ! = - la + - (a + c) j

=
^ a + - c , m 2 = - ( - (a + c) + c \ = - + - c

20/32 . a) Strecke [EF ] mit E (2,511,25 ) und F (2,5 | 5) ,
b) Strecke [EF ] mit E (2,5 | 0) und F (2,5 | 5) .

20/33 . a) ADB = a , da Dreieck ABD gleichschenklig ist . Wegen AB | | DC gilt
a + £ ADB + * BDC = a + a + <S2 = 180 ° .
£ CDB ' = a + a + S 2 = 180 °

, da £ B ' DA = a . Also liegt B ' auf DC .
b) Wegen B ' D = DB = DC = a halbiert D die Strecke [ B ' C] ,
c) Das Viereck ist eine Raute wegen 4 gleich langer Seiten .

20/34 . Man wählt einen Punkt W auf einer der Parallelen . Der Kreis um W mit r = 7
schneidet die andere Parallele in U und V. Die Parallelen zu WU und WV durch A
sind die beiden Lösungen . Falls die Querstreckenlänge kleiner als 5 ist , gibt es
keine Lösung .

20/35 . a) [M a M b] ist Mittellinie im Dreieck ABC , also gilt M a M b | | AC und

M a M b
AC
T

~ '

[M c M d] ist Mittellinie im Dreieck ACD , also gilt M c M d | | AC und
- ÄC
M c M d = — .

Wegen M a M b | | M c M d und M a M b = M c M d ist also M a M b M c M d ein Paralle¬
logramm .

- d
b) [Ma N] ist Mittellinie im Dreieck ABD , also gilt Ma N | | AD und Ma N =

- d
[M CM] ist Mittellinie im Dreieck ACD , also gilt M CM | | AD und M CM = — .

M a NM c M ist deshalb ein Parallelogramm mit M a N | | d und M CM | | d . Da
- - b

weiter [M a M ] Mittellinie im Dreieck ABC ist , gilt M a M = M CN = — und
MM a | | b | | M CN .

2

c) Falls das Viereck ABCD zwei aufeinander senkrecht stehende Diagonalen hat,
so entsteht ein Rechteck .
Falls das Viereck ABCD zwei gleich lange Diagonalen hat , entsteht eine Rau¬
te .
Falls das Viereck ABCD zwei gleich lange Diagonalen hat , die aufeinander
senkrecht stehen , so entsteht ein Quadrat .

21/36 . a ) Da das Mittendreieck bekannt ist , erhält man die Eckpunkte des gesuchten
Dreiecks als Schnittpunkte der zu den gegebenen Mittellinien parallelen Ge¬
raden durch die Ecken des Mittendreiecks .



b) M sei der Mittelpunkt von [MaMJ . Die Parallele zu MaMc durch Mb und
die Parallele zu MM b durch M a bzw . M c schneiden sich im Eckpunkt B bzw .
C . A und D erhält man durch Punktspiegelung .

c) £ PVW = * VWQ = 90°
VP und WQ liegen nach Konstruktion punktsymmetrisch bezüglich M . Spie¬
gelt man W an M , so liegt der Bildpunkt W ' auf dem Kreis k und auf VP.
Nach Thaies gilt also £ W 'VW = £ PVW = 90° (analog für -fc VWQ ) .

21/37 . a) M sei der Mittelpunkt des Kreises . Dreieck AMC ist gleichschenklig , da

AM = MC = r MAC = -fc ACM = 90° - a , £ CMA = 2a ) . Ebenso ist
3

Dreieck ADM gleichschenklig mit •£ DAM = -£ MDA = - oc — 90 ° und

< AMD = 360° - 3a . Da auch Dreieck MDC gleichschenklig ist , folgt

* CDW = 90 +* DMC = « und i CDM = £ MCD = 90

— 90 ° = a . Wegen der Symmetrie bezüglich WC gilt auch WEC = a .
< AWB = DWE = 180 ° - a . Wegen der Winkelsumme im Viereck gilt wei¬
ter : £ ECD = 360° - a - a - (180° - a) = 180 ° - a . Die Gegenwinkel im
Viereck WDCE sind also gleich groß , deswegen ist es ein Parallelogramm .
(Der vorliegende Beweis setzt a Si 60 ° voraus , für a < 60 ° verläuft er im Prin¬
zip genauso .)

b) Wegen ED | | AB gilt EDW = - (Z-Winkel)

c) EWDC ist eine Raute , da beide Diagonalen Winkelhalbierende sind.

21/38 . a) Da Dreieck EDC gleichschenklig ist (Basiswinkel : 90 ° —
^ ) , gilt CE = CD .

b) EMC ist Mittellinie im Dreieck ABF , halbiert also auch [AF ] ,
c) [BD] liegt symmetrisch zu [EF] , also BD = EF . Nach b) gilt EF = AE .

d

a - - 2a 2 AE 1 / 1
CD = a -f- BD = + ——— — - (a + a -f- 2 AE ) — — (a + b)

i -

t ,
AE = b - CD = b — - (a + b ) = - (b — a)

d) £ MCBD = m ° - ß , BDM C = 90 ° — ^

£ BM CD = 180° — (180° — ß ) = ß - 90 ° + 7
2
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2 '21/39 . Gegeben sei der Winkel ASB . Gilt SA = SB = 8 , so liegen die gesuchten Paral¬
lelogrammecken auf ]AB [ .
TB = TP

=> £ TBP = £ BPT = 90 ° - -
2

RP = RA

=> £ RPA = £ PAR = 90° - “

also : BPA = a + 2 • ( 90 ° — - ) = .
V 2/ S R A

21/40 . a) Der geometrische Ort für D entsteht durch Parallelverschiebung des gegebe¬
nen Kreises um 4 nach links . Die Endpunkte A ' und B ' der verschobenen Sehne
[A ' B '] sind auszunehmen .

b) A AMC ist gleichschenklig mit der Spitze M . Da Z die Basis [AC] halbiert , ist
[MZ ] Höhe im Dreieck AMC .
Also gilt : £ AZM = 90 °

. Damit ist der geometrische Ort für Z der Thaieskreis
über [AM ] ohne Punkt A und Punkt N (Mittelpunkt von [AB] ) .

Aufgaben zu 1 .3

26/1 . a) WA = LD b) AL | | WD c) * A = * L d) * A + £ W = 180 °

e) £ A + -£ D = 180 ° f) WL = AD .

26/2 . a) M (5,815,7) , B (2,615,8) b) A (7,6 | 3,3) , M (2,311,7 ) c) U (7,8 | 3,l ) .

26/3 . a) ÄR = AT b) RI = IT c) £ R = 9: T
d) * RAI = £ IAT e) RT 1 AI .

26/4 . a) Raute b) Quadrat .

26/5 . a) T (315 ) , b) T (5,919,2) , N ( - 0,313,2 ) , ^
c) I (2 | 4) , A (5,2 | 7,1 ) .

27/6 . LS = SA = AE 4= EL (Man beachte den
Unterschied zwischen „haben “ und „bestehen “

.) . \ /

27/7 . Falsch sind : b) , c) , d) , e) . Gegenbeispiel :
Richtig sind alle Sätze für die Raute .

' K /

27/8 . Quadrat .

27/10 . Parallelogramm

27/9 . a) Raute b) Quadrat .

27/11 . Drachen .
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27/12. a) Rechteck b) Raute c) Rechteck d) Raute e) Quadrat .

27/14 . Man konstruiert w* . w„ nBC = { G } .

27/15 . Die Raute besteht aus 2 gleichseitigen Dreiecken . Eine Diagonale ist so lang wie
die Seiten .

28/16 . a) 1 (3 116) , Drachenviereck , gleichschenkliges Trapez . '
b) U (2210) , Windvogel , gleichschenkliges Trapez.
c) R (0 | 0) , Windvogel , Strecke.

28/17 . EB + BF = d (PI ; OT )
(unabhängig von der Lage von B ) .

P

0

28/18 . a) LB ist parallel zu MN , da MN Mittelparallele ist .
a + c

und MNAußerdem gilt : LB = - und MN =& 2
a — c

Also ist Viereck LBNM ein Parallelogramm .
b) Der Mittelpunkt Z von [MN ] liegt auf der Symmetrieachse g des Trapezes.

Fällt man von D aus das Lot auf a (Lotfußpunkt K ) , so ist KLCD ein Rechteck
mit den Symmetrieachsen g und MN , die sich in Z schneiden . Also liegt auch D
punktsymmetrisch zu L bezüglich Z , und somit ist LNDM ein Parallelo¬
gramm .

c) Aus b) folgt ML | | BD , also ist Viereck LBDM ein Trapez.

28/19 . Da das Lot auf die Grundseiten auch Lot der Mittellinie ist , stehen die Diagonalen
aufeinander senkrecht . Da die Diagonale durch die Schenkelmitten die andere
halbiert , ist das Viereck ein Drachenviereck .
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28/20 . M a M b ist Mittellinie , also parallel zu c
und zu M CH C.
Wegen SC = SH C und je M a SC = 90 ° ist
Dreieck H c M a C gleichschenklig mit der
Symmetrieachse M a S . Also gilt :
£ CM a S = je SM a H c = ß .
Wegen der Parallelitäten gilt
auch je M c M b M a = ß . Also
ist M c H c M a M b ein gleich¬
schenkliges Trapez .

' cc \

Mo

28/22 . Wegen je LBA = £ ALB ist Dreieck ABL gleichschenklig mit der Symmetrieach¬
se wB. Also ist L symmetrischer Punkt zu B , und Viereck ABEL ist ein Drachen .

28/23 . A CDF ist gleichschenklig ( Basiswinkel
a + ß

''
I, und A DBE ist gleichschenklig

^
Basiswinkel

a + y

28/24 . je (BD ; HF ) = 90 ° .

12



28/25 . a)

28/26 . a)

29/27 . a)

(geht nicht , wenn Basislänge
^ 2 • Schenkellänge )

(geht nicht ,
wenn w* n c = 0)



29/28 . a) W ist der Schnittpunkt der Winkelhalbierenden .

E beliebig

29/29 . a) Man errichtet im Mittelpunkt der Winkelhalbierenden [VU] das Lot . Es

klappt nicht , wenn UV 1 p.
b) analog a) .

29/30 .

14



29/31 . a) y ■■= (f; g) . Man konstruiert wy und fällt von P aus das Lot auf wr
b) y ■■= (f; g) . Man konstruiert w y und die Parallele durch P (zur Geraden , die

von P den größeren Abstand hat ) .

29/32 . a) e = 90° - -
2

b) dXYZ ist gleichschenklig wegen Y = Z = 90 ° —

29/33 . Y E + Y A = 180°
. Da A AEB gleichschenklig ist , gilt BEA = •£ BAE .

Y E + £ A = 45 ° + 9: BEA + 90 ° + * BAE = 180 °
=> * BEA = £ BAE = 22,5 °

£ A = 112,5 ° = * D , * E = 67,5 ° = * F.

30/34 . Man errechnet : ot = 75 °
, ß = 60 °

, y = 45° .
Also a + ß + y = 180 °

, d . h . , E hegt auf AF .

30/35 . x + y = v + w
=> x — v = w — y .
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2 . Kapitel

Aufgaben zu 2 . 1

36/1 . a) V : Die Quersumme der Zahl ist 6 .
B : Die Zahl ist durch 3 teilbar .
Wenn eine Zahl die Quersumme 6 hat , dann ist die Zahl durch 3 teilbar .

b) V: Das Viereck ist ein Parallelogramm .
B : 2 Winkel des Vierecks sind gleich groß .
Wenn ein Viereck ein Parallelogramm ist , dann sind 2 Winkel gleich groß .

c) V: Das Viereck hat 3 rechte Winkel .
B : Das Viereck ist ein Rechteck .
Wenn ein Viereck 3 rechte Winkel hat , dann ist es ein Rechteck .

d) V: 2 Winkel sind Nebenwinkel .
B : Die Winkel ergänzen sich zu 180° .
Wenn 2 Winkel Nebenwinkel sind , dann ergänzen sie sich zu 180° .

36/2 . a) V : Eine Gefahr liegt vor .
B : Notbremse ziehen
Wenn eine Gefahr vorliegt , dann soll man die Notbremse ziehen .

b) V : Keine Vorsicht
B : Der Hund beißt .
Wenn du nicht vorsichtig bist , dann beißt dich der Hund .

c) V : Das Wesen ist ein Geist .
B : Das Wesen wirft keinen Schatten .
Wenn ein Wesen ein Geist ist , dann wirft es keinen Schatten .

d) V : Das Wesen ist ein Känguruh .
B : Das Wesen braucht keine Handtasche .
Wenn ein Wesen ein Känguruh ist , dann braucht es keine Handtasche .

36/3 . a) Wenn ein Dreieck nicht zwei gleich große Winkel hat, dann ist es nicht gleich¬

schenklig .
b) Wenn eine Zahl Quadratzahl ist , dann ist ihre letzte Ziffer nicht 2 .

c) Wenn sich 2 Geraden schneiden , dann haben sie kein gemeinsames Lot .

d) Wenn eine Zahl keine Primzahl ist, dann hat sie entweder weniger oder mehr

als 2 Teiler .

36/4 . a) Wenn es nicht hell ist , dann scheint die Sonne nicht .

b) Wenn die Konstruktion genau sein soll , dann mußt du sorgfältig zeichnen .

c) Wenn du im Lotto nicht gewinnst , dann hast du höchstens 2 Richtige .

d) Wenn du eine schlechtere Note als 2 bekommst , dann hast du wenigstens 4

Fehler .

36/5 . a) Wenn ein Viereck kein Quadrat ist , dann sind seine 4 Winkel nicht gleich groß
oder seine vier Seiten nicht gleich lang .

b) Wenn eine Zahl nicht durch 12 teilbar ist , dann ist sie nicht durch 4 oder nicht

durch 6 teilbar .
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36/6 . a) Wenn ein Parallelogramm kein Rechteck ist, dann hat es keinen Umkreis und
keine 2 gleich große benachbarte Winkel ,

b) Wenn eine Zahl nicht durch 37 teilbar ist , dann ist sie nicht durch 111 und nicht
durch 74 teilbar .

Aufgaben zu 2 .2

40/1.

40/2.

a) falsch ,
c) falsch,
d) wahr

a) falsch,
c) wahr

GB : Mancher Schüler . b) wahr
GB : Straßenreinigungsdienst besprengt die Straße ,

e) falsch , GB : Eine LP hat 2 Rillen .

GB : 16 b) wahr d) falsch , GB:

40/3 . a)

zh -

ehr

n .

is 4

roß

icht

a) b) c) d) a) b)
Gegenbeispiele :
c) d)

A => B f f w f 7 allg . DV allg . Parallelogramm
A => B w f f f Raute Raute Rechteck

Ä => B f f f f 10 Trapez Rechteck Trapez
Ä => B f f w w 6 Rechteck

B => Ä f f w f 7 allg . DV allg . Parallelogramm
B => Ä w f f f Raute Raute Rechteck

B => A f f f f 10 Trapez Rechteck Trapez
B => A f f w w 6 Rechteck

Da jeder Satz mit seiner Kontraposition gleichwertig ist , genügt es , vier dieser acht
Sätze zu überprüfen .
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41/4 . a) notwendig b) hinreichend c) weder notwendig noch hinreichend

d) notwendig und hinreichend

41/5 . a ) notwendig ß) hinreichend y) notwendig und hinreichend

a) a) Das Viereck hat einen 90°-Winkel .
ß) Das Viereck ist ein Rechteck , dessen Seiten jeweils die Länge 2 haben ,

y) Das Viereck ist ein Rechteck mit gleich langen Seiten .

b) a) Die Differenz zweier Seiten ist kleiner als 1 .

ß) Das Dreieck hat zwei 45° -Winkel .

y) Das Dreieck besitzt eine Symmetrieachse .

c) a ) Die Dreiecke stimmen jeweils in den Winkeln überein ,

ß) Die Dreiecke liegen symmetrisch bezüglich einer Achse .

y) Die Dreiecke stimmen jeweils in den Seitenlängen überein .

d) a) Die Zahl ist durch 2 teilbar.
ß) Die Zahl ist durch 3 , 4 und 5 teilbar,

y) Die Zahl ist durch 3 und 4 teilbar .

e) a) Die Zahl heißt nicht 24.
ß) Die Zahl ist Primzahl.
y) Die Zahl ist nicht durch 2 oder 3 teilbar .

41/6 . a) Satz : f, GB : Rechteck ,
KS : Jede Raute hat zwei Symmetrieachsen (w) .

b) Satz : w , KS : Wenn eine Zahl durch 4 teilbar ist , dann ist sie eine gerade

Quadratzahl (f) , GB : 20 .

c) Satz : f , GB : Drachenviereck , KS : Wenn ein Viereck ein Rechteck ist,
dann stehen seine Diagonalen aufeinander senkrecht (f) , GB : Rechteck ,

das kein Quadrat ist .
d) Satz: w , KS : Wenn ein Dreieck gleichseitig ist, dann hat es zwei 60° -

Winkel (w) .
e) Satz : f , GB : gleichseitiges Dreieck , KS : Jedes rechtwinklige Dreieck hat

einen Umkreis (w) .
f) Satz: w , KS : Wenn 2 Dreiecke kongruent sind, dann liegen sie

punktsymmetrisch (f) , GB : Achsensymmetrische Dreiecke .

41/7 . a) KP : Wenn es nicht donnert , dann hat es nicht geblitzt .
KS : Wenn es donnert , dann hat es geblitzt .
(Beide Sätze sind wahr .)

b) KP : Wenn man sich nicht erholt hat , war man nicht im Urlaub .
KS : Wenn man sich erholt hat , war man im Urlaub .

(Beide Sätze sind falsch .)
c) KP : Wenn die Wellen nicht hochgehen , dann fegt kein Sturm übers Wasser.

KS : Wenn die Wellen hochgehen , dann fegt der Sturm übers Wasser .

(Satz wahr , KS falsch )
d) KP : Wenn man nicht im Lotto gewinnt , dann hat man kein Glück .

KS : Wenn man im Lotto gewinnt , dann hat man Glück .

(Satz falsch , KS wahr )
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nd

nd

e) KP : Wenn man vorn und hinten nicht vertauscht sieht , dann schaut man nicht
in den Spiegel .

KS : Wenn man vorn und hinten vertauscht sieht , dann schaut man in den
Spiegel . (Satz und KS wahr )

f) KP : Wenn einer nichts erzählen kann , dann war er nicht auf Reisen .
KS : Wenn einer was erzählen kann , dann war er auf Reisen .
(Satz wahr , KS falsch )

g) KP : Wenn sich ein Dritter nicht freut , haben zwei andere sich nicht gestritten .
KS : Wenn sich ein Dritter freut , haben zwei andere sich gestritten .
(Satz und KS falsch )

h) KP : Wenn der Esel nicht aufs Eis geht , dann ist es ihm nicht zu wohl .
KS : Wenn der Esel aufs Eis geht , dann ist es ihm zu wohl .
(Satz und KS falsch )

i) KP : Wenn sie heute nicht mehr leben , dann sind sie gestorben .
KS : Wenn sie heute noch leben , dann sind sie nicht gestorben .
(Beide Sätze sind wahr .)

j) KP : Wenn Wandas Waden nicht weniger wulstig werden , dann würgt sie auch
nicht weniger Wollwürste .

KS : Wenn Wandas Waden wieder weniger wulstig werden , dann würgt sie
weniger Wollwürste . (Beide Sätze sind falsch .)

rade

ist,
eck,

60°-

hat

sie

isser.

42/8 . a) Wenn jemand dieses Kapitel studiert, dann schult er sein logisches Denken .
KP : Wenn jemand sein logisches Denken nicht schult , dann wird er dieses

Kapitel nicht studieren .
KS : Wenn jemand sein logisches Denken schult , dann studiert er dieses Kapi¬
tel . (Satz : w , KS ; f)

b) Wenn jemand weniger als 4 Fehler hat , dann bekommt er eine Eins.
KP : Wenn jemand keine Eins bekommt , dann hat er mindestens 4 Fehler .
KS : Wenn jemand eine Eins bekommt , dann hat er weniger als 4 Fehler .
(Satz : w , KS : w)

c) Wenn die Nacht klar ist , dann sind die Sterne sichtbar .
KP : Wenn die Sterne nicht sichtbar sind , dann ist die Nacht nicht klar .
KS : Wenn die Sterne sichtbar sind , dann ist die Nacht klar .
(Satz : w , KS : w)

d) Wenn Hunde bellen , dann beißen sie nicht .
KP : Wenn Hunde beißen , dann bellen sie nicht .
KS : Wenn Hunde nicht beißen , dann bellen sie.
(Satz : w , KS : f)

e) Wenn man sich liebt , dann neckt man sich.
KP : Wenn man sich nicht neckt , dann liebt man sich nicht .
KS : Wenn man sich neckt , dann liebt man sich .
(Satz : w , KS : f)

f) Wenn irgendwo eine Lichtquelle ist , dann sieht man einen Schatten .
KP : Wenn man keinen Schatten sieht , dann ist nirgends eine Lichtquelle .
KS : Wenn man Schatten sieht , dann ist irgendwo eine Lichtquelle .
(Satz : f , KS : w)
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g) Wenn du nicht fleißig bist , dann bekommst du keinen Preis .

KP : Wenn du einen Preis bekommst , dann warst du fleißig .

KS : Wenn du keinen Preis bekommst , dann warst du nicht fleißig .

(Satz : f , KS : 0

42/9 . a) E , 5 b) N , 8

c) Wenn auf einer Kartenseite ein Vokal steht , dann steht auf der anderen Seite

eine ungerade Zahl .

42/10 . a) Evas Vorwurf erfolgt zu Unrecht ; sie verwechselt „wenn- dann“ mit „genau
dann - wenn “ .

b) Auch Tino verwechselt „wenn - dann“ mit „genau dann - wenn“ .

Aufgaben zu 2 .3

Beweise durch Nachrechnen

le - ff | = | 180° — ( y - ^ ) - 180° + ( j8 - ^ ) | = | j8 - y |

49/2 .

t = s = 90 ° (Thaies )
<5 = y (Scheitelwinkel )
=̂ > a = ß (Winkelsumme im Dreieck )
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49/3. Aus der Gleichschenkligkeit der Dreiecke folgt :
<*2 = ßi > ßi = yu = ö 2 = a 1

(Falls M außerhalb des Sehnenvierecks liegt ,
verläuft der Beweis ähnlich , Differenz bilden !)

- y \

Wegen oc1 + oc2 + ~F yi + + <5i + ^ 2 — 360°

gilt also : a 1 + a 2 + a 2 + 71 + + y2 + y2 + a i = 360°
=> « i + a 2 + + y2 = 180 ° .

£ ACD = ß +

r = ß + - (Außenwinkel )

=> AADC ist gleichschenklig .

49/5 . Mit a = AB gilt : AQuadrat = a:

3a • 5a = 7,5a :
•Rechteck 2•Dreieck 2

49/6. Die Parallele zu a durch D schneide b in E .
eck) * CDE = £ DCB = ß (Z -Winkel )

-fc EDA = £ CBA = ß (Stufenwinkel )

49/7 . Die Ziffernfolge der Zahl sei . . . wxyz = . . . + lOOOw + 100x + 10y + z ,
wobei lOy + z durch 4 teilbar ist .
Da die Stufenzahlen 100, 1000, . . . durch 4 teilbar sind , ist auch die Zahl durch 4
teilbar .

49/8 . (n + l ) 2 — n 2 = n 2 + 2n + 1 — n 2 = 2n + 1 , (n ^ 1 )

50/9 . (n + l ) 3 - n 3 = n 3 + 3n 2 + 3n + 1 - n 3 = 3n 2 + 3n + 1 = 3n (n + 1 ) + 1

gerade Zahl
50/10. (2n + l ) 2 = 4n 2 + 4n + 1 = 4 n (n + l ) + 1 = 8k + 1

gerade Zahl
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50/11 . a)

a + ß = 90 °

s + ß = 90 ° a = s

(5 + £ = 90
co + 8 = 90

Beweise durch Widerspruch

50/12 . Annahme : Das Dreieck ist rechtwinklig , z . B . a = 90°
=> ß < 90 ° A | < 90 °
=*• kein Winkel mißt 120 °

. \

50/13 . Annahme : Das Dreieck ist gleichschenklig
=> a = ßvß = yvy = a
also sind mindestens 2 Winkel gleich groß . 1̂

50/14 . Annahme : ABCD ist ein Parallelogramm
=> a + ß = 180 ° (E-Winkel )
also kann nicht gelten : a + ß = 179 °

. 1̂

50/15 . Annahme : Die beiden Teildreiecke eines Dreiecks sind spitzwinklig .
/K => Wenn man beide Teildreiecke zusammensetzt , so ergibt sich ein

/ \ Winkel , der kleiner als 180° ist .
/ \ Also sind die Dreiecke nicht Teildreiecke eines Dreiecks .

/ 1 2 \

50/16 . Annahme : e > 1
P e ist Hypotenuse im Dreieck PQR ,

also ist e nicht Lot auf g .

22
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50/17. Annahme : Das Viereck ist ein Rechteck .
=> Der Diagonalenschnittpunkt ist Mittelpunkt des Umkreises des
Rechtecks .
=> Die Diagonalen sind Durchmesser desselben Kreises , also gleich
lang . ^

50/18. Annahme : Das Viereck ist ein Parallelogramm
=> a = y und ß = S
=> höchstens 2 Winkel sind verschieden groß . \

50/19. Annahme : Eine Zahl ist Quadratzahl
=> die Endziffer ist 0 , 1 , 4 , 5 , 6 oder 9 . ^

Beweise durch Symmetrie

50/20. Wegen AM = MB ist AAMB gleich¬
schenklig mit der Basis [AB] . Da 1
durch M läuft und senkrecht auf AB
steht , liegen A und B symmetrisch be¬
züglich 1.
Also gilt : AS = SB .

ein

50/21. a) [AC wird bei der Spiegelung an wa
auf [AB abgebildet , BC auf BC we¬
gen wa _L BC .
Der Schnittpunkt von [AC und BC,
also C , wird auf den Schnittpunkt
von AB und BC , nämlich B abgebil¬
det .
Also ist A ABC achsensymmetrisch
und damit gleichschenklig .

b) Wegen sc = h c wird [AB] von sc
senkrecht halbiert . Da außerdem C
auf sc liegt , ist AABC achsensym¬
metrisch , also gleichschenklig .

3R.
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c) Wegen mb = hb wird [AC ] von mb
senkrecht halbiert . Da außerdem B
auf mb liegt , ist A ABC achsensym¬
metrisch , also gleichschenklig .

A

50/22 . Bei der Spiegelung an w ? wird AC auf BC und AB
auf BA abgebildet , also A auf B .
Wegen AF = BE (WSW -Satz für AABF und
A ABE ) wird dabei der Kreis k um A mit r = AF
auf den Kreis k ' um B mit r ' = BE abgebildet .

wß
Der Schnittpunkt F von [AC ] und k wird also auf
den Schnittpunkt E von [BC] und k ' abgebildet .
Da B symmetrisch zu A und E symmetrisch zu F
liegt , schneiden sich AE und BF auf der Symmetrie¬
achse w r

50/23 . D und C liegen symmetrisch bezüglich
w . Da E auf w liegt , ist also ADEC
achsensymmetrisch und somit gleich¬
schenklig .

50/24 . Vor : wy halbiert y
M ist Mittelpunkt von c,Mew ,

Beh . : wy
= hc

Bew . : Bei der Spiegelung an wy wird
AC auf BC abgebildet , der Kreis

c
um M mit r = - ist Fixkreis .2
Deshalb wird bei dieser Spiege¬
lung A auf B abgebildet . Da A
und B also symmetrisch bezüg¬
lich wy liegen , gilt AB _L wy, d . h .
wy

= h 0 .
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51/25. Vor . : AM = MB , CM = MD , M e g
gnAD = {X } , gnBC = { Y}

Beh . : AMCY ^ AMDX
Bew . : ACBD ist ein Parallelogramm ,

also gilt AD | | BC . [XY] ist
Querstrecke von AD und BC
durch M , also folgt : XM
= MY . Deshalb sind D und C

B bzw . X und Y symmetrische
Punkte bezüglich M . Die Dreiek -
ke MDX und MCY sind also
punktsymmetrisch und damit
kongruent .

A C

“ 51/26. Vor . : ABCD ist ein Parallelogramm
AE 1 BD , CF 1 BD

Beh . : ED = FB
Bew . : Es sei L der Mittelpunkt von [AD ] , N der Mittelpunkt von [BC] , wobei

der Diagonalenschnittpunkt ist . Da L und N symmetrisch bezüglich
B liegen , wird der Thaieskreis über [AD ] bei Spiegelung an M auf den Tha¬

ieskreis über [BC] abgebildet ; DB ist dabei Fixgerade . Der Schnittpunkt E
wird bei dieser Spiegelung also auf F abgebildet . E und F liegen also sym¬
metrisch bezüglich M . Da auch B und D symmetrische Punkte bezüglich
M sind , liegen [ED ] und [FB] zueinander punktsymmetrisch und sind
gleich lang .

Beweise durch Kongruenz

51/27. a) Vor . : AC = BC , also a = ß (VI )
F halbiert b (V2)
E halbiert a (V3)

Beh . : s^ = sb_
Bew . : AB = AB

a. = B (VI )
BE = AF (V2 , V3)

AABE ^ AABF (SWS)
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5 :b) Vor . : AC = BC , also a = ß
w a halbiert a (V2 )
v/p halbiert ß (V3)

Beh . : w a = v/ß
Bew . : AB = AB

a =

a
2

~

ß (VI )

\ (V2 , V3)

(VI )

=> AABE AABF (WSW )
=>

c) Vor . : a = ß (VI )
AM = MB (V2 )
* AFM = £ MEB = 90 ° (V3 )

Beh . : ME = MF
Bew . : a = ß (VI )

AM = MB (V2 )
< AFM = £ MEB = 90 ° (V3)

= >̂ AAMF ^ AMBE (SWW )
=> ME = MF

C

C 5

51/28 . Wenn in einem Dreieck die Lote von einer Seitenmitte auf die beiden anderen
Seiten gleich lang sind , dann ist das Dreieck gleichschenklig .
Vor . : M halbiert [AB ] (VI )

P

ME = MF (V2 )
£ AFM = £ MEB = 90 ° (V3 )

Beh . : AABC ist gleichschenklig
Bew . : ÄM = MB (VI )

ME = MF (V2 )
£ AFM = <£ MEB = 90 ° (V3 )

^ AAMF ^ AMBE (SsW )
=> a = ß , d . h . A ABC ist gleich¬
schenklig .

51/29 . Vor . : AABC ist gleichschenklig
AE = BF (V2 )

Beh . : AEFC ist gleichschenklig
Bew . : ÄC = BC (VI )

ÄE = BF (V2 )
£ EAC = £ CBF ( = 180 °

^ AEAC ^ ABFC (SWS )
^ EC = FC

C
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51/30. Vor . : AABC ist gleichschenklig , d . h . AC
L , M , N sind Seitenmitten (V2)

Beh . : ALMN ist gleichschenklig
Bew . : ÄM = MB (V2)

ÄL = BN (V2)
a = ß (VI )

=> AAML ^ AMBN (SWS)
=> LM = NM , d . h . ALMN ist

gleichschenklig .

BC (VI ) C

51/31 . a) Vor . : AC = BC , d . h . a = ß (VI ) C
AD = BE (V2)

Beh . : AE = BD
Bew . : AD = BE (V2)

AB = AB
DAB = £ ABE = 180 a (VI )

AADB ^ AAEB (SWS)
=> AE = BD

b) Da A DEC wegen DC = EC gleichschenklig ist , folgt •£ CDE = CED =
= ( 180° — y) : 2 = a . => •£ EDC = BAC = a => DE | | AB

51/32.

B

Vor . :

Beh . :
Bew . :

A ABC ist gleichseitig (VI )
AD = BE = CF (V2)
A DEF ist gleichseitig
DB = EC = FA (VI , V2)
BE = CF = AD (V2)
£ EBD = £ FCE = £ DAF = 60 ° (VI )

A DBE ^ A ECF ^ A FAB (SWS)
=> DE = EF = FD

C

A

51/33. Es entstehen 3 Parallelogramme .
Die Dreiecke sind z . B . wegen des SSS-Satzes
kongruent .

DF
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51/34 . a) Vor . : w? halbiert y (VI )
wy 1 AB (V2)

Beh . : AABC ist gleichschenklig
Bew . : CE = CE

y yH (V1)
£ CEA = £ BEC = 90 ° (V2)

^ AAEC ^ AEBC (WSW )
=> ÄC = BC

c

b) Vor . : CM ± AB (VI )
M halbiert [AB] (V2)

Beh . : AABC ist gleichschenklig
Bew . : CM = CM

< CMA = £ BMC = 90° (VI )
AM = MB (V2)

=5- AAMC ^ AMBC (SWS)
=> ÄC = BC

c

51/35 . Vor . : AD halbiert £ BAC (VI )
BC 1 AD (V2)

Beh . : CD = DB
Bew . : £ CDA = * ADB = 90 ° (V2)

< DAC = * BAD (VI )
AD = AD

AABD ^ AADC (WSW )
=> BD = DC

51/36 . wie 35.

AABP ^ AAPC (SWW ) aaem ^ ambf c
(SWW )
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51/39 . AABC ^ AABD (SWS)
AACD ^ ABCD (SWS)
A AED ^ A BCE (SWW )

52/40.
AACM ^ AAMB (SsW)

52/41.
aebf ^ AFCG ^ AGHD ^ AHAE
(SWS)
Wegen EF = FG = GH = HE ist EFGH
eine Raute .
Wegen BEF + EFB = 90 ° folgt

FEH = 90 ° => Die Raute ist ein
Quadrat .

52/42 . a)
b) AAPD ^ AAEB (SWS)

=> £ PAD = EAB , also 4: PAE = 90 °

c) a = PAD = £ EAB
=> ■£ EAW = 90 ° — £
■K AWB = £ AWE = 90 ° - e

=> AAWE ist gleichschenklig =>
=> AE = WE

d) AP = AE = EW = EB + BW =
= PD + BW

52/43 . BH sei das Lot von B auf CG .
A AED ^ A BHC (SWW )
=> ED = HC
Da FGHB ein Rechteck ist ,
folgt FB = GH .
=> GC = GH + HC = BF + ED .

V

A

D

" g
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52/44. a) AEBC ^ AADC (SWS)
=> AD = BE

b) Bei einer Drehung um C um 60 °

geht E in A und B in D über ,
also wird EB auf AD abgebildet
=> * (EB , AD ) = 60 ° .
(Auch hieraus folgt : AD = BE .)

52/45.
AKLB ^ AMLC (SWS)
(denn KB = MC als halbe Quadratdiagonale .
* KBL = * MCL = 360 ° - ß - 45° - 45° =

= 360 ° - 180 ° + a - 90 ° = 90 ° + a,
BL = LC als halbe Quadratdiagonale )
Also ist KLMN eine Raute .

Wegen £ BLK = CLM folgt :
90 ° = * CLB = * CLM + * MLB =

= £ BLK + £ MLB
=> die Raute ist ein Quadrat .

52/46. MN sei das Lot von M auf B'C ' .
= ANC 'M (SWS -Satz ) (denn
Mittelparallele von BB' und
FN = NC ; MN = MN , £
= £ C ' NM ' = 90 °)
=> FM = CM .

£ AC ' E = 90° - “
(A AEC ')

£ FB 'A = 90° - “
= * DB ' C'

(AAB ' F)
=> AB ' DC ' ist gleichschenklig
=> FD = CD .

AB 'NM
MN ist
CC ' =>

MNB ' =

A E
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52/47 . a) R sei der Schnittpunkt von AP und BQ .
Es gilt : 1 . AB = RB (denn A ABR ist gleichseitig wegen seiner 60 °-Winkel )

2 . PR = CQ (denn PCQR ist ein Parallelogramm , da je zwei Gegen¬
winkel gleich groß sind )
=> PR = CQ = BQ (da auch A CBQ gleichseitig ist)

3 . 4c ABQ = 4c PRB = 60 °
Daraus folgt : AABQ = ABRP (SWS -Satz )

=> AQ = BP
b) 4c A = 4c B = 60 ° => 4c R = 60 °

c) AABQ ^ ARCB , denn AB = BR , BQ = CB , 4c ABQ = 4c ABQ = 60 °

(SWS - Satz ) .
Deswegen gilt auch e == 4c CRB = 4; BAQ .
Mit a) folgt 4c PBR = e . Wegen RB | | PC ist auch 4c CPB = e (Z-Winkel ) .
A ACE ^ APCK , denn AC = PC , AE = PK und 4c EAC = 4c KPC = e
(SWS - Satz )
=> EC = CK , d . h . AECK ist gleichschenklig .
Mit ot := 4c ACE folgt : 4c ECP = 60 ° - a .
Wegen der zuletzt bewiesenen Kongruenz gilt 4c PCK = a.
=> 4c ECK = 4c ECP + 4c PCK = 60 ° .
Damit ist das Dreieck ECK sogar gleichseitig .

Beweise durch Nachdenken

53/48. kn ] PS [ = {N }
A PMN ^ A MSN (SsW) ,
denn PM = MS = r , MN = MN , 4c MNS = * PNM = 90° (Thaies ) .
=> PN = NS

53/49 . a) a. = 60 °
, 4c BAM b = 4c AM bB = 30 ° => A ABM b ist gleichschenklig

=> AB = BM b , also 2 • AB = BC .
b) Die Höhe im Dreieck ABM b durch die Spitze B halbiert [AM b] im Punkt L .

Das Lot von B auf d trifft d in K .
AABL ^ AABK (SWW ) =*■ ÄL = BK ^ AM b = 2 - BK .

c) Wegen AB = AM d ist AABM d gleichschenklig und wegen a = 60 ° sogar
gleichseitig .
=> B liegt auf dem Thaieskreis über [AD ] , also 4c DBA = 90 ° .

53/50 . A APM ^ ABRM (SWS ) => 4c AMP = 4c BMR => 4c PMR = 90°

53/51 . G liege so auf [DC ] , daß DG = AD , GC = BC . Wegen GE | | DA bzw . GF | | CB
sind AEGD und FBCG Rauten , also halbiert AG den Winkel a , BG halbiert den
Winkel ß . n r, r



53/52 . Durch Einzeichnen der Rauten
AEFD bzw . GBCEI erkennt man :
W. lWj , Wjlw, .

H F CD

53/53 . a) Da die Dreiecke ABE und DEC kongruent sind

wegen des SWS -Satzes , folgt EB = EC . Da die
Seitenhalbierende durch die Spitze des Dreiecks
aber zugleich Höhe ist , gilt also EM ± BC.

b) Mit £ = £ ABE gilt : AEB = 90° — s und
DEC = e => ■£ CEB = 90 °

. Wegen der Gleich -
schenkligkeit von Dreieck BEC gilt aber nach a)
£ MEC = 45 ° und damit auch •£ ECM = 45° ,
also EM = MC .

53/54 . AA ' CM ist gleichschenklig
=> A ' M = MC
Ebenso ist ACB ' M gleichschenklig
=> CM = MB7

Insgesamt : A ' M = MB '

53/55 . a) Wegen DP = QE = / AB und DP | | QE ist QEPD ein Parallelogramm .
=> Die Diagonalen [DE ] und [PQ] halbieren sich in M .

b) Wegen PMC = QM 0 ist APQM C gleichschenklig mit der Spitze Mc . Deshalb
ist die Seitenhalbierende M CM zugleich Winkelhalbierende .

54/56 . a) Beide Dreiecke sind gleichschenklig
Winkel an der Spitze : 2a
Basiswinkel : ß

b) Wegen DC = CH c = CE
liegen die Punkte auf dem
Kreis um C mit r = CE .
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54/57 . a)

b)

H „ und H h liegen auf dem Thaieskreis
über [AB ]
=> M cH b = M cH a
Da die Dreiecke AM cH b und BH aM c
gleichschenklig sind , gilt :
4c H aM 0H b = 180° - (180° - 2a ) -

— ( 180 ° — 2/3 ) =
= 2a + 2ß - 180 ° +

+ 2y - 2y =
= 180 ° - 2y . A

C

Mc B

54/58 . Wegen der Punktspiegelung von P an den
Seitenmitten sind A P, B P. BP 2 CP und

APCP 3 Parallelogramme . Wegen AP ,
= CP 2 halbieren sich die Diagonalen von
Parallelogramm APjP 2 C in der Mitte M .
Da wegen PbB = P 3 C auch P , BCP , ein Pa¬
rallelogramm ist , wird auch [P 3 B ] von M
halbiert , denn M ist Mittelpunkt von
[ PbC] . Also ist das Sechseck punktsym¬
metrisch .

C

54/59 . Wegen der Achsenspiegelung von P an den Seiten
sind APiBP , BP 2 CP , CP 3 DP
und DP 4AP Drachenvierecke .

Wegen PB = BP b = BP 2 und
4c P 2BPj = 2 • 4c CBP +
+ 2 - 4c PBP X = 180 °

ist B die Mitte von
[PrPJ usw .

54/60 . [ CM c] wird um CM c über M c hinaus bis E verlängert . Das entstandene Viereck
AEBC ist ein Parallelogramm , da sich seine Diagonalen halbieren .

Wegen EB = HC = b , BC = CO = a und 4c CBE = £ OCH = 180 ° — y gilt
AEBC ^ AHCO (SWS ) ^ 2 • M^C = EC = OH .
Mit y 1 = 4c ACE und { S } = M c CnOH folgt : 4c CHO = y 1 und 4c SCH =
90 ° — y ^ . Wegen der Winkelsumme im Dreieck HCS gilt : 4c HSC = 180 ° — —

(90 ° — y 1) = 90 ° => OH _L CM c .



E

a) AABC = AUCO (SWS)
=> £ CUO = a . £ CUO = * UCH (Z-Winkel ) .
Mit { R } = AB n CU folgt :
£ URA = 180° - a - ( 180 ° - (90° + a)) = 90° (Winkelsumme im AARC )
=> CU _L AB .

b) Wegen a) bildet die Rechtsdrehung um den Mittelpunkt von BLOC mit cp
= 90° [LB] auf [BC] und [BA] auf [CU ] ab . [LA ] wird also auf [BU] abge¬
bildet .
=> AL 1 BU und AL = BU .

c) Eine Linksdrehung um den Mittelpunkt von ACHT mit cp = 90 ° bildet [TA ]
auf [AC ] und [AB] auf [CU ] ab . [TB] wird also auf [AU ] abgebildet .
=> BT1 AU und XÜ = BT .



3 . Kapitel

Aufgaben zu 3 . 1

59/1 . Man zeichnet um jede Ecke einen Kreis mit r = 5 . Der geometrische Ort ist die
Schnittmenge dieser 4 Kreisflächen .

59/2 . Man zeichnet um jede Ecke einen Kreis mit r = 5 . Der geometrische Ort besteht
aus allen Punkten , die außerhalb dieser Kreise oder auf den Kreisbögen liegen , die
dieses Gebiet begrenzen .

59/3 . a) Geometrischer Ort aller Punkte , die von M mindestens die Entfernung 3 und
höchstens die Entfernung 4 haben :

{P | 3 ^ PM ^ 4 } = { P | PM ^ 3 } n { P | PM ^ 4 } .
b) Geometrischer Ort aller Punkte , deren Entfernung von M mindestens 3 , aber

weniger als 4 beträgt :

{P | 3 ^ PM < 4 } = {P | PM ^ 3 } n {P | PM < 4 } .
c) Geometrischer Ort aller Punkte , die von M höchstens die Entfernung 4 und

von L mindestens die Entfernung 2 haben :

{ P | PM ^ 4 a PL ^ 2 } = { P | PM ^ 4 } n {P | PL ^ 2} .

59/4. {P | PA > a PC > 2,5 }, 5 a PB 51 3



59/5 . a) b)

60/6 . {P | l,5gPA ^ 3 } n {P | PB > 4 }

60/7 . Geometrischer Ort aller Punkte , die von M oder L jeweils mehr als 3 und höch¬
stens 4 entfernt sind :

{P13 < PL ^ 4 } u { P13 < PM ^ 4}

60/8 . k (A ; r = 4)

60/9 . Der Kreis , in den die Sehnen gezeichnet werden , sei k (M ; r) . Der geometrische Ort
ist ein Kreis um M mit r = MN (Lotstreckenlänge ) , wobei N der Mittelpunkt
einer beliebigen Sehne ist .
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60/10. a) Die Mittelpunkte liegen auf mAB .
b) k (A ; r = 2,5) n k (B ; r = 2,5) = {M 1 ; M 2 }
c) rmin = 2
d) mAB

60/11. M sei der Mittelpunkt von a .
Die Rechtecksmittelpunkte liegen auf m a \ { M } .

60/12. Der Teil der Mittelsenkrechten zu s , der innerhalb des Kreises liegt .

60/13. a) Halbebene (in der der Punkt A liegt) ohne mAB .
b) Halbebene (in der der Punkt B liegt) einschließlich mAB
c) { P | PA < PB } , { P | PB ^ PÄ }

60/14. a) Halbebene rechts von mBC einschließlich mBC

yi .

b)

A ° 1

x

mAB

60/15 . Das Parallelenpaar zu g im Abstand 3 schneidet den Kreis um P mit r = 6 in 4
Punkten .

60/16 . d > 7 : kein Punkt , d = 7 : ein Punkt , 1 < d < 7 : 2 Punkte , d = 1 : 3 Punkte ,
d < 1 : 4 Punkte .

60/17 . Die beiden Parallelenpaare schneiden sich in 4 Punkten . /

61/18 . Es gibt 2 Punkte , falls P und Q nicht auf
einer Lotgeraden zu g liegen . Liegen P
und Q auf einer Lotgeraden zu g , so gibt
es unendlich viele Lösungen , falls p 2
= mPQ ist , sonst gibt es keine Lösung .

/
9

P o //
/ ° 0

/
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61/20 .
\ C

61/22 . C liegt auf einer Parallelen zu AB im Abstand 6 .

61/23 . Mittelparallele

61/24 . Die Mittelpunkte liegen auf einer Parallelen zu AB im Abstand 2 .
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61/25 . Der Kreis um S mit r = 2 schneidet die Winkelhalbierenden in 4 Punkten .

61/26 . Es gibt 2 Punkte .

Aufgaben zu 3 .2

66/1 . a) r 2 = 13 oder r2 = 61 b) 13 < r2 < 61 c) 0 < r2 < 13 oder r2 > 61

66/2 . a) Konzentrische Kreise b) Der kleinere Kreis liegt im größeren Kreis ,

c) Berührung von innen d) Es gibt zwei Schnittpunkte ,

e) Berührung von außen f) Es gibt keine Schnittpunkte .

66/3 . a) Bj ( 11110) , r = 2,5 oder B 2 (314) , r2 = 12,5
b) Bj (3110) , rj = 2,5 oder B 2 ( 1114) , r2 = 7,5

66/4 . a) M 3 (8,75110 ) , r 3 = 1,25 b) M 4 (7,251 8) , r4 = 8,75

c) Die Kreise um Mi mit r = 6,5 und um M 2 mit r = 4 schneiden sich in den

gesuchten Mittelpunkten .

66/5 . a) Mj ( 1319,5) b) mXB nMT = {M 2 } = {A }
c) Wegen mTC | | MT gibt es keinen solchen Kreis . d) M4 (7 | 6,5)

66/6 . Die gesuchten Kreise haben die Radien 1,25 oder 3,75.

fl = 1,25 : Bi (7,518 ) , B 2 (9 | 10) , bzw . B 3 (6,21 8,5) , B4 (6,4 | ll )
r2 = 3,75 : B 3 (7,514 ) , B 2 (3 110) , bzw . B 3 (3,615,4 ) , B4 (10,917,1 )

66/7 . a) Auf [AO wird r 2 von A aus abgetragen , der Endpunkt sei H .
{ M } = OA n mHP . M (2111 ) , B 2 (71 8,5 )

b) Auf [AM c= OA wird r 2 von A aus abgetragen , der Endpunkt sei H .
{ M } = OA n m HP . M ( 10 | 5) , B 2 ( 12,510)

66/8 . a) Die Mittelpunkte liegen auf konzentrischen Kreisen mit r = 4 bzw . r = 2 .

b) Die Mittelpunkte liegen auf der Geraden MP.

66/9 . a) Kreis um A mit r = 2 b) mAB n k (A ; r = 4) = {M 2 ; M 2}
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67/10 . a) Der Kreis um P mit r = 2 und der Kreis um M mit r = 6 ergeben A 1 und A2
(symmetrische Punkte ) .
MP schneidet die Mittelsenkrechte von [PA 3] im gesuchten Mittelpunkt .

b) Für PA L MP gibt es keine Lösung .
c) Die beiden Punkte liegen auf MP.

67/11 . Kreise um M mit r = 1 und r = 4 .

67/12 . a) A und B liegen auf dem Lot zu M tP durch M l im Abstand 6 .
b) Der Schnittpunkt von zwei Mittelsenkrechten ergibt M 2 .
c) Der Kreis um A mit Radius 3 schneidet M 2A in den Mittelpunkten der beiden

gesuchten Kreise .

67/13 . a) T und S liegen symmetrisch bezüglich MP => SP = PT .
b) A MSP hat bei S einen rechten Winkel (Thaieskreis) => MS = r = d (M ; SP) ,

also gibt es nur einen Schnittpunkt .

67/15 . Aus Symmetriegründen sind die Endpunkte Bi und B 2 des zu [AB] senkrechten
Durchmessers die Berührpunkte auf k . Verlängert man [MBj bzw . [MB 2 um
AM-
y

— , so erhält man Hi bzw . H 2 . Da die Dreiecke M , M 3H , bzw . MjH 2 M4 gleich¬

schenklig sind , liegen die gesuchten Mittelpunkte M 3 bzw . M4 auch auf der Mit¬
telsenkrechten von [MjHj ] , bzw . [ M,H 2] .

68/17 . Die beiden gegebenen Kreise seien k 2 und k 2 , ihr Radius r , der Mittelpunkt von
[M 3M 2] sei B . Man trägt von B aus nach beiden Seiten auf dem Lot zu [M 2M 2]
die Strecke r ab , die Endpunkte seien M 3 und M 4 . Die Kreise um M 3 bzw . M 4 mit
Radius r schneiden k l5 bzw . k2 in jeweils 4 Punkten . Aus Symmetriegründen
schneiden sich jeweils die Verbindungsstrecken gegenüberliegender Schnittpunkte
in den gesuchten Berührkreismittelpunkten .

68/18 . AS 1BM 1 ist gleichschenklig ,
ebenso ABM 2 S 2 .
Wegen £ SjBMi
= £ S 2 BM 2 (Scheitelwinkel )
folgt wegen der Gleichschenk -
ligkeit auch 4c MjSjB
= 4c BS 2M 2 .
Die letztgenannten Winkel
sind also Z -Winkel , d . h.
SjMj | | S2M 2 .

68/19 . 4c PQK ! = * PQK 2 = 90 ° (Thaieskreise !)
=> 4c KjQK 2 = 180°

, also liegt Q auf KjK ^



68/20 . Genauso wie die Dreiecke liegen auch die Umkreise symmetrisch bezüglich M .
Gäbe es neben M einen weiteren Schnittpunkt der Kreise , so müßte wegen der
Punktsymmetrie noch ein Schnittpunkt existieren . 3 Schnittpunkte bei zwei Krei¬
sen sind aber nicht möglich .

90°- «

M 2P schneidet kj in D . Man betrachtet nun die Dreiecke A ABC und A ACD .
Wegen des Umfangswinkelsatzes ergeben sich gleiche Winkel (siehe Skizze) , da
die Kreisradien übereinstimmen . Die 90 ° -Winkel bei A und C ergeben sich aus
dem Satz von Thaies .
Im A ABC gilt : 2a + 2ß + 2y = 180 °

, also y = 90 ° - (a + ß )
=> £ ACB = a + y = a + 90° - (a + ß ) = 90° - ß = £ DAC .

Wegen AC = AC und £ ABC = a + ß = T ADC sind damit die Dreiecke
A ABC und A ACD kongruent (SWW -Satz ) . Kongruente Dreiecke haben den¬
selben Umkreisradius .

Kürzere Lösung von 68/21 . : Man zeichnet im Aufgabenbild aus dem Buch die
Rauten AMjPMj , BM 2PMj und CM 3PM 2 mit der Seitenlänge r ein . Ergänzt
man das Dreieck AM 3B durch den Punkt M zur Raute AMjBM mit der Sei¬

tenlänge r , so ist auch BM 2CM eine Raute mit der Seitenlänge r , denn es gilt
MB = CM 2 = M 2 B = r und aus MB | | AM 4 | | M 3P | | CM 2 folgt MB | | CM 2 . Also

gilt auch MC = r .
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Aufgaben zu 3 .3

72/1 . Tangentenquerschnitt : (41 — 4,5)

72/2 . a) cp = 60,3°

b) C ( 1113,5) , 1 . Sekante : CA , 2 . Sekante : CX mitX (3,5 | l )
c) D (0,5 | 7) , 90° : MD , 0° : Tangente in D

72/3 . a) Mj (8,416,8) , M 2 ( ll | — 1 ) (bzw . die Spiegelpunkte bezüglich AB)
b) Mj (916) , M 2 (3 | 4)

73/4 . a) cp = 82,9°

b) Die Mittelpunkte liegen auf der Tangente in A und sind von A 2,5 entfernt;
Mj (10,517,5 ) , M 2 (7,5111 ) .

c) Die Tangente t 2 in A an k 2 bildet mit der Tangente t2 in A einen 60 ° -Winkel .
Die gesuchten Mittelpunkte liegen auf dem Lot zu t 2 durch A . Es gibt zwei
Möglichkeiten für t2 , also vier Mittelpunkte .

d) Der Thaieskreis über [M 2M 2] ergibt die Schnittpunkte .

73/5 . a) 50 ° b) 50 ° c) 90 ° d) 0 °

73/6 . BiBa = 10 , cp = 53,1 °
, PB 1 = PB 2 = 11,2.

73/7 . Das Lot auf AB durch B schneidet mBP im Mittelpunkt M .

73/8 . Viereck PMBS ist ein Drachenviereck , deshalb halbiert SM den Winkel T BSP.SP ist Höhe im gleichschenkligen Dreieck RMS , deshalb gilt : e = PSM .
=> e = £ PSM = * MSB = ±cp .
Der Berührpunkt B wird nicht konstruiert !
Winkel cp mit cp < 42,1 ° lassen sich nicht dritteln .

74/9 . a) Das Lot auf PQ durch M schneidet k in den Berührpunkten .
b) Man zeichnet eine Hilfsgerade h mit (h , PQ) = 53 °

. Das Lot auf h durch M
schneidet k in den Berührpunkten .

c) Der gesuchte Punkt auf PQ sei R.
Da das Viereck MIQRB , ein Quadrat mit der Seitenlange 5 ist , konstruiert
man ein solches Quadrat mit einer Ecke M . Der Kreis um M mit der Diagonale
als Radius schneidet PQ in den gesuchten Punkten R 2 (7 j 1 ) und R 2 (12,41 5) .

d) Da das Viereck MB 1YB 2 ein Drachenviereck ist , konstruiert man ein solches
Drachenviereck mit der Ecke M und einer Diagonale der Länge 6 . Der Kreis
um M mit der anderen Diagonale als Radius schneidet die y-Achse in den
gesuchten Punkten Y t (016,25 ) , Y 2 (019,75 ) .

74/10 . t sei die Tangente in P. MP schneidet die Winkelhalbierenden von t und g in den
gesuchten Mittelpunkten .
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74/11 . a) W sei der Schnittpunkt der Winkelhalbierenden.
Die gesuchten Kreise sind die Inkreise der DrachenVierecke
AMcWMb , BM aWM c und CMbWMa .

b) Die gesuchten Kreise sind die Inkreise der Dreiecke
ABW, BCW und CAW.

74/12. a) Die von den Diagonalen verschiedenen Symmetrieachsen zerlegen das Qua¬
drat in vier kleine Quadrate . Die Inkreise dieser vier Quadrate sind die gesuch¬
ten Kreise.

b) Ist M der Quadratmittelpunkt , dann sind die Inkreise der Dreiecke ABM ,
BCM , CDM und DAM die gesuchten Kreise.

74/13 . Mit Hilfe des Thaieskreises über [MP] erhält man die Tangenten Q und t2 durch
die Berührpunkte B , und B 2 .
MB b schneidet die Winkelhalbierende Wj der Tangenten in M 1 ; MB2 schneidetWj
in M2 .
MP schneide k in A l und A2 , 1 , und 12 seien die Lote auf MP in diesen Punkten .
M 3 liegt auf MP und auf der Winkelhalbierenden von 13 und Q . M4 liegt auf MP
und auf der Winkelhalbierenden von 12 und t, .

74/14 . a) Die Mittelpunkte liegen auf Parallelen zu g im Abstand 2 und auf dem Kreis
um M mit rj = 3 bzw. r2 = 7.
Es gibt also 8 solche Kreise.

b) d = l : 7 , l < d < 5 : 6 , d = 5 : 4 , 5 < d < 9 : 2 , d = 9 : 1 , d > 9 : 0

74/15 . Kreis © schneidet den größeren Kreis in C , und C 2 .
Dreieck MDC t ist nach Konstruktion gleichschenklig. Wegen MB , = B,C , = r
ist BjD Höhe im Dreieck MDC , => B , D ist Tangente.

75/16 . a) Bi (3,51 — 1,5 ) , B] ( 1,510,5 ) , B 2 (9,510,5 ) , B '
2 (3,51 6,5)

b) B 3 (1215) , B] (1417) , B 2 (8 | 5) , B'
2 (14111)

c) innere Tangenten:
B ! (3,511,5 ) , B] (4,510,5 ) B 2 (6,510,5 ) , B '

2 (3,513,5 )

äußere Tangenten:
Bi ( 1411 ) , B '

j ( 181 5)
B 2 (215) , B '

2 (14117) _
d) M 3M 2 = 11 : 4 Tangenten , MiM 2 = 8 : 3 Tangenten,

M 1M2 = 4 : 2 Tangenten, M 2M2 = 2 : 1 Tangente,
MiM 2 = 1 : keine Tangenten

e) Konstruktion der äußeren (bzw . inneren) Tangenten

76/18 . , a) Kreis um M mit Radius MS , wobei S Sehnenmittelpunkt ist.
b) Man konstruiert den Kreis k 2 der Sehnenmittelpunkte und dann von P aus die

Tangenten an k x .

76/19 . Man konstruiert um M2 den Kreis k 3 der Sehnenmittelpunkte für Sehnen der
Länge 5,5 . Die gemeinsamen Tangenten an ki und k 3 leisten das Gewünschte .



76/20 . a) c und a. antragen ; wa schneidet die Parallele zu c im Abstand 2 in W (Inkreismit¬
telpunkt) .
Verdoppelung von £ ABW liefert a.

b) AWB = 119 ° und BWC = 128,5° bei W antragen . An einem Hilfspunkt
yC ' auf CW wird - angetragen . Das Lot von W auf den Schenkel schneidet den

Inkreis im Berührpunkt P auf CB .
c) Teildreieck AH aC ist konstruierbar aus £ CAH a = 30 °

, ha und £ AH aC =
= 90°

. wr und die Parallele zu AC im Abstand 2 schneiden sich in W. Verdop¬
pelung von CAW liefert c .

76/21 . Ein Parallelogramm mit Inkreis ist eine Raute !
a) ha = hb = 3
b) Der Mittelpunkt von [AC] sei M . M ist auch Inkreismittelpunkt . Der Thaies¬

kreis über [AM] schneidet den Inkreis im Berührpunkt ; außerdem liegt B auf
dem Lot zu AC durch M.

76/22 . Man trägt nana an . Die Parallele zu AB im Abstand 5 schneidet den freienSchenkel von a in D . wa und w6 schneiden sich im Inkreismittelpunkt M . Verdop¬pelung des Winkels ABM liefert C .

76/23 . a) Dreieck ABC konstruieren ; die Parallelen zu AB und BC schneiden sich im
Inkreismittelpunkt W.
Verdoppelung der Winkel £ BAW und < BCW liefert D.

b) An d wird a angetragen , dann der Inkreis k konstruiert , k berührt AB in E . Aus
EWB = 22,5 ° findet man B . Verdoppelung der Winkel ABW und

* ADW liefert C .

76/24 . a) Dreieck ABC konstruieren und a antragen ; w„ und wß schneiden sich in W.
Verdoppelung von BCW liefert D.

b) An a die Winkel a und ß antragen ; wa und w ,̂ schneiden sich in W. Der Inkreis
berührt BC in E . Aus -fc EWC = 40 ° findet man C und dann D.

c) Dreieck ABC konstruieren ; D erhält man aus c und d = 7 + 4 — 5 = 6 .
d) Dreieck ABC konstruieren ; D erhält man aus c und d = 5 . (Das konkave

Viereck ist keine Lösung .)

76/25 . mAB schneidet die Parallele in C .
mAC schneidet mAB in M.

76/26 . w7 n c = { M}

76/27 . Die Tangenten sind parallel zu PQ , oder sie laufen durch den Mittelpunkt von
[PQ] .
Da es jeweils 2 solche Tangenten gibt , erhält man insgesamt 4 Lösungen.

76/28 . m sei die Mittelparallele von p und q .
a) m schneidet kb in den gesuchten Mittelpunkten .
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b) Der Kreis um A mit r = 3 schneidet m in den Mittelpunkten .
c) Die Winkelhalbierenden im Schnittpunkt von p und a schneiden m in den

Mittelpunkten .
d) Der Kreis um M 2 mit r = 6 schneidet m in den Mittelpunkten .
e) Der Kreis um M3 mit r = r 3 + 3 (eventuell auch r = r 3 — 3) schneidet m in den

Mittelpunkten .

77/29 . a) Die Mittelpunkte liegen auf dem Parallelenpaar zu g im Abstand 2 und auf
dem Kreis um P mit r = 5 .

b) Die Mittelpunkte hegen auf dem Parallelenpaar zu g im Abstand 2 und auf
dem Parallelenpaar zu h im Abstand 3 .

77/30 . Das Lot in G auf g schneidet h in H . Die Winkelhalbierenden in H schneiden g in
den Mittelpunkten .

77/31 . a) Wegen AX = AC und BC = BY erhält man:
u = TX + TY = 2 • TX = konstant

b) £ AMB = j * XMC + i * CMY = .
= XMY = konstant . \

77/32 . a) Man zeichnet eine Tangente t und trägt vom Berührpunkt aus auf t eine Strek-
ke der Länge 3 ab ; der Endpunkt sei A . Der geometrische Ort ist der Kreis um
M mit r = MA.

b) X hegt auf p und auf dem in a) konstruierten Kreis .

77/33 . R liege auf [PQ] mit PR = 3 . Die Mittelpunkte der gesuchten Kreise liegen auf
dem Lot zu PQ in R im Abstand 1,5 .

77/34 . a) Die Mittelpunkte liegen auf dem Kreis um M mit r = 3,5 und auf dem Paralle¬
lenpaar zu p im Abstand 1,5 .

b) Das Lot zu p in A sei 1. Trägt man von A aus auf 1 nach beiden Seiten Strecken
der Länge 2 ab , so erhält man die Punkte C und D . Die Mittelsenkrechten mMC
bzw . mMD schneiden 1 in den gesuchten Mittelpunkten .



77/35 . a) Für einen Drachen gilt : AB + CD = BC + AD
b) Es gibt unendlich viele Kreise , die

AD und AB berühren . (Die Mittel¬
punkte liegen auf den Winkelhal¬
bierenden .)
Wählt man den Kreis , dessen Mit¬
telpunkt auch auf w () und außer¬
halb liegt , so berührt er wegen der
Symmetrie auch die beiden Gera¬
den BC und DC .

77/36 . a) Die Schnittpunkte der Winkelhalbierenden ergeben die Mittelpunkte .
b) Der Kreis berührt alle 4 Seiten , das Viereck hat also einen Inkreis und ist ein

Tangentenviereck .

77/37 . Man spiegelt z . B . ein gleichschenkliges Trapez mit Inkreis am Mittelpunkt eines
Schenkels .

77/38 . Da die Tangentenabschnitte jeweils gleiche Länge haben , gilt :
u = y + z + z -t- x + x + y = 2 (x + y -|- z)

78/39 . Aus AG = AC und AF = AE folgt : GF = AG - AF = AC - AE = EC .
Aus BH = BC und BF = BD folgt : HF = BH — BF = BC — BD = CD .
Wegen EC = CD folgt die Behauptung .

78/40 . a) AH = AT = AE
CF = CT = CG
BE = BF
DG = DH
=> AB + CD = BC + DA ,
also ist ABCD ein
Tangenten Viereck.
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b) Die Inkreise der Dreiecke ABD
und BCD sollen BD in M bzw . N
berühren .
Dann gilt : BI = BM , BN = BK ,
DL = DN , DM = DR .

Da ABCD ein Tangentenviereck ist , gilt auch :
AI + IB + CL + LD = BK + KC + DR + RA
=> IB + LD = BK + DR
oder BM + ND = BN + MD => M = N

78/41 . a + ö = 180° (Stufenwinkel )
a . ö

=> - + - = 90 ° => £ = 90°
2 2

ß + y = 180° (Stufenwinkel )
ß y=> - + - = 90° =j> t = 90 °
2 2

D C

_ ) => AP = AQ
78/42 . a) AP = AB

AB = ÄQ
b) B liegt auf dem Thaieskreis

über [PQ ] (vgl . a))
=> PBQ = 90 ° .
MiA bzw . M 2A sind
Winkelhalbierende in den
Drachen Vierecken MiBAP
bzw . M 2QAB
=> * MiAM 2 = 90 ° .
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78/43 . Berührung von außen :
Da die Dreiecke BTX und BYS gleichschenklig sind und
-k XBT = -k SBY (Scheitelwinkel ) gilt , folgt :
y = <5 . Wegen des Z -Winkelsatzes gilt
also SYIITX .

Berührung von innen :
Wie oben folgt aus der Gleichschenkligkeit :

78/44 . AMEI ^ AMNW (SsW -Satz ) , denn
MN = MI (Radius des großen Kreises )
MW = ME (Radius des kleinen Kreises )
k MEI = k MWN = 90°

=> EI = WN

78/45 . a) Der kleine Kreis mit Radius rj sei k 3 , sein Mittelpunkt M l5 der große Kreis sei
k 2 , sein Mittelpunkt M 2 .
Der Kreis k 3 um M 2 durch R hat den Radius r, , ist also kongruent zu k , und
berührt NR in R .
Die Tangente durch L an k 3 berühre im Punkt K .
Nach Aufgabe 51 gilt : LK = RN .
Bei einer Verschiebung von k 3 wird M 2 auf M x abgebildet , [LK ] fällt auf [RI ] .
Deshalb gilt : NR = RI .

b) Es sei k IBM 3 = a .
=> k BIM , = a (gleichschenkliges Dreieck B .V1 , I )
=> k BMJ = 180° - 2a , also k IM t M 2 = 2a .
Wegen k MJR = 90 ° ist k M XRI = 90 ° — 2a , also -k IRN = 2a .
Da Dreieck IRN gleichschenklig ist,

"
folgt : -k NIR = 90 ° — a .

=> k BIN = k BIMi + k MJR + k RIN =
= a + 90 ° + 90 ° - a = 180 ° .
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4 . Kapitel

Aufgaben zu 4 . 1

87/1 . a) cp = 60 °
, xp = 120 °

, r\ = 45°
, oc = 30 °

b) ß = 80 °
, xp = 140 °

, e = 35 °
, a = 50 °

c) p = 140°
, q> = 70 °

, xp = 110°
, e = 50 °

d) cp = 10 °
, p. = 20 °

, a = 80 °
, e = 5°

e) <p = 9 ° ,xp = 171 °
, p = 18 °

, a = 81 °

f ) cp = 30 °
, p = 60 °

, xp = 150°
, a = 60°

87/3 . a) q = 360° - 24 ° - 58 ° - 244 ° = 34°

b) ß = 50 °

c) * ABM = 35 °
, £ AMB = 110 °

, £ ADB = £ ACB = xp = 55 ° ,
ca = 90 ° - xp = 35 °

d) g = 90°
, o- = 45 °

, t = 22,5 °

88/4 . £ CMA = 60 ° => e = 30°
£ DMB = 150° i = 75 °
=> a = 180 ° - 105 ° = 75 °

12
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88/5 . a)

1 . Fall

(p = e + tj
ß = 2 {e + f})

3 . Fall :
(p = rj — s
ß + e = ri — B + r;
ß = 2rj — 2s
ß = 2 <p
Wandert U auf dem größeren
Kreisbogen , so gilt also stets : 2 cp
= ß . Da ß konstant ist , gilt dassel¬
be für <p . Liegt V auf dem kleineren
Kreisbogen , so erhält man durch
Einzeichnen des Durchmessers
[VU] : AVB = 180° — q>.

cp = r\
ß = 2rj
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ß = 2r\ = 2q>ß = 2 (e + rj) = 2 (p
ßz = 2rlßz = 2n

3 . Fall :

ß = ßz ~ ßi = 2 (ri - e) = 2 cp
ßz = 2rl
Weiter wie in a)

88/6 . a) £ = 250 °
, r\ = x = 35 ° b) 5 e = 180° => e = 36 °

c) * DCA = y 1 = 40° => a = 180° - 40 ° = 140°

(Der Sehnentangentenwinkel bei A ist 40°
.)

=> ß = 50 ° => y = 120°

d) <p = 60° e) 5e = 90 ° => £ = 18 ° f ) co = 18 °
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89/7 . a) co = s (Das gezeichnete Lot durch M halbiert den Bogen BC .)
b) co ist Umfangswinkel über [BD ] => -£ BKD = 180° — co , eist Umfangswinkel

über [BD] im kleinen Kreis. Der zugehörige Mittelpunktswinkel ist
ß = 180 ° — co = 2s
=> co = 180° — 2s

c) er = 180° - (a + ß )
t = 90° — ß + a , co = 90° — a + ß

d) tu = ip = ■£ MBE = s (Umfangswinkel über [MA ] ) ;
£ PEO = T BMP = g (Symmetrie)
=> 2e ist Umfangswinkel über [OB] => g = 2s;
£ ONM = 180° - 4s , £ PNO = 4s => t = 2s;
2 q ist Umfangswinkel über [OB] , ebenso t + a (als Scheitelwinkel)
=> x + ff = 2q => er = 4s — 2s = 2s

89/9 . Die Dreiecke AM ' M und M ' BM müssen gleichseitig sein
=> cp = 120 ° .

89/10 . a) Man faßt y als Mittelpunktswinkel auf . Der Kreis um C mit r = AC und mAB
schneiden sich in C ' .

b) Man faßt y als Umfangswinkel auf . Der Mittelpunkt des zugehörigen Faß¬
kreisbogens ist C ' .

89/11 . a) Der Faßkreisbogen über c zu 30 ° schneidet die Parallele zu c im Abstand 6 in
Ci und C2 .

b) Der Faßkreisbogen über b zu 40 ° schneidet den Kreis um C mit r = 6 in B .
c) Der Faßkreisbogen über b zu 50 ° schneidet den Kreis um M b mit r = 5 i n B ,

und B 2 .
d) Das Teildreieck H cBC ist mit Hilfe des Thaieskreises über [BC] konstruierbar .

Der Faßkreisbogen über a zu 45 ° schneidet [BH C in A.
e) Spiegelt man den Punkt C an S c , so erhält man das Parallelogramm AC ' BC .

Wegen •£ A = B = 80 ° liegen A und B auf dem Faßkreisbogenpaar über
[CC'] zum Winkel 80 °

. Außerdem liegt B auf dem Faßkreisbogen über [CSJ
zu 50 ° .

89/12 . Man konstruiert das Faßkreisbogenpaar über [AB] zu 60 ° und das Faßkreisbo¬
genpaar über [BC] zu 30 °

. Die Schnittpunkte sind die Lösung.

89/13 . Entfernung : 8,6 m

90/14 . S (8 111 )
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Man konstruiert die Faßkreisbögen über
den Seiten zum Winkel 120°

. Ihr Schnitt¬
punkt ist P.
Ist ein Innenwinkel mindestens 120 °

, so
gibt es keine Lösung.

Wegen /j. = 60 ° folgt:
y = 30 ° oder y = 150 ° .

90/17. a) Man konstruiert zuerst A ABD . C ergibt sich als Schnittpunkt des Faßkreis¬
bogens über [BD ] mit dem Kreis um B mit r = 6 . (2 Lösungen)

b) Man konstruiert zuerst A ABC . D ergibt sich als Schnittpunkt des Faßkreis¬
bogens über [AC] mit dem Kreis um B mit r = 7 .

c) Man konstruiert zuerst A ABC . D ergibt sich als Schnittpunkt des Thaieskrei¬
ses über [AC] und des Faßkreisbogens über [AB] ,

90/18 . a) Der Winkel ist 90 °
, P ist der Diagonalenschnittpunkt ; denn T APB = 90° =

= •£ BPC => APC = 180° ,d . h . ,Pliegtauf [AC] ; ebensomußPauf [BD ]
liegen .

b) Das Viereck muß konkav sein; seine Diagonalen müssen aufeinander senk¬
recht stehen.

90/19 . Skizze : a) Es gibt vier Punkte ; sie liegen auf den Ver¬
längerungen der Diagonalen . Man erhält sie
als Schnittpunkte der Faßkreisbögen über
den Seiten zum Winkel 20° .
Gäbe es einen solchen Punkt P, so müßte er
sicher außerhalb der Raute und wegen der
Symmetrie auf den Verlängerungen der Dia¬
gonalen liegen :

Wegen 130° + 50 ° = 180° bzw .
140 ° + 50° = 190 ° gibt es kein solches Dreieck
CPD bzw . DCP '

, also auch keinen solchen
Punkt P.
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90/20 . •£ PAQ = QBP (Umfangswinkelsatz )

90/21 . <x 1 = ol2 (Umfangswinkel über
[AD ])
ßi = ßi
=> WAU = * WiAUi

(Winkelsumme im Dreieck )

90/22 . a) £ IWE = 180° - a => £ IRE = 90° — - (Umfangswinkel )

£ lWR = 180 ° - y => REI = 90°

* EWR = 180° - ß => * EIR = 90° - ^
b) Wäre ERI rechtwinklig , so müßte a , ß oder y 0 ° haben . c) siehe a)

91/23 . t , schneide AR in C und k 2 in D , t2 schneide QR in E und k , in F.
SAB = •$; BSC = a und
PQS = ESP = ß (Sehnentangentenwinkel ) ,
ASB = -je QSP = e (Scheitelwinkel ) .

* QPS = 180° - s - ß (Dreieck SQP)
=> -je SPR = e + ß (Nebenwinkel ) .
Damit gilt : -je ARP = 180° — (a + e + ß ) , (Dreieck APR ) ;
* CSP = * (tj , t2) = 180° - (a + £ + ß ) .

91/24 . Man zeichnet die Thaieskreise über [BM] und [VM ] und betrachtet Umfangs¬
winkel über [ML ] .
Es sei •£ LVM = ß => •£ LUM = 180° — ß (Umfangswinkel ) => MUA
= ß (Nebenwinkel ) .
Es sei LBM = a => LAM = a (Umfangswinkel ) .
=> * AMU = 180 ° - a - ß = y (Dreieck AUM )
< BMV = 180 ° - a - ß = y (Dreieck BVM )
Mit •£ UMB = s gilt also : AMB = y + e = •£ UMV .
Damit weiß man über die Dreiecke ABM und MUV folgendes :
AM = UM (Radius von k) , £ MAB = * MUV = 90 °

, * AMB = £ UMV .
=> A AMB ^ AUMV (WSW -Satz ) => AB = UV .



91/25 . t = — (Umfangswinkel )

y = 180° — — (Nebenwinkel )

a
ß = - (Umfangswinkel )

AABC : 8 = 180 ° — ( ß + y) =

= 180° - + 180° - =

Spezialfall 1 : Eine Gerade ist Tangente .

co — a

180 ° — a a
V = - = 90 ° - -

A ABC : t = q + s
(Außenwinkel )

Spezialfall 2 : Beide Geraden sind Tangenten ,
s = 180 ° - a
co = 360° — a
co — a 360 ° — 2a

2
=

2
= 180°

Die Aussage gilt also auch
für die Spezialfälle .

91/26 . t sei die Tangente in A ; t n BC = { S } .
+ SAB = y (Sehnentangentenwinkel ) ,

ASB = ß — y (Dreieck ASB ) ,
ß y a + ß + y ß

* BAF = ( 180 ° - ß + y) : 2 - y = 90 ° - ^ - ^ = - |

(Winkelsumme im gleichschenkligen Dreieck ASF )



9
2 Wegen £ APB konstant wandert P auf

dem Faßkreisbogen über [AB] zum Winkel

a ß 1
92/30 . £ (a + ß )

(180° - y) = 90 ' konstant

Also wandert P auf dem Faßkreisbogen über [AB] zum Umfangswinkel

<P = 90 ° +
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92/31 . <p = 45 ° (Umfangswinkel über [AB] )
=> t = 90 ° + 45° = 135 °

ö- = 45° (ASBD )
S und T laufen also auf dem Faßkreis¬
bogen über [AB] zum Winkel 45°
bzw . 135 °

. Beide Faßkreisbögen erge¬
ben zusammen einen Kreis .

92/32. a) Wegen - = -
y

= 45° sind beide

Winkel Umfangswinkel über [GB ]
bzw . [BG *] . Da B fest bleibt , muß
dies auch für G und G * der Fall
sein . Da der Mittelpunktswinkel
90 ° sein muß , erhält man G und G *
als Schnittpunkte von mAB mit dem
Kreis .

b) Mb ist Mittelpunkt von [AC] ,
M ist Mittelpunkt von
[AB] => M bM ist parallel zu
BC => 4c AM bM = 90 °

, d . h . , M b
liegt auf dem Thales (halb )kreis
über [AM ] .

\
\
\c) 4c APB =

A

= 180° — (a + ß ) — 45 ° =
= 45°
=> P läuft auf einem Teil des Faß¬
kreisbogens über [AB] zum
Winkel 45° .



92/33 . a) AWB = y (Umfangswinkel über [AB] )
Y CWA = ß (Umfangswinkel über [AC ] )
=> Y TWC = a
Wegen a = ß gilt also : Y FWT = Y FWA .

b) Im A AWT ist die Höhe [FW ] zugleich Winkelhalbierende
=> AAWT ist gleichschenklig , also AW = WT

=> Y ATW = (180° - (a + ß )) : 2 = | = konst .
Also läuft T auf dem
Faßkreisbogen üb «

[AB] zum Winkel ^ (Mit¬

telpunkt C !) .

92/34 . a) Wegen Y XOY = 90 ° laufen alle Thaieskreise über [XY ] (um M ) durch O.

Der Radius dieser Kreise ist Also bewegt sich M auf dem Viertelkreis um

O mit r

b) Die Punkte X , R , Y und O liegen auf dem Thaieskreis über [XY ] . Wegen
-fc XOR = a. (Umfangswinkel über [RX ] ) läuft R auf der Geraden OR .

93/35 . CKB = ol = Y CUA wegen a = b
(Umfangswinkel über a bzw . b) q
£ KRU = Y ARB = 180 ° - a
=> YKCU = 360 ° - 2a - ( 180°
— a) = 180 ° — a .
Also ist Viereck RUCK ein Paralle¬
logramm , d . h . , KC = RU und UC « j
= KR .
Die Dreiecke BCK und AUC sind
kongruent

=> KC = UC .
RUCK hat damit 4 gleich lange
Seiten und ist eine Raute .

a = b , < K



93/36. a) E wandert auf dem Thaieskreis
über [AC ] .

b) Wegen AADE ^ AE >FE ([DE]
ist gemeinsame Seite , 9t AED
= 9t FED = 90 °

, 9t ADE
= •£ EDF als Umfangswinkel
wegen a = b) gilt AE = EF . Da
9: AED = 90 ° ist , wird [AF ] von
CD senkrecht halbiert , d . h . , A
und F liegen symmetrisch bezüg¬
lich CD . _ _ _

c) Nach b) gilt AC = FC . Da AC
konstant ist , wandert F auf dem
Kreis um C mit r = CA .

93/37. a) BI schneidet CU in F.
Es ist zu zeigen : BF _L CU .
9t DCU + 9t CUD = 90 °

, da
9t UDC = 90 ° .
9t ABC = 9t AUC (Umfangs¬
winkel )
9: ABD = 9t DBI (Symmetrie )
=> 9t CBF + 9: BCF = 9: AUC
+ 9: BCF = 90 ° ,
also gilt 9: BFC = 90 ° .

b)

/
J D

9: U ' BU = 90° = 9= CGB
=> U ' B | | CI
9: BFC = 90° = 9t U ' CU
=> U ' C | | BI
also ist CIBU ' ein Parallelogramm ,

c) Da Z Diagonalenschnittpunkt ist , gilt U ' Z = ZI
=> [ZM ] ist Mittellinie im AGUU ' => IU = 2ZM .

B
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93/38 . Zu zeigen ist wa = h u , d . h . ,
£ AXW = 90 ° .

C

■fc WVB = - (Umfangswinkel über

[WB ] )

a
9: BVU = - (Umfangswinkel über

[ BU ] )
y ß

=> £ BCV = 180 ° - - - ^
2 2

y ß= * acx - H
£ AXC = 180 ° ■

= 90 ° .

Analog für die übrigen Winkelhalbierenden .

93/39 . a) A CDE = 60 ° (Umfangswinkel über [ BC ] )

Wegen DE = DC folgt :
180 ° - 60 °

* DEC = £ DCE = - - - = 60 °

b) £ DAC = £ EBC
£ BCE = * DCA = 60 ° - < ECA

DC = CE
=> ADAC ^ AEBC (SWW )
also DA = EB

c) DC = DE , DA = EB

=> DA + DC = DB

C
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93/40 . a) £ FAC = 90 ° (Thaieskreis) => * FAB = 90 ° - a
£ CKB = a (Umfangswinkel) => * ABK = 180 ° - a - 90 ° = 90 ° - a
£ ABH = 180° - 90 ° - a = 90 ° - a

b) £ MCE = T MEC , da A MEC gleichschenklig ist .
9: MEC = * ECK (Z -Winkel, da MM c | | CHc)

c) [MCHC] ist genauso lang wie die zu [FK ] parallele Mittellinie im

AFKC FK = 2M CHC. _ _
d) Hc ist Mittelpunkt von [HK] (Symmetrie) . Wegen FK = 2M CHC und

MCHC| | FK ist Mc die Mitte von [FH ] .
e) [MMJ ist Mittellinie im A FHC => 2 • MM C = CH .
f) Wegen AF = KB gilt T ACF = KCB . Wegen b) ist also w. Halbierende von

MCH .

Aufgaben zu 4.2

95/1 . a) Im Kreis mit r = 5 wird b als Sehne abgetragen . Trägt man ß an, so erhält man
A als Schnittpunkt eines Schenkels mit dem Kreis . Nun liefert das Anträgen
von a bei A den Punkt D.

b) Man konstruiert A BCD . Die Mittelsenkrechten mc und mb schneiden sich im
Umkreismittelpunkt M . Der Kreis um D mit r = 2 schneidet den Umkreis in
A.

c) Man konstruiert A ABC . Die Mittelsenkrechten ma und mb ergeben den Um¬
kreismittelpunkt M . Der Kreis um C mit r = b ergibt D .
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95/2 . a) mAB und mCB schneiden sich in M . Der Faßkreisbogen über [AM ] zum Winkel
45° schneidet den Umkreis in D (2 | 9) .

b) mAB und mBC schneiden sich in M . Der Umkreis schneidet den freien Schenkel
von a in D .

c) B (9,5/1 ) , C ( 13/4,5)

95/3 . Ist ABCD ein Sehnenviereck , dann liegen A , B , C und D auf einem Kreis .
Deshalb sind 4c CAD und 4c CBD Umfangswinkel über der Sehne [DC ] , d . h . ,
sie stimmen überein .
Gilt umgekehrt CAD = 4c CBD , so liegen A und B auf dem Faßkreisbogen
über [DC ] , das Viereck hat also einen Umkreis und ist ein Sehnenviereck .

95/4 . Es sei ABCD ein Sehnenviereck und S der Diagonalenschnittpunkt .
Wegen 4c ASB = 4c CSD (Scheitelwinkel ) und 4: DBA = 4c DCA (Umfangswin¬
kel über [AD ] ) stimmen AABS und ADSC in den Winkeln überein .
Analog für die beiden anderen Dreiecke .

95/5 . oc + y = 180 °

96/6 . a) Rechtecke b) Quadrate c) gleichschenklige Trapeze

96/7 . . Sind die beiden rechten Winkel Nachbarwinkel , so ist der Drachen wegen der
Achsensymmetrie ein Quadrat , also ein Sehnenviereck .
Sind die beiden rechten Winkel Gegenwinkel , so ist der Umkreis der Thaieskreis
der beiden rechtwinkligen Teildreiecke .

96/8 . Es sei ABCD ein Sehnenviereck mit b
= d . Wegen a x = ß 2 (Umfangswinkel
über [DC ] ) , b = d und ö 2 — (Um¬
fangswinkel über [AB] ) folgt :
AASD abcs .
Deshalb sind die Dreiecke ABS und
CDS gleichschenklig . Da die Winkel
an der Spitze als Scheitelwinkel gleich
sind , müssen auch die Basiswinkel
übereinstimmen : ß t = S 1 => a | | c .
Wegen ß t = a 2 folgt weiter : oc1 + a2
= ßi + ß 2 , d . h . , die Winkel an einer
Basis des Trapezes sind gleich .

96/9 . 4c H a + 4c H b = 180° .
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a + ß + y + ö

d . h . , EFGH ist ein Sehnenviereck .
Bei achsensymmetrischen Vier¬
ecken ist das Sehnenviereck ein
Punkt .

96/11 . * RUN = £ RDN = 90° => * RUN + £ RDN = 180°

96/12 . a) Wegen A ECI = T EH CI = 90° liegen C und H c auf dem Thaieskreis über
[EI ] => MC = MH C.

b) M wandert auf der Mittellinie .

96/13 . £ STA = 90 ° - 7' +
J - (Winkelsumme im AUAT )

ß — a
A SLA = —- — (Winkelsumme im A MLU )

( a + ß ß - a \
=> £ TSL = 360° —

^
90° - - f 180 + aj

=

= 90 ° (Winkelsumme im Viereck SLAT ) .

96/14 . A UCA = T ABU (Umfangswinkel über [AU ] ) .
Wegen HH bC = 90 ° = HH CB und A H bHC = H CHB (Scheitelwinkel )
folgt * ABU = £ H CBH = £ HCH b = £ HCA .
=> £ UCA = £ ACH
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96/15 . a) £ M = 90°
, * M = 120 ° bzw . * M = 60

b) 1 ) Wegen CMD = 90°

gilt a = c , deshalb folgt :
£ ADB = £ ACB =
= * DAC = £ DBC =
= e .

=> d | | b (Z-Winkel ) . We¬
gen DCA = £ DBA
folgt ß = y , also ist
BCDA ein gleichschenk¬
liges Trapez .
s ist als Umfangswinkel
über der Quadratseite
45 °

, also stehen die Dia¬
gonalen aufeinander
senkrecht .

2) Die Seiten des Vierecks
EFGH sind als Drei¬
ecksmittellinien jeweils
parallel zu den Diagona¬
len des Trapezes ; daher
sind die Innenwinkel je¬
weils 90°

. Außerdem sind
sie jeweils halb so lang
wie eine Diagonale , also
gleich lang . Viereck
EFGH ist damit ein Qua¬
drat .

96/16 . a ist Außenwinkel von ABCP
=> a = e + t

Hi fJ-2Wegen t = — und e = — gilt :

ßi + ßia = - .2

Also : * AMB + £ DMC =
ßi + ß 2 = 2a = APB + DPC .
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96/17 . TA = TB (Symmetrie )
=> T BVD = < CUA (Umfangswinkel ) .
Wegen UAB = UVB (Umfangswinkel über [UB ] ) folgt :
£ DCU + <£ DVU = y + a + ß = 180 ° (Winkelsumme im A ACU )
=> Viereck DCUV ist ein Sehnenviereck .

97/18 . 1 . Die Punkte F, U , A , Z liegen auf dem
Thaieskreis über [AU ] , die Punkte F,
U , G , C liegen auf dem Thaieskreis
über [UC ] , die Punkte Z , U , G , B lie¬
gen auf dem Thaieskreis über [BU ] .

2 . ABCU ist ein Sehnenviereck
=> •£ AUC + ß = 180°
ZBGU ist ein Sehnenviereck
=> * ZUG + ß = 180° .

3 . £ AUZ = £ AFZ (Umfangs¬
winkel über [AZ ] ) ;
* GUC = * GFC (Umfangs¬
winkel über [GC ] )
Nach 2) gilt aber AUZ
= * GUC .

4 . * GFZ = 90 ° - g + 90° + £
= 180°

97/19 . a) Gegenbeispiel :
Wegen ß + 8 = 135 ° + 180° gibt es
keinen Umkreis .

b) Gegenbeispiel : Rechteck
c) In jedem Drachen gilt : AB + CD

= BC + AD
=> Der Drachen hat einen Inkreis .

D C

d) Jeder Drachen ist ein Tangentenviereck (unabhängig davon , ob er einen Um¬
kreis hat ) .

e) Im Parallelogramm gilt : a = c und b = d .
Wegen des Inkreises folgt : a + c = b + d , also 2a = 2b , d . h . a = b . Deshalb
sind alle 4 Seiten gleich lang , und das Parallelogramm ist eine Raute .

f) In einer Raute gilt : a = y und ß = 8 . D
(

C
Wegen des Umkreises folgt : a +
also a = y = 90 °

. Ebenso gilt
ß = 8 = 90 °

, die Raute
ist also ein Quadrat .

g) Gegenbeispiel :
Gleichschenkliges Trapez
mit Inkreis

A B
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97/20 . a) k , und k 2 schneiden sich in P

und C 1BA 1P Sehnenvierecke
sind , gilt :

=> * BiPAi = 360 ° - ( 180 - a + 180° - ß ) = a + ß = 180 ° - y .
Deshalb ist auch das Viereck PAiCBi ein Sehnenviereck

Der Kreis durch B l5 P und läuft also durch C und ist k 3 .
Es sei £ PBiA = s => ACjP = 180° — e (Sehnenviereck )
=> PC , B = e (Nebenwinkel )
Ebenso gilt : £ BAjP = 180° — £ und somit £ PAjlC = s .

Aufgaben zu 4 .3

103/2 . n = 2k , (k > 2) ; in M schneiden sich § Diagonalen .

b) n = 100 , a = 176,4'

c) 108 ' d) 156 '

45900 °

b) (n — 2) • 180 ' c) 360'

a) d = n (n — 3) b) n — 2



103/8. a) Ein regelmäßiges n-Eck hat n Symmetrieachsen . Ist n gerade, so sind die nj2
Mittelsenkrechten und die n/2 Winkelhalbierenden Symmetrieachsen . Ist n
ungerade , so fallen die Mittelsenkrechten mit den Winkelhalbierenden zu¬
sammen .

b) n-Ecke mit geradem n sind punktsymmetrisch .

103/9. a) GB : n = 7 c) GB : Raute d) GB : Rechteck
f) GB : Dreieck und Quadrat

103/10 . a) 3 b) 3 c) 7 d) 2 e) 19

103/11. Ein regelmäßgies p-Eck entsteht , wenn man die Ecke p mit der Ecke k verbindet,
wobei p und k teilerfremd sind . Weil es p — 1 solcher Zahlen k gibt und die Ver¬
bindung von p und k zum selben p -Eck führt wie die von p und p — k , gibt es
^ (p — 1 ) regelmäßige p-Ecke.
Bemerkung : Für jedes n existieren so viele verschiedene (einander nicht ähnliche ) regelmäßige Stern -n-
Ecke , wie es ganze Zahlen k mit 1 < k < nj2 gibt , die zu n teilerfremd sind.

103/12 . a) n = 50 b) n = 200

104/14 . a) 192 = 26 • 3 b) 512 = 2 7 • 4 c) 1920 = 2 7 • 15
d) 17408 = 2 10 ■17 e) 8 589934594 = 2 (225 + 1)

104/15 . Zum Beispiel : = 6 ■ - 1 • = 7 ■ - 2 • ^
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5 . Kapitel

Aufgaben zu 5 . 1

108/1. a) 16 b) 23,5 c) 27 d) 21

109/2. a) 396 b) 297 c) 306 d) 360 e) 567
Beim Maßstab II sinkt der Flächeninhalt auf das ^-fache .
Beim Maßstab III steigt der Flächeninhalt auf das 4-fache .

109/3 . a) AACD ^ ABEF (SSS-Satz )
=► Die Parallelogramme sind flächengleich .

b) AAFD = ABEC (SSS-Satz)
=> Die Parallelogramme sind flächengleich .

c) AAFD ^ ABEC (SSS -Satz )
Durch Hinzufügen eines dieser Dreiecke zum Parallelogramm erhält man je¬
weils das Trapez ABED , also sind die Parallelogramme flächengleich .

109/4 . Die Figuren sind jeweils zerlegungsgleich (z . B . Zerlegung in „halbe Kästchen “
) .

110/7 . a) Man verbinde (013) und (916) .
b) Man verbinde (012) und ( 1517) .

(Da jeweils beide Figuren punktsymmetrisch sind , werden sie von der Geraden
durch ihre Mittelpunkte halbiert .)

110/8 . AUMT ^ AMRT
AOTN ^ ATSN
Da auch die Dreiecke AMN und MEN kongruent sind , folgt aus der Ergänzungs¬
gleichheit die Flächengleichheit der beiden Parallelogramme .

110/9 . Ergänzt man die schwarze Figur jeweils mit 4 kongruenten rechtwinkligen Dreiek -
ken , so erhält man das äußere Quadrat .
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111/10. Alle Figuren bestehen aus folgenden
3 Teilflächen © , © , ® :

111/11 . Die Verbindungslinie der Ecken im Rechteck ist
nicht die Diagonale (Steigungen : ^ bzw . | ) , d . h . , in
Wirklichkeit überlappen sich beim Rechteck die
Dreiecke und die Trapeze .
(Inhalt der Überlappungsfläche : 169 - 168 !)
Übertrieben gezeichnet !

111/12. Die Seiten der „Quadrate“ sind jeweils geknickt ,
beim oberen nach innen , beim unteren nach außen .
Übertrieben gezeichnet !

Aufgaben zu 5 .2

115/1 . a) A = 13,2 b) A = 4 c) A = 10

116/2 . a) a = 9 b) hb = 20

116/3. hb = 3,22

116/4. h = 7

116/5 . Die Figuren 1 , 2 und 3 sind jeweils
paarweise kongruent .
=> AR = g ' • h ' = A P .
Der Beweis klappt z . B . nicht bei :

116/6. a) KC = ZI = fTA , hA = 2 • hP
b) wie a) c) folgt aus a) und b) .



116/7 . O < A < 60 (max . Parallelogrammfläche : Rechtecksfläche )

116/8 . Die Grundlinie [AB] und die Höhe ha bleiben jeweils gleich . (Scherung !)

117/9 . a) Der Faßkreisbogen über [AB] zum Umfangswinkel 30 ° schneidet die Gerade
CD in Dj und D '

2 .
b) Der Thaieskreis über [AB ] schneidet die zu AB parallele Mittellinie in M b und

M 2 .
c) Der Faßkreisbogen über [AB] zum Umfangswinkel 75 ° schneidet die zu AB

parallele Mittellinie in Mi und M 2 .

117/10 . a) 2 benachbarte Quadratecken von STUV bilden mit C als Scheitel einen 90°-
Winkel , deshalb können maximal 2 Ecken von STUV auf ABCD liegen , je¬
doch nie im Innern von ABCD .

b) Die Diagonalen SU und VT zer¬
legen das Quadrat STUV in 4
flächengleiche Dreiecke . Liegen
2 Ecken von STUV auf ABCD ,
SO gilt . Agchnittfläche = 4 ^ ABCD •

Für die anderen Fälle gilt (O . E.
d . A .) :
AETC ^ AFSC , denn SC
= TC , * FCS = * ECT = oc,
£ FSC = * ETC = 45°

, also
ASCF ^ ATCE .
In jedem Fall beträgt der Inhalt
der Schnittfläche ein Viertel der
Quadratfläche .

A B

117/11 . a) Aabc — Aahc + Ahbc — 2 AH • h + 2 HB • h — 2 AB • h — 2 g • h
b) Aabc = Aahc — Abhc = ? AH • h — 2 BH • h = tAB • h = ig • h

117/12 . a) b = 20, A = 35
c) ha = 8 , hb = 6

117/13 . A = -ja • ha , A = jrb • hb

b) ha = 27 , A = 216
d) a = 16 , b = 12,8
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117/14. a) 3mal so groß b) A = 48

118/15. a) Aabc = 2 - ix - g + 2 - ^ yQ + 2 - ^ z - Q =
= g (x + y + z) = g - s .

b) Aabcd = 2 • ixe + 2 • ^ yg + 2 ■^zg + 2 ■ = C
= (x + y + z + w) e =
= iu - ß

118/16. hi = h2 , da A ABD ^ ABCD

118/17. Aabi + Acdi — 2 AB • h x + 2 CD • h

= -jAB (hj + h2 ) = -jAB • ha = -jA ,
Analog : ABCI + Adai = ^ BC • hb = 2 ^ ABCD
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118/18 . a) Die Seitenhalbierende zerlegt ein Dreieck in
zwei Teildreiecke , die dieselbe Höhe und eine
Grundlinie gleicher Länge haben ,

b) Nach a) gilt:
Ai = A2 , -̂ 3 ~ A4. , A5 = Ag
(z . B . : s c ist Seitenhalbierende im AABS )
Wegen + A 2 + A 3 = ^ Aabc = A 2 + A 3 + A4
folgt A x = A4 .
Wegen A 2 + A 3 + A4 = 2 Aabc = A 3 + A4 + A 5
folgt A 2 = A 5 .
=> A x = A 2 = A 3 = A4 = A 5 = A 6 .

A 4

118/19 . P (716) ist der Schnittpunkt der Seitenhalbierenden .

118/20 . Der Flächeninhalt des neuen
Quadrats ist viermal so groß .

118/21 . A 1 = A2
A 2 — A 3
Ai = A4
A4 = A 5
Ax = A6
Ag = A 7
^ A . mY

(denn [AB] halbiert [A ' C] )
(denn [A ' B ] halbiert [AB '] )
(denn [BC] halbiert [AB '] )
(denn [CB '] halbiert [C ' B ] )
(denn [CA] halbiert [BC '] )
(denn [C 'A] halbiert [A ' C] )

' = 1 ' A . Rr •

118/22 . A (010) , B ( 110) , C ( l | l ) , D (0 | 1 ) => A = 1
A (010) , B (11 — 1 ) , C (210) , D ( 111 ) => A = 2
A (0 | 0) , B (210) , C (212) , D (0 | 2) ^ > A = 4
A (010) , B ( 11 — 2) , C (3 | - 1 ) , D (2 | 1 ) A = 5
A (010) , B (21 - 2) , C (410 ) , D (2 | 2) ^ A = 8
A (010) , B (310) , C (313) , D (0 | 3) => A = 9
A (010) , B (11 — 3 ) , C (4 | - 2) , D (311 ) => A = 10
A (010) , B (2 [ — 3) , C (51 - 1 ) , D (312) ^ A = 13
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118/23. AE = b , da ADAE gleichschenklig ist , analog gilt GB = b .
=> EG = a - 2b

Amfnk = 2 • A mel + A eghl + 2 • A efg =
= 2 • ib 2 + (a - 2b ) • b + 2 • | (a - 2b ) 2 =
= jb 2 + ab - 2b 2 + ^ a 2 - 2ab + 2b 2 =
= ja 2 - ab + ib 2 = j (a — b ) 2

K

118/24. a) Der freie Schenkel von a ' schneidet die Parallele zu AB durch C in C ' .
b) Der Kreis um B mit r = 9 schneidet die Parallele zu AB durch C in C \ und C '

2 .
c) Der Kreis um B mit r = 4 schneidet den Thaieskreis über [AB] in Hb. . AH b.

schneidet die Parallele zu AB durch C in C ' .
d) AB und die Parallele g zu AB durch C haben die Mittelparallele m . Der Kreis

um A mit r = 7 schneidet m in S x und S 2 . BSi bzw . BS 2 schneidet g in C ] bzw .
c 2 .

e) mAB schneidet die Parallele zu AB durch C in C ' .

119/25. Trägt man c ' auf [AB von A aus an, so erhält man B ' .
Die Parallele zu B ' C durch B schneidet AC in C' .
Das gesuchte Dreieck ist AAB ' C ' .

119/26. a) A = 68 b) A = 32 c) A = 32

119/27. Der Kreis um B mit r = 10 schneidet die Parallele zu AB durch C in C' (bzw . C" ) .
Der Kreis um B mit r = 5 schneidet die Parallele zu BC ' durch A in A ' (bzw . A ") .
AA 'BC ' erfüllt die Bedingungen .

119/28. a) A = 48 b) A = 80 c) A = 48 d) A = 92

119/29. a) AUVW ist gleichseitig (drei 60° -Winkel) . Man zeichnet zuerst AUVW und
errichtet in U , V und W die Lote auf die Seiten . Diese Lote schneiden sich in
den Punkten A , B und C des gleichseitigen Dreiecks ABC .
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A
b) Es gilt : AXBV ^ ACZW und AAUW ^ AVYC (SWW-Satz) .

Deshalb haben das Dreieck ABC und das Rechteck UXYZ denselben Flä¬
cheninhalt .
Da sich das Rechteck aus 6 kongruenten Dreiecken zusammensetzt , paßt das
Dreieck UVW dreimal flächenmäßig in das AABC .

a) Im A ABW ist [MM C] Mittellinie => BW = 2 • MM 0
Im AAMC ist [M bZ] Mittellinie => MZ = ZC
Da der Schwerpunkt M die Strecke [CMJ im Verhältnis 2 : 1 teilt , gilt also
CZ = ZM = MM C.
[ZM ] und [DW ] sind als parallele Querstrecken gleich lang , also gilt auch
DW = MM C.
Damit folgt : M cC = 3 ■M CM = BD .
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M cBDC ist wegen M cC | | BD und M cC = BD ein Parallelogramm mit Mittel¬

punkt M a . Wegen M CB = CD und AM c | | CD ist auch AM cDC ein Parallelo¬
gramm , also AC | | M cD . Da [AMJ und [M bD] parallele Querstrecken sind ,
haben sie dieselbe Länge .

b) M cBDC und AM cCE sind kongruente Parallelogramme , die durch die Diago¬
nalen und Mittellinien jeweils in 8 kongruente Dreiecke zerfallen (siehe schraf¬
fiertes Dreieck ) .
Da die Seitenhalbierenden allgemein jedes Dreieck in 6 flächengleiche Teil¬
dreiecke zerlegen , gilt :
Ayi bBD = 6 • AMaFD = f AMcBDC .
Das Dreieck ABC ist offenbar flächengleich mit Parallelogramm M cBDC .
^ A MbBD = 4 Aabc -

120/31 . a) h = 18 ^ b) A = 403,2 c) a = 5 d) c = 5

120/32. A = 228

120/33. a) h = 4 => A = 24

121/34. AAEK ^ ADIK und

afbg ^ ahcg
a + c

b) h = 2 => A = 10

I D

A-Trapez

= m

= m • h

121/35. AD 'A ' D ist ein Parallelogramm .
Aad 'a 'd = AD ' • h = (a + c) • h

a _ a + c ,^ a abcd —
2

^

0 C C

c) h = 2 => A = 10

C H

A
'

121/36. b) M (5,514) , r = | h = 3 , a + c = b + d => c = 7,5 + 6,5 - 10,5 = 3,5
c) A = ir • u => A = i • 3 • 28 = 42

a + c
oder : A = - h A 10,5 + 3,5 ^ ^A = — - — • 6 = 42

121/37. a + c = b + d = 16
A = ^ r • u = ^ • 2,5 • 32 = 40

121/38. Die Mittelsenkrechte mAB schneidet c in M . M ist Mittelpunkt von c' wobei c = c' .
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121/39 . Man verwandelt das Trapez in das Parallelogramm AB ' C ' D .
Die Parallele zu AD durch B schneidet DC in F.
AF schneidet B ' C ' in E , D ' C" ist die Parallele zu AB durch E . ABC " D ' ist das

gesuchte Parallelogramm (vgl . Aufgabe 5 . 1 . Nr . 8) .

D C C' F

121/40 . a) Eine Seite des Rechtecks ist so
lang wie die Mittellinie , die ande¬
re ist die Höhe des Trapezes , also
Aabcd = A efgh .

b) Das Rechteck aus a) wird in das
Rechteck EILM verwandelt :
Man trägt von E aus auf EF die
Strecke a x = 7 ab und erhält I .
Die Parallele zu EH durch I
schneidet HG in K . EK schneidet
FG in O . Die Parallele zu EI
durch O ergibt M und L.
EILM ist das gesuchte Rechteck .

H D C G K

121/41 . a) M (7,51 3) , VM halbiert AVIR , EM halbiert AIER
= > A Vim ^ EMI = 2 Avier .

b) Die Dreiecke MVS und MES haben dieselbe Grundlinie [SM] und die gleiche
Höhe . Mit a) halbiert ES die Vierecksfläche . Die Dreiecke MTV und MTE
haben dieselbe Grundlinie [MT ] und die gleiche Höhe . Mit a) halbiert TV die
Vierecksfläche .
RI halbiert das
Viereck ; A = 42.

AM eIB wird in AM EAB
verwandelt .
A M eRE wird in A M e RC
verwandelt .
N ist der Mittelpunkt von
[AC ] , h = M eN .

121/42 .
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121/43 . a) g = DB
b) h läuft durch den Mittelpunkt M (7,514,5 ) des Parallelogramms und schneidet

AD in (416) .
c) u läuft durch den Mittelpunkt M des Parallelogramms .

121/44 . a) g = sb
b) A APC wird in A ACD verwan¬

delt . M ist der Mittelpunkt von
[DB ] , h = PM .

122/45. a) p läuft durch den Mittelpunkt der Mittellinie des Trapezes.
b) q läuft durch den Mittelpunkt der Mittellinie des Trapezes .
c) Man schert die Ecken T und P weg und erhält ein Dreieck CBS mit C und B auf

RA .
Die Gerade s läuft durch den Mittelpunkt M (81 6) von [CB] .

122/46. a) A = 24 b) x = 3 , A = 54 c) A = 30
d) A = d (a - d) e) A = 120, a , = 15 , bq = 8 , a2 = 10 , b 2 = -6 , a 3 = 8 , b 3 = 5
f) A = 25 , x = 10 , A ' = 25 g) A = 24 , x = 8 h) A = 21 i) m = 12 ,

A = 48 j) A = 21 , x = 5 k) x , = 3a , x2 = 1,5a 1) A = 36
m) A = 120 n) A = 50

123/47. a = 6 , b = 18

123/48. f = 14 , e = 9 , A = 63

124/49 . c = 18 , a = 54 , h = 9

124/50. h = 5,5 , a = 19,25 , c = 13,75
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6 . Kapitel

135/1.

136/2 . a) Je zwei Gegenseiten sind parallel und gleich lang , Gegenwinkel sind gleich
groß . b) Regelmäßiges Sechseck c) Rechteck , Sechseck

136/3 . Eine , zwei oder drei Seitenflächen .

136/4 . Vier , sieben oder neun Kanten .

136/5 . Vier , sechs oder sieben Ecken .

136/6 . a) 3 Schnitte bzw . 6 Schnitte b) 8 bzw . 27 Teilquader .



136/7. Zwölfflach :

h

Sechsflach :

Dreibein :

Achtflach :
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Oktaeder :

Achtzehnflach:

Vierzehnflach:
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Sechsbein :

Allesklar :

138/8. Es gibt mehrere Möglichkeiten , z . B . :

138/9. E + F — K = 2

138/10. a) Blickrichtung : Senkrecht auf
eine Seitenfläche

b) Blickrichtung : Senkrecht auf
eine Kante , wobei der Winkel
gegen die beiden Seitenflächen
gleich ist



c) Blickrichtung : Raumdiagonale d)

Blickrichtung

139/11 . a) RW : 4 , 5 , 6 , LW : 3 , 5 , 6 b) RW : ® , © c) ( 1 ) : 7 , (2) : 6

139/12 . z I

Drehung um die x-Achse mit cp = 90 °

z I

Drehung um die y-Achse mit <p = — 90°

Drehung um die z-Achse mit cp = 180°

139/13 . a) 3 ; 90 °

d) 2 ; 90°
b) 1 ; 180 °

e) 1 ; 90°
c) 2 ; 180 °
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140/14 .

a) b)

• •/

> •
2, ( - 90°)

d)

b)

6 , ( - 90°)

140/16 . a) Parallel zu BC sind: FG , EH , AD.
Windschief zu BC sind: AE , EF, FH , DH , HG .

b) Parallel zu BD ist FH .
Windschief zu BD sind: AE , CG , EF, FG , GH , EH.

140/17. a) E (A , B , C) , E (A, B , D) , E (B , C , D) , E (C , D , A) , E (a , b) ,
E (a , c) , E (a , d) , E (b , c) , E (b , d) , E (c , d) , E (A , b) , E (A , c) usw .

b) 6 Geraden
c) 4 Ebenen
d) Senkrecht zu E (A , B , C) sind: E (A , B , F) , E (B , C , G) , E (C , G , D) ,

E (D , A , H) , E (B , D , H) .
Parallel zu E (A , B , C) ist E (F, G , H) .

141/18. a) BF und HD , bzw . AC und EG , bzw . NC und MK (wobei K der Mittelpunkt
von [BC] ist) sind jeweils zwei gemeinsame Lote .

b) z . B . : E , M , G ; H , N , G ; H , M ,
F ; usw .

c) AE | | DH und AB | | DC bzw.
MN | | FG und NI | | GC (wobei I
der Mittelpunkt von [DC] ist) .

d) s = LM ; s = AD ; s = HD ;
E (G , F, L) 11E (A , M , D) C

H
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141/19 . a) GC 1 GH und GC 1 GF

b) BDHF ist ein Rechteck , der Schnittpunkt seiner Diagonalen sei I , der Mittel¬

punkt von [FH ] sei R . Da BDHF ^ ACGE , kann man durch eine Drehung
um RI mit q> = 90° BDHF auf ACGE abbilden ; I ist dabei ein Fixpunkt .

c) LN , Parallele zu LN durch H oder D , usw.

d) G ; M ; E (A , B , F) | | LM ; H ; E (B ; F ; N ) | | KD ; FG c E (B , C , M) ; I ; I .

e) M liegt auf FC , also in E ; G liegt auf BM , also ebenfalls in E .

f) AD ; Parallele zu FG durch I .

141/20 .

141/21 . Es gibt 20 Ebenen .

141/22 . a) g | | E , h | | E b) E (A,B,D ) nE (D,C,G ) = DC

c) E (g , A) n E (h, k) = h

142/23 . a) Rechteck BFHD mit BF = 6 und FH « 8,5
b) Dreieck EFC mit EF = 6 , FC « 8,5 , EFC = 90 °

c) Dreieck ACM mit AC x 8,5 , CM « 4,2 , AM « 7,3

d) Dreieck KLM mit KM « 5,2, ML « 6,7 , LK » 7,3

e) Dreieck DBG ist gleichseitig , M ist Mittelpunkt von [BG ] => < BMD = 90° .

f ) Viereck ACNL ist ein gleichschenkliges Trapez mit AC « 8,5,
AL = CN ~ 6,7 , LN « 4,2 .

142/24 . a) Dreieck BCG mit BC = 4 , CG = 8 und * BCG = 90 °

b) Dreieck BFD mit BF = 8 , BD « 7,2 , £ FBD = 90°

c) Dreieck FKM mit FK « 4,5 , KM « 4,1 , MF « 3,6

d) Dreieck LKM mit LK = 9 , KM ss 4,1 , ML x 8,6
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e) Dreieck DKM mit DK « 8,5 , KM « 4,1 , MD « 8,8
f) Dreieck HLK mit HL « 8,5 , LK = 9 , HK « 6,3
g) Viereck ECKM mit EC « 10,8 , je ECK « 42°

, CK = 6 , KM « 4,1 ,
ME « 3,6 . _ _ _ _

h) Viereck DBFM mit DB « 7,2 , je DBF = 90 °
, BF = 8 , FM x 3,6 MD » 8,8

i) Viereck PCQE ist ein Parallelogramm mit PC « 8,2 , je EPC « 29 °
, PE = 4 .

142/25. a) HG | | VU und GT | | UB => E (A , B,U ) | | E (G , H , S)
d (E (A , B , U ) , E (G , H , S)) » 4,5 _ _
Viereck ABUV ist ein Rechteck mit AB = 10 und BU « 11,2.

b) EB | | HC | | WU => BUWE ist ein Trapez.
BE « 14,1 , BÜ = EW « 11,2 , WU « 7,1

c) M sei der Schnittpunkt der Raumdiagonalen . [MP] , [MS] , [MQ] , [MR ] ,
[MU ] , [MW ] sind als Flächendiagonalen eines Würfels mit der Kantenlänge
5 gleich lang , also hat das Sechseck einen Umkreis . Wegen
APES « ASAQ « . . . = AWHP (SWS) folgt PS = SQj = . . . = WP . Damit

handelt es sich um ein regelmäßiges Sechseck (mit r = PS « 7,1 ) . Es gibt 4
solche Sechsecke .

d) Wegen AE | | IJ und AE = IJ und vier rechter Winkel bilden die Punkte
A , J , I , E das Rechteck AJIE . (Analoges gilt für die Punkte B , F, I , J .)
AABI ist gleichschenklig mit AB = 10 , AI = BI « 12,2.
X und Y sind Seitenmitten in diesem Dreieck .

e) z . B . : Dreieck EBG ist gleichseitig , das zugehörige Dreieck des Oktaeders ist
Mittendreieck des Dreiecks EBG , also ebenfalls gleichseitig mit a « 7,1 .

f) Die Oberfläche des Stumpfs besteht aus sechs Quadraten und acht gleichseiti¬
gen Dreiecken , d « 11,7.
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7 . Kapitel

Aufgaben zu 7 . 1

149/1 . a) e = 6 , k = 9 , f = 5 b) e = 10 , k = 15 , f = 7
c) e = 2n , k = 3n , f = n + 2

149/2 . a) falsch , denn 53 ist nicht durch 3 teilbar
b) falsch , denn 53 ist nicht gerade
c) richtig

149/3 . a) 8-seitiges Prisma b) Quader c) 12 -seitiges Prisma
d) 8-seitiges Prisma

149/4 . < DQB = 119 °

149/5 . * BDC « 28 °
, £ BQC « 35 °

, £ BAC « 39 °

149/6 . Der abgewickelte Mantel ist ein Rechteck mit den Seiten u und h
=> S = 2 • G + u • h

149/7 . M = 38,4 cm2

149/8 . S = 42 cm2

149/9 . b) BC = 5

149/10 . a) h = 5

150/11 . b) S = 196

150/12.
H G
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150/13.

150/14 . Keine Reklamationen bekommt er nur bei 4 , 20, 21 , 23 , 25 , 27, 28 , 32 , 33 , 34, 35 .

151/15 . Es gibt 11 nicht kongruente Würfelnetze (vgl . Aufgabe 14) .

151/16 . a) rechts : A , vorn : E (sichtbar als m )
b) rechts: A , vorn : D (sichtbar als D)

7 . fl b> U <0 ■ d) fl

4 > 4p f H

151/18 . a) z . B . L V b) z . B . : H L

U R U V

H 0 R 0

c) z . B . : R V d) z . B . : V U

0 L U L H R

H 0

Es gibt jeweils 4 Möglichkeiten.
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152/19 . a)

K VI
b) SO = 5152/20 . a) SO = 5,7

G 0 H

A S B

152/21 .



Aufgaben zu 7 .2

G u h V S

a) 2,5 12,5 8 20 105

b) 18 36 5 90 216

c) 0,24 2,4 2,3 0,552 6

d) 0,11 1,5 0,7 0,077 1,27

e) 0,3 8,1 0,7 0,21 6,27

155/2. V = 48 155/3 . V = 29440 cm3

155/4. a) V = 700000 m3 b) V = 14 m2 • 30 m = 420 m3

155/5. VD = 384 m 3
, V = 1920 m3 155/6 . m = 2,21 • 256 cm3 = 565,76 gcirr

8 • 17
156/7. a) V = - • 11 cm3 = 748 cm3

' 2

b) V = Va - V; = 1500 cm3 - 884 cm3 = 616 cm3 156/8 . V = 64 m 3

156/9. b) Vj = 30
V2 = 5 - 4 - 7 - 30 = 110

c) S Q = 166
S t = 70,2
S 2 = 142,2

156/10 . V = 0,18 m3

157/11 . b) Si = 94,4 , S 2 = 112,4

d) M liegt so auf [BF] ,
daß BM = 2,5 .

157/12 . Man muß entlang der 3 Sei¬
tenhalbierenden schneiden .
Man zerlegt dabei die Grund¬
fläche in 6 inhaltsgleiche Flä¬
chenstücke , und die Flöhe der
Prismen bleibt gleich .
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8 . Kapitel

Aufgaben zu 8 . 1 , 8 . 2 und 8 .3

Tenochtitlan: Schrägbild (Kavalierpr .)
Rathaus : Normalbild
Bauhaus: Schrägbild (Militärpr .)
Villa : Normalbild
Traumküche: Schrägbild (Militärpr .)
Residenz: Normalbild
St . Etienne: Schrägbild (Militärpr .)
Kirche: Normalbild
Kreuzgewölbe: Schrägbild (Kavalierpr .)
Zwinger: Normalbild (Aufriß)

175/2 . Achtflach:
Grundriß : Aufriß : [

~

Würfelstumpf:
Grundriß : F Aufriß : r
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176/4 . a) Türbreite: 2 , Türhöhe : 4 , Fensterbreite : 2 , Fensterhöhe : 3
b) Höhe ohne Dach : 6 , Höhe mit Dach : 12 , Breite: 16 , Tiefe : 12

d) v = 1 :

e) Netz des Dachs :

v = 0,5 :

16 + 10
■8,5 + 2 -

176/5 . a)
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c) Militärprojektion : v = 1

© iOi

177/6 . a)
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177/7.

Schnittfläche :
Schnittflächen :

Schnittflächen :
Schnittfläche :

Schnittflächen :Schnittfläche :

Schnittflächen :Schnittflächen :
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Schnittflächen:

178/9 . a)177/8 . a)

(Abweichung in der Höhe
um etwa 0,1 )
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178/10 . Grundriß :

(beliebig)

178/11 . a)

b)

179/12 . a) Der Aufriß erscheint in wahrer Größe , deshalb liegt ein Schrägbild vor .
b) Tiefe : « 6,6 m , Höhe : « 8,6 m
c) Die eingezeichneten Höhen liegen parallel zur Projektionsebene und erschei¬

nen deshalb in wahrer Größe .
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179/ 13 .

— \
\ /

\ x .
// \

/ '
///

Xx\
\

\
\ \- 7
\ \ /

\ \ / >
\ \ //

a) z . B . : NL = NY =

LM = MX = -
2

* NLY = 45 °

• + MLY = 45°

(a : Kantenlänge des Würfels)
=> + YLX = 180 ° ,

d . h . , die Punkte E , Y, F, X liegen in einer Ebene. Deshalb ist [EF] keine Kante
der Zwölfflachs . Für die übrigen Kanten gibt dasselbe (Symmetrie) .

b) Grundriß:

c) 14 + 12 = 24 + 2
d) Die Seitenflächen sind Rauten .
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180/14

Pult

. Räumliche Deutungen der Spider Ibilder.

Sattel

Walm

Übe recksattel

Rhomben

Kreuz



Mansardgiebel

Krüppelwalm

Falt

181 / 15 .
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9 . Kapitel

186/1 . a) A ' (512) , B '
(812) , C '

(71 5) , D ' (414)
A" (3 | — 1 ) , B" (61 — 1 ) , C " (512) , D " (211 ) , X (2 | - 2) , Y (4 | - 4)

b) A '
(6 | l ) , B '

(1010) , C ' (812) , D '
(8 [ 5)

A " (410) , B" (81 - 1 ) , C "
(611 ) , D " (614) , X (31 - 1 ) , Y (61 — 2)

186/2 . a) V ( — 2 | — 4) , W (4 | 2) , X (314) , Y ( — 11 — 1 ) , Z ( — 115)
b) V (0 | 0) , W (2 | — 2) , X ( 110) , Y ( 113) , Z ( — 311)
c) V ( — 31 — 3) , W (5j 1 ) , X (413 ) , Y ( - 2 | 0) , Z (0 | 4)

186/3 . a) AB + ÄC = ( %) , b) AB + CB = ( § ) c) CB + BA = (zi )
d) BC + BA + CA = ( : « ) , e) ÄB + BC + CA = ( 8 )

186/4 . a) AC = a + b b) CA = — (a + B)
c) DA = — (a + b + c) d) BD = B + c

186/5 . a) a + ß = ÄB + BC = OC b) - 6 - c = CB + DC = ÖB - äD =
= B - D

c) ä + b + c + d = ÄB + BC + CD + DE = ÖE = E
d) - (6 + c + d)) = - (BC + CD + DE ) = OB - OE = B - E
e) - b - (ä + c) = - BC - (AB + CD ) = OA - ÖD = A - D

186/6 . a) ÜV + VW = ÜW b) AB + CA = CB
c) RS - RT = TS d) ÄB + TA + BT = ÄA
e) XY - ZY - XZ = XX

186/7 . a) x = BA b) x = BC c) x = CS + AD

186/8 . a) ED = a b) DE = - a
d) FC = a + B - c e) FB = a — c
g) ÄD = a + b + c .

c) FD = a + b
f) FA = - c
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