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Aufgaben zu 1 .1

12/1 . Man zeigt zunächst, dass x keine ganze Zahl sein kann :
a) 1 < x < 2 b) 2 < x < 3 c) 2 < x < 3 d) 22 < x < 23
Bei einer rationalen Lösung x = | (peZ,qeIN,p , q teilerfremd ) müsste also

q > 1 gelten. Dann kann aber x2 = ^ , da nicht kürzbar , keine ganze Zahl
sein.

12/2 . Die Lösungsmenge ist
a ) {1 ; - 1 } b) {2 ; - 2} c ) {11 ; - 11} d) {25 ; - 25}
e ) { | ;- | } f) { l | ;- l | } g) {0,8 ; - 0,8} h ) {0,02 ; - 0,02}

12/3 . ( 1 ) Voraussetzung : n = k2 mit ke IN . Dann ist L = {k ;- k}.
( 2 ) Voraussetzung: n ist keine Quadratzahl .

Dann ist n > 1 , und es gibt kelN so , dass k2< n < (k+ 1 )2 gilt. Eine positive
Lösung muss damit die Bedingung k < x < k+ 1 erfüllen, kann also kei¬
ne ganze Zahl sein . Aus der Annahme , der Bruch p/q (p, qelN und
teilerffemd) wäre eine Lösung , folgt q > 1 und (p/q)2 = n . Die linke Seite
dieser Gleichung kann aber keine ganze Zahl sein (vergleiche Aufgabe
1 ) . Widerspruch! ( Es kann auch keine negative rationale Lösung geben,da deren Gegenzahl eine positive Lösung wäre .)

12/4. Aus x2 = 2 und der Annahme, es gäbe eine rationale Zahl x = p/q (peZ . qelN,
p, q teilerfremd) folgt wie angegeben p2 = 2q2. Wegen des Faktors 2 steht
rechts und damit auch links vom Gleichheitszeichen eine gerade Zahl . Mit
p2 muss aber auch p selbst eine gerade Zahl sein . ( Die Annahme p = 2n + 1
führt zu p2 = 4n2 + 4n + 1 = 2 (2n2 + 2n ) + 1 , also zu ungeradem p2) . Mit
p = 2n erhält man, wie angegeben , 2n2 = q2

. Wegen des Faktors 2 steht nun
links und damit auch rechts eine gerade Zahl . Mit q2 ist auch q selbst gerade
(vergleiche oben) . Es muss also sowohl p als auch q eine gerade Zahl sein . Das
ist aber ein Widerspruch zu der Voraussetzung , dass der Bruch p/qvollständiggekürzt sein soll . Es gibt somit keine rationale Zahl , deren Qua¬drat 2 ist.

12/5 . Man macht wieder die Annahme, es gäbe eine rationale Lösung, die man
als vollständiggekürzten Bruch p/q schreiben kann . Dann folgt
a ) p2 = 7q2

; also ist p2 und damit p durch 7 teilbar. Aus p = 7n folgt 7n2 = q2;
also ist auch q durch 7 teilbar : Widerspruch zur vorausgesetzten Tei¬
lerfremdheit von p und q!

b ) p2 = 12q 2 = 3 -4q2 = 3 -(2q )2
; also ist p durch 3 teilbar . Mit p = 3n folgt

3n2 = ( 2q)2
; also ist 2q und damit q selbst auch durch 3 teilbar : Wider¬

spruch!
c) p2 = 15q2 = 3 -5q2

; also ist p2 und damit p sowohl durch 3 als auch durch 5 ,somit durch 15 teilbar . Mit p = 15n erhält man 15n2 = q2
; also ist auch

q durch 15 teilbar : Widerspruch!2



12/6 . a) x2 = | <=> (6x)2 = 6 ; z2 = 6 ist in Q nicht lösbar .
b) x2 = 2 | <=> (7x)2 = 7 -16 <=> Op2 = 7 ; z2 = 7 ist in Q nicht lösbar .
c) x2 = 0,2 <=> (5x)2 = 5 ; z2 = 5 ist in Q nicht lösbar .
d) x2 = 1,25 <=> (4x)2 = 20 <=> (2x)2 = 5 ; z2 = 5 ist in Q nicht lösbar.

12/7 . x2 — ^ <=> (qx)2 = p -q . Die Substitution z = qx ergibt z2 = pq . Wegen pqeN ist
diese Gleichung in (Q genau dann lösbar, wenn pq eine Quadratzahl ist (ver¬
gleiche Aufgabe 3 ) . Da jeder ganzzahligen Lösung der Gleichung
z2 = pq umkehrbar eindeutig die (rationale !) Lösung x = - der Ausgangs¬
gleichung entspricht , ist auch diese genau dann in Q lösbar , wenn pq eine
Quadratzahl ist .

13/8 . a) 1 ) 2a 2) 7a 3 ) 1,5a 4) | a
b) 1 ) Nein ; x2 = 5a2 « > ( £ )2 = 5 ; xeQ <=> ieQ ;

z2 = 5 ist in Q nicht lösbar .
2 ) Ja , 4a.
3 ) Nein ; x2 = l,6a 2 <=> (5x)2 = 40a2 <=> (5x/2a )2 = 10;

xeQ <=> 5x/2a eQ ; z2 = 10 ist in Q nicht lösbar.

13/9 . a) 1 ) Nein ; x2 = 15 ist in Q nicht lösbar .
2 ) Ja , 4cm.
3) Nein ; x2 = 2,3 ist in Q nicht lösbar ,

b) Seitenlangen 2x und 3x => A = 6x2

1 ) 6x2 = 36cm2 <=> x2 = 6cm2
; z2 = 6 ist in Q nicht lösbar.

2 ) 6x2 = 324mm2 <=> x2 = 54mm2
; z2 = 54 ist in Q nicht lösbar.

3 ) 6x2 = 0,24m2 <=> x2 = 0,04m2 <=> x = 0,2m.

13/10 . a) Für einen Würfel der Kantenlänge x gilt : V = x3.
Wegen V = 2 erhält man x3 = 2 .

b) x kann keine ganze Zahl sein, da l 3 < 2 und 23 >2 ist .
Für eine Lösung x = p/q ( p,qeD\ lund teilerfremd) muss daher q > 1

gelten . Dann ist aber x3 = , da nicht kürzbar, keine ganze Zahl .
Also hat x3 = 2 in O keine Lösung.



13/11 . a) Die im Hinweis genannten Vierecke sind Parallelogramme , ja sogar
Rauten ; das folgt aus der Symmetrie der Figur bezüglich der Mittel¬
senkrechten der Seiten ( = der Winkelhalbierenden ) des 5-Ecks.
Daher gilt : EA' = s , A'C = d '

, s + d' = EC = d ; somit d ' = d - s (2 ’
).

Wegen EC = EÄ + ÄC = EÄ + (FC - FA 1) ist
d = s 4 (s — s '

) oder s' = 2s - d (2 " )
Aus ( 2 ' ) folgt s + d' = d , also s < d 1
aus (2 "

) folgt d = 2s - s ’
, also d < 2sJ ^ s < “ < 2s (3)

( 3 ) kann auch aus Dreieckseigenschaften gefolgert werden:
im Dreieck CDE gilt CD < CE (da <CED < < EDC ) und

CE < CD + DE (Dreiecksungleichung)
also s < d < 2s .

K 1 d d — sb) (1) <=> — = 2
—

j ; Erweitern der rechten Seite mit Vs ergibt

— = ; daraus entsteht durch die angegebene

Substitution
x _ 1

x = ^ _”
x , also (4). Aus (3 ) folgt 1 < x < 2 (3 '

).

c) x = ^ in (4 ) eingesetzt : ^
P ( 2 - P/q ) - q(P/q - 1)

P2
2p - ~ = p - q

Pz
p + q = — (5 )

d) Die Gleichung (4 ) hat keine ganzzahlige Lösung (vergleiche (3 '
) ) . Fürdie angenommene rationale Lösungp/q muss daher q > 1 gelten. Da pund q teilerfremdsind , ist p2/q keine ganze Zahl , wohl aber p + q .Daher stellt (5 ) einen Widerspruchdar . Die Annahme, es gäbe einerationale Lösung von (4) , ist deshalb falsch .
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Aufgaben zu 1 .2

17/1 . a) 0,28 b) 2,6 c ) 0,384615 d) 0,53
f ) 0,46875 g) 0,0588235294117647 h ) 9,9Ö
k ) 0,15

e ) 0,6
i) 0,1472

17/2 . Zum Beispiel ( 1 ) 0,123 112233 111222333 ; der k-te Abschnitt enthält
der Reihe nach je k-mal die Ziffern 1 , 2 und 3 .

( 2 ) 0,10 100 1000 . . . ; der k-te Abschnitt ist die Ziffemfolge
von 10k .

( 3 ) 0,10 200 3000 40000 . . . ; der k-te Abschnitt besteht aus
der Ziffernfolge von k - 10k .

17/3. Man führt jeweils die Annahme , es gäbe eine Periode , die dann eine feste
Länge n haben müsste , zu einem Widerspruch:
a ) Da in der Folge der natürlichen Zahlen auch die Zehnerpotenzen auf-

treten , kommen beliebig lange Abschnitte vor, die nur aus Nullen be¬
stehen . Denkt man sich die Ziffemfolge von einer beliebigen Stelle an in
Abschnitte der Länge n zerlegt , so gibt es stets solche , die nur Nullen
enthalten (hier spätestens bei der Zahl IO2”"1) . Da aber dahinter immer
wieder auch von Null verschiedene Ziffern auftreten , kann die Dezi¬
malzahl nicht periodisch sein.

b ) Da in der Folge der Quadratzahlen die Potenzen 102k
, keN , auftreten ,

gibt es beliebig lange Abschnitte , die nur aus Nullen bestehen . Daher
(vergleiche a ) ist y irrational.

c ) Auch bei dieser Dezimalzahl treten beliebig lange Abschnitte auf , die
nur aus Nullen bestehen . Denn da in k ! stets [V2] gerade Faktoren und
[V5] durch 5 teilbare Faktoren enthalten sind , endet k ! auf mindestens
[k/g] Nullen . Diese Zahl wird mit wachsendem k beliebig groß . Daher
(vergleiche a ) ist z irrational.

17/4 . a ) rational (0,3679 = 0,368 ) b) irrational c) irrational
d) rational (- 7,727 = - 7^ ) e) irrational
f ) rational (- 4,3210 = — 4,321 )

17/5 . Intervallschachtelung ? a) b) c) d) e) f)
richtige Antwort ja ja ja nein nein ja
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17/6 . a) [0,9 ; 1] , [0,99 ; 1] , [0,999 ; 1] , . . . ist eine Schachtelungfür 0,9 .
b) 1 liegt , wie unmittelbar ersichtlich, in jedem Intervall . Da die Intervall¬

längen beliebig klein werden , kann es_keine von 1 verschiedene Zahl
mit dieser Eigenschaft geben. Also ist 0,9 = 1 .

c) Intervallschachtelung für 0,09 : [0,09_; 0,1] , [0,099 ; 0,1] , . . .
0,1 liegt in jedem Intervall; daher 0,09 = 0,1 .
Intervallschachtelung für 0,009 : [0,009j 0,01 ] , [0,0099 ; 0,01 ] , . . .
0,01 liegt in jedem Intervall; daher 0,009 = 0,01.

d) 1,19 = 1,2 ; 0,409 = 0,41 ; - 9,9 = - 10 .
e) 2,5 = 2,49 ; - 0,89 = - 0,889 ; 11 = 10,9 ; - 2,011 = - 2,0109 .

17/7. a ) Das jeweilige Intervall wird in drei gleich lange Teile zerlegt ; das mitt¬
lere Teilintervall ist das nächste Intervall der Schachtelung .

1
2

4 1
3 9 2

3
7 2

4
7 <

> 2
3

b) Jedes Intervall ist ein Teilintervall des vorausgehenden ; die Intervall¬
längen 1 , V3 , Vg , . . . , allgemein V3" , werden beliebig klein . Da V2 in jedem
Intervall liegt (es ist jeweils die Intervallmitte ) , stellt die Schachtelung
diese Zahl dar.

c) [0 ; 1] , [ V2; 1] , [ V2 ; 3/4] , [5/8; 3/4] , [5/8 ; n/^] , . . .

18/8. a) [1 ; 2] , [ 1,7 ; 1,8 ] , [ 1,73 ; 1,74] , [ 1,732 ; 1,733 ]
b) [0 ; 1] , [0,7 ; 0,8] , [0,70 ; 0,71] , [0,707 ; 0,708]
c) [ 14 ; 15 ] , [ 14,1 ; 14,2] , [ 14,14 ; 14,5] , [ 14,142 ; 14,143 ]
d) [o ; 1] , [0,6 ; 0,7] , [0,60 ; 0,61 ] , [0,603 ; 0,604]

18/9 . a) [1 ; 2] , [ 1,2 ; 1,3 ] , [ 1,25 ; 1,26] , [ 1,259 ; 1,260 ]
b) [2 ; 3] , [2,1 ; 2,2] , [2,15 ; 2,16 ] , [2,154 ; 2,155]
c) [4 ; 5] , [4,6 ; 4,7] , [4,64 ; 4,65 ] , [4,641 ; 4,642]
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Aufgaben zu 1.3

20/1 . a ) Intervallschachtelungfür a = 0,37337 . . . :
[0 ; 1] , [0,3 ; 0,4] , [0,37 ; 0,38 ] , [0,373 ; 0,374 ] , [0,3733 ; 0,3734] ,

Intervallschachtelung für b = 7/n (= 0,63 ) :
[0 ; 1] , [0,6 ; 0,7] , [0,63 ; 0,64 ] , [0,636 ; 0,637 ] , [0,6363 ; 0,6364] ,

Intervallschachtelung für a + b :
[0 ; 2 ] , [0,9 ; 1,1] , [1,00 ; 1,02] , [ 1,009 ; 1,011] , [1,0096 ; 1,0098 ] ,
Somit gilt : a + b = 1,009 . . .

b ) Intervallschachtelung für a = 2,0408016 . . . :
[2 ; 3] , [2,0 ; 2,1] , [2,04 ; 2,05 ] , [2,040 ; 2,041 ] , [2,0408 ; 2,0409],

Intervallschachtelung für b = 1,505505550 . . . :
[ 1 ; 2] , [ 1,5 ; 1,6] , [ 1,50 ; 1,51] , [ 1,505 ; 1,506] , [ 1,5055 ; 1,5056 ] ,

Intervallschachtelung für a + b :
[3 ; 5] , [3,5 ; 3,7] , [3,54 ; 3,56 ] , [3,545 ; 3,547 ] , [3,5463 ; 3,5465] ,
Somit gilt : a + b = 3,546 . . .

c ) Intervallschachtelung für a = 2,039 :
[2 ; 3] , [2,0 ; 2,1] , [2,03 ; 2,04 ] , [2,039 ; 2,040 ] , [2,0390 ; 2,0391] ,

Intervallschachtelung für b = - 1,808008 . . . :
[- 2 ; - 1 ] , [- 1,9 ; - 1,8] , [- 1,81 ; - 1,80 ] , [- 1,809 ; - 1,808] ,
[- 1,8081 ; - 1,8080] , . . .
Intervallschachtelung für a + b :
[0 ; 2 ] , [0,1 ; 0,3] , [0,22 ; 0,24 ] , [0,230 ; 0,232 ] , [0,2309 ; 0,2311] ,
Somit gilt : a + b = 0,23 . . .

d ) Intervallschachtelung für a = - 0,7717711 . . . :
[—1 ; 0] , [- 0,8 ; - 0,7 ] , [- 0,78 ; - 0,77] , [- 0,772 ; - 0,771] ,
[- 0,7718 ; - 0,7717] , . . .
Intervallschachtelung für b = —3,141144 . . . :
[- 4 ; -3 ] , [- 3,2 ; - 3,1 ] , [- 3,15 ; - 3,14] , [- 3,142 ; - 3,141 ] ,
[- 3,1412 ; - 3,1411] , . . .
Intervallschachtelung für a + b :
[- 5 ; - 3 ] , [- 4,0 ; - 3,8 ] , [- 3,93 ; - 3,91] , [-3,914 ; - 3,912] ,
[- 3,9130 ; - 3,9128] , . . .
Somit gilt : a + b = - 3,91 . . .



20/2. a) Intervallschachtelungfür a = 0,37337 . . . :
[0 ; 1] , [0,3 ; 0,4] , [0,37 ; 0,38] , [0,373 ; 0,374 ] , [0,3733 ; 0,3734] , . . .

Intervallschachtelung für (—b ) = - 7/n (= - 0,63 ):
[- 1 ; 0] , [- 0,7 ; - 0,6 ] , [- 0,64 ; - 0,63] , [- 0,637 ; - 0,636] ,
[- 0,6364 ; - 0,6363 ] , . . .
Intervallschachtelung für a - b :
[- 1 ; 1] , [- 0,4 ; - 0,2] , [- 0,27 ; - 0,25] , [- 0,264 ; - 0,262] ,
[- 0,2631 ; - 0,2629] , . . .

b) Intervallschachtelung für a = - 0,7717711 . . . :
[—1 ; 0] , [- 0,8 ; - 0,7] , [- 0,78 ; - 0,77] , [- 0,772 ; - 0,771] ,
[- 0,7718 ; - 0,7717 ] , . . .
Intervallschachtelung für (—b ) = 3,141144 . . . :
[3 ; 4] , [3,1 ; 3,2] , [3,14 ; 3,15 ] , [3,141 ; 3,142 ] , [3,1411 ; 3,1412 ] , . . .
Intervallschachtelung für a — b :
[2 ; 4] , [2,3 ; 2,5] , [2,36 ; 2,38] , [2,369 ; 2,371 ] , [2,3693 ; 2,3695] , . . .

20/3. a) Als Intervallschachtelung für z t + z2 erhält man
[2 ; 4] , [2,7 ; 2,9] , [2,77 ; 2,79] , [2,777 ; 2,779 ] , [2,7777 ; 2,7779] , . . . .
Jedes Intervall hat die Form [2,7 . . . 77 ; 2,7 . . . 79 ] . Daher liegt 2,7 in jedem
Intervall . Also ist Zj + z2 = 2,7 = 2 7/g eine rationale Zahl .

b) ZumBeispiel z , = 0,151151115. . . und z2 = - z l = - 0,151151115 . . . .
Die Schachtelung für Zj + z2 lautet
[- 1 ; 1] , [- 0,1 ; 0,1] , [- 0,01 ; 0,01] , . . . ; sie stellt die Zahl 0 dar.

20/4. a) Man muss 1 - 0,585585558 . . . = 0,414414441 . . . addieren,
also eine irrationale Zahl . (Probe : 0,58558. . . + 0,41441 . . . = 0,9 = 1 )

b) Man muss 0,58558. . . - 0,25225 . . . = 0,3 subtrahieren,
also die rationale Zahl V3 .

20/5 . Voraussetzung: ae (Qund b$ (Qund a + b = c
Aus der Annahme ce (Q folgt wegen b = c — a , dass b als Differenz rationaler
Zahlen ebenfalls rational sein muss . Widerspruch!
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20/6. a ) Wegen [an ; AJ 3 [a„+1 ; A„+J und [bn ; B„] 3 [bntl ; B„J gilt
a„ < a„+i < A,+1 < A» und b„ < ba+1 < Bn+1 < Bn (für ne IN ).
Durch Addition dieser Ungleichungen erhält man

+ b„ < a„+1 + bn+i < A„+1 + B„+1 < A„ + B» . Daher gilt auch
[a„ 1- bn ; A„ + BJ 3 [a„+1 + bn+1 ; + BnJ .

b) (A„ + BJ - (a„ + bn) = (A„ - aJ + (Bn - bj ; da A» - an imd Bn - b„
mit wachsendem n beliebig klein werden , gilt das auch für die Summe ,
also für die Länge des Intervalls [a„ + bn ; A„ + BJ

Mit a und b ist gezeigt , dass die Summe zweier Intervallschachtelungen
wieder eine Intervallschachtelung ist .

20/7. a) [0 ; 3] , [1,38 ; 1,68] , [1,518 ; 1,5477] , [1,5318 ; 1,534767 ] , . . . ;
die Intervalle sind ineinandergeschachtelt ,
a -b = | -2,3 = H = 1,53 ; a -b liegt in jedem Intervall .

b) Intervalllängen: 3 ; 0,3 ; 0,0297 (<0,03)*
; 0,00 2967 (<0,003)* .

c) Ja ; die Intervalle sind ineinander geschachtelt , ihre Längen nehmen
rasch ab (jeweils etwa auf ein Zehntel der Länge des vorausgehenden
Intervalls ) und a -b liegt in jedem Intervall .

21/8 . a ) Intervallschachtelung für a = 1,50550 . . . :
[1 ; 2] , [1,5 ; 1,6 ] , [1,50 ; 1,51] , [1,505 ; 1,506] , . . .
Intervallschachtelung für b = 0,20406 . . . :
[0 ; 1] , [0,2 ; 0,3] , [0,20 ; 0,21] , [0,204 ; 0,205 ] , . . .
Intervalle [a„ -b„ ; A„ -BJ :
[0 ; 2] , [0,3 ; 0,48] , [0,3 ; 0,3171 ] , [0,30702 ; 0,30873 ] , . . .

b) Wegen 0 < 0,3 < 0,3 < 0,30702 und 2> 0,48 > 0,3171 > 0,30873
sind diese Intervalle ineinander geschachtelt .
Intervalllängen : 2 ; 0,18 (< 0,2 )*

; 0,0171 ( <0,02)*
; 0,00171 ( <0,002)*

Vergleiche dazu Aufgabe 10 .



=> a „b„ < A„B,21/9 . a )
a „ < A „ , b „ > 0 = > a „b „ < A „b „ 1
b „ < B „ , A „ > 0 = > A „b „ < A „B „ J

b)
a „ < a ntl , b „ > 0 => a „b „ < a „„ ,b n
b „ ^ b n+1 , a n+1 > 0 => a n+1b n 5= a n+1b n+1

Snbn ^ a n+1b n+1

A„ > An+i , B„ > 0 => A„B „ > A„tlB„
B „ ^ Bn+1 , A„+1 > 0 => AntlB „ > A„+1B „tl AJ3 „ > An. jB .,. !

c ) A „( B „ - b „ ) + b „(A „ - a „ ) = A„B „ - A „b „ + A „b „ - a „b „
= A„B n - a „b „ •

Wegen Aj > A„ and B , > B n > b „ sowie A „ - a n > 0 und B n - b n > 0 gilt
A „( B „ - b „ ) + b „( A„ - a „ ) < Ai (B „ - b „ ) + B ^ A » - a „ ) ,
also A„B n - a „b „ < A ^ B,, - b „) + B ^ A » - a „ ) .
A 1; B , sind feste Zahlen , die Intervalllängen A a - a „ und B n - bn werden

mit wachsendem n beliebig klein . Deshalb nehmen die beiden Produkte
A ^ Bn - b „) und B, (A , - a „) und auch ihre Summe beliebig kleine
Werte an .

21/10 . Für die Intervalllängen gilt dann A „ — a n = B n — b „ = ^ q »-1 , für jedes nelN .

Damit erhält man (Vergleiche 9 c ) die Abschätzung
1 „ 1 , Aj + Bj

A,B „ - a „b„ < Ar + Br jQsn , das heißt , A,B n - a „bn < ^ q »- i .

(Beispiele dazu in 7 b und 8 b )

21/11 . a ) Intervallschachtelung für a = - V3 (= - 1,3 ) :
[- 2 ; - 1 ] , [- 1,4 ; - 1,3 ] , [- 1,34 ; - 1,33 ] , [- 1,334 ; - 1,333 ] , . . .

Intervallschachtelung für b = - 3,6 ( = - 3,60 ) :
[-4 ; - 3 ] , [- 3,7 ; - 3,6 ] , [- 3,61 ; - 3,60 ] , [- 3,601 ; - 3,600 ] , . . .

Intervallschachtelung für a -b :
[3 ; 8] , [4,68 ; 5,18 ] , [4,788 ; 4,8374 ] , [4,7988 ; 4,803734 ] , . . .

b ) In diesem Fall hat die linke Intervallgrenze jeweils einen größeren
Absolutbetrag als die rechte . Deshalb ist das (positive ! ) Produkt zweier
linken Grenzen größer als das der entsprechenden rechten Grenzen .

a „ < A „ < 0 , b „ < 0 => a „b „ > A „b „ > 0
Oder : b „ < B „< 0 , A n < 0 = > A „b „ > A „B „ > 0 a „b n > A „B n > 0

Damit ist a „b „ die rechte und A„B „ die linke Grenze des Intervalls
der Produktschachtelung .
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Aufgaben zu 1 .4
IR+

23/1 . a)

IR
' 0 1

c)

? I
0 1

K

23/2. a) rnZ = M b) E„ nZ = N 0 c) E "uE + = E \ {0}
d) E \ Q ist die Menge der irrationalen Zahlen.

24/3. Man kann so keine neuen Zahlen erzeugen . Denn auch bei einer Intervall-
schachtelung mit reellen Intervallgrenzen gibt es genau einen Punkt der
Zahlengeraden, der zu allen Intervallen gehört. Diesem Punkt ist (wie in 1 .4
gezeigt wurde) eindeutig eine reelle Zahl zugeordnet.

24/4. a) Voraussetzung: zeE \ Q und reQ \ {0 } und r -z = c.
Aus der Annahme ce (Q folgt wegen z = ~ , dass z als Quotient rationaler
Zahlen rational ist . Widerspruch!

b) Voraussetzung: zeE \ Q . Dann ist z ^ 0 und i existiert . Aus der Annah¬
me ^ e (Q folgt nach a , dass z - ^ irrational ist . Widerspruch zu z - ~ = 1 .

24/5. a) Zum Beispiel : a < 0,4142 < b

b)

1
n

Voraussetzung: aeE und beE und a < b.
Dann ist b - a > 0 und es gibt eine Zahl neN mit 0 < Vn < b - a (denn Vn
nähert sich mit wachsendem n beliebig dem Wert 0 ; es gibt unendlich
viele n mit 0 < Vn < b - a ).
Von den Brüchen der Form k/n , keZ , liegt dann mindestens einer zwi¬
schen a und b . Denn die den Zahlen k/n zugeordneten Punkte der Zah¬
lengeraden haben jeweils den Abstand Vn , welcher kleiner ist als der
Abstand der Punkte a und b (vergleiche Skizze ) .

1
n

M
n

►
ls

L+j
n



24/6. a ) 1 ) Zum Beispiel 1,5 < 1,5303003000 . . . < 1,6
2 ) Zum Beispiel § < 0,76010110111 . . . < f

b) Zum Beispiel 0,414114111 . . . < 0,414202002000 . . . < 0,414414441 . . .

c ) Voraussetzung : aeR und beR und a < b.
Es gibt (unendlich viele) positive irrationale Zahlen z , die kleiner als
b - a sind . (Zum Beispiel ist 0,0 . . . 0909009000 . . . <1 : 10"

, kann also
n -mal 0

beliebig klein gemacht werden . ) Mit z sind auch alle Zahlen k -z , keZ ,
irrational (vergleiche Aufgabe 4 ) und mindestens eine davon liegt
zwischen a und b . Denn die diesen Zahlen entsprechenden Punkte
zerlegen die Zahlengerade in Strecken der Länge z , und wegen
z < b — a können die Punkte a und b nicht auf derselben Teilstrecke
liegen.

24/7 . a ) (Q ; + , •) und (R ; + , •)

b) In (R\ Q ; + , •) sind ungültig
E+ und E . (Summe und Produkt irrationaler Zahlen können rational

sein , zum Beispiel z + (- z ) = 0 ; z - - = 1 .)
N+ und N . (R \ Q enthält weder 0 noch 1 . )

12



Aufgaben zu 1 .5

28/1 . a ) Die Punkte mit p/q < 1 liegen oberhalb der Winkelhalbierenden y=x.
(Die großen Zahlen unten im Bild sind die Nummern . )

b) Die Punkte mit p/q
> 1 liegen unterhalb oder

auf der Winkelhalbierenden y=x.

(Es gibt auch andere Möglichkeiten , die Punkte zu durchlaufen . )

+ y
6

5

1 4-

3

2

1

■e
X

5

13



28/2 . a ) Die Summe aus Zähler und Nenner ist für alle Brüche einer Diagonal¬
linie gleich. Es treten jeweils alle positiven Brüche mit der gleichen
Summe längs einer Diagonallinieauf.

b ) Beim Übergang zur nächsten Diagonallinie vergrößert sich die Summe
aus Zähler und Nenner um 1 .

c) Beim Kürzen eines Bruchs verkleinert sich die Summe aus Zähler und
Nenner .

d) Der ( aus einem kürzbaren Bruch) durch vollständiges Kürzen entste¬
hende wertgleiche Bruch hat eine kleinere Summe aus Zähler und
Nenner. Er liegt daher auf einer schon vorher durchlaufenen Diagona¬
le und wurde dort, da nicht kürzbar , mit einerNummer versehen.

28/3 . Das Bild zeigt eine der (beliebig vielen!) Möglichkeiten die rationalen Zahlen
anzuordnen. (Die großen Zahlen sind die Nummern .)

9 10

14



28/4 . a ) f(n ) = 2n b ) Rn ) = 2n — 1 c ) f( n ) = n - 1

d) Rn ) =
—

2
~ , falls n ungerade

^ , falls n gerade
(- 1 )

"-[ "/2]

e ) Rn ) = Vn f ) f( n ) = n2

28/5 . a ) Man kann die Elemente von A und B eineindeutig einander zuordnen ,
zum Beispiel durch folgende Tabelle :

keA 1 2 3 . 29 60
neB

peP

78

11

79

13

80

17 19

• • • 136 137

89 97

also k t- > 77 + k ; keA .

neV 12 16 20 24 88 92 96

V hat ein Element mehr als P .
Deshalb ist keine eineindeutige Zuordnung möglich .

c) A = {a1 , a2 , . . . ,a ,n } , B = {b1 , b2 , . . . , bj ; also | A | = m ; | B | = n.
Falls m = n , ist ein
zum Beispiel a1

e ein
a2

eine
a3

eutige 7alordnung möglich ,
aD

bi b2 bi . b„
Falls m ^ n , zum Beispiel m > n , bleiben bei der Paarbildung Elemente
der größeren Menge ohne Partner :

3i a2 a3 a„ an+i a m
bi b2 b3 . b „ - -

29/6 . Zwischen xeA und yeB ist folgende eineindeutige Zuordnung möglich :
a ) y = - x b ) y = Vx c ) y = Vx - 1

29/7 . Begründung wie bei 6

29/8 . Paradoxien liegen vor a ) in 4 a, b , c , d, f
b) in 6 c

15



29/9. a ) Jedem Pe[AB ] ist eineindeutigder Schnittpunkt P von PZ mit [CD]
zugeordnet. Umgekehrt gehört zu jedem P ' e [CD] eineindeutig der
Schnittpunkt P von ZF mit [AB] ,

b) Es gilt AB | | g. (Der Beweis kann zum Beispiel mit dem Satz vom
Thaieskreis erfolgen : AM = AM = MB => <AAB = 90°

; dazu AAlg . )
M = M '

(Fixpunkt der Abbildung)
Ein Punkt P , der offenen Strecke ]AM[ wird zuerst auf Pie] AM [
gespiegelt . ZPJst von ZA verschieden und schneidet daher g in P\ .
Lässt man Pj von M nach A wandern , so durchläuft P\ eine der
Halbgeraden, in die g durch M zerlegt wird . Dabei tritt jeder Punkt
dieser Halbgeraden genau einmal als Bildpunkt auf.
Ein Punkt P2 der offenen Strecke ]MB[ wird von Z aus auf die andere
Halbgerade von g projiziert, was wieder eine eineindeutige Zuordnung
liefert .

30/10 . a ) Wäre E abzählbar , so könnte man jedem xeE eine Nummer neN
zuordnen. Dabei erhielte auch jedes xeM eine Nummer , das heißt , M
wäre auch abzählbar . (Man könnte die Elemente von M nach ihren
aufsteigenden Nummern nj < n2 < n3 . . . ordnen und umnummerieren :
Xnj = X l5 Xn2

= X 2 , Xn3 = X 3 , . . .)
Eine überabzählbare Teilmenge M kann es also nur geben, wenn E
selbst überabzählbar ist.

b ) 0,5 = 0,49; 0,71 = 0,709; 3/8 = 0,375 = 0,3749 ; n/250 = 0,068 = 0,0679.

c) DaZje {l , 2 , . . . , 8}, giltfur z = O^ ZiZs . . . : 0,1 < z < 0,8 , also 0 < z < l und
damit zeM . Aufgrund der Auswahlregel für die Ziffern von z unter¬
scheidet sich z von x, in der i-ten Nachkommastelle z, .
Also gilt : z * X( für jedes ieN.

d) Aus der Annahme der Abzählbarkeitvon M folgt , dass man alle
Elemente von M als Xj , x,, , x3 , . . . durchnummerieren kann .
Die in c konstruierte Zahl z ist dann
- einerseits von allen x , verschieden , sodass z£ M gilt ,- andrerseits eine reelle Zahl mit 0 < z < 1 , sodass zeM gilt .
Widerspruch ! Die Annahme , M sei abzählbar, ist also falsch .
Da M überabzählbar ist , muss nach a auch die Obermenge IR
überabzählbarsein .

16



Aufgaben zu 2.1

36/1 . a) 1 b) 4 c) 9 d) 6 e) 10 f ) 50
g) 700 h ) 1000 i) 14 k) 13 1) 16 m ) 19

36/2. a) 7
8

b) 21
11 c) 3 _

24
“

1
8

d) — =’ 100
= 0,42

e) 1,5 f) 2,3 g) 0,17 h ) 0,025

36/3 . a) 5 und 7 b) 12 und 8 c) 25 -und 31 d) 9 und 1
e) 3 und 5 f) 8 und 10 g) 13 und 11 h ) 30 und 20

36/4. a) 2 b) 3 c) 4 d) 5 e) 6

36/5. a) 2 b) 3 c) 5 d) 10 e) 2
f) v 4 g) 4 h ) 5,5 i) 5 k ) 1,5 1) 5/6

36/6. a) a > 0 b) a < 0 c) a > - 1 d) a < 2,5 e) xeK
f > x = 0 g) xeE h ) x < --1 oder x > 1 i) - 1 <; x < 1
k) x < —3 oder x > 3 1) x < -- 1 oder x > 1 m ) - 2,51 < x < 2

37/7. a) 3 + 2V2 b) 12 -- 6V3 c) - 2
d) a - 4bVä + 4b2 e) 9x 4 COht + 25y2 f) 9p2 - 3p

37/8. a) 18 - 2^ 2 b) 14a 14Va c) 2 + :2V3 - 4V5
d) 20 + V6 - 20V7 e) 24 f) 0

37/9. a) (35 ; - 35} b) (8 ; - 8} c) {0} d) {a/2 ; - V2}
e) (VrT ;- VT7 } f) ( } g) {5 ; - 5} h ) { }
i) (0,3 ; -- 0,3} k) {Ws ; - V7I}
1) (WT V5 VW- V5 } m ) { }

37/10 . a) X2 = 1 , {i ; - 1} b) X2 = 7 , (V7 ; - V7} c) x2 = 0 , {0}
d) X2 = 1 ,2 , (WW ; --VW ) e) X2 - M

1 1
V3

' V31 f) x2 = 0 , {0}
17



37/11 . a ) V2 m
e) 18 m

b) 4 cm
f ) V6 km

c) 3V2 dm d) 30 mm

37/12 . a) b) c) d) e) f ) g) h )
irration . irration . irration . rational rational irration . irration . rational

37/13 . a) {4}
f ) ü

b) (9 ) c) {1}
g ) {0} h ) { }

d) { }
i) ®o

'
e ) {9}

37/14 . a ) d = 6V4 mm

b) Für die Blendendurchmesser dx , d2 , . . . , d7 gilt :
ditl2 = | d 2 also di+1 = -^ di( i = 1,2 , . . . , 6.

Daraus folgt für die Blendenzahlen :
f

Mit jj
- = 2 erhält man die Zahlen 2,2V2,4,4V2,8,8 ^2,16

beziehungsweise , wenn man die Dezi¬
malentwicklung der irrationalen Werte
nach der 2 . geltenden Ziffer abbricht , 2 ; 2,8 ; 4 ; 5,6 ; 8 ; 11 ; 16 .

18



Aufgaben zu 2.2

44/1 . Man muss höchstens 4 Zwischenwerte quadrieren, wenn man wie folgt
verfährt :
( 1 ) Quadrat der Intervallmitte : 5,552 = 30,8025 < 31 .

Also liegt V31 im Intervall [5,55 ; 5,60] .
( 2 ) Quadrat eines der Mitte des neuen Intervalls benachbarten

Zwischenwerts : 5,582 = 31,1364 > 31 .
Also liegt V31 im Intervall [5,55 ; 5,58] .

( 3 ) Quadrat eines der Mitte des neuen Intervalls benachbarten
Zwischenwerts : 5,562 = 30,9136 < 31 .
Also liegt ^[31 im Intervall [5,56 ; 5,58] ,

( 4 ) Quadrat des in der Mitte dieses Intervalls liegenden
Zwischenwerts : 5,572 = 31,0249 > 31 .
Damit ist [5,56 ; 5,57] das nächste Intervall.

Anmerkung : Man kombiniert hierbei das Zehnteilungs - mit dem Halbierungs¬
verfahren . Zuerst zerlegt man die 10 Teilintervalle in 2 Fünfer¬
gruppen , dann die zutreffende Fünfergruppe in eine Zweier - und
eine Dreiergruppe , usw . Häufig wird man mit weniger als 4
Schritten zum Ziel kommen , insbesondere wenn man die Abwei¬
chungen der Quadrate vom Sollwert miteinander vergleicht und
die Lage des Wurzelwerts abschätzt .

44/2. Man berechnet das Quadrat für die Intervallmitte :
4,669052 = 21,800027 > 21,8.
Also ist V21,8 < 4,66905 und damit V21,8 = 4,6690.

X! x2 x3 x4 x5
a) 3 3,6666666 3,6060606 3,6055513 3,6055512
b) 4 3,625 3,6056034 3,6055512 3,6055512
c) 2 2,58 2,5148062 2,5139611 2,5139610
d) 2,5 2,514 2,5139610 2,5139610 2,5139610
e) 60 63,225 63,142749 63,142695 63,142695
f) 1 0,975 0,9746794 0,9746794 0,9746794

19



44/4. yA

45/5. y = x und y = (x + | ) :2 =* x = (x + | ) :2 | -2x
2x2 = x2 +a , also x2 = a

Wegen x> 0 ist x = \/a die einzige Lösung ; also S(Vä I Vä ) .

45/6. Behauptung : Vab
- < ; a , b eK*

Beweis : Vab
- <

jj
-2

I
! 2
I (Äquivalenzumformung , da beide Seiten

positiv sind !)
4ab < a2 + 2ab + b2

1| — 4ab
0 < a2 - 2ab + b2
0 < (a — b )2

Da nur Äquivalenzumformungen durchgeführt wurden und
die letzte Gleichung wahr ist , ist auch die Behauptung wahr .20



45/7 . a) Geometrisches Mittel = ‘\ jx n - y- = yfä (für ne IN )

xn+i ist das arithmetische Mittel von x„ und .
Nach 6 gilt daher xntl > \fä (für neN ) .

b) ■x„ = (xn + — ) :2 - x„ = Xq
2 + a 2x„

2
, also x^ - x» = a - xn

2x„
’ ^ *+1 ^ 2xn

Nach a gilt für n > 2 : < x„ <=> a < x„
2 <=> a - x„

2 < 0 .
^ 2

Wegen xn > 0 ist damit auch 2xn
- ° ’ das heißt x„+1 - x„ < 0 .

Also gilt x„+1 < xn für n = 2 , 3 , 4 , . . . beziehungsweise x2 > x3 > Xj > . . .

c) Arithmetisches Mittel = = x„. (nach ( I ))

harmonisches Mittel
2x „ • : 2a

x„ + a. 2xn
x„

46/8. a ) V8T7Ö= 90,38 . . . b ) Vl4^36
~
= 3,789.

c) VO,088855 = 0,2980 . . . d) V0,000001234 = 0,001110 . . .

46/9. a ) V5 = 2 , . . . b ) ^[W7ß4 = Q, ■■■
d) V3650809 = 1_ , . . . e) V82145 = 2__ , .
g) V 821,45 = 2_ , . . . h ) V82,145 = 9, . . .

c) ^[428 ~
= 2_ , . . .

f ) V 8214,5 = 9_ , . .

46/10 . a ) 1 ) l > Vä > 0,l 2 ) 0,1 > Vä > 0,01
b ) 1 ) ^!0j) = 0,7 . . . 2 ) VÖ^ 25

"
= 0,1 . . .

„ 1 ^ 1
3 ) 1Q2 > Va > -

^Q3
3 ) ^fÖfiOÄ = 0,06 . . .

. c/1 ry—- , - J0,07 . . . , falls die auf 6 folgende Ziffer < 44o/ll * a ) y0,7 . . . = 0 7o . . . b) v 0 ?006 . . . =
[0,08 . . . , falls die auf 6 folgende Ziffer > 4

c ) v 0,12 . . . = 0,3 . . . d ) V0,0147 . . . = 0,121 . . .

46/12 . a ) V10ÖÖ
"
= 31, . . . b ) V80656 = 284

d ) V3387,25 = 58, . . .

c) V 338725 = 582, .
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46/13 . c) ^17/7241 = 4,21a ) VT9
“
= 4,36 b) JMJ » 13,69

d) V0 .6196 =>0,79

46/14 . a) 1,75
d) 20,875

b) §£ = 1,73235 . . .
e) 201 = 20,85714 . . .

c ) 2,45
f ) 31,625

Va = Vx !
2 + (a - Xi2) = x , + , also x2

( I ) liefert x2
' = (x , + 7-) : 2

Al

x2
' = —- : 2 => x2

' = —kr — . Ergebnis : x2 = x2
' .

x t
2 + a , x t

2 + a

47/16 . a ) V3 = V2^ =I = 2 - | + i = |

b ) 1 ) VT5
~
= | p ( = 3,87301 . . . ) 2 ) V63 =Ä ( =7,93725 . . . )

3 ) ( =10,95445 . . . )

c) HERON : -y/3 = 1,73
~

ARCHIMEDES : 1,732026. . . < yß < 1,732051. . .
Der Vergleich mit yß = 1,732050 . . . zeigt , dass der von HERON angege¬bene Wert zu groß ist . Durch die viel genauere Abschätzung von
ARCHIMEDES sind bereits die ersten 5 Stellen der Dezimalentwick¬
lung festgelegt .

V 0 ;38,24 0 ;48 , also richtig .47/17 . a )

b) 1 ) V3 ^5[ (= V225 = 15 ) = 15 ;
2 ) Vl ;33,45 (: ) = 1 ;15

) = 3 ;213 ) VH ; 13,21

47/18 . a ) Länge der Diagonale = V§8 Ellen = 8,246 . . . Ellen .

b ) 0 ;41,15GAR = § § § -12 Ellen = 8,25 Ellen .
8,25 > y[68

~
; also ist 0 ;41,15 GAR ein etwas zu großer Näherungswert .

Nach 14 gilt yß8
~
= V64 +4 = 8 + ^ = 8,25 .

c ) 0 ;42,13,20 GAR= 81 Ellen ist ein wesentlich schlechterer Näherungs¬
wert .



48/19 . a ) 1 ) 1 ;25 = = 1,416 . Die ersten 3 Ziffern stimmen .

2) a/2 = VI2 + 1 = 1 + | = ! . Mit p2 = | , also p/
T
4

3 1
2 43

17
12 '

~ , erhält man dann
4

b) 1 ) 1 ;24,51,10 = l ^ äööö = D4142129 . . die ersten 6 Ziffern stimmen .
2) 1 . Weg: Mit p3 = ^ erhält man

n/2 = M(289 1
144 144

17
12

1-12
144 -34

“
577
408

. l 1®= 1
408 '

2 . Weg: Mit Xi = i ;25 = | erhält man aus (I)

Xr. — + ^ ) :2 577 _ -,169
V12 17 J 408

1
408 *

169
169 nn
4Ö8

60 24 + —
408 24 | -60 24 51 + —öi +

34

408 “ 60 60 “ 60 + 602 “ 60 + 602 “

24 51 ff ' 6o 24 51 10 + 10
17

•60
_ 60 + 602 + 603 - 60 + 602 + 603 >

Somit gilt: . 169
J'408

= 1 ;24,51,10, . . .

3 ) d = 30 -( l ;24,51,10 ) = 30 + f + ^ + dföö
= 42 + i + Jk = 42 ;25 ’35

(Das ist die untere der in Abb . 49 . 1 in Keilschrift angegebenen Zahlen !)

49/20. a ) Bei 20°C ist c = 343,5 ™/s ; bei 40°C ist c = 355,0 m/s .
b ) bei - 10,8'C

49/21 . a ) V0 = 100,95 . . . Hz = 101 Hz (Anmerkung : p = 7,85 -103 kg/m 3
; q = 0,5 -10“6 m2)

18 Obertöne liegen unter 2 kHz .

b ) F = (Vo -21 )2- p • q ; F = 139 N

c) 1 = 69,6 cm
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Aufgaben zu 2.3

54/1 . a ) 4 b) 6 c) 30 d) 100 <

f) 0,01 g) 12 h) 25 i) 14 1

1) 1,5 m ) 0,77 n) 1 o) 2 ]

54/2 . a ) 6 b) 20 c) 30 d) 3

f) 0,024 g) 1 h) 18

54/3 . a ) 44 b) 1750 c) 18 d) 12

f) 4400 g) 1500 h) 210 i) 7128

54/4 . a ) 4^ 2 b) 3a/3 c) 6V5 d) 4a/TT

f) 25V2 g) 30VTÖ
"

h ) 0,5VTÖ
” i) 4,5V2 :

54/5. a ) 2 b) 4 c) 1
3

d) 4
5

f) 0,35 g) 1
15

54/6 . a ) *- ( =20 v 0,45 ) b) t <=: 0,6) c > J ( =

54/7 . a ) b2Vä b) 1 ab 1 c) 51ml 5 nVn
~

e)
4

5lal V2b
" f) ^ ■ g) u

80
1v 1w2 VWä

54/8 . a ) 2 b) 50 c) 21^ 2 - 8

e ) 2,1

e ) 18

d) 3x4y2V3

d) 27

55/9 . a ) 1 b) 60V3Ö
“ - 330 c) 8 + 3^21" d) - 47V5

55/10 . a ) 4VIÖ
- b) - 16 + 16V2F

|co



55/11 . a) 128 b) 38 -- 12VT0
“ c) 91 d) 240V6 -- 160VTF

55/12. a) b) V5 c) d)
7- V7

7

e) | Vir f ) VlJ +2 g) 2V3 + 3V2
6 h) V7 — a/5

55/13. a) Vlö - 3 b) 2V7 + V3
5 c) 7- V42

~ d) 3 - 2a/2

e) 5V3 + 13V5 f) - 7 + 21V2 + 12VT7 - 2Vif
55 119

55/14. a)

d)

VF
1a 1b
aVF |
lal -

1-
VF für a > 0

-VFfür a < 0

, , V2bc
21a1bc

. VF + VF
e > a - b

c)

f)

aV6bc
3b2 c2

Vpq
pq

55/15. a) 4 b) 32 c) 32^ 2 d) 128V2 e) 256

f) 3V3 g) 11 h ) 49^7 i) 81 k) 625^ 5

56/16. a) 8 b) 9V3 c ) 5V5 d) 8 e) 6V6

f) 121 g) 81V3 h ) 32 i) 64V2 k ) 1024

56/17 . a) 64 b) 50 c) 8232 + 1617V7 d) l
18

56/18 . a) aVä b) a2 c ) a3 Va d) a11 e) amVa

f ) lal g) aVä h ) a2 i) a2Vä k) lal 3

56/19. a) 1a + b 1 b) 1m - 31 - V2 c) z2 + l

d) 13z2 - 1 1 e ) 1 llx + 2y 1V0,1 f) 1 + 1x 1

25



56/20 . a) V18
" b ) V175 c) - V :12 - 4x d) V 80a

e) Vx2y für x > 0 ; --Vx2y für x < 0 f) Va4x

g) V4b6y für h > 0 ; - V4Fy für b < 0

h) V (a - b )2 (a + b ) für a > b ; - V ( a -- b )2 ( a 4 b) für a < b

56/21 . a) > b ) > c) > d) = e ) > f) <

56/22 . a) > b ) < c) > d) < e) > f) <

56/23 . a) < b ) < c) > d) >

57/24 . a )

b )

Aus Vä 4 Vb > 0 und (Vä + Vb f = a + b + 2Vab

sowie Va + b > 0 und Va 4 b 2 = a + b

folgt (Vä + -\/b )2 = Va 4 b 2 + 2Vab (* ) und (Vä + Vb)2 > Va 4 b ;

und Vä + Vb ^ Va + b .( ** )

Nach ( * ) gilt in (* * ) das Gleichheitszeichen genau dann ,
wenn ab = 0 , also für a = 0 oder b = 0 .

0 < a < b =* Vb - a > 0 und Vb - Vä > 0 .
Daher gilt nach dem Monotoniegesetz des Radizierens :
Vb - Vä < Vb - a o ( Vb - Vä )2 < Vb - a 2

<=> b - 2Väb + a < b - a
<=> 2a < 2Vab
<=> a2 < ab
<=> a < b

Da die letzte Ungleichung nach Voraussetzung richtig ist ,
gilt auch die dazu äquivalente Behauptung .

57/25 . a ) x2 = y2 = 21 - 12V3 ; aber x < 0 , y > 0 , also x z y.
b ) x2 = y2 = 14 - 8V3 ; aber x > 0 , y < 0 , also x * y.

57/26 . a ) LS > 0 und (LS )2 = 3 - 2V2 ; RS > 0 und (RS )2 = 3 - 2V2 ; also LS = RS .
b) LS > 0 und (LS )2 = 9 + 4V5 ; RS > 0 und (RS )2 = 9 + 4V5 ; also LS = RS.
c) LS > 0 und ( LS )2 = 9 + 2Vl4

~
; RS > 0 und (RS )2 = 9 +2VWalso LS=RS.

d) LS > 0 und (LS )2 = V8 + V2 + 4 ;
RS > 0 und (RS )2 = V8 + V2 + 2WÜ = V8 + V2 + 4 ; also LS = RS .
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57/27 . a ) Vä + Vb > 0 und (Vä + Vb )2 = a + 2Väb + b

Va + b + 2VäF > 0 und Va + b + 2Vab 2 = a + b+ 2Väb
also Va + Vb = V a + b + 2 / ab .
Für 0 < a < b gilt :
Vb - Vä > 0 und (Vb - Vä )2 = b — 2Väb + a

Va + b - 2Väb > 0 und Va + b — 2Väb 2 = a + b - 2Vab

also Vä - Vb = V a + b - 2 Väb .

b ) Es gilt
a

2
k > Väb (Vergleiche Aufgabe 6 von 2 .2)

~tt ~ > Väb <=> a + b > 2Väb <=> a + b - 2Väb > 0 .

c) 1 ) V8 + Vl8 = V « + 18 + 2V8-18 = V26 + 2 -12 = V5Ö .
Vl8 - V8 = Vl « + 8 - 2V18 -8 = V26 - 2 - 12 = V2 .

2 ) (V8 + Vl8 )2 = 8 +2V848 + 18 = 50 =4>( !) V8 + V18 = V5Ö .

(Vl8 - V8 )2 = 18 - 2V848 + 8 = 2 => ( !) Vl8 - V8 = V2 .

( ! : V8 + Vl8 > 0 ; Vl8 - V8 > 0 )

d) 1 ) VV3 + V2 - VV3 - V2 = V( V3 + V2 ) + ( V3 - V2 ) - 2V ( V3 + V2 )( V3 - V2) =

= V2V3 - 2

2 ) (VV4Ö + 6 + VV4Ö - 6 )2= V (V4Ö + 6 ) + (V40 - 6 ) + 2V40-36 2 = 2V4Ö + 4

3 ) (V12 + V6 + Vl2 — Vb)2 = V ( 12 + V6 ) + ( 12 — V6 ) + 2V144 — 6 2 =

= 24 + 2V138
“

57/28 . a ) (RS )2 = 2 + 3 + 5 + 2(V§ + VlÖ + Vl5
~
) = 10 + V24 + V4Ö + V6Ö

“
;

also (RS )2 = ( LS )2 und , wegen LS > 0 und RS > 0 , RS = LS .
b ) ( RS )2 = 6 + 5 + 3 + 2 +2 (VM + Vl8 + V15 + V12 + VT0 + V6 )

= 16 + V120 + V72 + V6Ö + V48 + V4Ö + V24
"
;

also (RS )2 = (LS )2 und , wegen LS > 0 und RS > 0 , RS = LS .
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Aufgaben zu 2.5.1

66/1 . a) {2} b) {- 1} c) (- 1 ) d ) { } e ) {- !

66/2. a) {0} b) (f ; -- § > c) ( | V2l d) { }
e) (fl f) {- i V21 }

66/3. a) {0} b) { } c) d) {2,5}
e) l 16 J f) f0)

66/4. a) {2 ;- 2} b) { } c) {2 ;—2} d) {| }
e) { ) f) { }

66/5 . a) {2} b) { } c) {- 2} d) {3 ;—3}
e) { } f)

67/6. a ) {5 } b) {3} c) {I • _ ! }’ 2 * d) { — }1 64 J

67/7. Ausgangsgleichung Hilfsgleichung nach
dem 1 . Quadrieren

Hilfsgleichung nach
dem 2 . Quadrieren L

VFTäx = i + Vx2 +x 2x - 1 = 2Vx2 +x 8x = 1 { }
a/x 2 + 3x = 1 - a/x 2 + x 2x - 1 = - 2a/ x2 +x 8x = 1

a/x 2 + 3x = - 1 + a/x 2 + x 2x - 1 = - 2^ x2 +x 8x = 1 U

67/8. a ) {8}
e) { }

b)
f)

{12}
{a/3 ;- a/3 }

c) { } d) {a/8 ;—a/8}

67/9. a) ü b) {1} c> 1 ; - D d ) { }

67/10 . a ) {- 2} b)

67/11 . Census = x; sin wurcz = a/x

28
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Umschrift von Abbildung 68 . 1

d33v ) Machmet in dem puech algebra vnd almalcobula hat gepruchet dise wort :

Census , radix , numerus . Census ist ain yede zal , die in sich selb multiplicirt wirt ,
dz ist numerus quadratus . Radix ist die wurcz der zal oder dez zins . Numerus ist

ain zal für sich selb gemercket , nit alz sie ain zins oder ain wurcz ist . Vß den

dingen merckt er 6 ding : dz erst , wann der census sich gelichet den wurczen ; daz

ander, so der census sich gelichet der zal ; daz drit , so sich dye zal gelichet den

wurczen ; daz 4 , so sich der census vnd dye wurczen geliehen der zal , als ob man

spreche : ain census vnd 10 wurcz gelichent sich 39 ; das fünft ist , so sich der

census vnd dy zal gelichent den wurczen; daz sechst, so sich dy wurczen vnd dye
zal geliehen dem censuj .

Dar vmb sprech ainer : gib mir ain censum vnd zuech dar von sin wurcz , vnd von
dem, daz vber belyb an dem censu , zuech och vß dye wurcz; dye czwo wurcz tue

(i34r) zesamen , daz 2 zal dar auß werden . So aber daz nit in der sechs regel ainer

stat , so bring es in ain regel, also : Es sallen dye czwo wurcz 2 numero gelyh gesin,
so kompt es in die dritten regel. Dar vmb zuch ab von den 2 numero die wurczen
dez census , so belyben 2 minder der wurczen deß zins; das selb belybend ist gelyh
der wurczen deß , das ain censu über belybt, sein wurcz dar von gezogen wurt ; daz
du aber habest dez gelychnuß daz vber belybt, so multiplicir die 2 dragmas , id est

numero , minder ainr wurczen in sich selb , so körnen 4 dragme vnd ain zins minder
4 wurczen ; daz wurt gelijeh dem , daz vber belybt an dem censu , wann sein wurcz

dar von wurt gezogen . Nu zeuch dar von dye gemindert wurcz, so belybt : 1 census
vnd 4 dragme gelich ain census vnd 3 wurcz . Nu tu baidenthalb den zins dar von ,
so beleybt dannocht daz vbrig gelijeh : daz ist , 4 dragme sind ge ( i34v) lijch 3 wur¬
czen . So muß dein wurcz l | - sein , wann 3 mal l | macht 4 ; multiplicir l | - in sich
selb , so kompt , daz ist der census, vnd sein wurcz ist lj ; vnd wann tue lf - tust
von y -

, so belyb f ; die wurcz von f ist f , dye § zw der wurczen vf , daz ist l | ,
macht 2 gancz etc . 1461 . Erasmi martyris .
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Aufgaben zu 2.52,

70/1 .

70/2 .

70/3 .

a) x = 2a + 1 für a > - 1 ; L = { } für a < - 1 .
b) x = a2 - 3a + 1 füra > l ; L = ( } fura < l .
c) x = 2a für a > 0 ; L = { } für a < 0 .
d) x = i (a2 - a ) für a(a+ l ) > 0 , das heißt, für a > 0 oder a< - l ;

sonst L = { } .
e) L = {0 ; 1} für a> 0 ; L = (- 1) für - 1 < a < 0 ; L = { } für a < - 1 .
f) x = — a für a / 0 ; L = E0 für a = 0 .

a ) a/x + a + Vx - a = 2a => 2a2 — a = 2aVx — a
a = 0 0 = 0Vx ; dazu L =

a ^ 0

Probe : LS = 2Vx. LS = RS für x = 0 ; sonst LS 7t RS.

2a - 1 = 2Vx - a => x = a2 + \
Probe : LS =

| a + | | + j a - | j
LS = RS für a > i ; sonst LS 7t RS.

Ergebnis : x = 0 für a - 0 ; x = a2 + - für a > | ; sonst L =

b ) L = Eq für a = 0 ; x = a2 + | für 0 < I a I < | ; sonst L = { }.

Hier muss a 7t 0 gelten ,
a ) x1 = | Va2 + 4 ,

x2 = - | Va2 + 4

für a> 0 ;
L = { } für a < 0 .

L = ÜVa 2 + 4, - | Va 2 + 4 ]

L =

b) x = ^ + jr für a > 0 oder a < - 2 ;
L = { } für - 2 < a < 0 . - 2 < a < 0

1 1 i
4 + a2

L :

1 1
4 + a2
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70/4. a ) Vax3 + 3 = V3 + a3x => ax (x2 - a2) = 0

a = 0

a ^ O

0 -x (x - 0 ) = 0 ; dazu L = ]R (Probe !)

xt = 0 ; x2 = a ; x3 = -a ;

Probe mit x , : LS = RS = V3 ; OeL (für jedes aelR)

Probe mit x2 : LS = RS = Va4 + 3 ; aeL (für jedes aelR)

Probe mit x3 : LS = RS = V — a4 + 3 ; - aeL , falls 3 — a4 > 0;

a4 < 3 <=> a2 < V3 <=> lal < VV3 (« 1,316 ) .

b) Vx2 + a
a = 1

a * 1

- Vax2 — 2 => x2(a — 1 ) = a + 2
x2-0 = 3 ; L = { }

x2 = -f- ;
a + ? > 0 für a > 1 oder a < - 2 .a - 1 ’ a - 1

x, = Va ^T ’ Xz = _ Va ? T für a > 1 oder a - ~2 -

Probe mit 1x1 = l
*

^ = VI?T^ - = VI3 - Vf?r = » =
Somit L = , - "\J frf } für a > 1 oder a < - 2 .

L = E
a - 1

W L = { 0,a
2 < a < 1 L = { 1

a + 2L = { 0,a } a - 1

70/5. a ) Vx + 2a2 = a + Vx + a2 => 2aVx + a2

a = 0 => L = Eq

a * 0 2aVx + a2 = 0 <=> Vx + a2 = 0
Probe : LS = V*?

"
= I a I ; RS = a + VÖ = a.

LS = RS , falls a > 0 ; also x = - a2 für a > 0
und L = { ) für a < 0 .

Ergebnis : L = E* für a = 0 ; L = {- a2) für a> 0 ; L = { } für a < 0 .
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b) Vax2 + x = Vax2 - x + 1 => x - | = Vax2 - x ( * )
Aus der Hilfsgleichung ( * ) erkennt man bereits , dass jede Lösung die
Bedingung x > | erfüllen muss .
Aus x - \ = Vax2 - x folgt x2(a - 1 ) = | ( * *)
a = l | (** ) =f x2-0 = \ , also L = { }

x2 < 0 , also L = { }
1

a < 1 (**)

> 0 .

32

1Nach obiger Folgerung aus ( * ) kommt lediglich x - 2 1̂a - 1
als Lösung in Betracht . _

I
— ä I / a - 1 ! I 1Probe : LS = = \ 4ÜTÄ)

+
2VÜ^ 1

+ 4(a -

2^ a - 1 12V a - TJ
11 , ._ 1—_ | - 1 j - ——A)
12 +

2V^ rl 2T Va ^Tj

Für RS ergibt sich ganz entsprechend :
1ES = 1 + | 5 - iV ? T = 1 + 1 1 - ,_ _1 ■ 2 r vä^ri , also

' 1 für a = 2

RS = S 1 + 2 2VT=A

, 1 1
. 2 + 2Vü^ T

für a > 2

für a < 2

Ergebnis : L = ■

L = 1 - a2

Somit gilt (im Fall a > 1) LS = RS nur für a < 2,
d .h . L = | 2Vfrr } fiir 1 < a < 2 , L = { } für a > 2 .

j für 1 < a < 2 ; sonst L = { } .

L = i

1 < a < 2
L =

2\ a - 1J

L = I

> ' ^ •



Aufgaben zu 3.1

74/1 . quadratisch Form lineares Glied Konstante

a) ja x2 + x - 3 = 0 X - 3

b) ja 2x2 — 1 = 0 0 - 1

c) nein
d) ja x2 - 2x + 4 = 0 —2x 4

e) ja 0,25x2 + 4x + 16 = 0 4x 16

f ) nein

74/2 . Form lineares Glied Konstante

a) quadratisch für x: yx2 + 1 = 0 0 1

b) quadratisch für y: oliXOC11 0 - 3x

c) quadratisch für x: 3x2 - xy - y2 = 0 - xy - y2

quadratisch für y: - xy 3x2

d) quadratisch für x : x2 - xy2 + y3 - 1 = 0 - xy2 y3 - 1

e) quadratisch für x: - abx2 + a3b2 + 2 = 0 0 a3b2 + 2

quadratisch für b: a3b2 - ax2b + 2 = 0 - ax2b 2

f ) quadratisch für b: b2 - ab = 0 — ab 0

74/3 . a) x2 —2x + 5 = 0 b) x2 + 3x - l = 0 c) lX1 S = 0

d) x2 - § x + = 05 25 e) x2 - 1 = 0 f ) x2 - | V3x OII1
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Aufgaben zu 3.2.1

76/1 . a) ± 13 b) ±32 c) ±2,5

d) ±0,18 e) ±5 f) ±4

g) _l_ 35“ 12 h) “ 3 i) + A- 15

76/2 . a) ±2 b) ±4 c) ±3

d) ±1 e) + ?~ 3 f) + 1“ 5

g) + 1-- 6 h) + 11~ 6 i) ±3

76/3. a) D = E \ { - 1 ; - L = (0 }

b) D = E \ { - 5 ; L = {- 5^ 2 ; 5a/2 }

c) D = E \ { - 7 ; - } ■
2 1 ’ L = \[ }

d) D = E \ { - 7 ;- - } •
2 1 ’ L =

e) D = E \ ( - 1} ; L = ( 1 )

f) D = E \ { | } ; L = 1 2

g) D = E \ { - 4 ; 9 1 ’ L = l }

h) D = E \ { f 1 ; L = 1 ^42 }

77/4. a) ±y [3 b) { )

c) D = E \ l - ; - ^ "\/ll9 ; ^ a/119 ; | "'/6 ) ; L = { - \ ^ 2 ; £ a/2 }

d) D = IR \ { - a/5 ; V5 } ; L = { - | ; | }
34



77/4. e ) D = ]R \ { — 1 ; 1} ; L = { - 2 ; 2 }

f) D = R \ { - § ; L = { - 2 ; 2 ]

77/5 . a ) D = ]R \ { - 2 ; 2} ; L = { - 1 ; 1 }

b ) D = E \ { - 1 ; 1} ; L = { ; | a[15 }

c ) D = E \ { 0 } ; L = (

d) D = E \ { - ! ; ! } ; L = D

77/6 . a ) b = 0 und a = 0 : L = IR
b = 0 und a * 0 : L = { 0 }
b * 0 und a < 0 : L = { }

b * 0 und a > 0 : L = j- ^ Va ; ^ Va |

b) a * 0 : L = { - a2
; a2 }

c) a * 0 : D - E \ { 0 } ; b = 0 : L = { }
ab < 0 : L = { } ; ab > 0 : L = { - -\/ab ; Väb }

d) a = b : L = E
a < - b : L = { }

a > - b . T f . ..L . 1 1
1 Va + b Wa + b j

e) a = 0 : f I! O

a ^ O : L = {
- ! aVä ; | aVs }

f ) a * 0 .
b < 0 : L = { }
b = 0 : L = E

b > 0 : L = {
- | Vb ;

= ^ j
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77/7. a ) b - a < 0 : L = { }
b = a : L = { 0 } _
b > a : L= { - a/b - a ; - a }

b ) a = 0 und b = 0 : L = E
a = 0 und b * 0 : L = { }
a 5* 0 und b = 0 : L = { 0 }
(a < 0 und b < 0 ) oder (a > 0 und b > 0 ) : L = { - a/^4 ; a/*v//1
(a < 0 und b > 0 ) oder (a > 0 und b < 0 ) : L = { }

c) a < 0 : L = { }, da die Summe zweier Quadrate stets > 0 ist .
a = 0 :
0 < a < 1 :

L = { 0 }
L= { - a/ a( l - a ) ; V a( l - a ) }

a = 1 : L — { 0 }
a > 1 : L = { }

d) 1 al < -\[2 : L = { }
ial = a/ 2 : oII
lal > a/ 2 : L = { - 2a/ a2 - 2 ; 2a/ a2 - 2 }

e) a * 0 ; 1ab 1 < 1 : L = j- £ a/ 2 ( 1- a2b 2) ; £ a/ 2 ( 1- a 2b2) (
1ab 1 = 1 : L = { 0 }
1ab 1 > 1 : L = { }

f) lal < Ibl : L = { }
a = b : L = E
a = - b 7t 0 : L - { 0 }

lal > Ibl : M-V^ a/^ }
a) 4 ; 10 b ) — 3 ; — | c) - 2 - a/2 ; - 2 + V2

d) 0 ; 6 e) { } f) 3 - a/3 ; 3 + a/3

g) a - b ; a + b h ) 0 ; - | a

77/9. a) a = 0 : D = E \ { 0 } ; L = { }
aTtO : D = E \ { - a ; a } ; L = { - 2a ; 2a }

b) aTtO : D = E \ { — a ; a ) ; L = { - Va ; Va }36



77/10. £ x- gx = 40733 ; L = { - 690 ; 690 }

77/11 . | b b = 2240 ; b = 56

78/12. x : y = 3 : 4 und x-y = 11532 ; x = ± 93 , y = ± 124

78/13. x : y = a : b und xy = z ; x = ±

78/14. x := Länge ; x -( \ + \ )x = 12 ; x = 4

78/15. a ) 2 - x2 = 102
; x = - 6oderx = 6 . Der eine Teil ist 6 , der andere 4 .

b ) 4x2 = 20 ; x = - ^ 5 oder x = ^ 5
AL-CHARIZMIließ nur die positive Lösung zu.

c ) = 4 ; x — 8 . Der eine Teil ist 8 , der andere 2 .

78/16. | x- | x = 24 ; x = - 12 oder x = 12

78/17. (x + 5 )(x - 5 ) = 96 x = - 11 oder x = 11

78/18 . x := Anzahl der Reichstaler der 1 . Person
2 . Person : | x Reichstaler

3 . Person : ^ • | x Reichstaler

f x2 + i x2 + i x2 = 3830 i
Lösungen der Reihe nach 79 | , 34,10 Reichstaler .

78/19. x := Anzahl der Gesellschafter
Einlage pro Person = lOx Reichstaler
Kapital = 10x2 Reichstaler
Gewinn pro 100 Reichstaler = 2x Reichstaler

Gewinn = ^ qq
" -2x = | x3 Reichstaler

^ x3-2~ = x ; x = 0 oder x = - 15 oder x = 15
100 5 9
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Aufgaben zu 355

79/1 . a) 0 ; 5 b) - 8- - o3 c) ° ; 1
d) o

•
lH'«1 e) 0 ; l f) - i ; o

79/2. a) 0 ; 9 b) c) 0 -
1 ^ 3

d) 0 e) o
1—||<N1 f ) ~ h °

79/3 . a) 0 ; IÖ b) 0 ; 9 - VlÖ

79/4. 1 . Möglichkeit : 4x( 10 - x) = x2 ; X = 0 oder x
Der eine Teil beträgt 8 , der andere 2 .

2 . Möglichkeit : 4x( 10 - x) = ( 10 - x)2
; x = 2 oder x = 10

Der eine Teil beträgt 2 , der andere 8 .
10 ist keine Lösung , da sonst ein Teil 0 wäre .

80/5. a) 0 • — b) ° ; f c) 0 ; 12

80/6. a) a = 0 : { 0 } ; a * 0 : { 0 ; 2a }

b) a = b : 10 } ; a ^ b : ( 0 ; | (b - ;

c) a = 0 und b = 0 : B
a = 0 und b * 0 : { 0 }
a * 0 und b = - a : { 0 }
a ^ O und a + b ^ O : { 0

d) a = 2b : IR
a * 2b und a = - 2b : { 0 }
a * 2b und a ^ - 2b : ( 0 ; — * - }’ a + 2b
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Aufgaben zu 3.3

82/1 . a) (x — 2 )(x - 3 ) = 0 ; 2 ; 3

b) (z + 2 )(z + 4 ) = 0 ; - 4 ; - 2

c) (y + 5 )(y - 4 ) = 0 ; - 5 ; 4

d) (g - 8 )( |x + 3 ) = 0 ; 3 ; 8

82/2. a) x2 + 4x + 4 b) x2 - 8x + 16 c) x2 - 24x + 144

d) x2 — 0,6x + 0,09 e) x2 + l,8x + 0,81 f) x2 - 0,5x + 0,0625

g) x2 + l,3x + 0,4225 h) , 5 25 , 9 , 81
X + 8 X + 256

^ X -
4 X + 61

82/3 . a) x2 + 3 | x + 3 ^ b) x2 - 3 i x + 2 l c) x2 + 2 h x + 1I >

d) x2 - 3ax + 2 \ a2
4

e) + x + (S±b )2

f) „ 2 3 (2a - 3b ) „ 9(2a —3b )2
X 2 X 16 g) x2 + 10-V7 x + 175

h) X2 - 7"\/lÖ
"
X + 122 | i) x> - | a/15x + 2 §

82/4 . a) 1 ; 2 b) - 1 ; 3 11

d) - 6 e) - 2 a/ 10 ; ^| TÖ

f) IO + 5 V1Ö- W 10 + 40a/iÖ
I

; io + iVw + WlO + 40VIÖ

82/5 . a) { } b) - 2 ± a[ö c) 1 ; 7 d) - 3 ; 1

83/6 . a) 7 b) - 3 ; 7 O { } d) - 9 ; - 1
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83/7. a) - 1 ; | b) - 1 ± V? c) { ) d) - 3 ; l |

a) - 5k ; k b) a (- 2 ± ) c) - 3m ; 3m + 2n

d) r = 0 : L = IR
r ^ O : s < 0 : L = { }

s = 0 : L = { r }
s > 0 : L = { r - y[s ; r + ^ }

Übersetzung von Abbildung 91 .1:

Es folgt nun diese Art des Wurzelziehens .

Erstens : Beginne mit der Anzahl der Wurzeln und denke dir diese halbiert .Ersetze sie durch ihre Hälfte , die beiseite stehen soll , bis die ganze Operation aus¬
geführt ist .

Zweitens : Multipliziere jene beiseite gestellte Hälfte mit sich selbst .Drittens : Addiere oder subtrahiere gemäß der Forderung des Vorzeichens des
Hinzugefügten oder des Vorzeichens des Abgezogenen.

Viertens : Zu finden ist die Quadratwurzel aus der Summe deiner Additionoder aus dem Rest deiner Subtraktion .
Fünftens : Addiere oder subtrahiere gemäß der Forderung des Vorzeichensoder deines Beispiels .
Diese Art des Wurzelziehens habe ich für dich , mein guter Leser , so gebildet ,dass sie sich fest dem Gedächtnis einprägen kann durch die Stütze dieser Wortbil¬dung AMASLAS.



Aufgaben zu 3.4

92/1 . a) - *3
2

b) - 4 - *
’ 5 c) OC

<M1
00

1 d) 5 . 8
8 ’ 5

e) { } f) 1 . 5
2 ’ 2 g) 3

2
h) 7 . 2

2 *7

92/2. a) - 12 ; 6 b) - 6 ; 12 c) - 29 ; 25 d) —187 ; 188

e) - 14 ; 6 f ) - 9 ; 6 g) - 4 ; 12 h) 6

i) 4±3 a/6 j) { ) k) 6 + 3a/2 1) - ! ( 1 + V33
~
)

m ) | ( 1 + V33
~

) n) 3 + 3 -\/5

92/3 . a) - 7 ; 3 b) - 3 ; 7 c) 3 ; 4 d) - 8 ; 18

e) - 18 ; 8 f ) 5± ^[31 g) - 5± ^^31 h) 5± ^[ l9

i) a/3 + 5 j) V3±V23
"

k) - V3 ; 3a/3 1) - 3 ; 3 |

m ) 2 ; 8

92/4 . a) 1 b) 1±V2 0 - 1± | V3

d) | ( 1±V7 ) e) f ) - 2±l Vs

92/5 . a) - i ; 2 b) - 6 ; - i c) 3 ; 4 d)

e) 2
9

f) | . 7
’ 4 1 (4±V6 ) h) | (- i±VTf )
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. - , .. '■ „V > . 4 i', : ' ^

9» . a, ± V^ - ± 6,083 b) 3 ± 2^5 ; - 1,472 ; 7,472

C) l M1± V89 ); - 10,217 ; - 0,783 d) i (14±V5ä > ; 0,617 ; 6,383

e) V£ ±3S ; 0,504 ; 3,968 f> ^ ±1 ^ . 1,024 ; 2,439

g) u h ) § (3±VÜ ) ; - 0,425 ; 1,175 i) 2 + V2 ; 3,414

j ) ä ÖVä - 1 ± VITwi ) ; 0,366 ; 1,732 k) | <V? ± a/ä) ; 0,518 ; , ,932

1} 2 (Vö - V3 ± VßT ^Vlf ) ; - 1,732 ; 2,236

93/7. a ) | (7,9771 ± ^ 3^ 31332441) ; 1,017 ; 6>959

b) § (- 0,1010 ±VÖ^ 7Ä ) ; _ o,5441 ; 0,4431

®) - | jtd±V5 ) ; - 5,083 ; 1,941

d) | (V344 ± ); _ 0>5366 . 2 307

e )
- 2,01 + Va25954

~

628
"

; - 0,4011 ; - 0,2389

fi 999±2V ^ 97l „
J 1509 ; - 2,985 ; 1,661

«•1 22440 5 + V54 8760492Ö0
24234Ö i ■; ~ 0,000 004 273 ; 19,02

h ) 1 - | V2 ; 0,2928

93/8.

42

a ) - 5 | ; 4

d) - l ; 2 i

B) - 3 ; |0

b) - 2 . _i
5 ’ 3

e) - 3 ; —’ 21

h ) 5 . 2'
2 >5

C) { )

f ) 0 ; |

*> - 13 | ; lOf



94/9 . a ) b ) 1 ; 4822 c
17 >5 c) - l | ; 5 d) 4± ; 5

e) - 194 5 ; 2 f ) ±
; 541 g) - 151 ; 1

94/10. a ) D = R \ { 0 } ; L = { 2 ; 3 }

c) D = R \ { 0 } ; L = { - l | ; 4 }

e) D = R \ { - § ; 1} ; L = {- f ; f }

b ) D — E \ { 0 } ; L = { - 3 ; 6 }

d) D = E \ { 0 } ; L - { § ; 9 }

f) D = R \ {- | L = { | ; | j

g) D = R \ { | ; 3) ; L = { 4 ; 6± } h ) D = R \ { - ± ; 12} ; L = { 8| }

i) D = R \ { - | ; | } ; L = { }

4

1 li t r 2
j ) D = R \ { - f L = { ^ ; 1}

k ) D = E \ { - 2 ; 0} ; L = { 2 ; 4 }

l) D = R \ { - 3 ;0 ) ; L = { ^ - ^ Vl38i ; i7 + ^ Vi381 }

94/11 . a ) 3 b ) 4 ; 7 c ) 4 ; 6

d) 8 . Die Lösung 12,5 würde im Nenner auf eine negative Zahl führen .

e) 1 . Die Lösung 100 würde bei 10 - x zu einer negativen Zahl führen .

f ) 3 . Die Lösung 17,5 würde zu negativen Zahlen in der Rechnung
führen .

g ) 2 \ ; 9

h ) D = E \ { - 1} ; L = { - 1 1 ; | } . Bei AL-CHARIZMI natürlich nur | .

i) 24 . Die Lösung | | würde zu einer negativen zu quadrierenden Zahl

führen .

j ) D = R \ { - 1 ; 0 } ; L = ( — 3 ; 2 } . Bei AL-CHARIZMI natürlich nur 2 .
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95/12 . a ) - 2l | ; 2 b ) 3 § ; 9 c) | ; 5 d) - 65 ; 4 e) ; 2

— ■qt } 281 ’ ” g) - J ; 4 h ) l ; 5 i) ? ; 4

95/13 . a ) D = E \ { - 4 ; 3 ; 4 ) ;

b) D = E \ { - 3 ; - 2 ; 5 } ;

c) D = E \ { 2 ; 3 ; 4 } ;

d) D = E \ { - 3 ; - 2 ; 0 } ;

L = { 6 ; 10 }

L = t - 1 ; 7 }

L = { 21 ; 5 }

L = { - 2 ^ ; 1 }

95/14 . a ) - 3a ; - a b ) ^ •7 m 7
4n .
m , m

e) 2u f ) -

c) - p ; q d) - 1 ; 2a2

g) i (r + s±VIT7 )

h ) - 2 — a ; 2 + 2b

i) a = - 4b und b = 0 : L = E
a = - 4b und b ^ 0 : L = { - 4b }

Hfr ^ frZiZ }
j ) a = 0 : L = E ; a * 0 : L = { - 2b ; a + b )

96/15 . a )

b)

lal < 1 :

lal = 1 :

L = { }
L = { - a } , also a = - 1 => L = {1}

a = 1 => L = {- 1}
lal > 1 : L = - a ± ^/a 2 - 1

- 00 < a < - 1 < a < 0 < a < 1 < a < + 00
{ } - 2 2a±2Va ( a2 - 1 ) 0 { 1 2 2a ± 2 -i/a ( a2 - 1 )

c) a = 0 : L - { 0 }
a ^ O : — °° < b < 0 < b < 4 < b < + 00

- | a(b±Vb ( b - 4 ) 0 { } - 2a - | a (b± Vb ( b - 4 )
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d) b = 2a : L = { - 5a ) ; b * 2a : L = { }

e) m < 0 : L = { } ; m > 0 : L = { 1 - ^ ; 1 + ^ V™ }

— oo < a < - 3 < a < - 2 < a < 2 < a < + °°

{ ) 1
5

l + Va + 3
a2 - 4 { 1 l + Va + 3

a2 - 4 { ) 1 ± Va + 3
a2 - 4

g) a = 0 : D = E \ (0} ; L = { )
a * 0 : D = E \ { - a ; a } ; L = { - 7a ; 3a )

h ) I a I * Ibl
a = 0 : L = E
a * 0 und b * 0 : D = E \ { - J ; £ } ; L = { - ^ ; 1 }

a * 0 und b = 0 : D = E \ { 0 ) ; L = { 1 }

96/16 . a) Diskriminante 36 - 8k > 0 <=> k < |

b) I k I < 18 <=> - 18 < k < 18 c) k = 0

d) k2 > 16 <=> k < - 4 oder k > 4 e) - | ; 0

f ) 0 ; - ^ (3 + 2-̂ 2) ; - 1 (3 - 2^ 2 )

96/17 . a) 1 ) D = p2 - 4q = p2 + 4(- q) > 0 , da - q > 0 .
2) D = b2 - 4ac = b2 + 4(- ac ) > 0 Begründung :

Haben a und c verschiedene Vorzeichen , so ist ac < 0 , also - ac > 0 .

b) Nein !
1 ) p2 - 4q > 0 , solange p2 > 4q . q muss nicht negativ sein .
2) b2 - 4ac > 0 , solange b2 > 4ac.

Das ist auch möglich , wenn a und c gleiches Vorzeichen haben .
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96/18 . ax2 + bx + c = 0 | | -d adx2 bdx + cd = 0

- bd±Vb 2d2 - 4adcd - bd ± V d2(b2- 4ac ) - bd + I d 1Vb^ ^ acTx - 2ad “ 2ad 2ad

- bd±dVb _
2r 4ac =

- b±Vb 2- W
fell d 0

_ J 2ad_ 2a_
’

X ~
1 —bd + d /̂b 2- 4ac - bWb 2- 4ac f n d < 0l 2ad 2a ’

Für d > 0 erhält man die Lösungen der Ausgangsgleichung in der glei¬
chen Reihenfolge , für d < 0 werden sie vertauscht .

96/19 . *2 - - b + VrT
' x i “ 2a

- b - VD
"

1
2a - a

a) 2 b ) 6 c) - 10 ; 10
d) - yfl9

~

;
-Jl9 e) - 8 | ; 3 f) 3600 . c>K

96/20. a) x12 = - 1 ± V1 -
k = - 1 oder k
k = 0 => X! = -

- k2, Ikl < 1
= 1 => x I>2

= - 1
2 ; Xj = 0

10 + V100 - 15k , ^ 20 , , k. Tx i,2 = -
k-

’ un ° kelNl

k = 5 => x , 2 = -°
,r ^

; X[ = 1 ; Xj = 3

e) x12 = | (- 10 ± -\j 100 - ) , ~ < 100 ist für k < 0 stets erfüllt .
Für k > 0 ergibt sich k > 1,92 .
Außerdem kommen für I k I nur Teiler von 192 in Frage :

Ikl i 2 3 4 6 8 12 16 24 32 48 64 96 192
k > 0 100 - ^ - 4 36 52 68 76 84 88 92 94 96 97 98 99
k <0 H-

1Oo 1
*

1s 292 196 164 148 132 124 116 112 108 106 104 103 102 101
Radizieren lassen sich nur 4 , 36 und 196 .k = 2 ergibt x, = - 6, x2 = - 4
k = 3 ergibt xt = - 8 , x2 = - 2
k = - 2 ergibt x, = - 12 , Xj = 2

97/21 . | (8± *̂ 64 - 4n ) = 3k , keZ ; ± Vl6 - n = 3k - 4 ;
n = 7 : ±3 = 3k - 4 , k$Z
n = 12 : ±2 = 3k - 4 => k = 2 ; Lösung 6
n = 15 : ± 1 = 3k - 4 => k = 1 ; Lösung 3
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97/22.

97/23.

a ) a , b , c e Q und b2 - 4ac ist keine Quadratzahl .
- ^ Vb2 - 4ac und x, = - ^ + ^ b 2 - 4ac .

Falls sich b2 - 4ac noch partiell radizieren lässt ,
k 2 _ 4 *IC

gilt b2 - 4ac = u2- — ^2— mit ue (Q+ .

Man erhält x li2
= - ^ ± ~ ^j

h ~
J

&C
■

Da - ~ , ^ und auch ^ aus Q sind , gilt die Darstellung

X ! = r - sa[F und x? = r + sa/I
"

, q.e .d.

b ) Nach a muss X;, = 3 + 2a/TT sein . Somit gilt
I ( 3 + 2a/ 17 )2 + p ( 3 + 2a/ 17) + q - 0

II (3 — 2a/ 17 )2 + p(3 — 2a/ 17 ) + q - 0

I - II 24a/T 7 + 4Afl7p = 0
I + II 18 + 136 + 6p + 2q= 0_

P = ~ 6
q = - 59
Lösung : x2 - 6x - 59 = 0

c) Ansatz nach a Xj= r —3a/ö und Xj = r + 3^ 5 .

I 2 (r - 3a[5 )2 -- 7 (r -- 3a/ 5 ) + c = 0

II 2 (r + 3Vö )2 -- 7 (r hh 3a/ö ) + c = 0

I - II 24a/ö r ■- 42 -Vör = 0
I + II Ar2 + 180 - 14r + 2c = 0

r = l

a ) 1 + a/4 = 3 : LS = 32 - 7 -3 + 12 = 0 = RS

l - V4 -: - l : LS = (- 1 )2 + 7 + 12 = 20 * RS

b) 3,5 + ^ [ = 4 : LS = 42 - 7 -4 + 12 = 0 = RS

3,5 - V 2
I = 3 : LS = 32 - 7 -3 + 12 = 0 = RS

Der Satz gilt nicht . Gelegentlich trifft er zu.



97/24. Negative Zahlen sind vom Problem her keine Lösungen!
1 ) , 33d + x = 2 ; i

X =
2 [- 1,5]

2) 1 XIICO
,

o x = 30 [- 29]
3) x2 - | jd + | x = | ; i

X =
2 [- 1]

4) x2 - 1 x2 + x = 2861 ; x = 20 [- 21,5]
5) , l li .X1' + X + gX = x = 1
6) 2 2 7 .X + 3 X =

12 ’ x = 1 i- si
7) llx 2 + 7x = 6 ~ ; x = 1
16 ) x2 - | x = x = i
23) x2 44x = | ; x = 1 [- 4 | ]

98/25 . a) d := Länge der Diagonale. Wegen der Angabe ist d > 4.
Pythagoras : d2 = (d - 4)2 + (d - 2)2

d , = 10 [d2 = 2 ist keine Lösung.]
Diagonale 10 Fuß , Höhe 8 Fuß , Breite 6 Fuß.
Bemerkung : Interessant ist die im Chiu Chang Suan Shu angegebene Lö¬

sung . Sie wird erst durchsichtig , wenn wir sie allgemein an¬setzen :

Man erkennt sofort , dass d — (w + v) > 0 sein muss .Als Lösungsweg wird angegeben :
Breite = v + V2wv , Höhe = w + V2wv .Wie fand man ihn ? Wir vermuten :
(d - w)2 + (d - v)2 = d2
2d2 - 2 (w + v)d + w2 + v2 = d2 | | - d2 + 2wvd2 - 2(w -i- v)d + w2 + v2 + 2wv = 2wv
d2 - 2 (w + v)d + (w + v )2 = 2wv
[d2 - (w + v)l2= 2wv
d - (w + v) = V2wv (wegen Vorbemerkung )
Also Breite = d - w = v + V2wv

Höhe = d —v = w + \ 2wv .Aus der Anfangsgleichung ergibt sich d.Mit den gegebenen Werten ist
Breite = 2 + v/2 -2-4 = 6
Höhe = 4 + V2-2 -4 = 8 und d = V 62 + 82 = 10 .
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b) x = Quadratseite > 0

Strahlensatz

1775
1775 - \ x

14 + X + 20
14 +x x2 + 34 x - 71000 = 0 x = 250

Bemerkung: Die Aufgabe kann auch mit dem Satz von den Ergänzungs¬
parallelogrammen gelöst werden .
(1775 - 1 x)-20 = | x -(x + 14)

1775 - x/2

(nicht maßstäblich )

1775



98/26. a) 1 ) a(a - x) = x2 ( v )
x2 + ax - a2 = 0; x = | a(^ 5 - 1)

2 ) Wäre x < | a, so wäre in (v ) die rechte Seite < | a2,
die linke > | a2

, Widerspruch .

b ) Dreieck ABC ist rechtwinklig , die Hypotenuse ist [BC] , Also gilt
BC 2 = ( | a )2 + a2 = | a2

, BC = \ a{ E .
Somit ist nach Konstruktion
ÄD = x = CB - ÄC = iaVö - | a = | a(y/5 - l ),
das ist die Lösung von a .

c) a : x = x : (a - x) => a(a - x) = x2
, siehe a .

d) x : (a - x) = ( a - x) : (x - (a- x))
(a - x)2 = x(2x - a)
a2 - 2ax + x2 = 2x2 - ax
a2 - ax = x2

a(a - x) = x2
, q .e .d.

100/27 . a)

b)

100/28 . a)

b)

c)

X = , also -
j| =

£ . Damit gilt x + x - 1 • t = B

x2t + Ax - AB = 0 , x

16x2 + lOOx - 1600 = 0 ,

( | x + 1)( | x + 1) = 20,
x2 + ( 10 - xf = 58,
| x - \ x = X + 24

- A ,±Wa2 + 4ABt
2t

x = | (- 25 + 5a/281 ) « 7,35

[x = - 19] x = 12

x = 3 oder x =7

[x = - 12] x = 24



100/29. a = 1 ; b = p ; c = q

= - f ± -v/| (p 2 - 4q) = - f ±V( p/2 )2 - q
Zur Fußnote : (Bl ):

(B2):

(B3 ):

p = B , q = — C ,
p = - B , q = C

: = ^ (% f + C - |

: = f - V (B/,2 )2 - C oder x = § + V( B//2 )2 “ C
genau eine Lösung , wenn (ü/2)2 = C , nämlich x = ,

und keine Lösung , wenn (
B /2 )2 < C.

p = - B, q = - C

^ V^ )2+ C + B

100/30 . a )

b )

( | x)2 + 12 = x,

( | x — 3)2 + 1 = x,

x, = 16, Xj = 48

Xj = 5 , Xj = 50 ; x , = 5 wird ausgeschlossen ,

weil sonst ( | der Herde weniger 3 Affen) = (- 2 ) Affen ergäbe .
BHASKARAschreibt : »Diese Lösung ist unpassend ; denn eine

negative Zahl billigt man nicht .«

101/31 . a ) x := Anzahl der Soldaten der kleineren Truppe
- 4 = xeN , xl = - 6,x 2 = 4 ; L = { 4 }

kleinere Truppe : 4 , größere Truppe : 6

b ) x := Anzahl der Mitglieder des kleineren Vereins

- -- - 6 = — ^ 3
—

, xeN , x, = - 8 , x, = 6 ;
kleinerer Verein : 6 , größerer Verein : 9

101/32 . x(x + 6) = 91 ; { - 13 ; 1 \ 101/33 . x2 - 9 - 100 = 23 - x ; { - 12 ; 11 ;

101/34 . x := kleinere Zahl ; x-2x + (x+2x) = 90 ; { - 7 | ; 6 }

Wählt man x = —7 | , dann ist 2x = - 15 nicht doppelt so groß.

Folglich kann nur 6 die Lösung sein .

102/35 . x := Kaufpreis in Reichstalem
119 - x = ^ -x ; { - 170 ; 70 } Kaufpreis = 70 Reichstaler



102/36 . x := Anzahl der Tücher; 180 180 _ o .
x x+3 { - 15 ; 12 } 12 Tücher

102/37 . 1 . Gesellschafter 2 . Gesellschafter
Einlage in Reichstalem X 100 - x
Gewinn 99 - x 99 - ( 100 - x) = x - 1
Gewinn/Monat | ( 99 - x) i (x - l )
Bedingung: Monatsgewinne verhalten sich wie die Einlagen.

^ = x : ( 100 - x) ; { _ 440 ; 45 >
Einlage des ersten = 45 Reichstaler.

102/38 . 1 . Bäuerin 2 . Bäuerin
Anzahl der Eier X 100 - x
Preis/Ei in Kreuzer 15 6

1

2/3
100 - X X

Bedingung: x- = ( 100 - x) - ; { - 200 ; 40 }
Die erste Bäuerin hatte 40 Eier, die zweite 60 .

102/39 . 1 . Händler 2 . Händler
Verkauf in Ellen X x + 3
Preis/Elle in Reichstalern 24 12 V 2

x + 3 X

Bedingung: x - ~ + (x + 3 ) - ^ ^ = 35 ; { 5 ; 15 }
1 . Lösung : 1 . Händler 5 Ellen,
2 . Lösung : 1 . Händler 15 Ellen ,

2 . Händler 8 Ellen
2 . Händler 18 Ellen
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Aufgaben zu 3.5

107/1 . a) xa - x - 6 = 0 b) x2 - 5x = 0

c) x2 + 9x + 8 = 0 d) x2 + 6x + 9 = 0

e) x2 - 3,5x + 2,5 = 0 f) x2 - 3,9x - 21,7 = 0

g) x2 + 8,5x + 18,06 = 0 h) o 1 2 AX -
7

X " ¥ = 0

i) o 5 25 r\X -
2 X + i8

= 0

107/2. a) x2 - (4 + "̂ 2 )x + 4^ 2 = 0 b) x2 - ( 1,5 + 2V3)x + 3

c) x2 - (^ 7 - l,3 )x - 2,3( 1 + V7) = 0 d) x2 - 3x + V 2 = 0

e) x2 - (8 + a[3 + a[5 )x + ( 15 + 3^ 3 + 5^ 5 + Vl5 ) = 0

f) x2 - 2V3x + 1 = 0

107/3 . a) x, = - 5 ; q = - 10 b) Xj = 0 ; q = 0

c) X;, = 1,5 ; q = - 6 d) x, = - 4,5 ; q = 20,25

e) Xj = - 2,37 ; q = - 5,6169 f) Xj = 1,5 ; p = - 5,5

g) X2 = - 0,5 ; p = 7,5 h ) Xj = - 2,5 ; p = 5

i) Xj = 0 ; p = - 17

107/4 . a) Xa = l ; c = 2 b) x2 = - 1 ; c = —1

c) X2 = 17 ; c = - 11,9 d) x2 = 1 ; b = — 9

e) Xj = - 1 ; b = 0 f) x, - l ■ b = - ^** 3 ’ 14

g) a = 7 ; x2 = 1 h) 8 3a -
3 >*8 - 40
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107/5 . a ) b = — 6 ; c = - 20

c) a = — 3 ; c = 60

e) a = - 1 ; b = 0

107/6 . a) 3 ; 5 b) - 5 ; 3

d) - 5 ; - 3 e) - 11 ; 1

g) - 11 ; - 2 h) - 4 ; 6

108/7. a) (x - 2 ) (x + 2 ) b) (x

d) (x + 6 )(x - 2,5 ) e)

f) (x - 1 + -{ l )(x - 1 - V7 ) g)

h) 30(x + 5,5)(x + 0,6) i)

b) u 33b = 2 ; c = 42

d) a = - 5 ; c = - 38,25

f) a = 5 ; k 78b = - y

c ) - 3 ; 5

f> 2 ; 7

i) - 16 ; 4

l )(x - 2 ) c ) (x + 5 ) (x - 8 )

(x - 6,7 )(x - 10 )

5 (x + 3 )(x - 5,4)

25(x - 1,1 + 0,2a/2Xx - 1,1 - 0 ,2-42 )

108/8 . Die gesuchten Zahlen sind die Lösungen der Gleichung x2 - ux + v = 0

a) - 3 ; 6 b) — 5 ; - 1 c) 7 ; 7

d) - 1,6 ; 15 e) 3,5 ; 4,5 f) 3 - V3 ; 3 + V3

108/9 . a) x , + x, b
2 “ 2a

13" 4 b) v ^ä = VF = i

2 - -
2x,x ,_ a _ 2c _ 5

Xj + x2
_

_ b _ —
b ~ 6

a

d) x ‘
g = - 1 - Die Gleichung hat aber keine Lösung ,

weil D = 1 - 4 < 0 ist !

54



108/10 . a) b> i (f + f + 5 + I ) = 3

108/11 . a) | (7 - ^ k) = 3 *=> k = - 20

b ) | (10 + 99 + = 30 <=> k = 0,25

cl 4 ( F + | ) = 2,5 <=> k = 9 oder k = 21

108/12 . a) I.
II - Diskriminan t .e > 0

(- 2m )2 - 4 -9 > 0
<=> m 2 > 9 , also m < - 3 oder m > 3

b ) ( 2m ) 4 -( 9 ) > 0 , m 2 > - 9 , also m beliebig aus IR .

108/13 . 4,5 und

2 - 4 >5 1111(1 r | = 4 , also b = - 9 und c = 18 ; x2 - 9x + 18 = 0

108/14 . x2 - 21x + (6 /̂3f = 0,

109/15 . a) x, Xi = 3 und Xj + Xj = 5 <=>

b ) Xj : Xg — 2 : 3
x , • x2 = 96
x„ = - 8 ; Xjj = —12 ; Pl - 20
xi2 - 8 ; x->2 — 12 ; p2 = - 20

c) x , • x, = 15
x , + 2x, = 11

X21 = 2,5 ; b , = - 8,5
X22 = 3 ; b2 = 8
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( PPI
' v \ - * 2 \ r, - * *<. *, .5 *'/

109/16 . a) x, = 4,5 ,; x, = 12,5 ; X2 - 17x + 56,25 = 0

b) x, = 9 ; x2 = 15 ; x2 - 24x + 135 = 0

c) x1 = 4 ; x2 = 6 ; x2 - lOx + 24 = 0

■V :

109/17 . a) - 1 + x, = —2q

also x2 + 2x + 1 = 0

b) 2 + Xj = - p
2x, = 2r>

~ ~1 ’ P = - 1 ; also x2 - x - 2 = 0

C) 3(~1 ~ ^ = 2 x2 - 5 ^ X2 = ?

n _ 2 . 7
5

q 5 ’ P 5 i also X2 — —X -f - — (5 5

iuy/i8 . a)

b ) I x 1 + X2 = 3,5
II x,x, = - i s

:= x,
2 ;

II ’ 5,4 = 225
4

Probe
“

^ -
“ “

^
UsUng “ ™ > *’ - « Ä + 225 = 0

4 = 6,25 ; ^2 = 36

c) ^4 + ^ = |
x .x, = - 5

:= 6x, + 4 ;
+ 4 = 16

§£ = - 132

^ : 6x2 + 4 ; eingesetzt ergibt

Also x2 - 16X - 132 - o
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109/19 . a ) Wegen xpq = 1 gilt Xj = —
, das heißt , die Lösungen sind reziprok

X 1

zueinander .
1 c

b) Wegen x2 = — gilt 1 = -
, das heißt , c = a .

X , 3 .

109/20. a) 1 . Möglichkeit
(y t + 1 ) + (y2 +1 ) = - 5

(y , + 1 ) • (y2 + 1 ) = 2

yi + y2 = - 7 ; y,y2 = 8
also y2 + 7y + 8 = 0

b) 1 . Möglichkeit
Xj+ Xj = - 5 quadrieren
x, Xj = 2 quadrieren

x ,
2 + 2xtx2 + x/ = 25

x,V = 4

(y t - 3 ) + 2 -2 + (y2 - 3 ) = 25

(y , - 3 ) (y, - 3 ) = 4

y,+ y2 = 27; y , y2 = 76

also y2 - 27y + 76 = 0

2. Möglichkeit
(x - l )2 + p(x - 1 ) + q = 0

x2 + (p - 2 )x + 1 - p + q = 0

somit p - 2 = 5
- p + q + 1 = 2
p =7 ; q = 8

2. Möglichkeit
(x2 + 3)2 + p(x2 + 3) + q = 0

x4 + 6x2 +9 + px2 + 3p + q = 0

(- 5x- 2 )2 + (6 + p )x2 + 3p + q + 9 = 0

x2(25 + 6 + p ) + 20x + 3p + q + 13 = 0

3p + q + 13 __ q
3lT p

~ ~ Z

p = - 27

q= 76

c) 1 . Möglichkeit
Xi+ X2 = - 5

Xj Xj = 2

mit 3 potenzieren
mit 3 potenzieren

X !
3 + 3x ,

2x 2 4

x ,
3 X,3 = 8

SXjXj2 + x2
3 = - 125

x t
3 + SxjXj/x ! + x2)+ x2

3 = - 125

x,
3 x,3 = 8

(y, + 1 ) + 3 -2 -(- 5) + (y2 + 1 ) = - 125

(y,+ l )(y2 + l ) = 8

yi+ y2 = - 97 ; y,y2 = 104 ; also y2 + 97 y + 104 = 0
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2. Möglichkeit
(x3 - l )2 + pCx3 - 1 ) + q = 0
x6 - 2X3 + 1 -4- px3 - p + q = 0 ( v )
Nun ist x2 = - 5x - 2

x4 = 25x2 + 20x +4 = 25 (- 5x - 2 ) + 20x+4 =
= - 125x - 50 + 20x + 4 = - 105x - 46

X6 = X4 X2 = ( 105x + 46 )( 5x + 2 ) = 525x 2 + 440x + 92

x3 = x2 x = - 5x2 - 2x
Somit wird ( v ) zu
525x2 + 44Ox + 92 + (p - 2 )(- 5x2 - 2x) + 1 - p + q = 0
(535 - 5p )x2 + (444 - 2p)x + 93 - p + q = 0 .
Aus gff § = 3 undf ^ = 2 folgt p = 97 und q = 104 .

d) 1 . Möglichkeit 2. Möglichkeit

X + 1

(yi+ y2) + 3yi y2 = o
(y t+ y2) + y t y2 = i
yi y2 = - \ ; yi+ y2 = |
also y* — fy — § = 0

1 + p(x + 1) + q(x + l )2 = 0

qx2 + x(2q -!- p ) + q + p + 1 = 0
Somit
^ = 5 und = 2

q q
also p = - 1,5 ; q= - 0,5

e) 1. Möglichkeit 2. Möglichkeit

X + 1

3yi y2 - 4(yx+ y2) = - 5

y . y» - 2 (y, + y2) = - 2

x2( l + p +q) + x(p + 2q ) + q = 0
Somit

5 undl + p + q 1 + p + q
2(y,+ y2) = 1 und y, y2 = - 1
also y2 - | y - 1 = 0

also p = - | ; q= —1



f) 1 . Möglichkeit

Wegen x = —
y

—^ ist von der direkten Berechnung abzuraten .

2. Möglichkeit

Mit x2 = - 5x - 2 , x3 = x2x = - 5x2 - 2x

und x4 = 25x2 + 20x + 4 erhält man

x2(25q — 11p + 4) + x(20q
20q - 4p - 4
25q — 11p + 4

4q + 1
25q — llp + 4
das heißt , p = y und q

4p — 4 ) + 4q + 1 = 0 , also

= 5 o 17p - 35q = 8

= 2 <=> 22p - 46q = 8

19 . , 2 41 , 19 A
t ; sonut y + xy + t = 0 -

109/21 . a)
I xl : x2 = 3 : 4 1

II Xj ' Xj = k [ => Xj = 6 ; Xj = - 8 ; k = 48
III X ! + x2 = —14J

b ) I Xi : x2 = - 1
II x1 • x2 = - —

III X! + Xj = |
I x1 = - Jx , inIII , II

III ' x2 = ^ in II

II ' f - f = - ~ <=> k = 15
5 k k k

c) k = - 9 oder k = 9 .

d) k = - 7,5 ; [k = 0 ist keine Lösung.]

110/22 . a) 2 . Lösung - a/2 ; also x2 - 2 = 0

b ) 2 . Lösung 1 + ; also x2 - 2x - 2 = 0

c) 2 . Lösung 3,5 - V 17 ; also x2 - 7x - 4,75 = 0

d) 2 . Lösung - 3 + 2a/5 ; also x2 + 6x - 11 = 0



e) 2 . Lösung 0,6 + a/o/ 7 ; also x2 - l,2x - 0,34 = 0

f) 2 . Lösung | ( 2 - a/3 ) ; also x2 - 1 x + 1 = 0

g) 1 . Lösung - 1 + | a/2 ; 2. Lösung - 1 - 1 a/2 ; also x2 + 2x + 1 = 0

h ) 1 . Lösung | + V2 ; 2 . Lösung | - a/2 ; also x2 - x - ^ = 0

110/23 . a ) (r + a/7) + (r - a/7) = - 6 or = - 3
k = (- 3 + a/7) + (- 3 - ypj) = 2

b ) (r - 4^ 11 ) + ( r + 4a/Ti ) = 22 <=> r = ll
k = ( 11 - 4>fll ) + ( 11 + 4-\fIl ) = - 55

c) (r + 2"\/ (S)(r - 2a/ 5 ) = - 16 <=> r = - 2 oder r = 2 , k = - 2r
Es gibt zwei Lösungen : k = - 4 oder k = 4 .

d) (r + a/ 0,5 )(r - a/ 0,5 ) = - 0,25 <=> r = - 0,25 oder r = 0,25k = — 0,5 oder k = 0,5 .

e) - 2r = - £ und (r - a/IXt + ^[ä ) = - f
r = | und r2 - 3 = - ^

3k2 — 10k — 25 = 0 , also k = — | oder k = 5

f) - 2r = y und r2 - 216 = ^
27k2 + 15k — 8 = 0 , also k = - | oder k = |

110/24 . a ) yl = 10, y2 — 7 ; also y2 - 17y + 70 = 0

b ) yi = y , y2 = 86 ; also / - yy + y = 0

110/25 . a ) AE = : Xj EB = : Xj ferner b > 0 und c > 0 .x^ = c, x, + Xj = b
Nach VIETA sind x , und Xj die Lösungen von
x2 - bx + c = 0, umgestellt x2 + c = bx Typ (B2)
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b) Konstruktion der Quadratseite x,2 : Nach a gilt
x2

2 - bx2 = - c
x2

2 - bx2 + (b/2)2 = (V - c
(x2 - b/2 )2 = (b/2)2 - c

1 .Fall : Xj > | x. - h/a = ■\j (h/2 f - c <=> x^ = h/2 + ^ ( h/2 )2 - c

2 .Fall : x, < |
b/2 - x , = V (b4 )2 ~ c <=* ^ = % - ^ (% )2 - c

Man erhält V (b/2)2 - c als Kathete eines rechtwinkligen

Dreiecks mit der Hypotenuse b/2 und der Kathete -Je . Man muss also
zuerst in einer Nebenkonstruktion nach dem Höhensatz oder dem

Kathetensatz -Je konstruieren .

Im 1 . Fall ist MEj = 1 , also BE; = Xjj .
Die Rechtecksseite ist dann xx = AEj .

Im 2 . Fall ist ME2 = | - Xj , also E2B = x,2 .
Die Rechtecksseite ist dann = AE2 .

Zusammenfassung : AE ! und E !B sind die beiden Lösungen der
quadratischen Gleichung x2 - bx + c = 0 .

Höhensatz

AB = b = 10



ferner b > 0 und c > 0 .c) AE = : x , BE Xj
X! - Xj = b , x 1x2 = c
1 ) - x, + x2 = - b <=> (- x, ) + x, = - b

X,X 2 = - C <=> ( - X^ Xj = - c
Nach VlETA sind - X , und x2 die Lösungen von
x2 + bx - c = 0 , umgestellt x2 + bx = c Typ (Bl )

2 ) x l + (—x2) = b
X ^ - Xj ) = - c
Nach VlETA sind x1 und - Xj die Lösungen von
x2 - bx - c = 0 , umgestellt x2 = bx + c Typ (B3)

d) 1 ) Konstruktionder Quadratseite x^ nach c 1 :
Xj

2 + bx2 = c
(x2 + b/2 )2 = (b/2)2 + c
x2 + b/2 ist die Hypotenuse eines rechtwinkligen Dreiecks mit
b/2 und a/c

^
als Katheten. In einer Nebenkonstruktion ist -\[c zu

konstruieren .
M H = ME = x2 + h/2 , also BE = X;,

2 ) Konstruktion der ganzen Rechtecksseite nach c 2 :
Xj

2 = bx , + c <=> x ,
2 - bx , = c

( Xl - b/2)2 = (%f + c
Konstruktion wie unter 1 .
Jetzt ist aber MH = ME = x, - b/2 , also AE = x , .



Aufgaben zu 3.6

112/1 . a ) x+ y = xy
x + y = x2 — y2 => (xly ) = ( 01 0 ) oder (xl y) - ( | (3 ± ^ 5 ) I \ ( 1±JE ) )

b) I x+ y = xy
II x + y = x2 + y2 21 + II 3(x + y) = (x + y)2

=> (x I y) = (010 ) oder y2 - 3y + 3 = 0
Diskriminante = — 3 , keine weitere Lösung !

112/2 . a : u = v : b
u + v = c
u -v = ab => x2 — cx + ab = 0 => x = 1 (c ± -\jc 2 — 4ab )

für c = 13 , a = 4 und b = 10 ergibt sich u = x, = 5 , v = Xj = 8 .

y + lOx = x + lOy + 45
=> y = 2 [oder y = | ] => x = 7 , die Zahl heißt 27.

112/4 . ( lOx + y) + ( lOy + x) = 165
( lOx + y )( 10y + x ) = 6786
=> x = 7 oder x = 8 , y = 8 oder y = 7 . Die Zahl heißt 78 oder 87.

112/5 . (a - x )2 + (a + x)2 = a => x2 = | (a - 2a2) = | a ( l - 2a )

Es gibt nur Lösungen , wenn a( l - 2a ) > 0 ist , das heißt , 0 < a< | .

Es gibt genau eine Lösung , nämlich null , wenn a = 0 oder a = | gilt,

a = 0,01 => x = ± ^

112/6 . = | => x = 56 oder x = - 6
x - 42 8

112/7 .
(a + jO + (a —x) + ax +_a/x = fl ^ a(x _ 1 )2 = 0

4
a = 0 : x beliebig oder a * 0 : x = 1 .
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112/8 . 1000 + lOOy + x = 946 + lOx + y
( lOx + y)( 100y + x) = 655371 => x = 83 , y = 7 als positive Lösung
Die Zahlen heißen 837 , 783 und 1783 .

112/9 . V lOx + y = x + y — 2
lOy + x = (x + y)2 3 =*• x = 2 , y = 5 als ganzzahlige Lösung
Die Zahl heißt 25 .

112/10 . Anzahl der Diagonalen im n-Eck = - n(n - 3 ) ,
das 13-Eck hat 65 Diagonalen , das 100 -Eck hat 4850 Diagonalen .

112/11 . Es gibt | n (n - 1 ) Partien . 23 Spieler nahmen teil . 2- 2-

112/12 . Maximal n (” 1) Schnittpunkte entstehen bei n Geraden .
18 Geraden erzeugen höchstens 153 Schnittpunkte .

112/13 . Bei n Punkten gibt es maximal | n (n- l ) Verbindungsgeraden .
45 Punkte liefern maximal 990 Geraden .

113/14 . a )
n (n ~ 3 )- = n => n = 5

b ) = 499500 => n = 1000

113/15 . n2 + (n + 7 )2 = 289 =* n = 8
Das eine Quadrat hat 8 , das andere 15 Münzen in einer Reihe .

113/16 . x(x + 9 ) = 90 => x = 6 . Es gibt 6 Reihen zu je 15 Bäumen .

113/17 . ^ x := Alter der Tochter jetzt , y := Alter des Vaters jetzt
y + 3 = 3 [(x + 3 ) + (x + 8 )] => x = 1 , y = 36
Der Vater ist jetzt 36 Jahre , der Sohn 6 Jahre und die Tochter 1 Jahr alt .
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118/18 . 800( 1 + pXl,005 + p ) = 861,12 => p = 3,5%
Im ersten Jahr war der Zinsfuß 3,5%, im zweiten 4%.

113/19 . 120 = 3000 - 1 -0,06 + t ,
120 = (3000 - t, ) | • 0,06 +t,
3000 = tj + 12 + 2878,8 => k = 4 Monate

113/20 . E ( 1 + pXl + 2p ) = gE ; p > 0 => p = 0,1 = 10%

113/21 . x Gramm Salz wurden zuerst ins Wasser geschüttet .
+ 4 = , x > 0

600 + x 400 615 + x
x = 25

113/22 . z 20 z + 20
y + 20
z + 115

Im Glas waren 342 g
= Jj , z > 0 => z = 360, y = 18 , x = 342.

Wasser , auf dem Löffel 18 g Zucker .

114/23. x2 + y2 = (x + 8)2
2x + y + 8 = 30 => x = 5 , y = 12 , Hypotenuse = 13

114/24 . pq = 362
p + q = 78 => p = 54 oder p = 24

q = 24 oder q = 54
Teilverhältnis = | | = | beziehungsweise | .

114/25 . x2 + (x + 5 ? = (2y + 7 )2

x2 = y(2y + 7 ) , x , y > 0 =s> x = 15 , y = 9
Die Seiten sind 15 cm, 20 cm und 25 cm lang .

114/26 . 2x + 5 = y — 30
x-y = (2x + 5 f => Xj = 5 , y, = 45 , x, = | , y2 = 40

1 . Dreieck : Hypotenuse 50 , Katheten 15a/ 10 und 5a/TÖ
”

2 . Dreieck : Hypotenuse 42,5 , Katheten 10^ 17 und | a/tT



114/27 . a + b + va 2 + b2 = 14
| ab = 7 a a , b > 0 => a = 4 ± >/2 , b = 4 + ^ 2,c = 6

114/28 . 242 = x(60 — x) . Die Abschnitte sind 12 und 48.

114/29 . 2x + 2y + 8 = 2x + 2y + y - x
x -y + 67 = (x +f )(y - f )
1 . Lösung : Seiten 14 und 22 ; 2 . Lösung : Seiten 10 und 18.

114/30 . x + y = 23,6
x-y = 120 Länge = 16 m , Breite = 7,5 m

114/31 . 2x + y = 87
x-y = 540
1 . Lösung : x = 36 m , y = 15 m
2 . Lösung : x = 7,5 m , y = 72 m
Die 2 . Lösung ist unbrauchbar , weil in den Ecken keine Pfosten stehen .

114/32 . Mit den Abschnitten xr und 2r — xr gilt :
(ik)

2
= x(2 - x) => x = 1 ±

Die Abschnitte sind ( l + —
ĵ )r und ( l - - jüp)r.

114/33 . x-( 13 - x) = 2,8 -11,2 =» x = 9,8 [oder 3,2]
Die Abschnitte sind 9,8 oder 3,2 .

115/34 . Ist x (in mm ) die Länge der halben kleineren Sehne , dann gilt :
13 2 - x2 = 272 - (30 + x )2 => x = 5 . Der gesuchte Abstand ist 12.

115/35 . Ist x ein Drittel der langen Sehne , dann gilt :
^/l 2 - ( | )2 + ^ 2 2 - ( f )2 = 1 => x = | V7
Die lange Sehne ist | a/7 cm, die kurze | "'/ ? cm lang .
Die Abstände von den Mittelpunkten sind :
1 3
^ cm von M, und ^ cm von M2 .
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115/36 . x(5 + x) = 2 -12 , x> 0 => x = 3
Die Abstände sind 3 und 8 .

115/37 . Ist t die Länge der Tangentenstrecke , dann gilt : t2 = (r + x)2 - r2

a) x = 0 b) x = Ooderx = ~ ^ c) x = ( '\[2 — l )r
n2 - 1

d) x = (yjn2 + 1 - l )r

115/38 . Ist x das kleinere Stück , dann gilt
_Jü _ = i ^ i

; X < 10 =* x = 15 - 5 Vb

115/39 . r = y ; ( -f )2 = x( 17 - x) =» x = y oder x = |

115/40 . Ist x die ursprüngliche Würfelkante , dann gilt

x(x — 2 ) + x(x — 1 ) + (x — l )(x - 2 ) = 206 => x = 2 + ^ 69

Der Rauminhalt wurde um x(3x - 2) = 215 + 10 '\f69
~
[cm3] verkleinert .

115/41 . Geschwindigkeit x [km/min ] , Flugzeit t [min ] .
9t + xt = 460
91 (t — | ) + (x + 1 )(t — | ) = 460

=> t = 15 , x = y oder 1300 [km/h ]

116/42 . x in km/min ist die Normalgeschwindigkeit ,
t in min ist die Flugzeit bis zur Mitte bei Normalgeschwindigkeit

xt - 26 | = (x - f Xt - 1 )

xt + 26 i = (x +l )(t - 1 ) => t = 36 , x = 8 5 525 km/h

Frankfurt — London = 2xt = 630 [km]

116/43 . x in km/min ist die ursprüngliche Geschwindigkeit .
_9^ => x = 6 oder 360 [km/h ]

=> Zeit 160 min beziehungsweise 150 min .

116/44 . x in km/min war die Geschwindigkeit .
— — 12 = — => x = 20 . Er hätte um 15 . 18 Uhr in A abfahren sollen .
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116/45 . v in m/s ist die Geschwindigkeit .
(20v )2 + ( 10 + 10v )2 = 202 => v = 0,6 oder v = - 1

116/46 . v in kn ist die Geschwindigkeit von B .
(0,5v)2 + (2 + 0,5v)2 = 102 => v = 12 oder v = - 16

116/47 . x sei der Umfang des Hinterrads in m , y der des Vorderrads in m
+ 120 ) -y = 450

( ^ 73; + 75 )(y + \ ) - 450 => x = 2,5 y = 1,5

116/48 . kiM = £. ^ = 1 =* p = 801 [hPa ] , T * 300 [K]

116/49 . 1000-48 = ( 1000 - 0,8x)( 100 - x ) => x - 5
Die Flüssigkeit ist etwa 5cm hoch.

116/50 . 50 -960 = (50 - x )(2500 - lOx ) => x = 28
Das Wasser ist etwa 28 cm ins Rohr eingedrungen .
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Aufgaben zu 3.7.1

120/1 . a) D = ] - oo ; 2 | [ ; L = { - 1 ; 2 J

b) D = [- 2 | ; 2 ] ; L = { 3 }

120/2. a) D = { ) ; L = { }
b) D = [—1 ; + °°] ; L = { 2 }

120/3. a) D = t- 3 ; + oo [ ; L = { 0 }
b) D = [- 1 ; + - ] ; L = { 1 ; 5 )

120/4. a) D = [- | ; + *» [ ; L = { l - V3 ; l + V3j

b) D = [- 3 1 ; + °° [ ; L - { j ; 9 }

120/5. a) Sicher x > - 4 ; L = { —1 ; 2,5 }
Probe für —1 : LS = -\/5 - 2 + 6 = 3 ;
Probe für 2,5 : LS = V31,25 + 5 + 6 = 6,5 ;

RS = - 1 + 4 = 3
RS = 2,5 + 4 = 6,5

b)

120/6 . a)

Sicher x > - \ ; L = { ^ (^ 721 - 59) }

Probe: LS = +^ ( 721 - 118^ 721 + 3481 ) - ^ (a[721 - 59 ) + 3 =

= ^ A/4202 - 118^ 721 - 90^ 721 + 5310 + 2700 =

= ^ Vl2212 - 208^ 721

RS = ^ (4^/721 - 236) + 7 = ^ (4^ 721 - 26 ) =

= i V11536 - 208a[721 + 676 =

= ^ Vl2212 - 208^ 721

Sicher x > - | ; L = ( | )

Probe LS = a/3 + 10 + 3 = 4 ; RS = 4 - | + 2 = 4

b) Sicher x > | ; L = { }
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120/7.120/7 . a) D = [- | ; + ~ [ ; L = { 0 ; 40 }

b) D = [- 1 ; + °° [ ;
Bedingung x < -

im Laufe der Rechnung ergibt sich als weitere
•4 ; somit L = { }

120/8 . a)
b)

D = [- S ; f ] ;
D = [- 1 ; + oo [ ; L = { } ,

12da sich als weitere Bedingung x < —1^ ergibt .

120/9 . a)
b)

D = [ 1 ; + oo [ ;
D = [ 1 ; 3 ] ;

L = { 5 }
L = { 1,2 ; 2 }

121/10 . a)
b)

D = R0
+ ;

D = [ 1 ; 2 ] ; L = { }

121/11 . a)
b)

Sicher x > | ;
Sicher x > 1,5 ;

L = { 3 } , da sich zusätzlich x < 5 ergibt .
L = { }

121/12 . a)
b)

Sicher x > - ~ ;
Sicher x < | ; L = { - -\[2 } , da sich zusätzlich x < 1 ergibt .

121/13 . a)
b)

Im Laufe der Rechnung ergibt sich x < - | . L =
Im Laufe der Rechnung ergibt sich x > - 1 . L =

( - 1 )

{ - 1- ' -1 }1 ■l 22 ’ 2 ;

121/14 . a)
b)

Zunächst x < 1 , dann x < - 1 . L = { - 3 }
Zunächst x < 1 , dann x < % . L = f

7 61

121/15 . a) D = [ | ; + °o [

a — oo < a < 4 4 < a < 16 16 < a < + °°
L ( } 1— }l a - 4 J { 1
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b) D = [ - 2a ; + °° [
x = - a oder x = 3a
Nur für a > 0 liegen diese Werte in D . Also
a — °° < a < 0 0 0 < a < + °°

L { 1 { 0 } { — a ; 3a }

c) D = K„
+

x = | (- a±Va 2 - 12) , falls lal > 2^ 3

1 . a > 2^ 3
1 . 1 - a + i/ a2 - 12 > 0 <=> V a2 - 12 > a , falsch

1 .2 - a - V a2 - 12 > 0 , falsch .
2. a < - 2^ 3

2 .1 ^fäF- 12 > a , wahr
2.2 - Va 2 - 12 > a , wahr .

Ergebnis:
a - °° < a < - 2i/3 - 2V3 - 2 -̂ jH < a < + 00

L { | (- a±Va 2 - 12 )} { ^3 } { }

d) D = [— | ; + oo [

x = - 4 ± 2-\j2a - 4 , falls a > 2
Ist - 4 ± 2^ 2a - 4 > - § ?

± 2^ 2a - 4 > y ; ist nicht erfüllt für das Minuszeichen .

Für das Pluszeichen ergibt sich 2a - 4 > y <=> a > ^ , somit:

61 61 <a — Oo < a < ¥ 18
+ UÜ

L { 1 {- 4 + 2^ 23 - 4 }

121/16 . a) Im Laufe der Rechnung ergibt sich a < 1 und schließlich

x = ± Va , falls a > 0 .

Probe: LS = "V1 + a ± 2 -i/a W 1 + a + 2 -\fa =

Vd ±V ^)2 + Vü + Vä )2 =
= 11 + Val + 11 + Va 1 =
= 1 ± Va + 1 + Va = 2 = RS

Ergebnis: a - 00 < a < 0 0 < a < 1 1 < a < + <*>

L { } {- Va ; Va } { } 71



121/17 . a)

b)

b) Im Laufe der Rechnung ergibt sich a > lund schließlich x = + -\fä
Probe : LS = yl + a±2 \fa - \ 1 + a + 2-\[ a =

= V ( 1 ±Vä)2 - V (1T -\[ä)2 =
= 11 ±Val - 11 + Vä I =

l + Vä - (- ( l-Vä) ) = 2 = KS
"

1- ( 1 - Vä ) - ( 1 + V & ) = - 2 * RS .

Ergebnis: a - 00 < a < 1 1 < a < + 00
L { ) { Va )

x = 0 oder x = 2a + 1

1 ) Probe für x = 0 :

2 ) Probe für x = 2a + 1 :

LS = Va 2 = I a I
RS = - a

LS = I a + 111
RS = a + 1 f

LS = RS, falls a < 0

LS = RS , falls a > —1

Ergebnis: a - °° < a < —1 - 1 < a < 0 0 < a. < +
L 10 } { 0 ; 2a +1 } { 2a + 1 }

1 . a = 0 => L = K
2. a ^ O

ax2 - (2a + l )x + (a - 1 ) = 0 , Diskriminante = 8a + 1
2 .1 a < - | => L = { }
2.2 a = - 1 => x = - 3

Probe : =p — 3 e L

2.3 1 _ 2a + 1 + Vöa + 1a >
8

=> x - 2a
Probe : RS = | ( 1 ± V8a + 1 ) . RS ist im Fall des Minus¬
zeichens nicht negativ , wenn zusätzlich a< 0 . Dann gilt
RS = ^ j ( l± 2V8a + l + 8a + 1) = -Â 2a + | ± Vßa + 1

LS = a + | ± V8a + 1 + a = RS

Ergebnis:
a - °° < a < - |O

1
8 ~ i < a < 0 0 0 < a < + 00

L { } - 3 Jza + 1 - V8a + 1 2a + 1 + V8a + 1 l
1 2a ’ 2a J

IR 2a + 1 + V 8a + 1
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121/18 . a )

b)

121/19 . a )

a a < b a = b a > b
L t - a ) { - a ; - b } { - b }

^ 3a - 2b - x • ^ 3a - 2b + x = 3a - 2b + x
x = 2b - 3a oder x = 0

„ , „ LS = 2 -̂ 3a - 2b
1 . Probe für x = 0 : ,- —

RS = 2V3a - 2b
2. Probe für x = 2b - 3a :

LS = A/6a - 4b

0 ist Lösung , falls a > | b

RS = V 6a - 4b
2b - 3a ist Lösung , falls a > -z b

a a < fb a = | b a > fb
L { ) { 0 } { 0 ; 2b - 3a }

Man erkennt sofort : x > 0 und x > - a . Die Umformungen zu

x2 - x - a = 0 sind dann Äquivalenzumformungen . Man erhält

ferner , dass nur für a > - 1 Lösungen existieren können .

1 . Für a = - ^ ergibt sich x = | .

LS = V \ = 1
Probe :

\ 2 \ 2 4

RS ~ v ^ T = 1

2. Für a > - 1 erhält man x12 = | ± + a .

Die Probe ist mühsam . Man überlegt daher
2 .1 a > 0 , Minuszeichen nicht möglich , da sonst ^ < 0 .

2.2 a = 0 , x1>2
= \ ± x, = 1 , Xj = 0

2 .3 - 7 < a < 0 , dann muss x > - a sein .4

NjeL

2.3.1, | - -y | + a > - a

■y | + a < a + | ; beide Seiten sind positiv!

a + 7 < a2 + a + 7 <=> 0 < a2 wahr
4 4

2.3.2 | + y | + a > - a

Ergebnis :
— °° < a < -

+ a > - ■a - | , LS positiv , RS negativ , also wahr .

- 7 < a < 0
4

0 < a < + °°

~ Vi + a ’ l + Vi + {0 ; 1 } l + V!t + a



b) Man erhält ax (ax + b ) = 0
LS = VTbT
RS = Vb

2. a ^ 0

1 . : 0 :
J b > 0 : L = E
1 b < 0 : L = { }

2 . 1 x = 0 :

2.2 x = — -
a

LS = VTbTl _
RS = Vb 1

'

LS = V Ib I+ b
RS = a/Ö

b > 0 : OeL
b < 0 : 0 $L

f b > 0 : - ^ $L
*

lb < 0 : _ a e L
Ergebnis:

121/20 . a ) x := Anzahl der Gulden am Anfang
x + x + (a/2x + 2 ) + (x + x + V2x + 2 f = 5550 ; u := 2 x + a/2x + 2

u2 + u = 5550
u = - 75 oder u = 74

2 x + a/2x + 77 = 0 oder 2 x + V2x - 72 = 0
z := ^| 2x

z2 + z + 77 = 0 oder z2 + z - 72 = 0
Diskriminante = — 307 z = - 9 oder z = 8
keine Lösung a/2x = - 9 oder a/2x = 8

keine Lösung X = 32

121/21 . x + 2^ x + 2 V x + 2a/x = 15 ; x > 0 . z := a/x + 2V^ , also z > 0
z2 + 2z — 15 = 0 , z t = — 5 ist keine Lösung

z2 = 3 , also Vx + 2Vx = 3 o x + 2a/x = 9 ; x < 9
x! = 11 + 2a/ 10 ist keine Lösung
x2 = 11 - 2a/U
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Zur Fußnote

x + 2Vx + 2 Vx + 2Vx = 10 ; (* ) x > 0 . z := V x + 2Vx , also z > 0

z2 + 2z - 10 = 0 , Zj = - VIT - 1 ist keine Lösung

z^ VTT - 1 , also + 2Vx = VTT- 1

(in E„
+

) o x + 2Vx = 12 - 2^ 11 (*)
Trick CARDANOs : Auf beiden Seiten 1 addieren

(Vx + D2 = i3 - 2Vir

Vx: + 1 = (±,
'V13 - 2VT1 (Das Minuszeichen ist nicht möglich .)

Vx = a/ 13 - 2VTT - 1
_

x = 14 - 2VTT - 2”V 13 - 2^ 11
Da in K„

+ alle Umformungen Äquivalenzumformungen
sind , ist die angegebene Zahl Lösung der Aufgabe .

Wer in ( * ) den Trick CARDANOs nicht sieht : 2a/x = 12 - 2Vll - x (**)

= > X2 + 4 (VTT - 7 )x + 4 (47 - I2VT1 ) = 0

x = | (4(7 - VH ) ± 4V13 - 2VTT ) = 2(7 - VlT ) ± 2V13 - 2VU

Der Taschenrechner zeigt , dass das Pluszeichen nicht möglich ist , da sich für x

sonst ein Wert > 10 ergäbe , was nicht sein kann . Somit

x = 2( 7 - VTT) - 2V13 - 2VIl , also die Lösung von oben .

Probe : Wir berechnen 2Vx aus (**) :

2Vx = 12 - 2VTI - 14 + 2VIT + 2V13 — 2VT1 = —2 + 2V13 - 2VTT • Damit ist

x + 2Vx = 14 - 2V1T- 2V13 - 2VII - 2 + 2^ 13 - 2VII = 12 - 2VIT

In ( * ) eingesetzt : 12 - 2VII + 2N12 - 2VTT = 10

Vl2 - 2VII = VII - 1 (in K0
+

) « 12 - 2VIT = U - 2VII + 1 , wahr

121/22 . a) x > 0 ; (VV - 1)2 = 0 ; L = { 1 }

b) x > 0 ; L = { 4 } c) x > 0 ; L = { }

121/23 . a) D = ] - l ; + ~ [ ; z := V5F ; Zl = 1 ; z, = 2 .

L = { 2 - V7 ; 0 ; l ; 2 + V7 }

b) Statt D mühsam zu bestimmen aus
[x(7x + 2 ) > 0 und x2 > 2] oder [x(7x + 2 ) < 0 und x2 < 2] ,
macht man die Probe:
x = 1 : LS = 3 ; RS = 2 + 3 - 1 =3

x = - | : LS = 3 ; RS = 2 + 3 - | =3 .
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122/24 . a) 0 < x < 1 ; L = { f }

b) D = K \ ([- 1 ; 0 ] u { H }) ; L = { }

122/25 . a) | (13 + a/ 69) ; keine Lösung ist | (13 - a/ 69 ) . b ) - 14 | ; 4

c) Umformung zu 4a/x2 —3x = (x2 - 3x) + 4 , u := a/x2 —3x ; L = {—1 ; 4)

d) 5 + | V3Ö
"
+ | V210 +20a/3Ö

"

122/26 . a ) | x + 4^ x + 6 + 3 + l = 0 ; L = { 100 }

b) -
y^ x + jjx + 2 = x ; L = { 72 }

c) x + | x + 18a/x = 1200 ; L = { 576 }
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Aufgaben zu 3.7.2

124/1. a) - 5 ; 5 b) - 6 ; 6 c) - 7 ; 7 d) ± \ 2563

e) - 11 ; 11 f) - 11 ; ii g) ±11 ; ±a/V5359

124/2. a) ± 2 ; ±y/3 b) { ) c) - 2 ; 2 d) - V3 ; V3

e) ±VVTT- 1

124/3. a) - 2 ; - 1 ; 1 ; 2 b) - Vö ; V5 O - 2 ; - f ; f ; 2

d) - 3 ; - 1 ; 1 ; 3 e) - 5 ; 5 f ) - >/7 ; V7

124/4. a) ( 1 b) { } c ) { }

124/5. a) OUMt-1<N1 ; IV2 b) 9 . 9
4 ’ 4

124/6 . ± 2^ 3

124/7. a ) D = K \ ( - 6 ; | ; Nullstellen des Zählers: - 6 ; - 1 ; 6

Also L = { — | ; 6 }
b) D = E \ { - 2 ; 2 } ; Nullstellen des Zählers: - 2 ; 0 ; 2

Also L = { 0 }

124/8. a) Es sei ax4 + bx2 + c = 0 . Ohne Einschränkung der Allgemeinheit
darf angenommen werden , daß a , b und c positiv sind . Dann gilt

, - b±Vb 2 - 4ac
x = -

2a
-

1 . Fall : b2 - 4ac < 0 => L = { }
2 . Fall : b2 - 4ac = 0 => x2 = ~ < 0 . Widerspruch , also L = { }.

3 . Fall : b2 - 4ac > 0
Dann ist ^ h2 - 4ac < b , der Zähler stets negativ ,
somit x2 < 0 , also L = { }.

b) Die Umkehrung ist falsch, wie 2 a und 4 c zeigen.
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Aufgaben zu 3.7.3

127/1 . a) x2 - x + 1 b ) x2 + x + 1 c ) x2 - 2x + 4
d) 4x2 - 10x + 25 e) 8X3 + 12x2 + 18x + 27

127/2. a) 6 ; z2 + 7z + 42 = 0 ; D = - 119

b) l ; z2 + 8z + 8 = 0 ; — 4 ±2 ^ 2

127/3 . (x - l )3 = (x + l )2 + 2 ; x3 - 4x2 + x - 4 = 0 ;
4 ; x2 + l = 0 ; D = - 4 ; Quadratseite = 5 , Würfelkante =

127/4 . 5 ; x2 — x + 7 = 0 ; D = - 27

127/5 . a) 3 ; x2 - 7x - 21 = 0 ; 1 (7 + Vl33 )
b) 11 ; x2 + lOx + 110 = 0 ; D = - 340
c) 10 ; x2 + 85x + 2725= 0 ; D = - 3675

128/6 . a) 2 ; x2 + 2x + 10 = 0 ; D = - 36
b) 2 ; x2 + 2x - 8 = 0 ; — 4 ; 2
c) 5 ; x2 + 5x + 6 = 0 ; 001

128/7 . a) 2 ; 2x2 + 49x + 98 = 0 ; I (- 4917 ^ 33 )

b) - 2 ; x2 - 12x + 24= 0 ; 6 + 2^ 3
c) 4 ; x2 + x + 4 = 0 ; D = - 15

128/8 . a) - 3 ; x2 - 6x - 2 = 0 ; 3±VTT
b) - 2 ; x2 + 4x - 28 = 0 ; - 2 ± 4 "̂ 2
c) 5 ; x2 - 4x + 1 = 0 ; 2 + ^ 3
d) - 3 ; x2 — 9x + 3 = 0 ; 1 (9±a/69 )

e) - 2 ; x2 + 4x - 7 = 0 ; -2± ^|TT
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f ) 3 ; x2 + 9x - 4 = 0 ; i (- 9±V97 )

g) 3 ; x2 - 3x - 6 = 0 ; | (3±V33 )

h) - 3 ; x2 - x - 5 = 0 ; J (1±V2T )

128/9. a) u := x2
; u3 + 3u2 = 20 ; u = 2 oder u2 + 5u + 10 =

u = 2 : x = - ^2 oder x = a/2
u2 + 5u + 10 = 0 hat —15 als Diskriminante .

b) u := x2
; u3 + 3u2 -s- 10 = 15u ;

u = 2 oder u2 + 5u - 5 = 0
u = 2 oder u = | (- 5 + 3a/5) oder u = | (- 5 - 3^ 5 )

x = ±^ 2 oder x = ± | ^ 6^ 5 - 10

128/10 . a) - 2 ; x2 - 2x - 2 = 0 ; 1±V6

b) 6 ; x2 + 6x + 4 = 0 ; - 3±V5

c) - 3 ; x2 - 3x — 7 = 0 ; | (3±a/37 )

d) - 6 ; x2 — 6x + 2 = 0 ; 3±a/7

e) i ; x2 + x — 18 = 0 ; | (- 1 ± a/73 )

f) 4 ; x2 + 4x - 2= 0 ; - 2 + a/6

128/11 . a) V2 ; o>i1+oX | (- V2±V6 )

b) l ) l ; x2 + X - 7 = 0 ; | (1±a/29 )

2) 1 ; x2 - 8x - 8 = 0 ; 4 ± 2a/6



Aufgaben zu 3.7.4

133/1 . Gleichung3 . Grades : ax3 + bx2 - bx - a = 0 , a * 0
r ist Lösung <=> ar 3 + br2 - br - a = 0

r ’Ca + b - ^ — b - 4 — a - ^ ) = 0
- r *( a - 4 + b - 4 - b- - - a ) = 0

r r r

a -( 1 )3 + b -( i )2 - b -( ^ ) - a = 0
das heißt , ^ löst die Gleichung.

Gleichung 4 . Grades : ax4 + bx3 - bx - a = 0 , a * 0
r ist Lösung <=> ar 4 + br3 - br - a = 0

- r *(- a - b - - + b - 4 + a - 4 ) = 0T T T

a -( i )
4 + b -( i )3 - b .( i ) - a = 0

das heißt , ^ löst die Gleichung.

133/2. Gleichung 3 . Grades :
x = l :

Gleichung 4 . Grades :
x = l :

ax3 + bx2 - bx - a = 0
LS = a + b - b - a = 0 = RS
ax4 + bx3 - bx - a = 0
LS = a + b - b - a = 0 = RS

133/3 . a) 12x2 - 25x + 1 = 0 ;

b) x2 - 4x + 1 = 0 ;

133/4 . a) 20z2 + 19z - 442 = 0 ;

b) 20z2 - 189z + 442 = 0 ;

133/5 . a) 18z2 + 51z - 370 = 0 ;

b) 36z2 - 9z - 175 = 0 ;

133/6 . a) 7z2 + 36z - 100 = 0 ;

b) 10z2 - 29z = 0 ;

L = { - 1 ; 2 - "\[3 ; 2 + -n/3 }

L = { —5 ; — | ; 4 )

L = { | ; 4 ; 5 }

L = { I ; 3 ; 6 }

L = { - § ; J (7 - Vl3 ) ; ^ (7 + ^ 13) }

L = { - 7 ; - 1 ; 1 }
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133/7. a) z2 - oIINNC L = { 1 }

b) 20z2 + 16z - 21 = 0 ; L = { }

133/8. a) z2 + 2z - 15 := 0 ; L = V21 . - 5
J

+ V21 . 3 - V5
2 ’ 2

b) z2 - 8z + 7 = 0 ; L = - W5 ) ; | (7 + 3^5)

133/9. a) 16z2 — 72z + 81 = 0 ; L = ( | (9 -- Vl7 ) ; | (9 + Vl7 ) }

b) 2z2 -- 9z + 11• = 0 ; L = { }

133/10 . a) z = x + - <^ x2 - zx + l =X 0
Die letzte Gleichung ist genau dann lösbar , wenn ihre Diskrimi -

nante nicht negativ ist ,
das heißt , wenn z2 — 4 > 0 <=> I z I > 2 , q.e .d.

b) Doppellösungengibt es nur, wenn x2 - zx + 1 = 0 Doppellösungen
hat . Dazu ist notwendig und hinreichend , dass ] z | = 2, also z = - 2

oder z = 2 ist . Die Doppellösungen sind dann 1 bzw. - 1 .

c) I z1 1 > 2 <=> 0 < Vzi2 - 4 < I Zj I
Das heißt , zu z 1 wird immer weniger addiert bzw . von z , weniger
subtrahiert als I z , I , also gilt :

Zj > 0 => Zj + -'/z ,
2 — 4 > 0 und z , — ^ z * — 4 > 0

z l < 0 => z1 + Vz ^ - 4 < 0 und z 1 - Vz1
2 - 4 < 0 .

133/11 . a) (x + l )( 12x4 + llx 3 - 146x2 + llx + 12 ) = 0
12z2 + 11z - 170 = 0 , L = l - 4 ; - l ; - i

; 3 }

b) (x + l )(2x4 - 9x3 + 14x2 - 9x + 2 ) = 0
2z2 — 9z + 10 = 0 , L = { - 1 ; | ; 1 ; 2 )

c) 2z3 - 13z2 + 28z - 20 = 0
Durch Probieren findet man 2 als Lösung , sodass man faktorisie -

ren kann : (z- 2)(2z2 - 9z + 10 ) = 0 , L = ( | ; 1 ; 2 )
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133/12 . a) (x - l )(3x2 + lOx + 3 ) = 0 L = { | ; 1 ; 3 }

b) (x - l )(x2 + 1 ) = 0 L = { 1}

133/13 . a ) (x - 1X3X3 - 7x2 - 7x + 3 ) = (x - l )(x + l )(3x2 - lOx + 3 ) = 0
L = { - 1 ; | ; 1 ; 3 }

b) ( x - l )(x3 - 9x2 - 9x + 1 ) = (x - l )(x + l )(x2 - lOx + 1 ) = 0
L = { - 1 ; 5 - 2a/6 ; 1 ; 5 + 2>/6 }

c ) (x - l )(x + l )(x2 + 1 ) = 0 L = { - 1 ; 1 }

133/14 . a ) (x - lX12x 4 - Ix3 - 41x 2 - 4x + 12 ) = 0 ,
L = { - § ; - § ; l ; 2 }

12z2 - 4z - 65 = 0

b ) (x - l )(5x4 - 26x 3 + 10x2 - 26x + 5 ) = 0 , 5z2 - 26z = 0
L = { | ; i ; 5 )

c ) (x - l )(x4 + x3 + x2 + x + 1 )= 0 , z2 + z - 1 = 0, L = { 1 )

133/15 . a ) 2z3 — 13z2 + 28z - 20 = 0 , Probieren : 2 ist Lösung .
( z - 2 )( 2z2 - 9z + 10 ) = 0 ,
z1 = 2 ; 2^ 2 ; z3 = 2,5 L = { | ; 1 ; 2 }

b) (x - l )(2x7 - 3x6 - 7x5 + 8x4 + 8x3 - 7x2 - 3x + 2 ) =
— (x l )(x + l )(2x6 - 5x5 - 2x4 + 10x3 - 2x2 - 5x + 2 ) = 0
2z 3 - 5z 2 - 8z + 20 = 0
z , = 2 ; z2 = —2 ; Zj = | L = { - 1 ; \ ; 1 ; 2 }
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Aufgaben zu 3.8

137/1. a) (21 5) ; (5 1 2) b) (- 11 - 6) ; (2 | 3) c) (- 11 - 2) ; (2 1 1 )

137/2. a) (— ! 1 — 5) ; (3 1 4) b) (- 11 1 ) 0 { }

137/3. a) (3 | l 3 1 ) ; (4 f 3 ) b) ( | l 3 ) ; (31 1 )

137/4. a) < Ilä > : < II | > b> v 2 13 ’ ’ v 3 1 14 ’

137/5. Der Erdaushub beträgt V = | (1 m + | m ) • | m -2160 m = 1215 m3

a := Anzahl der Arbeiter , t := Anzahl der Tage
I a + 1 = 29 i

4

II a -t -6 = 1215 ( 11“ ) 18) , ( 181 11t )
4 1 4

Lösung : 18 Arbeiter haben ll | Tage gearbeitet .

137/6 . F , = | (30 + x) , F2 = | zx
F x - F 2 = 420
z — y = 20
z : (z + y) = x : 6_
x2 + 42x - 1080 = 0

_ 20(30 - x)
y 2x - 20

z = y + 20
F t = | (30 + x)y , F2 = | zx,
x = - 60 oder x = 18 Als Lösung scheidet - 60 aus .
Mit x = 18 erhält man y =40 , z = 60 , F t = 960 , F2 = 540.
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137/7 . x := TF , y := SF , x, y > 0
I x : y = (x + 5) :10
II | xy : 100 = 2 : 25
T 5x2 - 8x - 40 = 0
II ' y = 2x - f
x = | (4 + 6^ 6 ) , y = | (6V6 - 4)

137/8 . I (x - y)(x + y) + xy = 4400
II x + y = 100 , x > y L = { (60 ! 40 ) , (240 I - 140 ) }
Das zweite Lösungspaar ist algebraisch sinnvoll , aber geometrisch
sinnlos . Es wird im Keilschrifttext auch nicht erwähnt.

138/9 . Auf der Keilschrifttafel ist jeweils nur die zweite Lösung angegeben,
a) { (201 30) , ( 301 20 ) } b) { (- 20 I - 30 ) , (30 I 20 ) }
c) 1 (_ 3 | | - 3) , (3 | | 3 ) } d) { (- 34f | - 18i ) , (30l25 ) }
e) { ( 201 30 ) , (301 20 ) }

138/10 . Die Babylonier haben jeweils nur die zweite Lösung angegeben.
a) { (- 20 11 - 23 § ) , (30 | 10 ) } b) { (- 3811 - 27 ± ) , (401 25 ) }

c) { (- 42 ^ 1- 36 ^ ) , (50 | 25 ) }

138/11 . a) { (0 | 2 ) , ( f | § ) }

c) { (- 11 3 ) , ( 19 I - 27 ) }

b) { (111) , (191 I 6 | ) }

d) { (2 I - 1 ) }
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138/12 . a) { (5 - Vö - a/31 I 5 + Vö + a/31 ) , ( 5 - ^ 6 + V311 5 + Vß - V31 ) )
Probe in II
1 . Lösung:

Lg _ (5 - V6 - V31X5 + V6 + V31) _ 25 - (V6 + V31f _
5 - V6 - V31 - 5 - V6 - V31

~
- 2 (V6 + V31)

_ 25 - 6 - 2^ 186 - 31 _ 6 + Vl ^ T _ (6 + V 186 XV 6 - V3T) _
- 2 (V6 + V3T)

"
V6 + V3T 6 - 31

_ 6^ 6 - 6^ + 6^ 31 - 31^6 _ J£ _ Rg
—25

2 . Lösung:

Lg = (5 - V6 + V3IX5 + V6 - V31) _ 25 - (VE - V6 )
2

=
5 - V6 + V31 - 5 - V6 + V&1 2(V31 - V6)

_ 25 - 31 + 2^ 186 - 6 _ - 6 + Vl86
~

_ (- 6 + Vl86
~
xV31 + V6) =

2(V31 - V6 )
~

V31 - V6 31 - 6

_ - 6V3I - 6V6 + 31V6 + 6V31 _ r£ = Rg
25 ’

b ) { (- 361 - 1 ) , (3611 ) } c) { (- f | 4) }

138/13 . a) { ( f (- 9 - 10V2) I * (- 3 - ^ 2)) , ( f (- 9 + l (h/2 ) I f (- 3 + ^ 2)) }

b) I <=> (x - y)2 = - 4 , also L = { }

138/14 . a ) { (0 | — 3 ) , ( | I — g ) } b ) { ( | I - 21 ) }

138/15 . a ) { (- 11 - 2) , (- 11 2 ) , (11 - 2 ) , ( 11 2 ) }

b ) { (- 11 - 3) , (- 11 3 ) , ( 11 - 3 ) , (11 3 ) }

138/16 . a ) { (01 — 4) , (01 4) } b ) { (- 2 I - 3) , (- 2 I 3 ) , (2 I - 3 ) , ( 2 I 3 ) }

138/17 . a ) { (01 0) } b ) { (- VlÖ I - 4) , (- VlÖl 4) , (VlÖl - 4) , (VlÖl 4) }

139/18 . a ) { (- ! l - | ) , (- | l | ) , ( | l - | ) , ( ! l | ) }■2 ' 2

b) { (- fl - 5 ' 3 •
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139/19 . a) { } b) { (- V7l - V7 ) , (- V7lV7 ) , (V7l - V7 ) , (V7lV7 ) }

139/20 . a) { (- | l - y ) , ( | l2 ) }

c) { (- | l | ) , (2 | 4) }

b) { (—21 7 ) , (8,7 I — | |j ) }

d) K- 1
# l - | ) , (- 4l0 ) }

139/21 . a) { (3 I 8 ) , (5 I 3 )}

b) { (- f | - | V456) , (- ^ | jV455 ) , (2l - 5 ) , (2 | 5 )}

e) K- | lf ) , (01 - 3 ) }

d) { ( 2- Vl9 I - I - a/43) , ( 2- ^ 19 I - 1 +V43 ) , (2 + Vl9 I - 1- V43 ) ,
(2+ Vl9 I - I+a/43) )

139/22 . Die Babylonier nahmen x > y an.
a) I | . 2u + ^ (2v)2 = f

II u2 - v2 = 600
I’ u2 + lOu - 875 = 0 <=> u = - 35 oder u = 25
LXy - { (- 10 1 - 60) , (30I20 ) }

b) I 5 ' 2u — (2v)2 = 15
II u2 - v2 = 600
I’ u2 - lOu - 375 = 0 <=> u = - 15 oder u = 25
LXy = { (20 I 30 ) , (30 1 20 ) }

c) I i . 2u + i (2v )2 = f
II u 2 - v2 = 600
I ' u2 + u — 650 = 0 <=> u = —26 oder u = 25
L

xy = { (- 26 + 2^ 19 I - 26 - 2^ 19 ) , (301 20) }

139/23 . a) { (- 3 I - 1 ) , (- 3 I 1 ) , (- 11 - 3 ) , (- 11 3 ) ,
( 11 — 3 ) , ( 11 3 ) , (31 — 1 ) , (311 ) }

b) { (- 5 I - | ) , (- 5 11 ) , (51 - 1 ) , (511 ) }

c) { (- 1 VlÖ I - | V2 ) , (- 1 VlÖ 11V2 ) , ( | VlÖ i - § V2) , ( | a/TÖ 11 a/2 ) ,
(—11 —2 ) , (—11 2 ) , ( 11 —2 ) , ( 11 2 ) }

d) { (- 3 I - 2 ) , (- 3 I 2 ) , (3 I - 2 ) , ( 3 I 2 ) }86
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139/24. a ) { (- ^ 1 - ^ ) , (2 | - 2 ) J

b ) { (- 111 ) > (- 1 i | ) >(01 3 ) , ( 111 ) }

139/25 . a ) { ( | | 14 ) , ( 1 | 2 ) }

b ) Setzt man u := , v := ^ , so hat das u -v-System formal die

Lösungsmenge { (- 11 0) , ( 11 0) } . Da aber u ^ 0 und v ^ 0 sein

müssen , hat das Ausgangssystem die Lösungsmenge { ) .

139/26 . a ) { (- 30 I - 20 ) , (- 20 | - 30) , (20 I 30 ) , (30 I 20 ) }

b ) { (- 301 - 20 ) , (- 30 I 20 ) }

c) { (- 301 - 20) , (- f y[6 I - 15 a/ 6 ) , ( f a/6 I15^ 6 ) , (30 I 20) }

140/27 . (x4)2 + 12002x4 - 3 200 0002 = 0 ; L = { (- 40 ! - 30 ) , (401 30) }

140/28 . a ) D = { (x I y) I x > 0 und y > — | x } ; L = { (21 5 ) }

b ) D = ] - ~ ; l ]
L = { (- 7 - 1 a/42 I - 4 - A/l6TV42 ) , (- 7 - 1 a/42 I - 4 + Vlß + V^ ) ,

(- 7 + | ^ | - 4 - A/l6 + # ) , (- 7 + 1 ^ 42 I - 4 + ^ 16 + 1 ^ ) }

140/29 . a ) y > 0 und x > y
I Vx2 - y2 = x - 2 , also x > 2
II f y2 = x2 - 6x

T f = 4x - 4 in II L = { ( 101 6) }

b ) x > max { | , - 1 y , | y, - | y )

I 5x2 - 3xy - 2y2 = 0 und x > - y
II V (2x + y)2 - 2x - 3 = 2x + y - 1
I 5x2 - 3xy - 2y2 = 0 und x > - y
II ’ (2x + y)2 - 2x - 3 = (2x -{- y)2 - 4x - 2y + 1

II " x = 2 - y in I
I ’ 3y2 — 13y + 10 = 0 <s=> y = l oder y = y
L = { ( 11 1) } 87



140/30 . a)

y-Achse und
Gerade y = | x

x-Achse und
Gerade
y = 3x - 2

y = x+ 1 oder y = - x+ 1— IxI + 1

140/31 . a) { (- 1 a/3 (5 + a/ö )| - | a/3 (5 - a/ö )) , (- 1 a/3 (5 - a/5 )l - | a/3 (5 + a/5 ) ) ,
( | a/3 (5 - a/5 )I | a/3 (5 + a/5 ) ) , ( | a/3 (5 + a/5 )I | a/3 (5 - a/5 ) ) }

b) I x2 + y2 = x2 y2 - 2xy
II x2 + y2 + (x+ y) = 20
II ' (xy)2 - 2xy + xy - 20
II"

(xy )2 - xy - 20 = 0 <=> xy = - 4 oder xy = 5

L = { (- 2 - 2a/2 I - 2 + 2a/2 ) , (- 2 + 2a/2 I - 2 - 2y[2 ) ,
( | (5 - a/5 ) | | (5 + a/5 ) ) , ( | (5 + a/5 )I | (5 - a/5) ) }

c) (xy)2 - 30xy + 144 = 0 <=> xy = 6 oder xy = 24
L = { (- 4 - a/IÖ | - 4 + VlÖ ) , (- 4 + VlÖ | - 4 - a/IÖ) , (41 6 ) , (61 4 ) )

d) L = { (41 6 ) , (614 ) }
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140/32. I x + y = 468 und x < y
II x2y = 5 359 375

III xy2 = 14 706 125

I y = 468 - x

II ’ 468x2 - x3 = 5 359 375

III ' 219 024x - 936x2 + x3 = 14 706 125

II ' + III ’ - 468x2 + 219 024x = 20 065 500

x2 - 468x + 42 875 = 0

x = 125 oder x = 343

Lösung kann 125 sein . Aus I : y = 343

Probe : II LS = 1252-343 = 5 359 375 = RS

III LS = 125 -3432 = 14 706 125 = RS

141/33 . I x + y + z= 14

II x : y = y : z
III 2x + 3y + 4z = 36

Man fasst I und III als System für x und y auf :

I ' x = 6 + z

III ’ y = 8 - 2z
II ' 3z2 - 38z + 64 = 0 <=> z = 2 oder z = y

z = 2 fuhrt zum Tripel (8141 2 ) . z = — fuhrt zum Tripel ( j I - y i y ) ,

worunter sicher keine Zerlegung von 14 verstanden wird . Lässt man

negative Summanden zu , so löst auch dieses Tripel die Aufgabe .
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142/34 . I
II

x + y + z = 182
x : y = y : z

III xy + yz + zx - 7644
I x = 182 - y - z in III
II xz = y2 in IIIin III
IIT 182y = 7644
III ' y = 42
I ’ x = 140 — z
II ' z2 - 140 z + 1764 = 0 <=> z = 14 oder z = 126
L = { (1261 42 114) , ( 141 42 j 126 ) }
Wegen der Symmetrie sind die Lösungen gleichwertig .

142/35 . I x : y = y : z
II x + y + z = 78

Lösungsweg wie in Aufgabe 34.
L = { (61181 54) , ( 541 181 6 ) , (48 - 6>/55l - 18 I 48 + 6^ 55 ) ,

(48 + 6^ | - 18 I 48 - 6Vö5
"
) )

Bei STIFEL gibt es nur die Lösung (61 181 54).

142/36 . I xy = 10
II x : y = y : z
III x2 + y2 = z2

II ' z

III ' x2 + 10000
<=> x8 + 100x4 - 10 000 = 0

dd?.
*f5 +1) = a/V50 (V5 + d

VV50 (V5 - 1) 'R 2500(5 - 1)

(Va/50 (V5 + 1 )
:
)2
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142/37 . I x : y = y : z

II x + y + z = xyz
ttt 25 25 25III — + — + — = x + y + z

x y z ~

I y2 = xz
II ' (x + z) + y = y3

III ’ — + 25(x+z) = y3
_ y_ xz

*
_

HI " 25
+ J5Cyl - y) = ,

y y
J

y3(25 — y2) = 0 <=> y = ± 5 in I und II ' eingesetzt

I xz = 25
II ' x + z = ± 120

II ' z = ± 120 - x

I ’ X2 + 120x + 25 rr Q

L = {(- 60 - 5-VW3 1 - 51 - 60 +5-{ U3 ) , (- 60 +5a/143 1 - 51 - 60 - 5^ 143 ) ,

(60 - 5^ 1431 51 60 + 5^ 143 ) , (60 + 5^/l43 | 5 | 60 — 5a/ 143 ) }

also im Wesentlichen zwei verschiedene Zerlegungen , nämlich

(- 60 - 5 [̂ U3 1- 51 - 60 + 5^ 143 ) und (60 - I 5 I 60 + 5 -\/l43 ).

142/38 . I x + y + z = 76
II x : y = y : z
III y(x + z) = 1248_
L = { ( 16 I 241 36 ) , (361 24 116) )

142/39 . I x : y = y : z = z : u <=> I ' x : y = y : z und II y : z = z : u
III xyzu = 81
IV xy = 6_
IV x = —

III ' y* = 36 -81 <=> y = + = ±
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142/40 I x + y + z + u = 45
II x : y = y : z = z : u « • II ' x : y = y : z und III y : z = z : u
IV x2 + y2 + z2 + u2 = 765

Ansatz : x = Xy , y = Xz , z = Xu
also x = X3u , y = X.2 u
I ' X3u + X2u + Xu + u = 45
IV X6u2 + XV + X2u2 + u2 = 765

X * - 1 . Der Sonderfall X = - 1 fuhrt in I auf
X3 + X* + X + 1 0 = 45 ; falsch

IV ' 28X6 - 34X5 - 6X4 - 68X3 - 6X2 - 34X + 28 = 0
Das ist eine reziproke Gleichung 1 . Art .
X + f := P

( X + i )3 = X3 + 3(X + £ ) + ^ = p3 « X3 + = p3 - 3p
IV ' 28(X3 + A ) - 34 ( X2 + A ) - 6 (X + r- ) - 68 = 0

A. hr

IV " 28(p - 3p ) - 34(p - 2) - 6p - 68 = 0
p( 14p - 17p - 45 ) = 0
p = 0 oder p = - - oder p = -

1 . Fall : p = 0 <=> X2 + 1 = 0, keine Lösung
2. Fall : p = - - <=> 7X2 + 9X +7 = 0 , keine Lösung : Diskriminante = —115

3 . Fall : p = o2X 2 - 5X +2 = 0 « X = £ oder X = 2

Aus I : (8 + 4 + 2 + l )u = 45 <=> u = 3
damit z = 6, y = 12 , x = 24
X = I

Ausl : ( X + ~ + i + l )u = 45 <=> u = 24
damit z = 12, y = 6 , x = 3

Also L = { (3 I 61 121 24) , (241121 61 3 )
das heißt , die Summanden sind 3 , 6,12 und 24.
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CARDANOs Werte führen auf die Gleichung
IV " g(g2 - 3g - 5 ) = 0 <=* g = 0 oder g = | (3 ir\(29 )

Wie oben erzeugt g = 0 keine Lösung .

g = | (3 - V29 ) => 2X2 - (3 - ^J29 )\ + 2 = 0 , Diskriminante < 0

g = \ (3 + a/ 29 ) => 2k2 - (3 + ~{29 )\ + 2 = 0

X = i (3 + V29±V22 + 6V29)

Damit erhält man nach mühsamer Rechnung

u = \ ( 13 - a/29
"

+ V22 + 6^ 29)

z = | (- 6 + 2^/29
”

± (5 - a/29 )V 22 + 6V29)

y = ^ (- 6 + 2^ 29
"

+ (5 - V29 )V22 + 6V29)

x = | ( 13 — ^ 29
*
± ^ 22 + 6V29)
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Aufgaben zu 4.1

146/1 . a) b)

146/2 . a) b)

146/3 . P (x I y ) => x2 = 1 -y (Höhensatz im rechtwinkligen Dreieck mit den
Ecken ( 0 I y) , ( 0 I - 1 ) , (x | 0 ) )

=> y = x2 (Parabelgleichung )
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Aufgaben zu 42

\ 151/1 .

- 2x + 3

- 6x- ll

keine Lösung

y = 8x- 12
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151/2 .

y = l,6x + 2,6

4x + 4

Xi = | (1 - VW ) = - 1,69 .
x2 = i ( l +VW ) = 2,36

Xj = - 1 ; x2 = 2,6

- 2x + 2

x x = - 1 - VS1= - 2,73
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= i (7 +V41 ) = 1,67

S^- 2,5 1 6,25 ) , S2(21 4 )

S,( 3 - V6 115 - 6^ 6 ) , S2(3 + a/6 | 15 + 6a/6 )

Passante b ) Tangente , S(- 2 I 4) c) 1

Sekante , S,(50 - 4^ 155 1 20(249 - 20V155 ))
S2(50 + 4^ 155 1 20 (249 + 20^ 155 ))

Sekante , S,(- l 1 1 ) , S2(4 | 16 )

Tangente , S( l,25 1 1,5625)

y = 3x - 1 ; S( flf ) b ) y = — 6x — 9 ;

<< ii o CO©| 0 )

| x + 2 ; Schnittpunkte S,(31 9) , S2(- 1 11 )

c) Tangente , S( 10 I 100 )

S(- 3 I 9 )

151/7 . a) Schnittgleichung : x2 = mx + t ,
Schnittstellen x12 = ~ (m ± Vm2 + 4t ) ,
wegen Berührung gibt es nur einen gemeinsamen Punkt B:
D = 0 , also m2 + 4t = 0 , das heißt m2 = - 4t .
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Abszisse von B x = 1 m
Ordinate von B y = m( | m) + t = | m2 + t = | (- 4t ) + t = - t

Berührpunkt B( | m I - t )

b ) P (0,5m | - 1) =» T( 0 11)

c) T( 0 11) => P (0,5m I - t )

151/8 . a ) y = 2^ 3x - 3 ; S(V3 I 3 )
b ) y = 6,4x - 10,24 ; S(3,2 110,24)

151/9 . a ) y = 6x - 9 ; S( 3 | 9 )
b) y = - 8x - 16 ; S(- 4 I 16 )

P (0,5mt : t )

Aufgaben zu 4.3.1

152/1 . a ) D = Ro
-

X 0 - 0,25 - 0,5 - 1 - 2 3 4 - 5 - 6 - 7 - 8 - 9
0 0,5 0,7 1 1,4 1,7 2 2,2 2,4 2,6 2,8 3

b ) D = RC
-

X 0 - 0,25 - 0,5 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
0 - 0,5 - 0,7 - 1 - 1,4 - 1,7 - 2 - 2,2 - 2,4 - 2,6 - 2,8 - 3
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c) D = F

-1 - 0,5 - 0,25 0 0,25 0,5 1
■\fhd

~
2 1,4 1 0,7 0,5 0 0,5 0,7 1 1,4 2

d) D = R

x - 4 - 2_ - 1 - 0,5 - 0,25 0 0,25 0,5 1 2 4

VlxT - 2 - 1,4 - 1 - 0,7 - 0,5 0 - 0,5 - 0,7 - 1 - 1,4 - 2

152/2 . a) D = IR

- 9 - 2 0 2 9

Vx 5"
0

b) D = R

x - 9 - 2 0
- Vx7 - 9 - 2 0

3

2

1

y

~- 3 - 2 =4 ' '
1 2 3

~

- 1

- 2

- 3
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Aufgaben zu 4.3.2

155/1 . a) umkehrbar b) nicht umkehrbar
c) nicht umkehrbar d) umkehrbar

155/2 . a)

a) y = | x + 5 ist umkehrbar. 4 y c)
Umkehrfunktion x = g(y) = - | y + 2
Koordinatentausch y = g(x) = - | x + 2

b) y = x - 1 ist umkehrbar . 2 \ Gf = GgUmkehrfunktion X = g(y) = y + 1
Koordinatentausch y = g(x) = x + 1 1

c) y = -x + 3 ist umkehrbar . X
Umkehrfunktion
Koordinatentausch

x = g(y) = - x + 3
y = g(x) = - y + 3 - X

1 2 3\ 4

d) y = 5 ist nicht umkehrbar.

155/3 . a) , d) : umkehrbar b) , c ) : nicht umkehrbar
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156/4.

156/5 . Die Funktion ist nicht umkehrbar , weil eine Parallele zur x-Achse
(z . B . y = 1 ) das Schaubild mehr als einmal schneidet.
Nach dem Augenmaß ( !) sind (- 1 1 2) , (0 I 0) und ( 1 1 2) Knickpunkte.
Am besten stückelt man die Kurve viermal:
- °° < x < - 1 : y = 2x + 2
- 1< x < 0 : y = - 2x
0 < x < 1 : y = 2x
1 < x < +~ : y = - 2x + 2
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156/5 . a) Umkehrbar sind die Funktionen , deren Graphen die beiden schrä¬
gen Halbgeraden sind : Verlässt man sich wieder aufs Augenmaß ( !),dann besteht Umkehrbarkeit in den Bereichen < x < —1 und
1 < x < +oo . Das waagrechte Mittelstück im Bereich —1 < x < 1 ist
Schaubild einer Funktion, die nicht umkehrbar ist .

b) Letzte Augenmaß-Aufgabe :
Linker Halbkreis um L(— r I 0 ) mit Radius r,rechter Halbkreis um R(r I 0 ) mit Radius r.
Die Funktionen, die die Halbkreise beschreiben, sind nicht umkehr¬
bar . Die Zerlegung der Halbkreise in Viertelkreise führt zum Ziel :
jede Funktion, die einen Viertelkreisbeschreibt, ist umkehrbar .
Das ist der Fall in den Bereichen :
- 2r < x < - r , - r < x < 0 , 0 < x < r , r < x < 2r.
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Aufgaben zu 4.3.3

158/1 . fjCx ) = x2 mit x > 0 ,
f2(x) = x2 mit x < 0,

Umkehrfunktion : g, (x) = mit x > 0
Umkehrfunktion : g2(x) = —■\[x mit x > 0

158/2 .

158/3.

g(x) = x2 mit x > 0

a) Vlxl

a) D = E , W = K0
+ ,

f ist nicht umkehrbar .
b) D = E0

~
, W = R0

+ ,
g(x) = - x2 mit x > 0

c) D = E , W = Ko
",

f ist nicht umkehrbar .

c ) —V i X i

d) D = IR0
.

, W = R0
-,

g(x) = —x2 mit x < 0
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Aufgaben zu 4.3.4

158/1.

(- 111 )(- 111 )

158/2. a)

Sekante

y
2

i

(412 ) /

/ 2x —6

i 2 r ^

y b ) Tangente ^

(x+l )/2^ (iu >

VF
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158/2. c) Tangente
0,25x+ l ,

- (x+ l )/2

158/3 . a ) Vx - Va = x - a ; u := "'/x ; Normalform u2 - u + (Vä - a ) = 0
Diskriminante D = 1 — 4( -\/a — a ) = 1 — 4^[ ä + 4a = ( 1 — 2a/ei f

u 12 = = \ [ 1 ± (1 - 2V& )]

Vx, = | [ 1 + ( 1 - 2 -v/ä )] = 1 - Va, falls a < 1 ; = 1 - 2^ a + a

Vx i = | [ l - ( 1 - 2Va )] = Vä ; x , = a.

a < 1 : Zwei Schnittpunkte SJl - 2^ + a I 1- 2^/a ) , S/a I 0)
a > 1 : Einen Schnittpunkt S(a I 0).
Sonderfall D = 0 , Va = a - ^ , Berührpunkt (0,25 | 0)

x- 0,25

158/4 . a ) x - 3~{x + 3t = 0 ; u := ^/x ; Normalform u2 - 3u + 3t = 0
D = 9 - 12t = 3( 3 - 4t ) ;
Tangente der Wurzelkurve : D = 0 , also t = |
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Aufgaben zu 5.1 .1

161/1 .

161/2 . a) SCO | - 5 ) , W = [- 5 ; +°° [

b) SCO 1100 ) , W = [ 100 ; +~ [

161/3 .

a) { - 1 ; 1 } b ) { - 1,5 ; 1,5 } c ) { - 0,5 ; 0,5 }



f ) { - 0,5V6 ; 0,5^6 }e ) { - 1,5^2 ; 1,5^2 }d ) { }

x 2 - 3/29/2 2 yx 2 + l,69 7 y

161/4 .



Aufgaben zu 5.1 .2

162/1 .

c) (x+3,5 ):

108
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162/2 . a ) S( l,51 0) , x = 1,5

c) S(2V31 0), x = 2a/3

e) S(3| 0 ) , x = 3

b ) S(- 100 | 0) , x = —100

d ) S(31 0 ) , x = 3

f) S(- 3 I 0 ) , x = - 3

162/3 . a ) S( 11 0) , x = 1

c) S(- 2,5| 0), x = - 2,5

b ) S(- 3 I 0 ) , x = - 3

d ) S(0,011 0) , x = 0,01

162/4 . a ) x 0 1 2 3 4 5 6 7 8 9

Vx 0 1 1,4 1,7 2 2,2 2,4 2,6 2,8 3

Vx- 3 - - - 0 1 1,4 1,7 2 2,2 2,4

g(x ) = a/x — 3 ist definiert für x > 3 .
Der Graph von g entsteht aus dem der Wurzelfunktion
durch Verschiebung um 3 nach rechts .

X - S
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Aufgaben zu 5.1 .3

164/1 . a)

(x- 2 )2 - 5(x- 1)2 + 3

(x+2 )2 + 2,5(x+3 )2 - l

164/2 . a) Sil,7 1 0,9 ) , x = 1,7 b) S(V2 | 1,5) , x = V2

c) S(—2Vö 1 2^ 5 ), x = - 2^ 5 d) S( 1000| - 5003 ), x = 1000

164/3 . a) SCI 1- 2 ) , x = 1 b) S(3 11 ) , x = 3
c) SC—2,5 1 — 6) , x = - 2,5 d) S(0,05| - 0,0025 ) , x = 0,05

164/4 . a) S(- 0,51 - 5,25 ) , x = - 0,5
y = (x + 0,5 ^ - 5,25

b) S(— 3 I — 9), x = — 3
y = (x + 3 )2 - 9

c) S(2l - 1 ) , x = 2
y = (x - 2)2 - 1

d) Dem x-Wert 2 sind die y-Werte
3 und 4 zugeordnet . Eine solche
Parabel gibt es nicht .
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164/5 . a) y = (x + 4)2 + 9 , s = — 4 , t = 9

c) y = (x + | )2 + 3 , s = — | , t = 3

b ) y = (x — 2 )2 — s = 2 , t = — |

165/6 . a)

d )

( I x I —2 )2 — 1

x 2 - 4x + 3 I

x 2 - 41x1 + 3

in



Aufgaben zu 5.2

168/1.

0,25x :

168/3 . a)

(- 111 )

(- 313 )

r(0,64 11,64)

(- 0,3910,61 )

( 11 - 3)

Schnittpunkte ( | ( l - ^ vT I | ( 9 — VTT) ,
( | (9 + VrTi | ( i + y[ W )
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169/4 . a ) Brennpunkt F (0 I Brennweite = ^ )

in y = ^ x* ista = ^
=> 4a = 4 -— = -
die Brennweite ist 3 cm.

b) Scheitel :
Spiegelachse :
Brennpunkt :
Brennweite :

Ursprung
y-Achse
F (0 I 2 )
2 cm

2 = ^ , also a = £ , y =

3-

-1 s 1

169/5 . a ) Da P auf der Parabel y = ax2 liegt , gilt
PQ 2 = Ixl 2 = x2 = - -y = - "

SQ .

b) c = x2 und
c = yb , also

tx



ist a = 2

Thaieskreise

Beachte:
y > ^ => y ist Hypotenuse , | ist Hypotenusenabschnitt
y < \ => ^ ist Hypotenuse, y ist Hypotenusenabschnitt
y = ^ => Der Kathetensatz ist nicht anwendbar:

Aufden Höhensatz ausweichen!

b) , c) und d) Die Konstruktionen verlaufen analog.
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O * *" rT: • ' *? ? ■*“ • - •

ä -

170/7 . a) MP ' 2 + P'P 2 = MP 2
(x - r )2 + y2 = r2
x2 - 2rx + y2 = 0
y2 = 2rx - x2

y = Vx( 2r - x)
(weil y im ersten Quadran¬
ten liegt , scheidet die nega¬
tive Wurzel als Lösung aus . )

b) 1 ) x = 2

Kathetensatz
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2 ) x = 1

Höhensatz : 3 = 1 -3

Höhensatz
q = 4 = 22

Ir V3 X



3 ) 4x 5 + 7x = 24 « x- ^ x = 6 , Losung : * = j

Höhensatz

Höhensatz

117
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=
v^ V

v
xz
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Aufgaben zu 5 .3

173/1 . a )
x = 2

x = 1

(21 - 4)

(- 211 )

( 2,512,5 )

173/2 . a ) a = - | ,t = 4 b ) a =4,t = - 4 c ) a = - 0,44 , t = 1,36

173/3 . a ) I (x - 2,5 )2 - 6,25 I b ) I - 0,5 (x + l )2+ l I



173/4 . a) a = - l , s = 3 , t = - 5

c) a = 5 , s = - 2 , t = - 2,5

b ) a = 1 , s = - 2 , t = - 3

d) a = - 2 , s = - 3 , t = 4

173/5 . a) (0 | - 8 ) , x = 0

c) (7,51 - 10), x = 7,5
e) (- 4I - 6Ä ), * = - |

g) (- W5 1- 2,25) , x = - W5

b ) ( | | - 4 ), X = |

d) (31 0), x = 3

0 ( | 1- iX x = |

h) (- | V6 I 4 - 1V6 ), x =

174/6. a)

- X2 - 7x - 11,25

- lod
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g) 3} y
174/6 .

■0,5x 2 + l,5x + 2,075

h) 0,25x 2 + l,4x + 1,96

1 2 3 4 £ 6
-0,75x 2 + 3x + 7,5

174/7 . Geduld bis zur nächsten Auflage!

I —X2 + 2x II x 2 + 4x I174/8 . a)

d) l - 0,5x 2 + l,5x - 1,6251I - x 2 + 6x - 61



(x + i )2 +174/9 . a ) y = (x - 2 )2

c ) y = - \ x2 + 6 d) y = 4 (x

174/10 . a ) y
c ) y

b ) y = - 5 (x - 0,4 )2 + 0,8
d) y = - J : (x + 2 )2 + 9

(x - 3 )2 - 1

x2 - 8

174/11 . a ) y = - (x - 4 ); (x + 5 )2

174/12 . a ) y = —2x2 + 6x - 4
d) y = 2x2 - 2x

b ) y = 2x2 + 6x + 4 ■2x2 - 6x - 4
f ) x = 2y 2 - 6y + 4■2x2 + 6x - 2

174/13 . a) 2x 2 - 61 x + 41 2x 2 - 61x1 + 4

c> 12x 2 - 6x1 + 4 d) I y I = 2x 2 - 6x + 4



175/14 .
Höhe in m

Entfernung in m

175/15 . a)
Höhe in m

Entfernung in m

b) ymax = 5 m

C) ^-Einschlag - I»
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Aufgaben zu 5.4.1

177/1 . a) { - 2 ; 2 } b) { 0 ; 4 } c) 1 5 ’ 5 1

d) { - l ; 3 } e) keine f)

177/2 . a) (0 1- 1 ) b) (2 1 - 2 ) c)

d) ( 11 4 ) e) (
*

| z )v 3 16 ! f) (- 1 10 )

177/3 . Ansatz nach VlETA : y = a (x - x, )(x - x2)

a) - 16 = a(0 - 2 )( 0 - (- 4 ) ) ; a = 2 ; y = 2x2 + 4x - 16
b ) - 1 = a (0 - 5X0 - (- 1 ) ) ; a = | ; y = | x2 - | x - l

178/4 . a) Aus x,, - Xj = 4 und ~ ix? + x,) = 3 folgt x , = 1 , Xj = 5 .
Ansatz : y = a(x - 3 )2 - 4

0 = a( l - 3)2 - 4 =» a = 1

b ) - 3 = a(8 + 3X8 - 5 ) => a = - -^ ; y = - ^ - x2 + ^ - x + -^
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Aufgaben zu 5.4.2

180/1 . a ) (- 11 - 4) , (3 I 4 ) b ) (01 1 ) , (11 - 1)

d) ( 6 I 4 )

( 11 - 1)

(- 212 )

(- 110,5 )

(- 311,25 )



180/2 . a ) (- 41 - 4 ) , ( 6 I 9 ) ; 5^ 5 b) kein Schnitt c ) (5 I - 3 ) ; 0

d) (- 2 | - 3 ) , (8 | - £ ) ; § Vl7
"

e) (2§ | - 4§ ) , (41 - 5^ ) ; f Vl3
~

180/3 . S liegt auf g: ys = 2 -3 - 1 = 5 , also S(31 5 ).
P liegt auf g : 9 = 2xP - 1 , also P(51 9) .
Die Parabel hat die Gleichung y = a(x - 3 )2 + 5 .
Da P auf der Parabel liegt , gilt 9 = a(5 - 3f + 5 <=> a = 1 .
y = x2 - 6x + 14 ist die gesuchte Gleichung der Parabel .

181/4 . Die zweiten Schnittpunkte ergeben sich durch Einsetzen der Ordinaten
in die Geradengleichung : T, (- 21 - 2 ) und T,( | | § ) . Die Parabel hat2 o
wegen der angegebenen Symmetrie die Gleichung y = ax2 + t .
Tj und T2 liegen auf der Parabel , also
I - 2 = 4a + t

II ’ t = 4
Damit gilt für die Schnittpunkte Si und S2 :
2,5 = - 1 x2 + 4 <=> x2 = 1 . Sj(- 11 2,5 ) und S2( l I 2,5)

181/5 . a ) P (- 4 I 2 )
Schnittpunktgleichung : | x2 - mx - (2 + 4m ) = 0
Diskriminante = 0 : m2 + 2m + 1 = 0 , also m = - 1
Tangente : y = - x - 2

b ) P (- 12 I - 8 )
Schnittpunktgleichung : - ^ x2 - mx - 12m + 8 = 0
Diskriminante = 0 : 9m2 - 24m + 16 = 0 , also m = |
Tangente : y = | x + 8

c) P ( ll - f )

Schnittpunktgleichung : - yx 2 - mx + m + j = 0
Diskriminante = 0 : 25m2 + 360m + 1296 = 0 , also m = - ^
Tangente : y = - ~ x + ~

5 o



181/6 . a) P( 11 - 5 | )

Schnittpunktgleichung : - 5x2 + ( 10 — m )x — | + | m = 0
Diskriminante = 0 : m2 - 16m + 64 = 0 , also m = 8 ;
Tangente : y = 8x - y

b ) P ( 0 I 47) ; Tangente : y = —126x + 47

c ) Tangente in P, (011 ) :
5
4

y = — 3x +

Tangente in P2( 15 11 ) : y 3* - f

a) y = - 1 x + 9| ; Bj ( 6 I - 5\ )

y = | x + i | ; B 2(- 2l - l | )

b) y = x ;

y = - 9x ; B2(- 11 f )

c) y = i ; B .C- | | 1 )

y = - 6x - 11 ; B2(— | l — 8 )

d) y = 18x — 50 ;
y = 30x — 50 ;

B/ - 1 1 - 68)
B 2( l I - 20 )

e) y = - 2x + 8,2 ;
y = 3x + 3,2 ;

B/3,5 1 1,2 )
B2(- l,5 1 - 1,3)

f ) P liegt im »Parabelinnern« . Es gibt keine Tangente .

181/8 . a ) a/x + a = | x + l => x2 = 4(a - 1 )
a < 1 : keine Lösung
a = 1 : => x = 0 , Lösung gemäß Probe
a > 1 : => x = — 2^ a - 1 oder x = 2 /̂a — 1

RS = ± Va - 1 + 1 . Wegen RS > 0 ergibt sich im Fall des
Minuszeichens a < 2 . Damit gilt

RS = 1 + Va - 1 - V1 ± 2Vä ^ I + a - 1 = V + 2Va - l ^ = LS
Ergebnis:
a —oo < a < 1 1 1 < a < 2 2 < a < +°°
L { } { 0 } {- 2Va - l ; 2Va - l } { 2y/a - 1 }

127



2 1. 5 1

keine Schnittpunkte , keine Lösung
Berührung , genau eine Lösung

a < 1 :
a = 1 :
1 < a < 2 : 2 Schnittpunkte , 2 Lösungen
2 < a : 1 Schnittpunkt , 1 Lösung

181/9. a)
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a x„ = 0,2 II ©cn
0,5 (0,210,08 ) (0,510,125)

(0,0810,037) (0,12510,0547)
(0,03710,018) (0,054710,0258)

(0,01810,0087) (0,025810,0126)
(0,008710,0043) (0,012610,0062)

1 (0,210,16 ) (0,510,25 )
(0,1610,1344) (0,2510,1875)

(0,134410,1163) (0,187510,1523)
(0,116310,1028) (0,152310,1291)
(0,102810,0922) (0,129110,1125)

2 (0,210,32 ) (0,510,5 )
(0,3210,4352) (0,510,5 )

(0,435210,4916) (0,510,5 )
(0,491610,4999) (0,510,5 )

(0,499910,5) (0,510,5 )
3,3 (0,210,5280) (0,510,825)

(0,528010,8224) (0,82510,4764)
(0,822410,4820) (0,476410,8232)
(0,482010,8239) (0,823210,4804)
(0,823910,4787) (0,480410,8237)

4 (0,210,64) (0,511 )
(0,6410,9216) ( HO)

(0,921610,2890) (010)
(0,289010,8219) (010)
(0,821910,5854) (010)

c ) f(x * ) = ax * ( l - x *) = a ( l - \ )( 1 - 1 + \ ) = x *
, q .e .d . ; a > 0 wegen0 < x *
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Aufgaben zu 5.4.3

(- 114 )

<2 —T

184/1.

- 3 - 2 - 1

184/3.

kein Schnitt

184/5 . (A - a )x2 + (B - b )x + ( C - c ) = 0
für A * a gibt es zwei Lösungen oder keine Lösung oder eine
Doppellösung .
Nur für A = a und B b gibt es eine einfache Lösung .
Wenn A = a gilt , dann handelt es sich um kongruente Parabeln .
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184/6 . 3) y

i 2 5 % 5 6

a) p (x)

b) q(x) (x - 5,5 )2 +2,5

) ,S 2( | | | )O S^ l‘v 28 1 784

'/«VÄSS###§



Aufgaben zu 6.1

188/1 . a) { } b) E \ [- 4 ; 3 ] c ) { 1} d) [- 7 ; 1 ]

188/2 . a) [ 2 ; 4 ] b) E \ ]- l ; § [ c ) { } d) [- 1 ; 6 ]

188/3 . a) E \ [- 1 ; 1 ]

188/4.

b) ] 0 ; 1 [ c) ]—1 ; 0 [ u ] 0 ; 1 [

b)

E \ ] 0,5 ; 1,5 [

3,14 ]
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188/5 .188/5 . a) ] J (5 - Vl7 ) ; | (5 + Vl7 ) [ b ) ] | <3 - a/41 ) ; f (3 + a/41 ) [

c) ] 2 - V3 ; 2 + a/^ [ d) ] | (- 1 - a/41 ) ; \ (- 1 + a/H ) [

188/6 . a ) | x2 + 5x | < 14
1 . Fall : x2 + 5x > 0 ; L, = ] - 7 ; - 5 ] u [ 0 ; 2 [
2 . Fall : x2 + 5x < 0 ; 1^ = ] —7 ; 0 [
L = LjU Lj = ] - 7 ; 2 [

b) 113x - x2
1 < 30

1 . Fall : ( 13 - x)x > 0 ; L1 = [ 0 ; 3 ] u [ 10 ; 13 ]
2 . Fall : ( 13 - x)x < 0 ; 4 = [ - 2 ; 0 [ u ] 13 ; 15 ]
L = L1uL 2 = [ - 2 ; 3 ] u [ 10 ; 15 ]

188/7 . a ) ] a/TÖ ; | ( 1 + V41 ) [ b ) { )

188/8 . a ) IR \ ] — 4 ; —1 [ b ) E \ [- 6 ; 3 ] c) { - 1 } d) E

188/9 . a ) x2 + 2x - 3 < 0 , xe ] — 3 ; 1 [

b) (2x - l )(x — l )2 > 0 , x > ±

188/10 . a ) x > 7 b ) x > 4 + a/7 c ) x e ] - 2 ; - 1 [ u ] - — ; +°° [

d) xe ] i ( ll - a/265 ) ; - | [ u ] 2 ; \ ( 11 + a/265 ) [

188/11 . a) k e E \ ] —2 ; 6 [ b ) keE \ ] - 4 ; 4 [ c ) ke [ l ; 9 ]

188/12 . a ) k > | b ) ke ] 0 ; 4 [

188/13 . a ) D = E \ ] —2 ; 1 [ , x e { 3 ; — 4 }
b) D = E \ ] 0 ; 3 [ , x e { - 2 ; 5 }

189/13 . c) D = E \ ] — | ; 1 [ , xe { 2 ; — 3 )

d) D = (E \ ] - 3 ; 0 [ ) u {- 1} xe { l ; - 3 | ]
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189/14 . a ) (28,72 ) , (29,71 ) , . . . , (50,50 )
b ) ( 12,88 ) , ( 13,87 ) , . . . , (50,50 ) c) Gibt es nicht .

189/15 . a ) x e ] - 3 ; 2 [ b ) x e E \ ( [- 2 ; \ ( 1 - ^ 17 )] u [ \ ( 1 + ^ 17 ) ; 3 ] )

c) xe !R \ ( [ 3 - V6 ; 3 - a/2 ] u ] 3 + a/2 ; 3 + a/6 ] )

189/16 . a ) xe ] - 2 ; | [ b ) xe ] - 5 ; - f [

d) xe ] | ; 12 [ e) x e E \ ] 0 ; 2 [

189/17 . a ) xeE \ ] - 2 ; 0 [ b ) xe ] l ; +oo [

189/18 . a ) n < 90 und neN b ) für neN

b)189/19 .

a ) b ) c ) d )

» X
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Aufgaben zu 6.2

194/1 .

194/2 .

194/3 .

a) x := Länge des Rechtecks
Damit ist | s — x die Breite und ( | s - x )x der Flächeninhalt ,
der maximal werden soll ,
f: xi-4 - x + | sx , Df = ] 0 ; | s [
Gf ist ein nach unten offener Parabelbogen mit dem Scheitel
S( i s I s2) . Das flächengrößte Rechteck bei vorgegebenem

Umfang s ist ein Quadrat mit der Seite | s und dem Inhalt ^ s2.

b) 800 Streifen hätten einen Umfang von 1,680 km geliefert ,
die Quadratseite hätte 420 m betragen , die Burgfläche 17,64 ha .
Tatsächlich hat der 60,5 m hohe Byrsa -Hügel einen Umfang von
1,4 km .

a) x := Länge , damit ist | (s - x) die Breite

f: x | (s - x)x , Df = ] 0 ; s [ , S( - s 11 s2)

Das flächengrößte Rechteck hätte eine Längsseite | s und die beiden

Breitseiten ^ s mit Inhalt ^ s2.

b) Die Burganlage wäre 840 m lang und 420 m breit , ihre Fläche
35,28 ha .

Die vier Dreiecke sind kongruent
nach SWS , also ist RSTU eine Raute ,
und es ist zum Beispiel
I « AUR = « BRS . Ferner gilt
II « AUR + « ARU = 90°

III 3ARU + « URS + « BRS = 180”
I und II in III eingesetzt , liefert
« URS = 90°

, q .e . d.
Der Inhalt von RSTU ist
(V (a - x )2 + x2 f = 2x2 - 2ax + a2 ,
mit x e ] 0 ; a [ . Scheitel ( | a 11 a2)

Die abzutragende Strecke ist | a,
der minimale Inhalt | a2.

a—x
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194/4 . x := Länge des Rechtecks , Breite = a/ (2r )2 - x2
, Inhalt = a/ 4r 2x2 — x4

Die Radikandenfunktion R : x 4r 2x2 - x4
, DR = ] 0 ; 2r [ soll maximal

werden .
Die Substitution u := x2 liefert für 4Pu - u2 den Scheitel S^ r2 1 4I-4) .
Also liegt das Maximum bei x = r \j

~
2 . Für die Breite ergibt sich ebenfalls

r^[2 . Das flächengrößte Rechteck ist also ein Quadrat des Inhalts 2r2 .

194/5 . g : 1 = h : (h - x)
1-x soll maximal werden ,
f: x >-» ^ x(h - x) , Df = ] 0 ; h [
Scheitel S( | h 11 gh )
Das maximale Rechteck hat
die Seiten | g und | h und den
Inhalt | gh , das heißt , die Par¬
allele ist die Mittelparallele ,
und das Rechteck ist halb so
groß wie das Dreieck .

194/6 . Motorboot x = - 90 + 8 t
Ruderboot y = - 15 + 1 -t
e = V (- 90 + 8t )2 + (- 15 + t ) 2 = a/ 65P - 1470t + 8325
Die minimale Entfernung nach lly Sekunden beträgt ^ a/65

~
Meter .

Das Motorboot befindet sich dann y m hinter dem Kreuzungspunkt ,
das Ruderboot noch 3 ~ m vor dem Kreuzungspunkt .

S B

194/7 . a ) 0 3 x 8
i- 1- 1- 1. ►x
A CP B

x2 + (x - 3 )2 + (x - 8 )2 = 3x2 - 22x + 73 soll minimal werden .
Scheitel S( f | f ) ,ÄP = 3 |

b)
0 1 4

A1A2 A3

9 x 16

A4 P As As

36
-+*
A?

x2 + (x - lf + (x - 4 )2 + (x - 9 )2 + (x - 16 )2 + (x - 25)2 + (x - 36 )2 =
= 7x2 - 182x + 2275 soll minimal werden .
Scheitelabszisse = - = 13
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195/8 . xa/ r2 — x2 = a/ Px * - x4 soll maximal werden , x e ] 0 ; r [
Substitution u := x2

, f: u >-> Pu - u2 ,
Gf ist Parabelbogen mit Scheitel S( | r2

11 r4) .

Also x = | rA/2 . Somit ist AC = MC ,
daher < CAM = 45 °

, <t AMB = 90 °.
Das flächengrößte Dreieck
ist rechtwinklig .
Die Sehne hat die Länge r \[2 .
Der Inhalt ist \ r2.

195/9 .

B A

E \ D

(a - x) : | = CD : MP = h ’
: h

h ' = — (a - x)a
Aacde = x -h ' = y -x(a - x) soll maximal werden . Scheitel S( | a 11 ah ) ,
das heißt , C muss auf M fallen , und das Parallelogramm ACDE ist so
groß wie das konstruierte Parallelogramm MBNP .
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Aufgaben zumAnhang

198 / 1 .

198 /2 .

198 /3.

199 /3.

199 /4 .

199 /5.

199 /6.

a) 6,4 '■c b) 5,7 “C c) 17,8 °C

a) 4 .48 Uhr b) 4 . 54 Uhr c) 6 .48 Uhr

a) 1 ) 89 “ 12,6’ 2) 89 ” 6,2’ 3) 89“9,6’

b) 1 ) 1961 2 ) 1978 3 ) 1987
c) 1 ) 88 “ 58,7’ 2 ) 89 * 16 '

a) 1 ) + 9™ 2 ) + l m 3 ) 0 m
b) 1 ) 3 . 12 .88 2 ) 14 . 12 .88 3) 24 . :12 .88

a) 3,2395 b) 3,3012 c) 3,3089
d) 3,1778 e) 3,1700 f) 3,4709

a) absoluter Fehler : - 0,0009 relativer Fehler : - 3 -10_2%
b) absoluter Fehler : - 0,0003 relativer Fehler : - 1 - 10“2%
c) absoluter Fehler : - 0,0002 relativer Fehler : - 6 - 10~3%
d) absoluter Fehler : - 0,0002 relativer Fehler : - 6 -10“3%
e) absoluter Fehler : - 0,0002 relativer Fehler : - 6 - 10_3%
f) absoluter Fehler : - 0,0068 relativer Fehler : - 0,2%

Je näher man an den Stützstellen ist , desto kleiner ist der Fehler.
Bei f wird extrapoliert.
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