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ig . Übersetzungen aus 7 .6

Abbildung 199 . 1 :
Der Logarithmen erstes Tausend ,

das der Verfasser drucken ließ , nicht in der Absicht , es der Öffentlichkeit zu übergeben ,
phon sondern teils , um dem Wunsch gewisser seiner Freunde für sich nachzukommen , teils auch ,

um mit seiner Hilfe nicht nur etliche sich anschließende Tausende , sondern die gesamte Tafel
der Logarithmen , die der Berechnung aller Dreiecke dient , bequemer vollenden zu können .
Er [ = der Verfasser] hat nämlich selbst , vor einem Jahrzehnt , mit Hilfe algebraischer
Gleichungen und Differenzen , die den Sinuswerten selbst proportional sind , eine Tafel der
Sinuswerte von Grund auf genau erstellt , und zwar für jeden Grad und auch allen Hun¬
dertstelneines Grades : diese , hofft er , zusammen mit den beigefügten Logarithmen , so Gott
will , ans Licht zu bringen , sobald sich eine passende Gelegenheit ergibt .
Weil aber diese Logarithmen verschieden sind von denen , die ihr hochberühmter , der steten
Erinnerung und Verehrung werter Erfinder in seinem Canon Mirificus veröffentlicht hat , so ist
zu hoffen , daß sein nachgelassenes Buch uns nächstens völlig zufriedenstellen wird . Dieser
redete dem Verfasser unablässig zu (als er ihn zweimal in seinem Haus zu Edinburg besuchte
und, bei ihm aus freundlichste aufgenommen , mit größtem Vergnügen einige Wochen ge¬
blieben war und ihm von diesen [d . h . den neuen Logarithmen ] einen besonders bedeutsamen
Teil , den er damals fertiggestellt hatte , gezeigt hatte ), diese Arbeit auf sich zu nehmen . Diesem
war jener [ = der Verfasser] sehr gern zu Willen.

Gering ist der Umfang, aber nicht unbeträchtlich der Ertrag und auch die Mühe.

Abbildung 202 .2 :
Logarithmische Arithmetik

oder
dreißig Tausend Logarithmen , für die in natürlicher Reihenfolge wachsenden Zahlen von
der Einheit bis 20 000 und von 90 000 bis 100 000 . Mit deren Hilfe können viele arithmetische
und geometrische Aufgaben gelöst werden .
Diese Zahlen erfand als erster der hochberühmte Mann Johannes Neperus [ = John Napier ] ,
Baron von Merchiston : sie aber veränderte nach dessen Wunsche und erhellte ihre Erzeugung
und ihren Gebrauch Henricus Briggius [ = Henry Briggs ] , in der hochberühmten Uni¬
versität von Oxford Professor für Geometrie auf dem Savile-Lehrstuhl .

Gott gab uns Leben und Geist , auf daß wir sie nutzen gleichsam wie Geld , wobei der Zahltag
nicht vorherbestimmt ist .

'
ft

Zu London ,
gedruckt hat es Wilhelm Jones , 1624

Bemerkungen:
1) Lehrstühle werden nach ihren Stiftern benannt . Sir Henry Savile stiftete 1619 einen Lehrstuhl für

Astronomie und einen für Geometrie und bot letzteren Henry Briggs an .
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2) Das Wappen ist das Wappen Großbritanniens für die Jahre 1603 bis 1707 , ausgenommen die Jahre
der Republik (1649 - 1660 ) und die Wilhelms III . [1689 - 1702] * .
I R = lacobus Rex. Jakob wurde , erst ein Jahr alt , 1567 nach Abdankung seiner Mutter Maria
Stuart als Jakob VI . König von Schottland und 1603 , nach dem Tode Elisabeths I ., als Jakob I .
König von England und Irland . Gestorben 1625 .* *

b a
Die Felder seines Wappenschilds haben folgende Bedeutung . a f, “

a 3 goldene Löwen oder Leoparden auf rotem Grund , seit 1195 Wappen
von König Richard I . Löwenherz [1189 - 1199] bc

a
a
b

b 3 goldene Lilien auf blauem Grund , das Wappen der Könige von Frankreich . Ursprünglich ein
Lilienfeld, seit 1377 auf die Dreizahl reduziert . Eduard III . [1327- 1377] verband 1340 sein

englisches Wappen a mit dem französischen Lilienfeld b zu ^ , um seinen Anspruch auf den
französischen Thron zu dokumentieren , der Auslöser des Hundertjährigen Kriegs (1337- 1453)
zwischen England und Frankreich war . Heinrich IV. [1399 - 1453] reduzierte um 1407 auch im
englischen Wappen auf 3 Lilien . Am 1 . Januar 1801 wurden sie mit dem Verzicht auf den
französischen Thron aus dem englischen Wappen entfernt .

c Eine goldene Harfe mit weißen Saiten auf blauem Grund , seit Jahrhunderten das Symbol Irlands.
d Das Wappen Schottlands . Der rote Löwe auf goldenem Grund wurde von König Alexander II.

[1214 - 1243] eingeführt ; sein Sohn Alexander III . [1249 - 1286] fügte die roten Zwillingsfaden,
die beidseits von roten Lilien besetzt sind , hinzu .
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Der Wappenspruch Honi soit qui mal y pense - »Ein Schelm, wer Arges dabei denkt « - ist die Devise
des von Eduard III . 1348 gestifteten Hosenbandordens - The Most Noble Order of the Garter - , des
höchsten britischen Ordens .

zu Seite 204
Mein Wunsch war es , jene Tausende , die zwischen 20 und 90 noch fehlten , berechnen und
drucken zu lassen , und ich hatte sie alle beinahe fertiggestellt , und zwar durch mich selbst und
durch einige Freunde , die meine Regeln genügend instruiert hatten , und durch Übereinkunft
war das Geschäft angemessen unter uns aufgeteilt worden ; aber ich bin jetzt von jener Bürde
und Sorge erlöst durch einen gewissen Adrian Vlacque , einen Holländer , der all die Hun¬
derttausend in Gänze berechnet und gedruckt hat in Latein , Holländisch und Französisch ,
1000 Bücher in diesen 3 Sprachen , und sie fast alle schon verkauft hat . Aber er hat durchwegs
4 meiner Ziffern abgeschnitten ; und er hat meine Widmung und auch mein Vorwort an den
Leser weggelassen , ebenso zwei Kapitel , nämlich das zwölfte und das dreizehnte , alles übrige
hat er gänzlich unverändert von mir übernommen .

* Die Zahlen in eckigen Klammern sind Regierungszeiten.
Auf seine Proklamation vom 12.4.1606 geht die erste Form des Union Jack zurück.
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Anhang

Zwei Aufgaben zu den Logarithmen von BÜRGI und NAPIER samt Lösung

Vorbemerkung : In Definition 155 . 1 wurde die Gleichung y = bx durch x = logb y gelöst .
Damit kann man sagen , daß die Zahlen der arithmetischen Folge 0, 1 , 2 , 3 , . . . die Log¬
arithmen der Zahlen der geometrischen Folge 1 , b , b 2

, b 3
, . . . zur Basis b sind . Es gilt dann

die Gleichung y = blogby.
Betrachtet man eine allgemeine geometrische Folge a , aq1

, aq2
, aq3

, . . . mit a , q > 0 , so läßt
sich der Begriff des Logarithmus folgendermaßen verallgemeinern .

Definition: Ist y = aqx
, dann heißt x = ■■Ly allgemeiner Logarithmus von y , und es gilt

y = aqLy
, y e IR + .

1. Den Progreß -Tabulen Bürgis liegt für « ehJ 0 die Vorschrift 10h i—» 108 (1 + 10 - 4)"

zugrunde . Setzen wir der Übersichtlichkeit halber 10 8 — a und 1 + 10 - 4 — q , so lautet die
Zuordnung lOn i—> yn = aq"

, die mit n \- >̂yn = aqTo äquivalent ist . Erweitern wir die
Definitionsmenge auf ganz IR, so erhalten wir xh -> y = aqTo .
Zu jeder schwarzen Zahl y gehört eine rote Zahl x , die man den BÜRGischen Logarithmus
von y nennt und mit Ln y bezeichnet . Für ihn gilt also y = acffi .

a) Zeige, daß die in der Unterschrift zu Abbildung 198 . 1 angegebenen Druckfehler
5000 230270

tatsächlich vorhanden sind . Berechne dazu aq io und aq io .

101g v - 80
b) Zeige, daß für LB y gilt : LB y = - --

lg q

c) Berechne damit einige der auf der Titelseite der Progreß - Tabulen (Abbildung 198 . 1 )
angegebenen roten Zahlen , also die BÜRGischen Logarithmen der schwarzen Zahlen .

d) Zum Rechnen hat Bürgi seine Tafel wie folgt verwendet:

Lr » + Lbd Andererseits gilt — = aq 10
a

Aus den beiden letzten Gleichungen gewinnt man die Beziehung

Lb u —I- Lg v — L]

Man erhält also den Wert des Produkts uv , indem man die roten Zahlen LB w und LB r
addiert , zu ihrem Summenwert die entsprechende schwarze Zahl aufsucht und diese
dann noch mit a = 10 8 multipliziert .

Beispiel: u = 101440201 Lb m = 1430
u == 101826387 LB r = 1810

Lb u + Lb v = 3240

also — = 103292892 und damit
a

uv = 103292892 - 10 8 .

1 ) Überprüfe die Rechnung mit deinem Taschenrechner .



2.2) Berechne unter Verwendung von Abbildung 198 . 1 die Produkte
a ) 116182 553 • 164 868 006 und ß) 134983 856 • 211692064 .

3) Leite eine (*) entsprechende Beziehung für uvw her .

u
e) Leite eine Formel für den Quotienten - her und berechne damit

1 ) 164868006 : 116182553 2) 211692064 : 134983 856
3) 101826 387 : 101440201

f) Zeige : Ist in einem Produkt ein Faktor eine Zehnerpotenz 10k
, ke Z , so erhält man den

Logarithmus von y - 10k
, indem man zum Logarithmus von y das /(-fache der »ganzen

Roten Zahl « R ■■= 230 270,022 addiert ; kurz

LB (J ' 10 *) = "LB (y) + kR , keZ . ( * *)

g) Zahlen , die nich der Dekade [10 8
; 109] angehören , bzw . Logarithmen , die nicht dem

Intervall [0 ; R] angehören , können durch Verwendung von (* * ) aus f) in passende
Zahlen bzw . Logarithmen transformiert werden .

Beispiel:
1) Lb (173,320536) = LB (173 320 536 • 10 “ 6 ) =

= 55 000 - 6 - 230270,022 = - 1326620,132
2) LBy = 435270,022 = 205000 + R = Lb (m • 10)

Da 205000 = LB (776 710 499) ist , ist y = 7 767104990 .
1) Überprüfe die Beispiele mit dem Taschenrechner .
2) Berechne a) das Produkt 6359,23131 • 0,738831728

ß) den Quotienten 101,440201 : 10182,6387.
Überprüfe die erhaltenen Ergebnisse mit dem Taschenrechner .

h) Auch das Radizieren funktioniert mit Formel (* ) . Setzen wir nämlich u = v = Vz, so

erhalten wir LB (Vz) + LB (1/z ) = LB . Mit x— ^ wird daraus 21^ (Vax ) = LB (x) .

Wegen a = 10 8 erhält man schließlich LB ( 10 4 • Vx) = ^ LB (x) .
Man ermittelt also Vx, indem man den zum schwarzen Numerus x gehörenden roten
BÜRGischen Logarithmus LB (x) halbiert . Der zu dieser roten Zahl gehörende schwarze
Antilogarithmus hat dann den Wert 104 • Vx , woraus man nach Division durch 104

sofort das gesuchte Vx erhält .

Beispiel: Gesucht ist 1/816 531 257 .
LB (104 • 1/816 531257 ) = \ L„ (816 531257) = \ ■210 000 = 105 000
104 • 1/816 531257 = 285 750111
1/816531257 = 28 575,0111 .

Überprüfe die Genauigkeit mit deinem Taschenrechner und berechne ebenso
1) 1/668 525 936 2) 1/902402087 3) 1/31,5801133.
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2. Napier läßt zur Konstruktion der Logarithmen zwei Punkte B und ß in A bzw . a mit
gleicher Anfangsgeschwindigkeit starten . B bewegt sich auf einer Geraden mit konstanter
Geschwindigkeit fort ; dabei legt er in der Zeiteinheit den Weg s zurück . Nach n
Zeiteinheiten befindet er sich am Ort B „ und hat die Strecke x„ = ns zurückgelegt .
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Napiers Skizze zur Konstruktion der Logarithmen
a) Original aus der Descriptio (1614 ) b) Umzeichnung unter Benützung von Indizes

so

x) .

en
ze
04

Der Punkt ß muß die Strecke [aco] der Länge y0 = 10 7 durchlaufen . Nach der ersten
Zeiteinheit langt er bei ßi an , wobei Napier der Strecke [aßj die Länge 1 gibt . Nach n
Zeiteinheiten kommt er bei ß„ an . Dabei bewegt er sich so , daß die Längen y„ der
Reststrecken [ß „ co] eine geometrische Folge bilden , also y„ + 1 = y„ q ist . q stellt Napier
durch RQ : SQ dar ; es errechnet sich aus

\ = a $ 1 = y0 - y1 = y0 - y0 q = y0 ( \ - q) zu q = 1 - — = 1 - 10 “ 7 = 0,9999999 .
yo

Die Länge s gewinnt Napier aus der Forderung gleicher Anfangsgeschwindigkeit für B
und ß : Da die mittlere Geschwindigkeit auf der Strecke [aßj gleich 1 ist , muß die

Anfangsgeschwindigkeit größer sein . Napier berechnet sie als die mittlere Geschwindig¬
keit auf der Strecke [ß_ j ß j ] . Dazu benötigt er deren Länge

ß_ i ßi = ß _ i co — ß t od = - • aco — q ■aco ^
1 \ _ l - <- q aco = -
q q

10 7 =

1 - q2 1

q 1 - q

i + q
q

= l + - = i +
q

l
1 - io ^ 7 '

Dividiert man den Bruch nach dem Verfahren der Polynomdivision , so erhält man

ß. jßj = 1 + 1 + IO “ 7 + 10 " 14 + . . . « 2 + 10 " 7 .
Da [ß _ 1 ß, ] in 2 Zeiteinheiten zurückgelegt wird , ist die mittlere Geschwindigkeit und
damit auch die Anfangsgeschwindigkeit beider Bewegungen zahlenmäßig gleich
5 = 1 + 1 - IO “ 7 = 1,000 00005 .
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Nach Napier sind die xn die Logarithmen der y„ . Bezeichnen wir den NAPiERschen
Logarithmus mit LN , so gilt

1x„ = LNiy„ o ns = Ln j;„ o n = - LN y„ .

Wegen yn = v0 q" gilt nach der allgemeinen Logarithmusdefinition von Seite 103 des

Lösungshefts yn = y0 q
Ln yn

s oder allgemein
Ln ?

y = y0 q *
a) Berechne, um den Beginn der nebenstehend ab¬

gebildeten NAPiERschen Logarithmentafel nach¬
vollziehen zu können , für n = 0 bis 11 die auf
Ganze gerundeten Werte von xn = ns und die
zugehörigen yn , ferner für m = 0 bis 5 die Werte
zm

■■= Sin 7 (90 ° — m • 1 ') , wobei Sin 7 (p ■■= 107 • sin cp
ist . Läßt man alle yn , die keine zm sind , weg , dann
erhält man eine Tafel, die jedem Winkel letztlich
eine gerundete Zahl ns zuordnet , so daß gilt:
ns gerundet = LN (Sin7 (p) .
Die Werte Sin 7 cp sind also die Numeri , die ns die
Logarithmen . Zeige dabei , daß sich z . B . ergibt
Ln (Sin7 89 ° 56 ' ) = 7 .

b) Zeige, daß Ln j = ■yQgZ - lgZo)
lg q

c) Berechne LN (Sin 7 30 °) = LN (| • 10 7) .
Napier erhielt wegen eines Rechenfehlers dafür
den Wert 6931469. Kepler korrigierte ihn zu
6931472.

Inffjnthmi[ } Sinnt J
o 10030000 60
1 IO300000 59
1 9999998 ?8
4 9999996 57
7 9999993 56

11 9999989 55
l6 999998611 9999980 53iH 99 <9974 5*

35 9999967 51
43 9999959 ?o
5* 9999950 49
61 9999940 48
73 95999 »8 47
S4 .9999917 46
96 999990 ? 45

IO? 999989 * 44
i *3 9999878 43
138 999986 ! 4 *

9999847 4 »
170 9999 * 3* 40
i8 7 99998t ! 3ü10? 999979 ? ! S
114 9999776 n
»44 9999756 ! 6
lö ? 9999730 35
187 9999714 34
309 9999691 33
33* 9999668 3*
3?« 9999644 3i
381 9999619 3o

89
Siehe hierzu Abbildung 201 . 1 und Fußnote * * * Ausschnitt aus Napiers
auf Seite 201 des Lehrbuchs . Logarithmentafel von 1614 *

* Von rechts nach links zeigt die erste Spalte die zu 89° gehörendenMinuten, die zweite Spaltedie zugehörigenWerte Sin 7q>— 10’ ■sin tpund die dritte LN(Sin 7<p) .



Lösungen
1. a) Mit dem Taschenrechnerergibt sich

5 000
aq

-lÄT = 105126 847
230270

aq iö = 999 999 779 « 1000 000 000

b) y = 108 ■q io

lgT = 8 + ^ lg ?

T lOlg ^ - 80
L bT — ,lg q

c) Zum Beispiel:
Lb 285 750111 = 105000 Lb 702 800 236 = 195 000 LB 128 400 937 = 25 000

d) 1 ) -

2) «) u = 116182 553
v = 164868 006

nr = 191 547 858 - IO 8

ß) m = 134983 856
ü = 211 692064

m> = 271 814 593 - IO8

Lb m = 15000
LB y = 50 000

Lb m + LB y = 65 000

LB u = 30000
Lb d = 70000

Lb m + L B y = 100000

IIVW Lr u + Lb v + Ln tv
3) —=- — aq io

ar
r f uvw\uvw Lb v ^ -;

—Y
~ = aq i °

U Lr » —Lef
e) a - = aq 10

v

Lr u + Lb i? “j- LdW — Lp

u Lb (a-f )
Lb (u) Lb (v) — Lg I a

a - = aq io
v

uvw

1 ) u = 164868 006

v = 116182553

a - - = 141904272
v

LB u = 50 000
LB v = 15 000

Lr m — Lr ü = 35 000

= 1,41 904272

2) 1,49179486
3) 1,00 380 704



2.f) Es sei k = - n , ne !

Lb (m • 10) = Lb ^ ^
= Lb (m) + Lb (109 ) = LB u + 7?

L b (« • 10 2) = Lb ([« ■ 10] • 10) =
= Lb [m • 10] + R =
= Lb u -f- R -f- R = Lb u “1“ 2 R

Offenkundig erhält man
Lb (w • 10") = Lb m + nR . (1)
Mit z '•= u • 10" wird daraus
L„ (z) = LB (z • 10 ~ n) + nR
Lb (z • 10 _ ") = Lb (z) — nR (2)

( 1) und (2) lassen sich zusammenfassen zu
LB ( j ' IO 4) = Lb j + kR , keZ .

g) 1) -
2) a) LB (6359,23131 • 0,738 831 728) =

= LB (635923 131 - IO “ 5 ■ 738 831 728 • 10 9) =

T / 635 923 131 - 738 831 728 \= 4 -
K?- 10 ) ‘

= 185 000 + 200 000 — 6 • 7? =
= 385 000 — 67? =
= 154729,978 — 5R .

Somit
6359,23131 • 0,738 831 728 = 4698,40185

/ 101,44020l \ _ / 101 440201 ■ 10 “ 6
l 10182,6387 /

~ B l 101 826 387 • 10 ~ 4

— l b 10 8 •
101440201
- 10

~ 10
101826387

= 1430 - 1810 - 107? =
= - 380 - 107? =
= 229 890,022 - 117?

Somit
101,440 201
j ^ lg2 638 ?

= 996207 399 • 10 ~ u = 0,009 620 7399

h) 1) 25 855,8685
2) 30040,0081

3) 5,619 618 61 , da LB (l0 4 1/315801 133 • 10 ~ 7) =
= iL B (315801 133 - 10 7) =
= 57 500 - 3,57? =
= 172635,011 - 47? .
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n xn y» m Zm

0 o 0 10 ooo ooo 0 IO ooo ooo

1 1,000 ooo 05 1 9 999 999 1 9 999 999 - 577
2 2,000 OOO IO 2 9 999 99 8 2 9 999 998,308
3 3,000 ooo 15 3 9 999 997
4 4,000 ooo 20 4 9999996 3 9999996,192
5 5 ,000 ooo 25 5 9 999 995
6 6,000 ooo 30 6 9 999 994
7 7,000 ooo 3 5 7 9999993 4 9999 993 ,
8 8,000 ooo 40 8 9 999 99 2
9 9,000 ooo 45 9 9999991

10 10,000 ooo 50 10 9 999 990
11 11,000 ooo 5 5 11 9999989 5 9999989,423

NB : Für m = 1 wird 9999 999,577 auf 10000000 gerundet , bei allen anderen wird

abgerundet .

Ln )?
b) y = y0 q s

lg y = lg Jo + lg ?

Ln j : ^ (lgj - lg ^o)
lg ?

c) LN (Sin7 30 °) = (1 + 0,5 • IO“ 7) [lg (0,5 • 107) - lglO 7]
lg (1 — 10 - 7)

= 6 931 471,804 « 6931 472 .
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