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1 .Kapitel
Aufgaben zu 1 . 1 Grundlagen

n = 2k + 1 , (k > 1 )14/1 .

14/2 .

14/3.

14/4 .

n = 2k , (k > 2 ) ; in M schneiden sich j Diagonalen .

a ) ( 12 - 2 ) - 180 ° = 1800 °

a ) 60 ° b ) 90 ° c ) 108 ° d ) 156 ° e ) ^

b ) n = 100 , a 100 = 176,4 °

158,8 °

f) 2940°
17 172,9 ° g) 2988°

17 175,8 ° h ) 3036°
17 178,6 ° i) 45900°

257 178,6 °

14/5. a)

14/6 . a ) ol -180 ° b ) (n - 2 ) -180 ° c ) 360 ° d ) \ a n e ) g = 360°

14/7 . a ) d = | n (n - 3 ) b ) n - 2

14/8 . a ) Ein regelmäßiges n -Eck hat n Symmetrieachsen . Ist n gerade ,
so sind die n/2 Mittelsenkrechten und die n/2 Winkelhalbierenden
Symmetrieachsen . Ist n ungerade , so fallen die Mittelsenkrechten
mit den Winkelhalbierenden zusammen ,

b ) n -Ecke mit geradem n sind punktsymmetrisch .

15/9 . a ) GB : n = 7 c ) GB : Raute d ) GB : Rechteck
f ) GB : Dreieck und Quadrat

15/10. a ) 3 b ) 3 c ) 7 d ) 2 e ) 19

15/11 . Ein regelmäßiges p -Eck entsteht , wenn man die Ecke p mit der Ecke k
verbindet , wobei p und k teilerfremd sind . Weil es p- 1 solcher Zahlen k
gibt und die Verbindung von p und k zum selben p-Eck führt wie die
von p und p - k , gibt es - (p - 1 ) regelmäßige p -Ecke .
Bemerkung : Für jedes n existieren so viele verschiedene (einander nicht ähnliche ) regelmäßige

Stern -n -Ecke , wie es ganze Zahlen k mit l <k<n/ 2 gibt , die zu n teilerfremd sind .

15/12 . a ) n=50 b ) n= 200
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Aufgaben zu 1 .2 Konstruktionen

15/2 . a ) 192 = 26 -3 b ) 512 = 2 7 -4 c ) 1920 = 2 7 - 15
d ) 17408 = 210 -17 e ) 8 589 934 594 = 2(22 ®

+ 1)

15/3 . zum Beispiel : = 6 - 3
jf - 1 - 3-f - , = 7 . _ 2 -

15/4 . a ) Weil alle regelmäßigen n -Ecke mit derselben Eckenzahl ähnlich
sind , kann man aus einem n -Eck mit der Seite s ' durch zentrische
Streckung (m = s/s 9 das n -Eck mit der Seite s konstruieren .

15/5 . Vergleiche 4 . a)

Aufgaben zu 1 .3 Berechnungen

16/1 . c6 = r ^ , c3 = r , s3 = r \/3

16/2 . Das Achteck hat einen Umkreis , die Seiten haben die Länge
x = a (\[2 - 1 ) ; deshalb ist das Achteck regelmäßig .

c 128 :

16/3 . s ^7 =* 3,3

16/4 . a ) s4 = \J2 b ) c4 = \/2 ,

17/5 a ) n = 5

AABD ~ ABWA : ^ ^s d-
=> d2 - sd - s2 = 0
=» d = | s( l + S )
a = d - 2 ( d - s ) = 2s - d =

s 128 - ~~ c i28
2 - 0,049 . . .

n = 6

Das kleine Sechseck entartet
zu einem Punkt .

V s (3 - V5 )
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n = 8
Pythagoras für AABC :
(s + a )2 = 2s 2

=> a = s0\/2 - 1 )

= | ( 7 + 3>/5 )

= 3 + 2yj2

Aus der Kongruenz des Bestimmungs¬
dreiecks ABM und des Dreiecks DEC
(WSW -Satz ) ergibt sich :

x = r => ^
F 6 2F 3 + 3sx

b ) 2x2 = s2 => x = \ yj2 s => s-
2 x

F 8
s2 + 4 -s2 - | n/2 + 2 - is 2

F4
" s2

= >/2

= 2 + 2 \ [ 2

c ) Wie in a ) liefert die Kongruenz : x = r = 2s

>/io - 2V5

yw - 2yß

10 2F = + 5sx
5s2-

= 2 +
V10 - 2V5

5 2 . Vi + l
4 VlO - 2Vi

= 2 +
Vi + 1

= 2^

F12d ) x = r = s => -5—
-Tfi

2F fi + 6s2
2 + — nbf = 2 + | %/3

6 - isV3 3
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17/7. Umfangswinkelsatz :

=» ß = 75 °

( AAHB ist ein halbes
gleichseitiges Dreieck . ) ,
CH = HB (gleichschenklig )
=> ÄC

“
= + 4 \ /6 = ^

17/8. a ) Pythagoras :

=> s = ^

b ) £ BAC = 4: DBA = ^ = 45 °

(Umfangswinkelsatz )
=> <* asb = 90 °

c ) ADSN ist gleichschenklig¬
rechtwinklig => DN = NS

d ) a = 45 ° + 30 ° = 75 °
,

ß = 75 °
, y = 5 = 105 °

,
A = = l + iV3

17/9 . a ) Ciq
2 - 4 - Sxq

2
, C5 - c 10

2 - 2
=> s5 = y/4 ~ c5

2 = y/4 - (c 10
2 - 2 )2 = y/4 - (4 - s 10

2 - 2 )2 =
= V4 - (2 = 1 %/iöUvI

b ) c 10 = V4 - s io2 = | VlO + 2V5

c80 = V2 + ^ 2 + V2 + c 10 ,s80 = V4 - cso
2 = 0,0785 . . .

6

c ) p80 = Vl - ( s80/2 )2 = 0,99 92 . . . d ) s80 = r -0,0785 . . .



17/11 . = 12^ 2 - V3 ,a ) u3 = 3^ 3 ,u6 = 6 , u12
F 3 = | V3 , F 6 = | V3 , F 12 = 3

b ) v3 - 6V3 , v6 = 4V3 , v12 = 24(2 - >/§ ) ,
G3 = 3V3 , G6 = 2V3 , G12 = 12( 2 - >/3 )

17/12. u 16 = 16r V 2 - V2 + \f2 ,F 16 = 4r 2 V2 W 2

v16 = 16r *\12 - 2^12^ 2 ^ 2 , G16 = 8r 2 ^12 - 2 -^ 2rj2 ^ 2

17/13. Es gilt : AßAP ~ AACC '
. Wegen CC ' = 2r und BA = r folgt

aus der Ähnlichkeit BP CA = | ^ 4 ^1
2 ^ 2

Wegen -& ACP = 30 ° und <1 CAP = 60 °ist
AAPC ein halbes gleichseitiges Dreieck .

=> P^ = h = | V3 -ÄC
*

= | >/3 s10 .

s 15 = PfT - PCT = | ÄG
"

- | V3 s10

S10

= W4 - i (V5 - l )z - | V3 - | (V6 - 1)

s 5

18/15 . a ) ^ SMjMg = 120 °

b) 4: SMjM2 = 60°

(VlO + 2V5 - Vl5 + V3 )

>/34 = 5,83 . . .

SM 3 - s3

SM 2 — Sg

c ) -iMjTMa = 150 ° (Umfangswinkelsatz für den Kreis um M 3 )

=* -^ MiTMg = 75 ° => «iM 2M 1T = 15 ° => 4 SM XT = 45 °

=> RS = s8 = r y]2 - V2
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d) * M 1M 3T = 30 ° => MiT = s12 = r ^/2 ^ ? 3

e ) 15 ° => M 2R = s24 — r \ j ‘2 - \f2 + \ß

18/16. b ) Wegen LC = LD gilt mit MD = : x im Dreieck LMC :
LC

“ 2 = LM
~ 2 + MC 2

, ( i/2 r + x ) 2 - r 2 + ( V2 r ) 2

=> x2 + rx - r 2 = 0 => x = | r (\JE - 1 ) , also x = s 10 .
Mit DC = : y gilt : y2 = r 2 + s 10

2

=> y2 = | r 2 - | ^ 5 r 2 => y = | r V10 - 2V5 , also y = s5 .

c ) Pythagoras im Dreieck MDC liefert : s5
2 = s6

2 + s 10
2 .

19/17. a ) Ist M der Kreismittelpunkt , so gilt :
MD = | \/5 a (Pythagoras in AAMD )
=> UA = | \ /5 a - | a = | a (V5 - 1 ) = s10 .

b ) UD = a2 + | a 2(V5 - l )2 (Pythagoras in AUAD )
=> UD = | a V10 - 2V5 = s5 .

19/18. Wegen sn
2 = 4 - cn

2
, s2n

2 = 4 - c2n
2

, s4n
2 = 4 - c4n

2 und c2n
2 = 2 + cn

gilt : s2n
3 - (4 - c2d

2 )^ 4 - c2n
2 .

Für die rechte Seite gilt :
( 2s 2n + sn ) s4n

2 = ( 2^ 4 - c2n
2 + V4 - c„2 ) ( 4 - c4n

2 ) =
= (2y/4 - c2n

2 + y/4 - ( c2n - 2 )2 )(4 - 2 - c2n) =
= ( 2V 4 - c2n

2 + C2„V4 - c2n
2 ) ( 2 - C2n) = ( 4 - C2n

2 ) V4 “ C2„
2

19/19. Mit MET = sn gilt : ÄE
~

= \ s2n , ÄG
“

= GN = 4 t 2n ,
ÄA = tn

1
1

a ) AANR - AGNE => => s2n
2 = | sn t 2n

2 Sn g S2n
Multiplikation mit 4n 2 ergibt :
u 2n

2 = ns n -2nt 2n ,
also u 2n

2 = u n -v2n
=> u2n = Vu n ' V2n
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b ) AAjGA ~ AARM = > AM : RM = A xG : GA => t2n - Sn + ^
AA XB XM ~ AABM => MN

“
: MR = t n : sn

- - t „ 2
^2n)

wegen MN = AM folgt : — = nrbn 2 l 2n

2ns ntn -n 2u nvn
^ 2nt 2n -

( Sn + t j . n => v2n -
Un + Vn

19/20 . Es sei AB = sn . Zeichnet man durch den Mittelpunkt N x von [M XN ] die

Parallele zu AB , so ist AA XBXM X das Bestimmungs¬
dreieck des 2n -Ecks mit gleichem

Umfang , denn AxBj = 1 sn

und <tA xMxB x = \ * AMB

(Umfangswinkelsatz ) .
Damit gilt :
DÜMT = rto = | NMi •
Wegen NM X = r n + Rn
folgt r 2n = | (r n + Rn) •

Wege n AM X = 2R 2n
und NM X = 2r 2n
liefert der Katheten¬
satz für AAEM X:
4R 2n

2 = 2R n -2r n
= > R2n = "v/R nr 2n

19/21 . Ist M Mittelpunkt des großen Kreises , N Mittelpunkt des kleinen Kreises

und T Berührpunkt auf NC , so liefert Pythagoras mit TC = BC = : x

( 1/2 r + x ) 2 = r 2 + (1/2 r ) 2 => x = | r (\[E - 1 ) , also x = sxo . (Aufgabe 16 .b)

£ BMA = 60 °- 36 “ = 24 “ => ÄB = sX5 .
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2 .Kapitel

Aufgaben zu 2 . 1 Umfang

36/1. a ) u = 60 , f = - 4,5% b ) u = 62,8 , f = - 0,l % c ) u = 62,857 , f = 0,0%

36/2 . a ) d = f , f = 4,7% b ) c1 = 3,1847 , f = 0,l % c ) d = 3,1818 , f = 0,0%

36/3 . v = = 1115 km/h 4 . V = 107589 km/h

37/5 . tt = 3,2 f = 19 ° / 00 6 . 7t = 3,125 f = - 5° /oo

37/7 . 7t = 3,162 . . . f = 7 ° /00 8 . 7t = 3,132 . . . f = - 3° / 00

37/9 . 7t = 3,160 . . . f = 6° /00
Die Dreiecke sind ähnlich : halber Umfang = 4 . (§ )3

, 37t = 4 - (f )3 => 7t

37/10. 7t = 3,1462 . . . f = l ° /oo - >/2

37/11 . 7t = 3,1446 . . . f = l ° /oo 12 . 7t = 3,1428 . . . f = 0° /

37/13. 7t = 3,1426 . . . f = 0° / oo 14. 71 = 3,14166 . . . f = 0° /

37/15. 7t = 3,141533 . . . f = 0° / oo
Konstruktion : MB = 1 , BK = | V3 , CK = 3 - | ^ 3
w 2 = 4 + ( 3 - | V3 ) 2 = > w = \ Jf - 2V3

38/16 . 7t = 3,14164 . . . f = 0° / oo
Konstruktion : 7t = d + z
d ist der Durchmesser des Kreises mit r = 1,2
z ist die Seite des regelmäßigen 10 -Ecks , das dem Kreis einbeschrieben
ist .

38/17 . 7t = 3,14164 . . .

38/18 . 7t = 3,1416

f = 0 ° / oo 7t = u = V1,2 2 + 0,62 + 1,2 + 0,6 = Vk8 + 1,8

f = 0 ° / oo
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38/19. 71 = 3,1415919 . . . f = 0° / oo Konstruktion : a = Vl,46 , ^ = i*| => 7t = g§ VT46

38/20 . 71 = 3,1415932 . . . f = 0° / oo

Konstruktion : n ~ | + | ,v/229 , wobei \]229 2 = 152 + 22

38/21. 71 = 3,14159292 . . . f = 0 ° / oo k = 3 + m = H

Berücksichtigung von d : k = 3 + => 71 = 3,1415926530 . . .

38/22 . VIETE : 3,12144 . . . WALLIS : 2,92571 . . . NEWTON : 3,14151 . . .
GREGORY: 3,33968 . . . EULER : 2,92261 . . . , 3,06139 . . . , 3,13899 . . . , 3,14134 . . .

( 4 ] Aufgaben zu 2 .2 Bogen und Bogenmaß
V3 ’

39/1. a) 2- ; 1,57
■u \ 71k ) 12 ; 0,26 c ) j ; 0,79 d ) £ ; 0,52

e ) | ; 1,05 f) —l ; 180
■ 0,02 g) ^ tu ; 34,70 h ) - 3ti ; - 9,42

i) 100
9 71 > - 34,91 \ n2

; 2,47 k) 'M * ; M 2

39/2 . a) 114,6° b ) 180,1” c ) 45,8 ° d) 28,6”

e ) 573,0 ” f) - 15,4” g ) 58,3 ”h ) 57,3”

39/3 . a) II42 b) b = 5 c) b = j - k d ) ja = 0,2 e ) ja := 1

f) h = | n g) r = 1 h ) r = | 7i i ) r = 1,5

39/4 . Minutenzeiger :
Stundenzeiger :

26,829m ; 0,447m ; 0,00745m
1,44m ; 0,024m ; 0,00040m

39/5 . _ 2 _ 7i V2 + 4
_

7t V2 - 4 ~
7t2 — 8

39/6 . a ) rE = 6366 km , rM = 1735 km , rg = 695507 km
b ) Entfernung Erde-Sonne : l,5 -108 km , vE = 29,9 km/s
c ) d = 1,18 -10 10 km

39/7 . Mit den Näherungen b = 1,435 m für den Bogen und d = r
für den Abstand gilt : d = 4933 m.
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b ) 5n39/8 . a ) f n c ) | 7t

40/9 . a ) Dreieck ABC ist gleichseitig mit a = 4 und h = 2^3 . b ) u = 4k

40/10 . a ) 27t( 36,5m + 0,05m + x ) + 2 -84,39m = 400m => x = 25 cm
b ) 25 -271 m = 157m

40/11 . u = 2tt ( 1 + V2 )

40/12 . a ) ADBC , ADFC sind gleichschenklig => <£ BDC = -& DCB = <(tCFD = : e

Winkelsumme in ADBC => e = 90 °- | ß , (ß = £ B ) ,
=> 4; DCF = 180 °- 2s = ß => <iDCE = >& FCB ,
denn <(tACB = ß => Bogen (DE ) = Bogen (FG ) .

b) Begründung analog a )

40/13 .

40/16 .

c ) Begründung analog a )

F A

d ) ß = y = 36 ” => A = F, ( Goldener Schnitt )

e ’ » 101010 m 14. u ~ 6,28 m 15. d = 3,18 mm

a ) gleich schnell , 1 = 4a7t + 36a

ß) 2 mal so schnell , 1 = 4,5 ^2 a7t + 6ay/2
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y) 6 mal so schnell , 1 = 6aft + 17a

8) 7 mal so schnell , 1 = iI \/2 arc + 6a ^ 2

e) 8 mal so schnell , 1 = 7,25a7t + 9a

40/17 . u = 800km -50 = 40 000 km , b = 2nt ~ => r = 6364 km

Aufgaben zu 2 . 3 Fläche

42/1 . a ) F = rc b ) F = tc/4 c ) F = 4n d ) F = 5jt e ) F = n3

b ) g = | , F = 1 c ) g = 1 , b = 2
42/2 . a ) b = | , F = %

f ) r = 2 , g = | g ) b = 1 , F = | h ) r = 1 , F = |

i ) r = V2,b = V2 j ) r = V2rc , b = [̂2n

42/3 . a ) F = 300 , f = - 4,5 % b ) F = 314 , f = - 0,1 % c ) F = 314,3 , f = 0,0 %

42/4 . a ) d = 3,65 , f = 2,3 % b ) d = 3,57 , f = 0,0 % c ) d = 3,57 , f = 0,0 %.

42/5 . f = 3 ;1^ ■- = - 0,5 % 6 . a ) ^ = |

42/7 . Beide Male gilt : Arest = 212,9 cm2

42/8 . a ) d ~ 1,65 cm , u = 5,2 cm , A = 2,1 cm2

b ) d = 2,15 cm , u ~ 6,8 cm , A = 3,6 cm2

c ) d « 2,90 cm , u =» 9,1 cm , A = 6,6 cm2
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42/9 . Akreis = ! 83 km 2

42/10 . ukreis = 2rn < uquadrat = 4n/rc < urechteck = 3n/27t
^ quadrat ~ l ) 128 Uk re is 5 Wechteck ~ l >l ^ ^ u kreis

43/11 . Erster Tag : rt = 4
Bedingung für den n -ten Tag (n > 2 ) : rn

2 jt - rn_ i 2 n = r d
2 n

Verlängerung am n-ten Tag : vn = rn - rn_ q => vn = ( 'v/n - Vn - 1 ) -rd

43/12 . u = 2 tc (R +r ) , F = rc(R2 - r2 ) ,
diese Formeln gelten auch für nicht konzentrische Kreise .

43/13 . a ) F = Ti b ) F = 3n c ) F = ji/3

43/14 . — , deshalb ist die Aussage falsch .

43/15 . Wegen | r • 2rn = r2 n stimmt die Aussage .

43/16 . 10,67 DM beziehungsweise 24 DM

43/17 . g = 2 18 . g = 4

7ir2 ( \l2 — l )2 r2 71/943/19 . a ) , , 2 « 68,6 % b ) « 66,7 %V4 r2 n

c ) 7cr2 ( 2V3 - 3 )2

V3 r 2 k 64,6 % d )
r 2 tc/ 4
r 2 71/2

= 50 %

44/20 . Pythagoras : R a
2 = r2 + R ; => R a

2 n - R ;
2 n = r27C

44/21 . a ) 2x 2 = r2 7i => x = rs/rr/2 ( Quadratfläche = Kreisfläche )

b ) | -2rx = | r27t => x = rn/2 (Dreieckfläche = Halbkreisfläche )

c ) 2x 2 + 4 - | xV2 ( 2r - | x\[2 ) = r2 7t => x = | V2 nc
( Sternfläche = Kreisfläche )
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44/22 . F lunulae = F A + F HKa + FHKb - F HKc = ab + | a 2n + | b2n - | c2n = ab

( wegen a 2 + b2 = c2 )

44/23 . Man zeichnet das rechtwinklige Dreieck mit dem großen Durchmesser
als Hypotenuse c und dem weiß gezeichneten Durchmesser als Höhe h

ein : F .arbelos | ( |) V | r2
7t - | s2

7t = | rc[(r + s )2 • ] =

= rsTi = n
4

( | )2k

wegen c/2 = r + s und 2r -2s = h 2 (Höhensatz ) .

44/24 . F = ab + | a 2 7t + | b2 7i - r 27t = ab wegen r 2 = | ( a2 + b2 )

45/25 . a ) F 2 = 2 - ( | - a2 Tt - | a 2 ) = a 2( | 7t - l )

F 2 = | ( 2a ) 2n - | a 2n - a 2 = a 2( | tc — l )

b ) Beide Flächenstücke sind halb so groß wie in a ) .

45/26 . a ) u = 5 tt , F = 2k b ) Fi = k = F2

c ) Man verbindet die linke untere Quadratecke mit dem Mittelpunkt
des großen Halbkreises ; die Gerade schneidet diesen Halbkreis in S .
Ist M der Mittelpunkt des Vollkreises , so halbiert MS den Umfang .

45/27 . a ) F = 6a 2 7t b ) F = § a 2?r + 2a 2\/3 c ) F = 10a 2 K d ) F = 15a 2rc

e ) F = | a2 7t - 3a 2^ 3 f ) F = 40a 2 7t g ) F = 8a 2 ( l + je) h ) F = 5a 27t

46/28 . a ) r = 10 b ) r = 2 c ) 64 + 42 = r 2 (Pythagoras )

d ) 62 = 42 + r2 (Pythagoras )

46/29 . a ) R 2 = r -3r b ) R2 = 2r -2r c ) R2 = r -7r
( Konstruktion zum Beispiel mit dem Höhensatz )
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46/30 . a ) r = 4 (Aufgabe 20 . !)

46/31 .

46/32 .

46/33 .

46/34 .

48/35 .

b ) Man verwandelt den Kreis aus a ) in den Kreissektor :
\ R2 = r 2 => R2 = 2r -3r (Höhensatz )O

a ) R = | -\/2 r (halbe Quadratdiagonale )

b ) Ri 2 = | r 2 (Höhensatz ) , R 2
2 = | r 2 (Höhensatz )

a ) Rh 2 = 2r 2 (Höhensatz ) b ) r 2 = | RH
2 (Höhensatz )

R = 4^ 2 ( Quadratdiagonale )

a ) u = 4an , F = a2n
c ) u = 3^ 2 an , F = 8a 2

e ) u = 6^ 2 an , F = 8a 27t

a2

g ) u = 4^ 2 an , F = 8a 2 + 4a 27i
i ) u = 3a7t - 1 \[2 an , F = 3a 27t + 3s
j ) u = 6a7i , F = 4a 2 + 3a 27i
l ) u = 3an - | \/2 an , F = 3a 27t - a2

m ) u = 2^ 2 an , F = 8a 2 - 2a 27t
o ) u = 4au , F = a27t + 4a 2

q ) u = 4>/2 an , F = 10a 2Ji - 8a 2

s ) u = 4a7i , F = 12a 2 - 2a 27i

b ) u = 2an , F = | | a 27i
d ) u = 2a7i , F = | a 27t
f ) u = j - an , F = y a27t - 4\/3

h ) u = 4a n , F = 4a 2 + a 27t
- 2a 2V2 n

k ) u = | an , F = | a2n - 2a 2^
a 2V2 n

n ) u = V2 an , F = a2 7i - 2a2

p ) u = 2arc , F = 2a 2 7i - 4a 2

r ) u = 2 \[2 an , F = 4a2

a ) u = 2a7t , F = | s}3 a2 + | a2n b ) u = an , F = ^ 3 a2 - | a2n

c ) u = | V3 an , F = | n/3 a2 + | a 2 rc d ) u = 5a7i , F = \f3 a2 + | a 2 ;:

e ) u = | an , F = V3 a 2 - ^ a 27i f ) u = an + | V3 an , F = | a 27t - 3\f3
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49/36 .

49/37 .

49/38 .

"V

50/39 .

50/40 .

3 a 2 50/41 .

g) u = | an + 10a , F = 4^ 3 a2 + | a27t

h ) u = 3att , F = | \ /3 a 2 + | a 27t i ) u = 6att , F = 4^ 3 a2

a ) u = 4a + 2an , F = 4a 2 b ) u = 4a "\/2 ( l + n) , F = 16a 2

c ) u = 8a ( l + 7t ) , F = 36a 2 - 8a 27t d ) u = 4aV2 (2 + 7t) , F = 32a 2 + 4a 2

e ) u = | V2 a7t + 10V2 a , F = 8a 2 + | a 27t

f ) u = 2\ /2 an + 12%/2 a , F = 18a 2

Fabcd = \ r2V3 + | r2jt , u = 2r + iV3 + | nt

f abfe = | r 2 + j r 27t , u = 2r + ia/2 + | ra

Fabhg = \ r 2V3 + | r 2:t , u = 3r + | rrt

a) uq = 16a , u K = 2a ,\/5 7t , UK < Uq , f = - 12,2 %
F q = 16a 2 , Fk = 5a 27t, Fk < Fq , f = - 1,8%

b ) u A = 4a ( l + V2 ) , u K = 3a7t, u K < uA , f = - 2,4 %

Fk = 2,25a 2 7t , Fa = 7a 2 , F a < Fk , f = 0,98 %

Alle Teilfiguren (ob weiß oder schwarz ) haben denselben Flächeninhalt .
Es sind 47 Teilfiguren : 24 schwarze und 23 weiße .

24
Also sind schwarz = 51,05 %

Fgalinon = | ^ (r 2 + ß ^ )2 + | 7tr 2
2 - Ttr ^ =

= | 7t (r 2
2 + 4r :r 2 + 4r x

2 + r 2
2 - 2rj 2 ) =

= | 7t ( 2r 2
2 + 4r 1r 2 + 2r 1

2 ) = 7t (r ! + r 2 )2 = 7tr B
2 = FBK

F M = 6r 2V3 - r 2 7t , F Si = 6r 2\j3 + 3r 27t - 4r 2 7t = 6r 2-\/3 - r 27t

17



3 .Kapitel

Aufgaben zu 3 . 1 Zylinder

a) b) c) d) e) 0 g) h ) i)
r 1 10 4 0,1 2 10 2 2
h 2 10 1

16 4,9 5 0,4 5 1
43t 1V2

V 2t: 1000h TU 0,049h 20h 40h 20 h 1
S 671 4007t 32,5h 7T 28h 208h 28h 1 + 8h 2h
M 471 200k V2 0,98h 20h 8h 20h 1 71

a ) Vx : Vy = 2 : 1 M x iII>> Sx : Sy = 2 : 1

b ) Vx : Vy = | V2 Mx : My = 1 Sx : Sy = 1 + V2
2 + V2

O Vx : Vy = y- M x : My = 1 Sx : Sy = xy + y2
0

xy + x

59/3 . a ) Vx : Vy = 1 :2

b ) Vx : Vy = ^

O Vx : Vy = f

Sx : Sy =

Sx : Sy =

Sx : Sy =

471 + 1
471 + 4

2ti( 1 +V5 ) + 3 + V5
2tc( 1 +V§ ) +2

27ixy + x2

27txy + y2

60/4 . a ) x = y = yj100 b ) x = 8

60/5 . r = 39,9 cm, F= 18r2n » 9m 2
, man braucht also etwa 0,9 kg Farbe .

60/6 . a ). Vw = 7ih-ri2 = 1,18 1 b ) m « 1,06 kg

60/7 . a ) V = i a3n , S = § a2rc b ) V = | a3n , S = a2n ( 1+ yfe )

60/8 . a = n/jt , Vz : Vw = ~ « 113 %

18



WaBWBi

60/9 . a) S = (2-f - k + 175n/3 ) cm2 - 512,5 cm2

b ) m R = ( f k + f V3 ) • 15 -7,9 kg => 5,67 kg , mF « 3,64 kg

60/10 . h = 2,04 mm 1L d =»5,05 cm 12. a : d = | \{2k

61/13. 1 = 625,2 m 14. d = 0,103 cm 15. d « 6,1 -10"3 i

61/16. a) V = 1232k S = 504k A = 152

b ) V = 6264k S = 2088k A = 198

c ) V = 240k s =288k A = 20

d ) V = 208k s =438k A = 28

e ) V = 1096k s =1112k A = 68

f) V = 25a3K s =58a% A = 7a2

g) V = 2304k s =1312k A = 192

61/17. Zeichnet man Innen - und Außenmantel ,
so liefert Pythagoras als kürzesten Weg 5 .

62/18 . Zur Volumenberechnung betrachtet
man zunächst ein Viertel des Qua¬
ders , dem der Zylinder einbeschrie¬
ben ist . Für den Restkörper ABCDE
des Quaderachtels gilt (nach den
Schnitten entlang dem Zylinder¬
mantel und der Ebene BCD) :

19



£

Frontsicht

Strahlensatz
h _ 2r

r - y
" r

V h = 2 ( r- y)

Draufsicht

Sekanten -Tangenten-Satz
x z = y ( 2 r - y )

Für die dunkle Trapezfläche im Abstand x von D gilt :
F = r 2 - | (r - y ) h = r 2 - | (r - y ) 2 = 2ry - y2 = x2 .
Nach Cavalieri ist der Restkörper volumengleich einer Pyramide ,die eine quadratische Grundfläche ( Seite r ) und die Höhe r hat .

V,rest
v ,Stöpsel '

: 1 J
3

^ zylinder — ^ ' ^ quaderachtel — 4 ‘V ,rest -) =

2r d7i; • ■4(r 3 - | r - 27tr - 1 r c

62/19 . a ) A = 2r?rh + 2r2n = 2r7th ( l + r/h ) = 2rah - ~ = 2nh - 1

denn wegen p = “ = ^ gilt r =

b ) A = 2 -2rah + 4r27i = rrrh (4 + ) = rah (4 + | ) = rah „h 7 7
30

= f Kh \ ] 2 £ nh

denn wegen p =

m _ 30 / muh
1

V2p7th
- 7 \ / 2p

V 2r 27ih gilt r =
V 2pith

c ) Ai = 1,903 m 2
, A2 = 1,432 m 2

, A3 = 1,899 m 2 .

20



Aufgaben zu 3 .2 Kegel

62/1 .

62/2 .

63/3 .

a ) m = 13 V = 10071 S = 90ti M = 657t

b ) m = 10>/2 V = V$ä- n S = 100 ( 1 + V2 )ti M = 100V2 7t

c ) h = 3 V = 167t S = 36k M = 20ti

d ) h = | m = iVlSl S = | ö (Vl8l + 9) m = i^ V^ T *

e ) r = 6 m = \[61 S = 67t(V61 + 6) M = 6\[61 n

f ) h = | V6 m = 2 v = tVÄ » S = 0,967t

g) h = 2"\/l5 m = 8 V = | Vl5 71 M = 167t

h ) r = 1 h = V3 m = 2 V = | V3 7t

i) r = 1 h = yß V = | V3 7t S = 37t

a ) Vx : Vy = 2,4 = Mx : My Sx : Sy = 10 :3

b ) Vx : Vy = | V2 = Mx : My
0 0 1 + V3
bx ' by _

2 + Ve

O Vx : Vy = | = Mx : My
0 0 y2 + V\/x2 + y2

• ^ y -
X2 + x"\/x2 + y2

a ) V = ^ Vl5 71 b ) V = " <=) v = 2f 2 d ) V = | tW2

63/4 .

63/5 .

a ) h = 1 , co = 90 ° b ) , c ) wegen h > r gilt | co < 45 ° => co ist spitz

£ = >/3co ist stumpf b )a) k _ VZa ) r ~ 3
, h V5 • ,

C ) — = ~
2

= * co ist spitz

co ist spitz

d ) — = 1 => co = 90 °

63/6 . a) ui r 1
b ) m

= 2
7 V _ mV3' • S “ 18

21



63/8 . Aus | mrjt = r 2 ;t , m = Vr 2 + h 2 und | r 27ih = 100 folgt h =

63/9 . a ) V = ^ ^3 a 37t , S = f a27r

c ) V = | r a 37i , S = 2^3 a2n

b ) V = | a 37r, S = V3 a2n

63/10 . a ) x = h( l - | \ /4 )

63/11 . a ) V = 5,62571 cm3 = 17,7 cm3

b ) hi = ~ \ß cm = 11,9 cm

c ) r2 = 1 ^ cm ~ 2,1 cm
V2 = ^ 7i cm 3 « 50 cm3

b ) x = h ( l — | >/2 )

Vi = 22,5 t: cm 3 « 70,7 cm 3

h = y V2 cm = 10,6 cm

64/12 . » ) ^ = J JL
35

64/13 . a )
M k /öl Sk
M z

- V 8 s z
3 (Vl7 +1 )
2(4V3 + 1 )

64/14 .
r k/2 -V2 2rh
h - h - k ^ k _

hV2 + 2r

64/16 . a ) Vr = l - l r 2 kH = Iy

64/17 . a ) V = I r 27th

65/18 . a ) v = ! R2 *h - i 2 H
r H ' r R -

b ) *1 II to
"
'

Mk 3VI7 Sk 3 (Vl7 + l )
D ) M z

- 8 s z
- 14

15. ru = 2re => ^ = j

b ) VR = R2 7tH = | V

b ) V = | r 27rh
b

2 71(H - r - ^ ) = | 7rH(R2 - 3r 2 + 2r3/R )

b ) V = 24V3
7t2

65/19 . a ) V = r§ m3 a 7,3 m3 m 3 = 4,2 m 3



65/20 . <X) V a =

v b =

416

Vc =

3
544
3

632Vä

71

Tt

Sa = (48 + 32\/2 )7t

Sb = ( 112 + 32\/2 )k

Sc = (80 + 116^ 2 )k

ß) Va = lla 37i
Vb = 13a 37t

Sa = 10a 2%/3 71
Sb = 14a 2V3 k

Vc = Vabcd + Vabf - Vdce
= f ( f - 3a2 + | a%/3 - | a>/3 + f -3a 2 ) + | • ^ a 2n - § a - § ■^ a% . § a

= | a 37t(f + f + f + 3-f - f ) = 24,5a 37t

Sc = 25^ 3 a 2K

65/21 . a ) V = 1218 tt
c ) V = 1027t

e ) V = 1287t

S = 4067t b ) V = 3ti(V7 + 4 ) S = 27it

S = (85 + 7y/l3 )nd ) V = f 7t S = (5\[26 + 13 )tt

S = 1207t f ) V = § a37t S = (5 + 3>/2 )7ta2

65/22 . V = | Vb 2 - ( c - a )2 7t(c2 + ac + a 2 ) M = ( a + c )7t -b

66/23 .
?nu- te - = 24 . R = 57 cm , r = 28 cm , h = 85 cm
m 0ben V3

66/25 . V = 2,57 m 3 26 . V = 23ti cm 3 = 72 cm 3 27 . f = ^ = 7,7 %

23



66/28 . a ) V = 23 238 n S = 4 086 7i + 792 \[5 k A = 414

b ) V = 1814 n S = 350 n + 108^ 13 n + 60VlÖ % A = 100

c ) V = 23 000 71 S = 3 600 7t A = 1 500

d ) V = 1 360 666 | ti , S = 25 400 7t + 2 400 Vl3
~

7t + 5 600 ^ 5 ti , A = 19 000

e ) V = 432 7t S = 23 77t + 21\/l7 n A = 42

f ) V = 22 458 | 7t S = 2450 n + 1250 7t A = 550

g ) V = 144 7t S = 96 ti + 24^ 13 7t A = 12

67729 . a ) s = 307t cm ~ 94,2 cm

b ) r = 10 m , m = 60 m
s = | V3 • m = 30^ 3 m ~ 52 m ;h = | h ges = 5V35 m « 14,8 m
kein kürzester Weg existiert , wenn der Mantelwinkel <p > 90 ° ist .

24



4 .Kapitel

Aufgaben zu 4 . 1 Volumen und 4 .2 Oberfläche

a) b) c ) d) e) f > g) h ) i)

r 1 10 0,01 6370 ^ 15
3 nr

~

y 4n
1

2^ 1 ^

d 2 20 0,02 12 740 2 Ĵl5
1

Vre
V2

V 4
3 * 4000

Itt - iO- 6 1,08 -1012 20n 1 2,25k
1

6a/ti
V2
3

71

s 47t 400ti 47t -10“4 5,10 -10® 47t a/225 a/367i 18tia/2 1 27t

87/2 . a ) V = | 7t (d/2 )3 = | ftd3 b ) V = | c > S = 7td2 d ) S = V367tV2

e ) S = 4A g ) S = f h > V = ^

87/3 . a ) S = 78,5 mm 2
, V = 65,4 mm 3 b ) S = 153,9 cm2

, V = 179,6 cm3

c ) S = 45,8 cm2
, V = 29,2 cm3 b ) S = 286,5 cm2

, V = 455,9 cm3

e ) S = 1559,7 cm2
, V = 5792,2 cm3

87/4 . p = 1,24 g/cm 3 5 . p = 5,54 g/cm 3 6 . 70,89 %

87/7 . Si = 5 . 1121158 -1014 m2
, S2 = 5,0949492 -1014 m2

, §| = 0,337 %

Vi = 1,0868631 -1021 m 3
, V2 = 1,0813931 - 1021 m3

, ^ = 0 ,506 %

87/8 . Es laufen 497,4 cm3 heraus .

87/9 . d = 0,197 cm 88/10 . d = 44,8 mm

88/11. a ) 8 b ) 64 c ) 512

25



88/12. a ) 52,4 % b ) 52,4 % c ) 52,4 % d ) 52,4 %

88/13 .

88/16 .

88/17 .

88/19 .

89/20 .

89/21 .

89/22 .

89/23 .

m = p -V = p -A -d = 7566 g 14 . d = 2,5 -10 5 mm 15 . m = 635 g

Der Öltropfen zerfließt zu einem Zylinder . Dieser hat den Radius
r = 6,5cm = 6,5 -10- 2 m und die Höhe h . Wenn die Moleküle neben¬
einanderliegen , dann ist h zugleich auch der gesuchte Durchmesser :
Vöi = 0,01mm 3 = 0,01 ( 10~3 m )3 = 0,01 - 10~9 m 3 = 10“11 m 3

r 27th = Vöi = > h =
r 27t

1Q- Um
6,5 2 -10~4 k

10 7m
132,73 7,53 -10“10 m

a ) A = 7t3 b ) A = 0,757t3 18.
A

Ages

a ) r = 3 b ) r = 3/2 c ) r = 3/n
AE 1d ) -
y

- ~ — => Die kleine Kugel kühlt schneller aus .

Fs _ k -4/3 k r 3
_ 3c

Fd c -r 2 7t
^ r 4k (Konstanten : k , c)

Vi + v 2 = M ^ 3

| tiR 3 + | 7t ( r - R ) 3 = £ - f
=> R 2 - rR + | r 2 ( l - Vn ) = 0

=> Ri -2 = I r± I *^¥- 3
Abstände : di = Ri und d2 = R2

7t r 3

kleinstes Volumen :
1 12— und damit — muß möglichst

klein sein :
= 3 => n = 4 und Ri = R2 = | r .

8 Vk lßyjn
37t b )

Vz
- 37t2

32 vkb )
Vz

128
3 ?t2 “ 3 ?t3

a = l,6r 25 . a = l,45r Vz _ 3
Vk

- 4
89/24 . 26 . h = r => = > V z < V k



89/27 . h = 4r , m = n/l7 ,
Ake

Aku
1 + yi7 > 1 => Ake > Aku

89/28 . a ) R = 3r b ) ^ 29 . Vs = 56,5 cm 3
, As ~ 141 cm 2

89/30 . Tetraeder :

Würfel :

Oktaeder :

r u = a

r u = | V3 a

r u = | V2 a

r > = a

I a

a

r k = \ yj2 a

r k = | V2 a

r k = | a

Tetraeder : a ) 27 : 1 : 3\ /3 b ) 9 : 1 : 3

Würfel : a ) 3^ 3 : 1 : 2^ 2 b ) 3 : 1 : 2

Oktaeder : a ) 3\]3 : 1 : 0,75 \ /6 b ) 3 : 1 : 1,5

90/31 . a )
VT
Vw

V2 b ) —
4 b ) Sw

i Yw _ ~e ) V0
-

2^ 2
} So

3
2

c )
Vt __

3^ 3
Vo “ 8

V p̂. _ V6
g } V w

" 36 n > Sw

St
d ) So

St

3
4

Vt 1
l } V0

- 8 j )

k )
Vw
Vo

9
2V6

St
So

1)

_ 1
“ 4

Sw
So

90/32 . I : 2rcR2 + 2R7th = 2jir 2

=> R2 + Rh = r 2

II : R2 + i h 2 = r 2
4

II —I : i h 2 - Rh = 0 => h = 4R
4

in II eingesetzt ergibt R = ^ V5

27



90 /33 .

90 /34 .

90 /35 .

90 /37 .

I : m = VR2 + h2
II : rnRn + R27i = 2n
III : h (2 - h ) = R2 ( Sehnensatz )
I und III in II eingesetzt ergibt :
V2h - h 2 + h 2 • V2h - h 2 + 2h - h 2
Umstellen und Quadrieren ergibt :
0 = h 4 - 2h 3 + 4h 2- 8h + 4
Lösungen : hi = 0,6787 , h2 ~ 1,632

a ) R = rfy¥ 3 = | n/l8
b ) R = ry/V3 = i n/6

R = | n/3 36 . Vz : Vhk : VKe = 3 : 2 : 1

a ) cp = 45 °
: R + Ry/2 = r => R = (V2 - l )r

Vki = | ji (V2 - l )3 r 3

VS i = | 71 (V2 l )r [r 2 ■ (3 - 2^ 2 )r 2
Vri 2
Vsi - 7
Weil jede Kugel 2/7 des Volumens
des zugehörigen Stumpfs ausfüllt ,ist das gesuchte Verhältnis 2/7 .
cp = 60 °:
entsprechende Rechnung
führt zum Verhältnis 6/13.

(3 ■ 2V2 ) 2 r 2]

b ) cp = 45 ° :
Ski = 4k (V2 - l )2 r 2

Msi = 7t [ r + r (3 - 2^ 2 )] • (4 - 2\[2 ) r
das Verhältnis ist = h"

ivisi 2
cp = 60 °:
entsprechende Rechnung führt zum Verhältnis 3/4 .

c ) cp = 45 °
: Vges = | VKe = | r 37i , Sges = § MKe = | \ /2

cp = 60 °
: Vges = I ; V3 r 37r , Sges = | r 27t

28



91/38 . a ) V = | a3n - 2 - | a37i = | a 37t , S = 4a 27i + 2\{2 a2n

b ) V = a27t -2a - | a3n - | a2 7:a = a37t ,
S = 2a7t -2a + 2a 2 7t + aV2 na = 6a 27t + yj2 a 2n

c ) V = 4d 2r: -4d - | d37i - | d -27t(4d 2 + 2d2 + d2 ) = f d3?i ,
S = 22d 27T + 3d 2"s/5 n

91/39 . V = 27t2 ar 2 S = 4n2ra

91/40 . V = | -4^3 -6 -2k -5 = 120yß n S = 3 -4^3 -2n -5 = 120%/3 n

91/41. Mit zwei Rotationen , zum Beispiel um x = 4 und y = 0 , ergibt sich :

a ) Vi = 2471 = | -4 -3 -271 -di => di = 2 => xs = 2

V2 = 2871 = | •4 -3 -27t -d2 =^ d2 = | => y s = | => S (2 I 7/3 )

b ) Ai = 48n = 12 -27t -di =» di = 2 => xs = 2
A2 = 60ti = 12 -27i -d2 =* d2 = 2,5 ys = 2,5 => S (2 I 2,5 )

91/42 . a ) A = 47ir 2 = 7ir -27td => d = 2r/K

b ) V = | Tir 3 = | r 2 7i -27id => d = 4r/3ji

y»V\ | v 2
91/43 . V = r -h -27T - | r = r 27ih A = ( 2r + h ) -27i 2r + \i ~ 2r7th + 2r 27t

92/44 . Das Bild von Dürer ( links ) ist korrekt .
Schaut man so auf eine Kugel , daß sich die Breitenkreise als Ellipsen
zeigen , dann kann in einem (korrekten ) Normalbild der Pol unmöglich
aufm Umriß liegen !
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Aufgaben zu 4 .3 Kugelteile
93/

92/1 . a ) F = */2 , V = */6 b ) F = 75 tt , V = 125ti c ) F = 2007t/3 , y = 2000t :/9
92/2 . a ) F = ?7c/ i8 b ) F = 2jc/3 c ) F = 0

92/3 . a ) V = 7k/54 b ) V = 2ji/9 c ) V = 0

93
92/4 . a ) = 180 ° b ) « 180,00014 c ) = 181,412 “

93.
92/5 . a ) V = ll7t/i92 b ) V = 81jc c ) V = 2tc/3

d ) V = 30iJt/6 e ) V = 13/t/g f ) V = 2jc/g 93

93/6 . a ) F = k/2 , V = V6 b ) F = 2n , V = 271/3 c ) F = 1271 , V = 87t

93/7 . a ) , b ) h = 2r/3

93/8 . a ) V = ^ ( p2 + h 2) 2
, F = 7i(p2 + h 2)

b ) V = | 7ir 2 (r ± ^jr 2- p2 ) , F = 2ra ( r ± "\/r 2 - p2 )
für h > r gilt das Pluszeichen .

93/9 . a ) F = */2 b ) F = 2 c ) F = 27t

93/10 . V = ^ 7t 1L Vs = 50 % -VK

93/12 . r = 13 cm , V = 7t cm 3 = 5047 cm 3

93/13 . a ) h = r/2 , Vs = 25 % -VK b ) h = l,6r , (h = 2r ) , Vs = 80 % -VK
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93/14.

9

93/15.

93/16.

93/17.

93/18.

94/19.

94/20 .

F = 2507t - 100rt%/3
V = 2-f - 7t ( 10 - 5^ 3 )

= ^ tc ( 2 - v/3 )

) F = 27t - 0,5 ?tV2
V = | 7t ( l - 0,5 ^ 2 )

= V2Rh , h = R , r max = 2R

= r/3

Von den vier Stücken sind
jeweils zwei gleich .
V . - 1250 _ . m 3 _ 2750

Si = 1757t cm 2 « 550 cnr

b ) V « 3009 1V « 4189 1

a ) V = | 7tr 3 ( 1 - | \/3 ) b ) h seg = r/2 , V = ^7 7tr 3

b) ß
y

r =
5 ~̂ (ähnliche

Dreiecke )
=> e = (Vö - 1 ) cm « 1,24 cm

c) | r '27th’ = 1 7t rkir3 + | r0
2 7th0

r 0 = 2,5 cm , h 0 = 5 cm
r ' = | h '

(Strahlensatz )

h ' = a/ 16r kir3 + 4r 0
2 h 0

h ' = a/16 + 125 cm « 5,20 cm
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94/21 .

94/22 .

d ) Das Saftvolumen ergibt sich .
als Differenz der Volumina \
von Kegel und Kugelsegment : '
m = 2cm (Pythagoras )
| ( e + r ) -p = | mr (Dreieckfläche )
=> p = l ’y/ö cm

:= e + y = Alm - p

a ) V = 4206 cm:

b ) F = 1309 cm;

a ) Schwerpunkt S (xs Iy s )
xs = 0 ( Symmetrie )

m ke -yke + mku -yki~
m _

Das Weiberl bleibt in der jeweiligen Position stehen .

b ) Der Schwerpunkt muß in der Halbkugel liegen , es muß also sein :
| ruth -pke - \ h < | 7ir3 -pku - 1 r => h < r ^ 3 ^

32
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94/23 . a ) 2R -h = r 2 (Kathetensatz )

p2 = r 2 - h 2 (Pythagoras )

P = 2

V 2 32R 6 - r 4 ( 6R 2 - r 2 )

94/24 . p = 4cm , h = 2cm
Bedingung : Auftrieb = Kugelgewicht

Pw ' V un ten = Ph ' Vkugel

(2R - h )27t
Pw ‘ q ( R + h ) = ph - | hR 3

p w • ( 2R - h )2 ( R + h ) = p h - 4R 3

Ph = 0,896 g/cm 3

94/25 .

94/26 .

R 2 = (R + H )(R - h ) (Kathetensatz )
, RH

R + H

2 (R + H )
a ) 80 km 2 b ) 4002 km 2 c ) 120 014 km 2

H = 250 m

1 j 2

95/27 . V = 2 - (3r - r/2 ) = JL Kr 2

F = 2r 2n

h = 0,5r
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95/29 . F = 4txR2

\ . V , „ » '
.■■■>*-

•j-,■>->*;•■.. ■;•;-&;■ivr •.*:■-'■

95/28 . Vergleiche Aufgabe 27 . : r = 3cm , h = 1,5cm , p = 0,5n/3 ~ 2,6cm

a ) F = p 2 7t = 21,2 cm2

b ) F = 2 -2rji(r + h) = 169,6 cm2

c ) V = 2 - 1 (r + h ) 2k - ! r = 191 cm3

H

95/30 .

2(R
~ H) (sie^ e Aufgabe 25 . )

a ) H = 1 cm , R = 10 cm , F ~ 57 cm 2

b ) H = 10 cm , F * 314 cm2 b ) H = 990 cm , F = 622 cm2

p 2 + x2 = 800
p2 + (x + 20 )2 = 2000

x = 20 , p = 20
hi = 20 (Vö - 2 )
h 2 = 20 (\/2 - 1 )
v = v2 - v1 =

= f h 2
2 (3r 2 - h 2 ) - § hi 2 (3n - hi )

~ 2,481 cm 3
m = 2pV = 12,4 g

20/5 = r2



5 .Kapitel

Aufgaben zu 5 . 1 Tangens

112 /1.

ct 15 ° 1 ° 1 ' 89,9 ° 22,5° 15° 75 ° 36 ° 18°

tan a 0,268 0,017 2,9 -10~4 573 a/2 - 1 2- a/3 2 + a/3 V 5-2a/5V 1- 2a/Ö/2
112 /2 .

X 1 0,1 0,0123 n/io */4 7t/2 1,00 1,107 1,57
tan x 1,56 0,100 0,0123 0,325 0,666 - 1,55741 2 1990

112/3 . a ) 0,1003346 ( 0,1003346 ) b ) 1,9151373 ( 1,9647597 )

c ) 0,9884664 ( 0,9992039 ) d ) 0,5773421 ( 0,5773502 )

112/4 . a ) 0,4998604 ( 0,499767 ) b ) 0,0996686 ( 0,0996686 )

c) 1,9171714 (1,2490458 ) d) 2873,4579 ( 1,2626273 )
Für x > 1 klappt die Näherung nicht .

113/5. a ) - 0,2504

d ) 0,7899

113/6. a ) -V3/3 b ) i

113/7. a ) 75 ° b ) 13°

113/8. a ) 45 ° b ) 30 °

f ) 0 °
; 60 ° g ) 30 ° ;

113/9. Paßstraße : 16,7 °
U - , S -Bahn : 5,7 °

Standseilbahn : 42,0 °

b ) - 1,601 -10-4

e ) 0,9981

b ) nicht definiert

c) - 1,595 -10-7

f ) 1,000

c ) 2/3

113/10. a ) 56 b ) a/3 c ) 36,9 ° d ) 53,1 ° e ) 0,017 f ) 57,3

g) 14 ° h ) 76 ° i ) 66° j ) 66° k ) 66 °
1 ) 66 °



113/11 . b = 24cm 113/12. oc = 12° 114/13. h = 21m

114/14.

114/15.

115/17.

115/18.

115/21.

115/23 .

115/24 .

115/27 .

116/29 .

116/30 .

116/33 .

116/34 .

116/35 .

Beispiel München : cp = 48,1 °
lmax = 5,4 m Imin = 0,82 m
Bei cp = 23,5 ° ist die Schattenlänge am 21 . Juni gleich null .

a ) 26,6 ° b ) 63,4 ° 16. h = d -tan a

a ) ßi = 51 ° - 10 ° = 41 ° b ) ß2 = 41,4 ° + 10 ° = 51,4 °

702 m 19. 4,4 m 20 . tan a = 22/s => a = 70 °

24 ° 22 . 6,7cm

a ) 39,8 ° b ) 78,2 ° c ) 45,2 °

22,6 ° und 67,4 ° 25 . 26 ° und 154 ° 26 . e = 4,2 f = 48,3

a = 35 ° 116/28 . Fi = 3280 F 2 = 13786

a ) cp = 70,5 °
(Seitenverhältnis \[2 )

b ) cp = 63,4 °
(Seitenverhältnis x = 1-( )

F = 520 31. 80 ° 32 . c = 10

tan a = h/q tan ß = h/p => tan a tan ß = h% q = 1 (Höhensatz )

h = Vpq (Höhensatz ) , tan a = % = Vp/q

a ) | sn = tan | |i n => sn = 2 tan | pn

„ , i u n n ' tan | PdUn = n -Sn = 2n -tan | pn => ^ = -

n - | - 1 - sn = n -tan | pn

U3

71

F n n ' tan | hn

K
~

K

n = 3 : g3 = 120 °
, 27t 1,65 U5n = 5 : p5 = 72 °

, ^ = 1,16

U8n = 8 : p8 = 45 °
, = 1,05
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116/36.

b ) Ähnlich wie in a ) ergibt sich:

n = 45 , CTlII GO H = 1,0016278

n = 90 , ß90 = 4 °
, pr = 1,0004064

n = 180 , P-180 = 2 °
, ^ « 1,0001016

n = 360, ß360 = 1 °
, ^ = 1,0000254

= 82,9°
= 37,9 ° « 2 = 71,6°

ot6 = 26,6 ° a 3 = 68,8 ° a 4 = 45
Ö7 = 11,3°

116/37. Hat die gegebene Gerade die Steigung m ,
so haben ihre Lote die Steigung - 1/m.

116/38. a ) 26,6 ° b ) 36,9 °

117/39. a) 26,6 ° b ) 31 °
c ) 59,0 ° d ) 31,0 °

c ) 26,6 °d ) 45 °
e ) 63,4 °

e ) 71,6 °
f ) 45 °

f) 59,0 °

117/40. a ) I b = => c = 2b - a
II b2 = c2 - a2

b2 = (2b - a )2 - a2 => b = 4a/3
tan a = = | => a = 36,9 °

, ß ~ 53,1°

A
b ) I b2 = ca

II a 2 + b2 = c2

a2 +ca - c2 = 0 => a = 1 c

tan « = F = ^ ^ =* a ~ 38,2 ° => ß » 51,8°

117/41 . a ) a = 36,9 ° ß = 26,6 ° y = 63,4° 8 = 71,6°
e = 18,4° c = 26,6 ° p = 63,4° 0 = 53,1°

b ) a = 63,4° ß = 63,4 °
y = 53,1° 8 = 45°

e = 63,4° c = 71,6 ° p = 71,6° 0 = 108,4°

117/42. a ) a = 71,6° b ) ß = 36,9 ° c ) y = 53,1°

d ) Wäre das Achteck regelmäßig , so müßte jeder Innenwinkel 135
haben . Dies ist nicht der Fall , weil zum Beispiel der Winkel mit
dem am höchsten liegenden Scheitel etwa 126,9 ° mißt .

e ) § = 53,1 °
; nicht regelmäßig , denn der Winkel , dessen Scheitel

dem Scheitel von 8 am nächsten liegt , mißt etwa 126,9° .
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f ) e = 22,5 g ) C = 54,7 ' h ) r| = 53,1 °
, ü = 45

118/43 . a) tan | a = ^ => a = 53,1°

b ) tan | a = , «w “ 63,4 °
, ocn ~ 46,8 °

aT « 8,2°

c ) tan | a = , aw = 80,6 °
, ocn « 55,9 °

oix = 9,7°
Beim Normalobjektiv stimmen Seh - und Aufnahmewinkel etwaüberein .

120/44. a) Die Projektion der Raumdiagonale ist
immer eine Flächendiagonale : (p ~ 35,3 ° b ) cp == 70,5°

120/45. a ) cp = 70,5 ° b ) ß = 109,4°

120/46. a = 35,3 ° ß = 60°
y = 78,5° § = 101,5°

121/47 . a = 54,7 °
ß = 50,8°

Y = 90° 8 = 19,5°

121/48 . a) cp = 35,3 ° b ) cp = 45°

121/49 . a) a )
ß )
Y)
S )

AH : 45°
AM: 41,8 °
AM : 26,6 °
AM : 24,1 °

BH : 35,3°
BM : 41,8 °
BM : 19,5°
BM : 24,1 °

CH : 45°
CM : 63,4 °
CM : 26,6 °
CM : 45 °

DH : 90°
DM : 63,4 °
DM : 90°
DM : 45 °

b ) a )
ß )
y)
8 )

ADH : 90°
ABM : 45°
ADM : 90°
ABM: 26,6°

ABH : 45°
BCM : 63,4 °
ABM : 26,6 °
BCM : 45°

BCH : 45°
DCM : 90°
BCM : 26,6 °
DCM : 90°

DCH : 90 °
ADM : 63,4
DCM : 90 °
ADM : 45 °

c ) Winkel zwischen den beiden Pyramidenflächen mit dergemein - samen Kante :
oc ) AH : 90 ° BH : 120° CH : 90° DH : 90°
ß ) AM : 108,4° BM : 108,4° CM : 90° DM : 90 °
Y) AM : 90 ° BM : 143,1° CM : 90° DM : 90°
5) AM : 129,2° BM : 129,2° CM : 90° DM : 90°
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121/50. hi = x -tan 50° ,
h 2 = x -tan 45°
=> hi = h2 -tan 50 ° I
II hj - h 2 = 140 m
=> h = h 2 + 70 m = 800 m

Aufgaben zu 5 .2 Sinus

122/1 .

a 15 ° 37 ° 1 ° 1 ' 89,9° 72 ° 36 ° 15 ° n . def.
sin a 0,259 0,602 0,017 2,91 -10^ 1,000 ± \JlO+2yß 10 - 2V5 o1 4̂

122/2.

X i 0,1 0,0123 Kfio rc/4 k/ 2 0,3196 0,903 n . def.
sin x 0,841 0,0998 0,0123 0,309 0,707 1 ’VlO tc/4 ^ 2

122/3 . a) 0,0998334 ( 0,0998334 ) b ) 0,8912074 ( 0,8912073 )

c) 0,7068251 ( 0,7068251 ) d) 0,5 ( 0,5 ) .

122/4 . a) 0,5775447 ( 0,5775822 ) b) 0,1001674 ( 0,1001674 )

c) 0,3046926 ( 0,3046926 )

122/5 . a ) 0,07598 b) 7,97 -10--5 c) 7,97 -10“8

d ) 1,099 e ) 1,0009 f) 1,000009

122/6 . a) 1 _ V3 /2 b ) V2 - 1 c ) 2/3V3

122/7 . a) a = 18° b ) a = 27° c) a = 25 ° d ) a = 15°

122/8 . a ) a = 30° b ) a = 60 ° c) a = 45° d ) a = 0 °

e) a = 0 ° oder a = 90° f) a = 0 ° oder a = 30°

g) a = 30° oder a = 90° h ) keine Lösung



123/9 . a ) c = 58 b ) a = V3 /2 c ) a = 36,9 ° d ) c = 57,3

e ) c = 1,0 f ) a = 22 ° g ) a = 11 ° h ) a = 60 ° i ) a = 75 °

123/10 . a = 64,2 ° 11 . 1 = 5,85m 12 . a = 1,34 °
, h = 1,6 cm

123/13 . a ) DH = HB = c - sin | a

ABDC :
C _ b

2c - sin 1 a

b ) analog a ) .

123/14 . sn = 2 sin | pn un = n -sn = 2n -sin | pn
F n = n - | sn - sin (90 ° - | gn ) = n - sin \ pn -sin (90 ° - | gn )

Un n - sin - p,n F n n - sin | gn - sin (90 ° - \ p n )
2k K 71 71

, U3a )
f 3= 0,827 - r » 0,413 b ) U5

271 = 0,935
F* _
K 0,757

, Ugc ) 2 K
Fr» 0,974 -f = 0,900 d ) Ui80

2 71 » 0,9999
^ 180

n = 0,9998

123/15 . p = 2,7 F = 29,2 16. c » 6,2 F » 35,5 17. s » 15,2

a ) 29 °
, 60 °

, 97,2 ° b ) 180 °
, 254,6 °

, 311,8 °

123/18 . a ) tan | y = 2 => y » 126,9 '

=> ot ~ 53,1 °

b ) s = 2,5

c ) a = 2s - 1 = 4

123/19 . 10,6 und 22,7

123/20 . g 360 °
, sin
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<n

124/21. a ) 60

124/23 . e sm a

b ) 53,1 ° 22 . 4,7 cm

^erde —mond = 384 201 km 6 er[je „ sonne = 1,49 -10® km

124/24 . a ) e : Entfernung Erde -Sonne
R : Radius der Sonne
x x + e
r _ R

x er

sm

" R -

co =

( Strahlensatz )

- = 1 376 289 km

0,53 °
(ü

r
2 x

Kathetensatz :
r 2 = xy => y = 29,5 km ,
h = x - y = 1 376 260 km

b ) ähnlich wie in a ) ergibt sich : x = 371 398 km
y = 8 km , h = x - y = 371 390 km9r = xy

Sonne

124/25 . a ) 19,5 ° b ) 35,3 °

Aufgaben zu 5 .3 Kosinus

125/1 .

a 15 ° 37 ° 1 ° 1 ' 89,9 ° 18 ° 54 ° 75 ° n . def .

cos a 0,966 0,799 0,9998 1,00 1,75 -lOr3 iV 10+2V5 i \/lO - 2Vs fV2 -V3 \Jl0 - 4yß

125/2 .

X 1 0,1 0,0123 n/ io rc/4 n/2 1,25 0,667 n . def .
COS X 0,540 0,995 0,9999 0,951 0,707 0 * /l0 * 4 k/2

125/3 . a ) 0,9950041 ( 0,9950041 ) b ) 0,4535968 ( 0,4535961 )

c ) 0,7073882 ( 0,7073882 ) d ) 0,8660254 ( 0,8660254 )
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125/4.

125/5.

125/6.

125/7.

125/8.

126/9.

126/10.

126/11.

126/12 .

126/13.

a ) 0,9932516 ( 0,993214 ) b ) 1,4706289 ( 1,4706289 )

c ) 1,2661037 ( 1,2661037 )

a ) 1,163 b ) 1,002 c ) 1,000

d) 2,809 e ) 2,006 f) 2,000

a ) \[S - 1,/2 b ) yfe c ) 2%/3

a ) a = 72 ° b ) a = 18° c ) ot = 5 ° d ) a = 75 °

a ) a = 60 ° b ) a = 30 ° c ) a = 45 ° d ) a = 90 °

e ) a = 90 ° oder a = 0 ° f ) a = 90 ° oder a = 60 °

g ) a = 60° oder a = 0° h ) keine Lösung

a 15 ° 60 ° 53,1 ° 1 ° 89 ° [Toi” 79 ° 30 ° 15 °
b 15 0,5 3 1 1 239 191 489 061 560 123
c 15,5 1 5 1,0002 57,3 638 1001 564 719 579 882

a ) EF = FB = c - cos a/2
ÄEBC : = cos «/22c - cos a /2

= * cosa / 2 = y ] Hr

b ) analog a )

a ~ 56,3 ° h = 6 a = 10,8 p = 9

AABC ~ ABFH , denn ß ist gemeinsamer
Winkel und f = => b ' = b cos ß
analog : a ' = a cos a , c ' = c cos y

p = r - cos 50 °
,

ui 2r - cos 50 ° - n
U2 2rn



126/14 . a ) p = 4807,5 km b = 7384 km ( |i = 88 °)

b ) ^ = sin 44 ° s = 6679 km c ) |i ~ 63,2 ° e = 7030 km

126/15. A = 311m 2

126/16. l .Fall : ß < 90 ° :
ci = b cos a
C2 = a cos ß
=> c = a cos ß + b cos a

2 .Fall : ß = 90 °
: c = b cos a = a c

3 .Fall : ß > 90 °:
C = C+ Cl - Cl

= b cos a — a cos ( 180 ° - ß )
= b cos a + a cos ß

ebenso gilt : b = c cos a + a cos y

126/17. a ) AT/2 = cos a , AT = 2 cos a = 0,7167 . . . h c = sin a

Fläche (ATC ) = | AT h c = sin a cos a = 0,3345 . . .

b ) wenn Fläche (ABC ) = 2 -Fläche (ATC ) ist , dann muß sein AB = 2 -AT

^ o sin q 1 , a^ tan ß -
3/z AT - 3 cos a _ 3 tan a =?■ ß ~ 41

126/18. Bogenl äng e (CEA ) = R( 7i + 2a ) , Bogenlänge (BFD ) = r(n + 2a )
AB = CD = GM2 = a cos a
1 = 2AB + Bogen ( CEA ) + Bogen (BFD ) = (R + r )(n + 2a ) + 2a cos a

ß + b cos a

b cos y + c cos ß
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127/19 . a) Die zur Bildebene parallele Seite sei a , die andere b
a ' = a b ' = b cos cp
=> A ' = a ’b ’ = A cos cp

b ) c ' = ch ' = h cos cp
A ' = A cos cp

c ) Ergänzung zum Rechteck
liefert nach a ) und b ) :
Aefgh = Aj + A2 + A3 + A
A 'efgh = Aefgh • cos cp
= (Ai + A2 + A3 + A) - cos cp
= Ai cos cp + A2 cos cp + A3 cos
= Ai + A2 + A3 + A
=> A ' = A cos cp

127/20. Liegt die senkrechte Projektion S ’ der Spitze S in der Grundflächeoder auf dem Rand , so ergibt sich die Behauptung direkt aus
Aufgabe 19.
Liegt S ' außerhalb der Grundfläche , weil zum Beispiel X stumpf ist ,so gilt :
G = FAbs’ + F as 'C - Fbs 'c

= K- cos k + M - cos p - L - cos ( 180 ° - X)
= K - cos k + L - cos X + M - cos p

A

Aufgaben zu 5 . 1 / 5 .2 / 5 .3

128/1 . a b c h P q F a ß
a) 12 5 13 60

13
35
13

25
13 30 67,4 ° 22,6 °

b ) 0,88 1,05 1,37 462
685

441
548

1936
3425 0,462 40 ° 50 °

c) >/l3 fVi3 6,5 3 2 4,5 9,75 33,7 ° 56,3 °

d) | V5 V5 2,5 1 0,5 2 1,25 26,6 ° 63,4 °
e ) 2,5 1,875 3,125 1,5 2 1,125 2,34375 53,1 ° 36,9 °
f) 3VlÖ Viö 10 3 9 1 15 71,6 ° 18,4 °
g) 24 143,4 145,4 23,67 3,96 141,5 1720,8 9,5 ° 80,5 °
h) 15 20 25 12 9 16 150 36,87 °

(53,13°
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128/2 a c ha h c r a

a) a/468 24 20 18 13 56,3 °

b) V2ÖÖ
~

14,9 a/160 12 8,3 58,3 °

c ) 24 8 13 33,7 °

d ) 20 24 19,2 16 12,5 53,13 °

e ) 8,9 16 7,2 4 10 26,57 °

128/3 . h c » 4,43 c = 5,42 a = 5,19

128/4 . a ) v = a - cos e u = a - tan e w =

b ) u = a - tan e u = x =

u = a - tan e ■ sin e

x = a - tan e • sin co

d ) v = a - cos co z = a - sin co y = a - sin co • sin e
x = a - sin co • cos e u = a - cos co- cos e w = a - cos co ■ sin e

c ) s = a - cos e
tan e

z ~ a tan co
tan e

w = a tan co

t = a - sin e

y =

sin co

v = a - tan e
tan e
tan co cos co

4,62

tan e
' tan co
a

tan e

tan e
1 sin co

a
sin e

e ) u =
w

y =

a - cos co v = a - sin co
= | (u - tan e - a - sin co) = | a (cos co - tan e - sin co)

| (a - cos co

x = w
sin e
u

cos e

= ^ ai

sin co \
' a tan e '

cos co-tan e
sin e

! / cos co
2 cos e

+

sin co
sin e

sin co
sin f '

) = k a (
cos co
cos e

sin co
sin e

129/5 . u = lfy/3 , a = 60 °
, ß = 120

6. F = 2rjt -h - Jq « 63 m 2

129/7 , ^ = sin cp ^ r = 2
”
sln

~
cp

Bogen (AB ) = 2ra ( l - )
Jl -S

sin cp
71-AB
sin cp
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129/8 . h = 529 m 9 . cp = 8,2 ° s = 69,4 km

130/10 . a ) 34,4 m b ) 2,9 cm c ) 4933 m

130/11. 1,47 -108 km 12. 1,35 -10 6 km

130/13 . a ) 4,04 -10 13 km b ) 1,93 - 10 15 km c ) 1 parsec = 3,09 - 10 13 km

131/14. a ) v = a -- ^ w = a yjl + ( sin a )2 (cos a )2

b ) x = c(cos a )2 y = c sina (cos a )3

c ) y = a [ l - 2 (cos ß )2 ] z = a(sin ß - cos ß )
d ) v = a ( l - cos ß ) w = a sin ß

131/15 . h = a sin 37 ° « 6 q = tar 5̂3 - ” 4,5 CF = h sin 37 ° « 3,6
BF « 6,4 FD = FB sin 37 ° « 3,9 ED « 2,9
AD « 7,4 co « 28 ° w«8,3 v « 6,7
8 « 64 ° <£ (v,w ) « 88 °

131/16. e = 9(Z /g = 15 ; Dreieckfläche : F = p -s => p = i (\ /3 —1 ) (Inkreisradius )

AM = 2p = -\/3 - 1 CM sin 15 °

MP CM tan 15 ° = \ /2 ( 2 — \JS )

132/17 . a ) OAi

OBi

w cos cp
w

cos cp

b ) cp « 32,8 °

d ) Fi = | w2 tan cp

F ; = \ w2 tan cp

OA2 = w (cos cp)2

wOB2
( cos cp)2

c ) cp « 45 °

1
(cos cp):

1
2

~ ( COS Cp)
4

2i - ( COS Cp)i2i+2

•£ CMP = 90 °

OA ; = W ( cos cp )1

wOB , ( cos cp )1

2 T
|̂ ( cos 9 ) 2

e ) 4cBi + < A ,+ i = 180 °
, also sind es Sehnenvierecke

ri = \ wA/ ( cos cp) 2 + 42 \ l T ( cos cpr
- 2

p = I w ^ / ( coscp ) 2l +
( ^ 3 ^ 2

- 2



132/18 . Sekanten -Tangenten -Satz :
ÄD -ÄC = M ® => ÄD = s/4
AE = s/2 => DE = s/4 , BE = s/2 V3

Pyth . in ÄDBE liefert : y = s/4 Vl3

CT = h = s/2 ^3 , HB = 2/3h = s/3A/3

£ RMH = 30 °

RH = HM sin 30°

= (h/2 - h/3 ) - I/2 = s/24 V3

RM = HM cos 30 ° = h/i 2 '\/3

fr
"

= Vfm RM
= y/l/4h 2 - V48h 2

= y/lV^sh2 = s/8 Vll
x = s/3 V3 + s/24 V3 + s/8 VIl

= s/8 (VH + 3V3 )

s / 2

R -

M

- - . x

S/2

132/19. a ) Sekanten -Tangenten - Satz :
AE • a = a2/4 =>
ÄE

~
= a/4 ,

BIT = 3a/4
Pythagoras :
r2 = ( 3a/s )2 + (a/2 )2

=> r = 5a/s
sin P/2
=> 14 = 106,3

a/ 2r

b ) r + n /2 = aV2
=> r = a(2 - V2 )
x = a - r = a (V2 - 1 )

tan 8/2 = ^ - -ad
=?. § = 45 °
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132/20 . a ) tan <P/2 = 6/g => cp = 67,4 °

tan \p = 5/2,25 => V “ 65,8 °
b ) tan e = 5/ io => e = 26,6 °

x = 12,5

9,75 I 2,25

133/21 . EB = 3\[5 b = 2\ /l0 co « 71,6 ° d = 2^ 5 c = 2Vö e - 26,6 °

g = 4 f = 5 e = Vö X ~ 26,6 °
cp =36,9 ° a = 4>/5

133/22 . a ) Fi =

b ) F 1 =

c ) F s e i]

G
cos a

F
cos ß

2 cos y
F [ = | L tan y

d ) F = 223 N

F 2 = G tan a

F 2 = F tan ß

134/23 . a ) N = G cos cp,

Hb ) yj = cos cp,

H = G sin cp

HW
cos cp

= G tan cp

c ) Grenzfall : Haftkraft = Hangabtrieb
g -G - cos cp0 = G - sin cp0 => p. = tan cp0Stahl auf Eis : cp0 = 1,5 °
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125/24 . sin a = 1 ’4/60 F = G - tan a => F = 9,2 N

Aufgaben zu 5 .4 Trigonometrisches Sextett

134/1 . a) b ) c) d) e ) f) g)

sin a 0,6 0,5 ^ 19 1
2 0,877 5 ^ 2 + V3

cos a 0,8 5
12 0,48 i \ /2 - V3

tan a 0,75 IV119 1 1,827 2 + V3

134/2 . a ) sin a b ) cos a

- 2e )

c ) (tan a )2

f)
( sin ar - 1 (cos a )2 cos a

d ) 1 + cos a

1
g) cos a

135/3 . a) sin ab ) 0 (wegen a = 90 °
) c)

135/4 . a) cos a b ) 2 (sin a )2 - 1 c)

- 4 sin a
( cos a )2

1

d ) -rsin a

cos a d ) - (tan a )2

135/5 . a) cos a b)
( cos a )2

c) cos a d ) 2(tan a )2

135/6 . a) ( 1 + cos a )2 b ) 2 c ) sin a d ) - ( 3 - 2 sin a )2

135/7 . a ) 1 b ) 2 tan a c) sin a d ) -sm a e ) tan a
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6 .Kapitel

Aufgaben zu 6 . 1 Trigonometrie am Einheitskreis

147/1 . Die Punkte liegen auf dem Kreis um M ( 0 I 0 ) mit Radius r .

147/2. a ) y = ± ~ \[3 b ) x = ± 1- >/2 c) d ) y = ± 1
e ) x = ± \ ^2 f) x = ± 1- 'j3 g ) y = ± \ \[2 h ) x = 0

147/3. a ) sin ( 180 - 120 °
) = \ ^3 b ) - cos ( 180 °- 150 °

) = - i -y/3

c ) - tan ( 180 °- 135 °
) = - 1

e ) cos ( 360 °- 360 ° ) = 1

g ) - sin ( 240°- 180 °
) = - | V3

i) tan (210 °- 180° ) = | V3

k ) cos ( 360°- 300° ) =

m ) - sin(225 °- 180 °)

d ) - sin( 360°- 315 °) = - | \/2

f) - tan (360 °- 330 °
) = - | \/3

h ) - cos ( 225 °- 180 °
) = - \ \j2

j ) - sin(360°- 330°) = - |

1 ) tan ( 360 °- 360 °
) = 0

n ) - tan ( 360°- 315 °
) = - 1

o ) - cos (240 °- 180 °
) = - |

147/4. a ) sin 30 ° b ) cos 30 °= ^ V3

d ) sin 45 °= | \ /2 e ) cos 45 °= | ^2

g ) sin 0° = 0 h ) cos 0°= 1

j ) - sin ^ = - | V2 k ) cos | = | V2

c ) tan 30 °= | \/3

f) tan 45 °= 1

i) tan 0 °= 0

1) - tan j = - 1
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137/5. a ) (p = 270 °+ k -360 ° = | n + k -27t , k e Q

b ) cp = 30 °+ k -360 ° = | n + k -27t oder cp = 330 °+ k -360 ° = y k + k -27t

c ) cp = 45 °+ k -180 ° = | n + k -7t

d ) cp = 225 °+ k -360 ° = | n + k -2n oder cp = 315 °+ k -360 ° = | 7t + k -27t

e ) cp = 120 °+ k -360 ° = | 7t + k -27t oder cp = 240 °+ k -360 ° = | 7t + k -27t

f ) cp = 120 °+ k -180 ° = | 7t+ k -7t

g) cp = 60 °+ k -360 ° = | 7t + k -27t oder cp = 120 °+ k -360 ° = | 7t + k -27t

h ) cp = k -360 ° = k -27t i ) cp = 150 °+ k -180 ° = | n + k -7t

j ) cp = 180 ° + k -360 ° = 7t + k -27t
k ) cp = 150 °+ k -360 ° = | 7t + k -27t oder cp = 210 °+ k -360 ° = | 7t + k -27t

l ) cp = 135 °+ k - 180 ° = | 7t + k -7t

147/6. a ) { l n > I 71} b ) { fTt . fTt} c ) \ l n ’ T K ) d ) i l K}

e ) {7t} I i 71 ’ I 71} g ) h > ü 71
'

i ) { t * ’ I 71} i > { f ^ H k ) II 71 ’ f 71}

148/7. a ) 9 = 53,1 ° oder 9 = 126,9 ° b ) 9 = 161,8 ° oder 9 = 198,2 ‘

c ) 9 = 76,0 ° oder 9 = 256,0 ° d ) 9 = 191,5 ° oder 9 = 348,5

e ) 9 = 53,1 ° oder 9 = 306,9 ° f ) 9 = 120,5 ° oder 9 = 300,5 °

148/8. a ) {0 , 7t , | 7t ’ ! 7t } C ) { 7t , | jt , I 71}

d ) | | 7I , | 7t , | xc , ! jt | e ) {0,34 ; 2,8 }

148/9 . a ) cos 9 = 3/ö => tan 9 = 4/3 b ) sin 9 = 12/13 => tan 9 = ~12/s

148/10. sin 9 = 3/5 cos 9 = 4/5
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148/11. a ) cos cp = 9/4i tan cp = 4% b ) cos cp = 4/s tan cp = 3/4

148/12 . a ) sin \ 7 - cos a + - . 1 180 °- y
2

~ = sm | 7 - cos —
2

~

= sin | 7 - cos (90 °— | 7) = sin | 7 - sin | 7 = 0

b ) ( sin | a )2 - fsin -̂ -^
'
l = (sin | a )2 - ( sin 18Q

^
- - ) =

= ( sin | a )2 - [ sin (90 °- | a )]
2 = (sin | a )2 - (cos | a )2 = 2 ( sin \ a )2 - 1

c ) tan 5 a • tan ^ — = tan | a • tan (90 °- a/2 ) = 1 I

d ) (sin | a )2 + fsin -̂ y -^
j + tan | 7 • tan —^ =

= ( sin \ a )2 + [sin (90 °- \ a )] + tan \ 7 ■ tan (90 °- 7/2 ) = 1 + 1

a ) sin 1dc + sin ß + sin 7 + sin 8 =
= sin a + sin ( 180 °- a ) + sin a + sin ( 180 °- a ) == 4 sin a

b ) COS <a + cos ß + cos 7 + cos 5 =
= cos a + cos ( 180 °- a ) + cos a + cos ( 180 °-- a ) = 0

a ) sin (z -n/2 ) =
f 0 für z =

: j 1 für z =
[- 1 für z =

-- 2k
: 4k + 1
: 4k - l

b ) cos (z -7t) = 1
-. für
1 für

z = 2k
z = 2k + 1

f 0 für z = 3k
c) tan {z -k/3 ) --= 1 +V3 für z = 3k + 1 k ist jeweils ganz

(- V3 für z = 3k + 2

a) a ~ 36,9 °+ k -360 ° => cos a = 0,8 tan a = 3
4

a = 143,1 °+ k -360 ° =» cos a = - 0,8 tan a = 3
4

b ) a = 210 °+ k -360 ° => cos a = - | V3 tan a = IV3
a = 330 °+ k -360 ° => cos a = IV3 tan a = - IV3

c) a ~ 65,4 °+ k -360 ° => sin a = iVnö tan a = | n/Ti9
a = 294,6 °+ k -360 ° sin a = - ^ Vll9 tan a =

d ) a - 225 °+ k -360 ° => cos a = - l >/2 tan a = 1
a = 315 °+ k -360 ° cos a = IV2 tan a = - 1
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149/16.

149/17.

149/18.

e ) a = 150 ° + k -360 °

a = 210 ° + k -360 °
=> sm a :

=> sm a = - ;

tan a = - 1 ^ 3

tan a = § \[3

f ) a « 118,7 °+ 2k -180 °

a = 118,7 ° + ( 2k + l ) -180 °

g) a = 75 ° + 2k -180 °
a = 75 °+ (2k + l ) -180 °

sin a ~ 0,877
sin a = - 0,877

sin a = 0,966
sin a = - 0,966

cos a ~ - 0,480
cos a = 0,480

cos a :
cos a ^

0,259
- 0,259

Es können sich nur die Vorzeichen der Wurzeln ändern , sie stehen da :

a )
sm a
cos a
tan a

c )

sm a cos a

sm a
cos a
tan a

sm a
v
+
+

+
v
+

cos a

tan a

tan a
+
+
V

b )
sm a
cos a
tan a

sm a cos a tan a

a ) ( 3>/3 I 3 ) b ) (- 0,3 \ /2 I 0,3V2 ) c ) (- 51 - 5^ 3 )

d ) (—-s/5 I 0 ) e ) (- 0,5 \] lÖ I 0,5 \flÖ ) f ) ( 0,439 I 0,240 ) g ) ( 0l 0 )

a ) ( 53,1 °
| 5 ) b ) (337,4 °

| 13 )

d ) ( 253,7 °
l 25 ) e ) (45 °

l \J2 )

c ) ( 151,91 17 )

f ) ( 330 °
l 2 ) g) ( 90 °

l 1 )

a ) ( llO ) (—V2I V2V3 ) (—V2I _1/2"\/3 )

b ) ( ll 0 ) (Oll ) (- l | 0 )

c ) ( ll 0 ) ( V2I V2V3 ) (- V2I 1/2,n/3 )

( — 1 | 0 ) (—V2I _1/2\/3 ) ( V2I —1/2's/3 )

d ) (cos n -360 °

17 sm n -360 "

17 ) , n = 0,1 , 2

(0 I - 1 )

15 , 16

149/19.



149/20 .

Kreis mit Radius 5
Halbgerade

Archimedische
Spirale

Gerade

r - - ,- 1- r—►0 5

d)

1

Kreis mit
Radius

2,5



Aufgaben zu 6 .2 Berechnungen am allgemeinen Dreieck

149/1 . a ) y = 65 ° b = 6 a = 5,1 b ) a ~ 47 ° ß « 23 ° b = 3,7

c ) ß , = 53,1 ° y , = 96,9 ° d « 9,9
ß2 = 126,9 °

Y2 = 23,1 ° c2 = 3,9 d ) y = 90 ° a = 30 ° a = 3

150/2 . a ) a = 6,6 y = 75,5 ° ß = 64,5 °

b ) o; « 48,5 ° y = 92,9 ° ß « 38,6 °

c ) a « 36,9 ° y = 90 ° ß = 53,1 °

d ) a = 90 ° y = 45 ° c = 4-\[2

150/3 . a ) Sehnenformel : c = 16 sin 63 ° = 14,3 a = 16 sin 44 ° = 11,1
b = 16 sin 73 ° = 15,3 F = | bc sin a « 75,8

b ) 4 BAH a * 33,6 °
ß « 56,4 °

oc = 50,6 °

a « 4,8 b = 5,2 F = | ah a « 12,1

150/4 . a ) F = ab =
b2

tan co

b ) v = b cos co , AE = b sin co _ _ _—
w 2 = a 2 + AE 2 - 2a -AE cos co => w = —- ’sjl - 3 ( sin oo )2 ( cos co)2

_ sin co
F = EF -v = b2[ l - 2(sin co)2]

c ) cos cp = v/w => cp ~ 44,9 °

a_ b

d ) Aus l %/2 = ,
e c - ■- = mit e = AC und e2 = a2 + b2

2 V 1 - 3 (a/ e )2 (b / c )
2

M , / b \ 2 3 + %/5 , rb n2 3 - yß
folgt ( - ) = —f - oder { - ) = — >

- = - oder - = (Goldenes Rechteck )
a 2 a ^
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150/5 . a ) cos a = 2bc
= V8 2 + 20 2 - 2 -8 -20 -

20 2 + V2Ö8 2 - 82
2 -20 -V2Ö8

x

cos e

b ) Dreieck ABT :

Dreieck AST :

> a = 36,9 °

cos a => x = 4^ 13

> e = 19,4 °

l
sin 80 ° sin 40

sin 80 °
a = sin 40 ° 1,532 . . .

1 + a 2 - 2a cos 20 °
sin a sin 20 °

1
“ x

sin a = sin 20 °

Vl + a 2 - 2a cos 20 °

Der Taschenrechner kommt auf a =30 ° .
Ist das ein Näherungswert ,
der haarscharf bei 30 ° liegt ,
oder ist der Wert exakt ?
(Fortsetzung 167/27 . )

150/6 . a ) a : b : c = sin a : sin (90 °- a ) : 1 b ) a : b : c

150/7 . AC = Va 2 + b2 - 2ab cos ß = 9,9 BD =

150/8 . x2 + h2 = 36
(6 - x )2 + h 2 = 25 => x = ^
cos a = ^ => a = 49,2 ° 8 = 130,8
cos ß = ^ => ß = 65,4 °

y ~ 114,6 ‘

oder mit Kosinussatz

cos a =

cos ß =

36 + 36 - 25
2 -6 -6

36 + 25 - 36
2 -6 -5

a = 49,2 °

ß = 65,4 °

151/9 . a ) Ist M der Kreismittelpunkt und S der Scheitel
MS = | V2 =* cp = 54,7 ° \)/ = 73,7 °

AI 1 IB

; sin a : sin a : sin 2a

Va 2 + d2 - 2ad cos a ~ 5,7

4

10

cp, so gilt :
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b ) a ) tan co = 1 - n n = 1 - tan co
v = n cos co = ( 1 - tan co ) cos co

i • BE ■ h = i • n • 1

(Strahlensatz )

tan co

V1 + ( 1- tan co):

ß ) Rauten mit einem 90 °-Winkel
sind Quadrate .

y ) Flächengleichheit bei n = V2 ,
das heißt co = 26,6 °

151/10. a ) Mittelpunktswinkel : cp 1 = 200,8 °
cp2 = 159,2 °

F = r 2n ■ + 120 -11 « 2669,4

b ) Mittelpunktswinkel des Sektors : cp = 225,2 °
, Radius r = 13

F = Fsektor + F dre ieck = r 2 7i • 9/360 ° + V 2 ■ 24 - 5 « 392,2

c ) Mittelpunktswinkel cp = 56,1 °

F = 2 (r 2 ji • 9/360° - V2 • 32 • 30 ) « 172,8

d ) Strahlensatz : 7 = ö~ ; => r = 1,2
Mittelpunktswinkel : cp = 96,4 °

F = r 2 7i ■ 9/360 ° - 0,5 • 2^ 0,8 • 0,8 ~ 0,5

e ) Mittelpunktswinkel : cp = 141,1 °
, Radius r = 1,5

F = r 27t • 9/360° - 0,5 • 2%/2 • 0,5 = 2,1

151/11 . a ) M M a

F rechts

=: hi

4 (cos ßr
MMb = : h2

F a
links 4 (cos ß )2 360

hi = | a tan ß
180 - 2ß _ 1 2 ß

360 ° 4
a tan P

h 2 = | a

■ - i a 2 tan ß

2 cos ß

b = a tan ß
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b ) a a( cos a )r = 7TT— ö x = r cos a = 0 • „2 tan p 2 sin a
h = x • tan a = | a cos a

p, _ a2ji 180 ‘- 2a a2
(eos a )3

1 “ 4(tan a )
2 ' 360 “ “ 4 sin a

F 2 = a -r - x -h - r 27t ■ 2a/360 °

_ a2 a2(cos a )3 a2Jt a- 2 tan a 4 sin a -
4(tan a )2 180"

c ) h = a sin ß x = a cos ß e = 2ß - 90 °

F - a 27t -
180 ~ 2ß _ 1 . 2x ■ hr unten — d Ji 360 ° 2 11

9 180 ° —2ß 9 • o o- a ZK ‘ —
36Qo - a z smpcosp

Flinks = | ( c - 2x ) h - a 2 7t -
3^

-

= | (a/cos ß - 2a cos ß ) -a sin ß - a 2n -
2^

3q
9
. -

x (y \ /

d ) h = c cos a sin a
F = ( c/2 cos a )2 ;t + ( c/2 sin a )27t ^ gQ -

2“ - | • h -MaM b
19 / \ 9 2a i 9 / • \ 9 180 — 2a i 9= | cz (cos arit gg^ + 4 c (sm a > n —

3&y— ~
4 c sm a cos a

£/2 sin a

e ) Fii nks = \ • a • a - tan ß - a 2Jt-

= | a2 tanß - a 2Jt -
3^

Funten = F se ktorl + F se ktor2 — Fdreieck

= a2(tan ß )27t
9

g60
^ + a 27t - gj^ r - | a2 tan ß
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c

f) Fi = Kreisdrittel - Fläche (EMC )
r cos30j

2F 2 = Fläche (ABDE ) - F
Fläche (ABDE )

= ( 5\ /3 - 27t ) s2

152/12. a ) Sekanten -Tangenten -Satz :
x -1 = 0 _/2)2 =» ^ _= V4
=* EG = 3/4 , AF = 5/g )

FCf = 3/g , AM"
= V2V2

h = V? /8 (Pythgoras in ÄAMF )
=> ß » 27,9 “

, y = 41,4 “
, cp « 138,6 “

F = F ^ i e iner sektor + FaHMG — Fg ro ß er

= ( 1/2 )2
7tg^ + 2 -V2 - l -^ /8 - l 2 .Jt .

sektor
2ß

360°
F ~ 0,15 , u « 2,2

b ) £ = 26,6 “

cp = 63,4 “
F — Fg r oßer sektor + Fkleiner sektor ~ Fabef

53,1 ”
1 126,8 " 1

~ n '
360 ” + 4

K '
360 " 2

F = 0,24
u « 2,0

SÄiSSS



152/13 .

152/14 .

a ) Das Quadrat kann als Einheitsquadrat angenommen werden ,
a ) Linsenfläche : Fi = 2 [r 2 7t - - | -2r sin d/2 • | ^ 2 ]

schwarze Fläche F 2 = 2 [ | — rn ■ - \ -2r sin 9/2 • 1 ^ 2

Fi = F 2 : => r27i - j = \ r = -filn
ß) o = 9

b ) Fdreieck = 2 - | hD -s -sin | cp = 2r (cos | cp)2 • 2r cos | cp • sin | cp
= 4r 2 sin | cp (cos | cp)3

Ftrapez = (2r - x )h T = [2r - 2r (sin | cp)2 ] 2r cos | cp sin | cp

Es gilt : AAFE ~ AABC , denn :
• , • n b cos a ba ist gemeinsam und c CQ

— = -
=> EF = a cos a
analog : FD = b cos ß ,

DE = c cos y
aus der Ähnlichkeit ergeben sich :

«* F = 180 - 2y.

Die Längen der abgeschnittenen
Dreiecke AFE , FBD und DEC
sind jeweils um den Faktor cos a ,
cos ß bzw . cos y verkleinert ,
ihre Flächeninhalte also um den
Faktor (cos )2 :

b cos oc ci cos ß

Fdef = Fabc - Fabc - (cos a )2 - Fabc - ( cos ß )2 - Fabc - (cos y)2
= | • b -c sin a [ 1 - (cos oc)2 - (cos ß )2 - (cos y)2 ]
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152/15. Das Dreieck hat die Seiten c = 18 cm , b = 16 cm , a = 14 cm .
Der Kosinussatz ergibt die Winkel : a = 48,2 °

, ß = 58,4 °
, y ~ 73,4 °

F = | • b -c sin a = 107,3 cm2

152/16. Ist sn die Seite , rn der Umkreisradius des n -Ecks und

|i n = 3-^ - der Mittelpunktswinkel , so gilt :

u n + l

U n

( n + l ) -sn + i
n -sn

( n + l ) -2r n - tan | gn+ i ( n + 1 ) - tan | gn+ i

n -2r n - sin | gn n - sin
g g:

U4 = 1 -
4 ■tan 45 °

3 ■sin 60 °

153/17. Ist sn die Seite , pn der Inkreisradius des n -Ecks und

gn = der Mittelpunkts winkel , so gilt :

tan | gn II : n > 3Sin g Hn+ 1

(n + 1 ) • sin | gn+ i( n + l ) -2p sin
g bn+ l( n + l ) -sn+ i

n -2pn • tan lg n • tan | g

U4 = 1



Beweise

154/1 .

154/2 .

154/3 .

154/4 .

Fläche [ l ]
Fläche [2 ]
Fläche [3 ]
Fläche [4 ]

| bc sin a = | ac sin ß = | ab sin y

| ac sin ( 180 °- ß ) = | ac sin ß

| ab sin ( 180 °- y) = \ ab sin y

| bc sin ( 180 °- a ) = | bc sin a

a ) b = 2r sin ß hc = b sin a => hc = 2r sin a sin ß

b ) F = | bc sin a = | • 2r sin ß • 2r sin y • sin a = 2r 2 sin a sin ß sin y

c ) F = | bc sin a , sin a = a
2r F abc

4r

a - bZum Beispiel : o , ,
a t D

4CEAD = ^CADF = 90 °
(Thaieskreis bzw . Z-Winkel ) .

in der Figur gilt wegen AE II DF :

■iACE = a +■ ß (Außenwinkel)
= > X = (Umfangswinkel über [AE ])

Stra hl ens atz :_ _
BP : BE = DF : EA =
= AD tan e : AD tan x

tan /

sin 7/2 C2
sin e a

ci
b

£2
a

sin y/2
sin ( 180 °- e)

£1 _ b
C2

_ a
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b ) | ci ’WY
- sin e = | b -w -,- sin Y/2

| C2 ' Wy
- sin ( 180 °- e) = | a -wy sin Y/2

£1 _ b
^

C2
_ a

154/5 . In der Figur gilt :
£ ADB = *£ABD = a/2 C
* DBF = 90 ° = ^ BFE
(Thaieskreis bzw . Z-Winkel ) .
*>tDFB = 90 °— a/2 (ADBF )

^

Sinussatz in ABCD :
b + c _ sin ( ß + a/2)

a

a “ sin a/2

Sinussatz in ABCF :
b - e _ sin (90 °- y - a/2 )

a ~ sin (90 °+ a/2 )

sin (90 °- Y/2 + ß/2)
sin a/2

cos ^

sinf

sin ^

cosf

'180°- <x,

154/6. Kosinussatz :
a

e2 = a2 + b2 - 2ab cos ( 180 °- a )
f 2 = a2 + b2 - 2ab cos a
Addition ergibt :
e2 + f 2 = 2 (a 2 + b2)
wegen cos ( 180 °- a ) = - cos a .

W - a ,

a

154/7. a ) tan ß/2 =
’
(s - a )(s - c)

s (s - c)

’
(s - a)(s - b)

s ( s - c)
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b ) l .Beweis
Wegen 2x + 2y + 2z = u
(gleich lange Tangentenabschnitte )
gilt : x + y + z = s
=> s - a = x , s - b = y , s - c = z
=> tan a/2 = | O )
für die Fläche von AABC gilt :
F = | ap + | bp + | cp = sp
bzw . F = Vs ( s - a )( s - b )(s - c )

( HERON )

- V( s - a )(s - b )(s - c)

p in ( * ) eingesetzt ergibt :

tan ( s - b )(s - c)
s ( s - a )

- - 2 Iw. -V

2 .Beweis
x = s - a y = s — b
wegen x + z + v = x + y + w
und z + y = v + w gilt w = z
=» BD = z = s - c,
damit ist AD = x + y + z = s
tan a/2 = - 2- (Dreieck AEW )S—Q.

ptan a/2 = — (Dreieck ADAw)

=» - 2- = - ( ♦ )s- a s
Aus *£ DBA W = 90 °- ß/2 folgt :
>£ BAWD = ß/2 und
*£ WBA w = 90 ° .
tan ß/2 = ^
( Dreieck EBW )
tan ß/2 = \
(Dreieck BDA W)

p s - c^ s - b _
p„

(s - a )(s - b)
Multiplikation von ( ♦ ) und ( v ) liefert :

2 _ (s - a )(s - b ) ( s - c)”
s

p in tan a/2 = ^ eingesetzt , ergibt : tan a/2 = ' \J
'(s - b )(s - c)

s (s - a )

C
D

\



155/8 . a ) F = | [eifr sin ( 180 °- cp) + e2fr sin cp + e2f2 ‘ sin ( 180 °- cp) + e^ - sin cp)
= l sin 9 [ei (fi + f2 ) + e2 (fi + £2)]

| ef sin (p

ei 2 + fi 2 - 2eifi cos ( 180 °- cp)
fi 2 + e22 - 2fie2 cos (p
e22 + f22 - 2e2f2 cos ( 180 °- (p )
ei 2 + f22 - 2eif2 cos (p

=> + c? - b2 - d2 = ei 2 + fi 2 + 2eifi cos cp + e22 + f22 + 2e2f2 coscp
- fi2 - e22 + 2fie2 cos cp - ei 2 - f22 + 2eif2 cos cp
= 2ef cos cp

c ) Quadriert man a ) und b ) , so ergibt sich :
16F 2 = 4 e2f 2 (sin cp)2

(a 2 + c2 - b2 - d2)2 = 4 e2f 2 (cos cp)2
=» F 2 = | e2f 2 - i (a 2 + c2 - b2 - d2 ) 2

155/9 . a ) Aus e2 = a2 + b2 - 2ab cos ß und e2 = d2 + c2 + 2dc cos ß
(denn 8 = 180 °- ß ) folgt : e2 = d2 + c2 + ^ (a 2 + b2 ■ e2)
Aus f 2 = a 2 + d2 - 2ad cos a und f 2 = b2 + c2 + 2bc cos a
(denn y = 180 °- a ) folgt : f 2 = b2 + c2 + ^ (a2 + d2 - f2)ad
A -ab : ab e2 = ab d2 + ab c2 + cd a 2 + cd b2 - cd e2 ■

+ et“ - l“ ) V

¥ -ad : ad f 2 = ad b2 + ad c2 + bc a 2 + bc d2 - bc f 2 ©
6 umgeformt : e2 (ab + cd ) = (bc + ad ) (ac + bd ) I
© umgeformt : f 2 (ad + bc ) = (ab + cd ) (ac + bd ) II
I -II : e2f 2 = (ac + bd )2 => ef = ac + bd

b ) Dividiert man die letzten beiden Gleichungen I und II aus a )
und zieht die Wurzel , so folgt : | = ^

155/10 . a ) Siehe Aufgabe 7 . b ) 2 .Beweis

b ) Setzt man p in F = | ap + | bp + | cp = sp ein ,
so ergibt sich die Formel von HERON.
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155/11 . Es sei -&AMB = 2a , PBA = y und <£ PAB = ß
==> -tSAB = *£ SBA = a (Sehnen-Tangenten -Winkel)
=> SAP = a - ß , -d SBP - a - y
1/x = sin ß , Vy = sin y ,
w/x = sin (a - ß ) ,

v/y = sin (a - y)
Multiplikation ergibt :
l2 = sin ß sin y

= sin (a - y ) sin (a - ß )
xy
V w

xy
aus «* APB = 180 - a = 180 ° - ( ß + y)
(Umfangswinkelsatz bzw . Winkelsumme )
folgt : a = ß + y , also gilt :
sin (a - y) sin (a - ß ) = sin ß sin y

l2 =vw

156/12 . a ) * BZE ' = e/2

(Umfangswinkel ; B sei der Z gegenüberliegende Durchmesser - Endpunkt )
«fcBZA = a/2 (Umfangswinkel )

Kreisradius r = 1
BE ’ = 2 tan s/2 , A 'B = 2 tan a/2
=> A 'E ' = 2 (tan a/2 - tan e/2)

b ) Ist M Kreismittelpunkt und F Fußpunkt des Lots durch T auf ZB,
so gilt :
"
MT= - ^ - (AMTA ) MF =

“
MTcos ^ (a +e ) (A MFT )

cos 2 ( a - e ) 2

mitx := | (a - s ) und ct := | (a +s) gilt :

- cos a - - sin ct
MF = - und FT = MTsin ct = -

COS T COS I

Strahlensatz :

FT : FZ = BT '
: BZ

sin ct

BT = 2
sin ct

= 2
sin ct

= 2
2 - cos a/2 cos e/2

also BT '= | (BA ' + BE ' )

( 1 + COS a/cos T) cos T cos T + cos CT

tan a/2 + tan s/2 = - (BA ' + BE)

2 (BE '+ ET ) = BA' + BE'

2 E 'T ' = BA’ - BE '
, also 2 E 'T ' = E ’A'66



156/13.
Lösung ohne Trigonometrie
Verlängert man [BC ] überC
hinaus , so ergibt sich A ' .
Man zeigt , daß U Umkreis
mittelpunkt von AABA ' ist ,
denn dann halbiert UT als
Lot auch die Sehne [BA 1] :
* AUB = y
(Umfangswinkel über [ABI)
* ACA ' = 180 - y
=> £ AA 'B = Y/2 , denn
AACA' ist gleichschenklig .
Deshalb liegt A ' auf dem
Kreis um U mit r = BU .

Lösung mit Trigonometrie
2Fabc = aw sin Y/2 + bw sin Y/2
2Fabc ' = cw sin (a + Y/2 )

. sin (a + Y/o )=> a + b = c - - -- —
sin Y/2

( c/2 ) : BU = sin Y/2
=* BIT =

_ 2 sin Y/2
BT : BU = cos(90 °- Y/2 - ß )

= sin (Y/2 + ß ) =
= sin [ 180 °- ( a +Y/2 ) ]
= sin (a + Y/2 )

ß ^r _ C sin ( a + Y/2 )
2 sin Y/2

. furr a + b



156/14 . a ) Kathetensatz : x2 = bc cos a
y2 = cb cos a

b ) hi 2 = x2 - AF

x = y = Vbc cos a

bc cos a - c2 (cos a )2

c cos a ■ (b - c cos a )

v = b sin a cos
w = b (cos a ):

CF = a cos y
z : v = CF : CE =>

bcosa
g cos ya cos yz = b sin a cos a -

b ( sin a ) '

= ac cos a cos y -
(sin a ) '

a cos g cos y= a cos a cos y [ i
( sin a ) '

= a cos a cos y ■
( sin a )‘

l9 c - cos a ( c cos a + a cos y)rr = a cos a cos y - —- ^-
1 ( sin a )

c - b cos a a cos a cos y ■ a cos ßa cos a cos y ■ s1 ( sm ar
a

; yjcos a cos ß cos y
( sin a )

sin a

Näherungen

157/1. a ) a = yj2

b ) G( 1/2 V3 | l /2 ) ,
H ( l /2 I l /2 >/3 ) ,
M ( —11 0 ) ,
r 5 = V3 ,
K( 0 I yl2 )
GK

"
= ^ 3 - \l2

= 1,259 . . .
Abweichung :
f * - 0,051 %
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+ 4 tan 15 ° = 3,1423 . . .
158/2 . •£ UHY = 30

HU + ÜY = 2
cos 15 °

Abweichung : f « 0,024 %

158/3. Der Radius des Kreises sei jeweils 1 .

a ) OMP = p MPZ = s MZP = a

Sinussatz in AMPZ : f -
1** *-■ = f . Wegen e = |i - a folgtSill ÜC X

sin ( p- a ) _ 2
sin p cos a - cos p sin a _ ^

sin a ~ sin a ~

= > tan a = sin p
2 + cos (i

OP ' 3 tan a = 3 sin (l
2 + cos p

30 °
: f = - 0,043 % 60 °

: f = - 0,761 % 90 °
: f « - 4,51 %

b ) Der Fußpunkt des Lots von P auf MZ sei H , p = <£ HMP .
HM = cos p , HP = sin p , t = | ( 1 - cos p ) ,
ZO = 3 - t = ~ ( 14 + cosp ) , ZH = 3 - 6t = | ( 9 + 6cosp )

Strahlensatz : ÖP : HP
“

= ZO
“

: ZlT ^ ÖF = 44 + cos ^ • sin p9 + b cos p ^

30 °
: f « - 0,00103 % 60 °

: f « - 0,0716 % 90 °
: f = - 0,97 %

158/4. a ) Ap « 0,412 °

b ) Es sind zwar alle Seiten gleich lang ,
aber das Fünfeck ist nicht regelmäßig ,
« i = 108,366 °

a 2 = 107,038 °

0C3 = 109,192 ° .

159/5 . a ) Ap « 0,11 ° b ) e = 51,318 °

Ap/|i ?
* 0,2 % Ae « 0,11 °

159/6 . a ) Ap « 0,812 ° b ) Ap = 0,208 ° 7 . Ap = - 0,058 °

160/8. a ) — = 0,9998 .
Uq

F k
- } F Q

- 0,9998 . . . c ) Ae « 0,101 °

160/9. <p5 = 71,953 °
cp 7 = 51,518 °

tpg = 40,278 ° (pn = 33,148 °

160/10. Apg « 0,114 ° Apis « 0,094 ° Api7 « 0,999 °
Ap2o ~ 0,288 °
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Vermessung

161/1 .

161/2.

161/3.

161/4.

162/5 .

si _ sin 20,72 °

s _ sin 11,71 ° h = s sin cp + si sin ß = 1302,8 m

y = 40 a = s sm a ■■ 68,9 m b = sm p- S - - 60 . 6

PB = s

x = VW
sin ai

sin 53,5 °

2 + BQ 2 - 2 PB

BQ

BQ cos 28,9 °

sin Ct2
S sin 49,6 °

« 51,2 m

BK = 2r sin | (cpß + Icpid ) = 8724,5 km

Entfernung Berlin -Mond : x = BK ~ 361 283 km

e = Vx 2 + r 2 - 2xr cos 138,7378 ° « 366 096 km
e : r = 57,5

Tangenssatz in AABC :
tan | (ai - Yi ) = cot ß/2
=> ai = 38,9 °

, yi = 28,7 °

r = s ■
d2 ~ 61,4 °

, Y2 = 56,3 °
sin p

x = r

z = r -

sm yi
sin Y2
sin 8

sin 0C2

125,14 m

: 117,6 m

= 124,1 msin 8
Kosinussatz :

y = Vx 2 + s2 - 2xs cos a 144,2 m
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162/6 .

162/7 .

Physik

162/1.

= * PAB t = * BCP
sin e sin x
sm a s ’ sin y
II : e + x = 176,5 °
TT . T sin eII m I :

y
t

sin £

_ _ t sin a
sin ( 176,5 °- e)

~ s sin y
_ sin e_
sin 176,5 ° cos £ - cos 176,5 ° sin £

r sin 176,5 °
tan e =

1 + r cos 176,5 °

t sin g
s sin y

t sin a
s sin y

wobei r :=

=> e = 57 °
, x « 119,5 °

, ßi = 90 °
, ß2 = 34 °

=> x = 139,5 m y ~ 117 m z ~ 75,2 m

I

t sin a
s sin y

Es gelte : AQPB ~ A 'Q 'P 'B '
, wobei A 'B ' = s ' und x ' = Q 'P ' = lm sind

B 'P ' sin ßi A 'P 1 sin ai
Smussatz : — = sin 55 ;5

° l = sin 52,5 °

Kosinussatz : s '2 = FF 2 + ÄF 2 - 2FF -^ 008 24,5 °

Ähnlichkeit : = Jx => x = 121,4 m.

„ ; Pz sin ß sin ß
ai ) bmussatz : G = sin[ 180°_ (a+ ß )]

- sin (a + ß )

Fz = G - sin ß
sin (a + ß) Fd = G - - t

sin a
sin ( a + ß)

a 2) Fz = G - -r

bx ) Fi = L - - t

sin (a - ß )

sin 8

b2) Fx = L - “t

O Fx = G - -

sin (y - 8)

sin ß
sin ( a + ß)

F D = G -

sin ( y + 8 )

sin 8

sin ß
sin (a - ß )

F 2 = L - - 7sin y
sin (y + 8)

F 2 = L - —
" an

sin y
sin (y - 8)

F 2 = G - - 7sin (a + ß)
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163/2.

163/3 .

a ) x = sin (a - ß ) -Bogen (AB )
ÄB

“
= d

cos ß
=> x = cos

d
cos

■
ß

sin (a - ß)

p
- (sin a cos ß - cos a sin ß )

= d sin a - cos « sin ß
cos ß

i . i .. cos a sin ß= d sin a 1 - ö—=—c-
cos ß sin a

cos ad sin a

18,9 mm
Vn2 - (sin a )2

b ) 8 = oci - ßi + a 2 - ß2
(Außenwinkel in AABC )
C = ßi + ß2
(Außenwinkel in AADB )
9 + x = 180 ° und a + x = 180 °
g = cp = ßi + ß2
=> e = oci + a 2 - (p
sin a 2 = n sin ß2 = n sin (9 - ßi )

= n sin 9 cos ßi - n cos 9 sin ßi
= sin 9 yjn 2 - (sin ai )2 - cos 9 sin ai

=> e = oci + arc sin [ sin 9 "\/n 2 - (sin ai )2 - cos 9 sin ai ]
( arc sin ist die Umkehrfunktion von sin )

=> e = 48,9 °

Der Drehpunkt des Tonarms sei A , der Kreismittelpunkt M,die Schnittpunkte von Spitze und kleinem bzw . großem Kreis
seien B bzw . C.
AAMB : x2 = a 2 + r 2 - 2ar cos (90 °- e)

=> x2 = a 2 + r 2 - 2ar sin e I
AAMC : x2 = a 2 + R2 - 2aR sin 8 II
aus I : sin e = (a 2 + r 2 - x2 ) in II eingesetzt :

x2 — a2 + R2 — ~ (a 2 + r 2 — x2)

72

x2( l - R/r ) = a 2 ( 1 - R/r ) - rR ( l - R/r ) => x = k/a 2 - rR ~ 21,8 cm .



7 . Kapitel

174/1 .

174/2 .

174/3 .

174/4 .

a ) sin 90 ° = 1 sin 60 ° cos 30 ° + cos 60 ° sin 30 ° = 1
's/3 - | \ /3

b ) sin 30 ° = 1
2 sin 60 ° cos 30 ° - cos 60 ° sin 30 ° = 1

2
c ) sin 45 ° = 1 ^2 sin 90 ° cos 45 ° - cos 90 ° sin 45 ° = 1

2
d ) sin 150 ° : 1

2 sin 210 ° cos 60 ° - cos 210 ° sin 60 ° = 1
2

e ) cos 120 ° : 1
2 cos 90 ° cos 30 ° - sin 90 ° sin 30 ° = - 1

2
f ) cos 60 ° = 1

2 cos 90 ° cos 30 ° + sin 90 ° sin 30 ° = 1
2

g) cos 180 ° = - l cos 240 ° cos 60 ° + sin 240 ° sin 60 ° : - 1
h ) cos 300 ° 1

2 cos 210 ° cos 90 ° - sin 210 ° sin 90 ° = 1
2

i) tan 30 ° == W5
tan 60 °- tan 30°

1 + tan 60° tan 30° = 1 ^3

j ) tan 210 ° = M * tan 150 °+ tan 60 °
1 - tan 150 ° tan 50°

k) tan 180 ° = 0 tan 240°- tan 60°
1 + tan 240° tan 60° = 0

1) cos 360 ° = 1 cos 315 ° cos 45 ° - sin 315 ° sin 45 °
= i

= 1

a ) sin 75 ‘

b ) sin 15'

c ) cos 75 '

e ) tan 15'

g) sin 72 °

h ) cos 72 '

sin ( 45 °+ 30 °
) = | ( Vö + ^ 2 )

sin ( 45 °- 30 °) = 2 )
sin 15 ° d ) cos 15 '

f ) tan 75'

| VlO + 2 \ /5

j ( >/5 - 1 )

(regelmäßiges Zehneck )

i ) tan 72

sin 75
sin 75°
cos 75 ° = 2 + \ /3

| (Vö + lWlO + 2^

cos x = V1 - ( sin x )2 12~ 13 c° s y = I
sin ( x + y ) = ff sin (x - y ) =

sin x = V1 - ( cos x )2 15" 17 sin y = |
cos ( x + y ) = Hj- cos (x - y ) =

\ • o o • o 5 12 120a ) sin 2a = 2 sin a cos a = 2 - ^ • -jg =

cos 2a = 1 - 2 ( sin a )2 = ^ tan 2a = ^
iby i iy

b ) sin 2a = 2 -0,8 -0 ,6 = 0,96 cos 2a = 0,28 tan 2a = y -
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c ) sin a = I 'n/ö ,cos a = | >/5 ,sin 2a = | ,cos 2a = | ,tan 2a = |

174/5 . a ) sin a/2 = y^ d - cos a ) = \ Ji 1 O C5 11

cos a/2 = ^ | ( l + cosa ) | ( 1 + 0,6 ) = tan a/2 = |

b ) sin “/2 = | cos a/2
[
oc_

i—(I(NII tan a/2 = | V3

174/6 . a ) sin 15 ” =: V | ( l - cos 30 o
) = | V2 - y/3

cos 15 ” == ^ ( 1+ cos 30 ”
) = | y/2 + V3 tan 15° = 2 - V3

b ) sin 7,5 ” := V | a - cos 15 ”
) = IV2 - V2T >/3

cos 7,5 ° = yj ^ ( 1 + cos 15 ”
) = 1 ^ 2 + V2 + y/3

tan 7,5 ” = Vl5 + 8y/3 - 4^/26 + 15\/3

c ) sin 22,5 ‘ = Vl *-1 _ cos 45 °
) := | ^ 2 - y/2

cos 22,5 '' = y/ | ( l + COS 45 ° ) = | y/2 + y/2 tan 22,5 ° = y/3 - 2^ 2

174/7 . a ) sin 5x + „ . 5x+x 5x- x „ . „sin x - 2 sin 2 cos 2 - 2 sin 3x cos 2x

b ) sin 7x - sin 3x = 2 cos 5x sin 2x c ) cos 3x + cos x = 2 cos 2x

c ) cos 6x - cos x = - 2 sin 3,5x sin 2,5x

174/8 . a ) sin x + cos y = sin x + sin ( 90 ” , 0 • x+90 "- y- y ) = 2 sin —
2
“^ x- 90"+y■ COS 2

b ) sin x - cos y = sin x - sin (90 °- , „ x+ 90 °- y- y ) = 2 cos —
g

—^ . x- 90°+ysm 2

175/9 . a ) hc = b sin a x = 2 hc cos a = 2b sin a cos a = b sin 2a

b ) x = b tan 2a ; aus tan a = {*. folgt : x = b 2 tana
„ = 2ab „b s l - (tana )2 b2 - a2
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175/10. a ) ABCH b : ß 2 + y = 90 °

ACH cB : yi + ß = 90 °

ABH aH : ß2 + t = 90 °

=> x = y

ACHH a : yi + e = 90 °
] / / \ W \\ : rV /

=> e = ß \ h / /yfh ^ fA H

HBA ]C ist ein Sehnenviereck , \ \ : \ \ /

deshalb gilt : «*H + * A X = 180 °
.

-
y A

Wegen £ + x = y + ß = 180 °- a folgt : ,/

•iAi - a , und daraus m = 2a . --

Aus sin a = und sin a = ^ (r : Umkreisradius ) folgt : r = r b .

Analog bekommt man : r = r 2 = r 2 .

b ) Der Flächeninhalt Fj der beiden schraffierten Segmente ergibt sich als
Differenz des Sektors BMiCH und der Dreiecke BCH und BM ] C :
t-, r z7i-2a l 9 • r.Fl = 360 ° _ f abch -

2
r sin 2a

Für die übrigen Segmentpaare gilt entsprechend :

r 2 sin 2ßFacha

F 3 = ^ - Faabh - I r 2 sin 2y

F 3iinsen = ( a + ß + y) - F AAbc - \ r 2 ( sin 2a + sin 2ß + sin 2y) .

Aus a + ß + y = 180 ° und sin 2a + sin 2ß + sin 2y = 4 sin a sin ß sin y

folgt F 3 iinsen = r 2 7i - 2Faabc -

175/11. a ’ 2 = b 2 + c 2 - 2bc cos (a + 60 ° ) a 2 = b 2 + c 2 - 2bc cos a
=> a 2 - a 2 = 2bc [cos a - cos (a + 60 °)]
=> a ’ 2 - a 2 = 2bc -2sin ( a + 30 °

) sin 30 °

==> a 2 = 2bc sin ( a + 30 °
) + a 2

Aus a = 2r sin a , b = 2r sin ß , und c = 2r sin y folgt :
a 2 = 8r 2 sin (a + 30 °) sin ß sin y + 4r 2 (sin a ) 2 ,
und aus sin ( a + 30 °

) = | (y/3 sin a + cos a ) folgt :

a ' 2 = 4r 2 h/3 sin a sin ß sin y + cos a sin ß sin y + ( sin a ) 2 ]

a ' 2 = 4r 2 [y/3 sin a sin ß sin y + 1 + cos a ( sin ß sin y - cos a )]

a ' 2 = 4r 2 [V3 sin a sin ß sin y + 1 + cos a ( sin ß sin y + cos ( ß + y)]

a ' 2 = 4r 2 [y/3 sin a sin ß sin y + 1 + cos a cos ß cos y]

=> a ’ = 2rVV3 sin a sin ß sin y + 1 + cos a cos ß cos y
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176/12 .

176/13 .

Denselben Term findet
man für b ' und c '

,
da alle drei Dreieck¬
winkel Vorkommen .

Man kann zum
Beispiel zeigen : ,
Faxcy + F aycz = Faxcz ( * )
<£XAY = ß , <& XBY = a
( Sehnen -Tangenten -Winkel )

Sinussatz :
a sin a 2r( sin cc)2
sin 6 sin 8

b sin a 2r sin a sin ß
sin e

1 uw sin y + 1 uv sin ß = | vw sin a
sm e

In ( ¥, . .2 1 2
1 4r 2 ( sin a )2 ( sin ß )2 sin y
2

’ sin 8 sin (p
sin y sin a

b sin ß
sin cp

2r ( sin ß )2
sin cp

sin S sincp T sin 8 sin e
sin y sin e + sin a sin cp

4r 2 (sin a )3 ( sin ß )2
sin 8 sin e

sin ß

4r 2 ( sin a f sin ß )3
sin e smcp

sin e smcp
= sin ß sin 8

Wegen ß + cp = y, 5 + a = y und e + a = ß (Außenwinkel !) bedeutet das :
sin y sin ( ß - oc) + sin a sin ( y - ß ) = sin ß sin (y - a )
sin a sin ( y - ß ) + sin ß sin (a - y) + sin y sin ( ß - a ) = 0 .
Die Additionstheoreme zeigen die Richtigkeit der letzten Zeile .

Der Radius des Kreises sei 1 .
a ) Sehnenlänge : AB = 2 sin <P/2 , Länge der Höhe durch den

Mittelpunkt von [AB ] : h = cos <P/2 => tan ß/2 = ^ = \ tan 9/2
<p ß CO

30 ° 10,2 ° 9,9 °
60 ° 21,8 ° 19,1 °
90 ° 36,9 ° 26,6 °
120 ° 60 ° 30 °

b ) Sinussatz in AABC : (2—— sin e
2 tan e = sin m/2

V2 + cos ro/2
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10,013
15,043

30,361

c ) £ BAD = “4
(Umfangs winkel )
•4EAD = w/4 - e/2
(Umfangswinkel )
=> >£BAC = w/2 — e/2
Sinussatz : AABC :
sin ( m/2 - e/2 ) sin e/2

sin w/2 cos e/2 - cos ®/2 sin e/2 = 2 sin e/2

tan e/2 = sin w/2
2 + cos °V2

03 30 ° 45 ° 60 ° 90 °

e 9,974 ° 14,913 ° 19,792 ° 29,278 °

d ) <* MBC = w/2
Ab = -s/3 - l
Sinussatz : AABC :
sin ( w/2 - e ) sin ( 180 - w/2 )

V3 - 1
= 2

( Umfangs winkel )

(Pyth . in AAMD )

sin ( ®/2 - e ) = i (V3 - 1 ) sin w/2

03 30 ° 45 ° 60 ° 90 °

£ 9,564 ° 14,448 ° 19,455 ° 30 °
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Vereinfache

177/1 . a ) 2 cos a b ) 2 sin a

177/2. a) 2 ( sin a )2 + [ (cos a )2 + ( sin a )2 ] [ (cos a )2 - (sin a )2 ] =
= 2 ( sin a )2 + ( cos a )2 - ( sin a )2 = ( cos a ) 2 + ( sin a )2 = 1

b ) ( sin a + cos a )2 - 1 = 2 sin a cos a = sin 2a

177/3. a) 2 ( | ^2 cos a + \ -J2 sina ) ( | V2 cosa - sin a ) =

= ( cos a )2 - ( sin a )2 = cos 2a

b ) i >/3 cos a + | sina - ( | V3 cosa - | sin a ) sm a

c ) | cos a - | V3 sism a + | cos a + | n/3 sm a cos a

177/4. a) sin g + 2 sin a cos a
1 + cos a + 2 (cos a )2 - 1

( 1 + 2 cosa ) sin a _ ,
( 1 + 2 cosa ) cos a - an a

b) (cos a )2 + sin a cos a - ( cos a )2+ sin a cos a 2 sin a cos a sin 2a
(cos ar - ( sin ar cos 2a cos 2a

177/5. a) ( sin a cos ß + cos a sin ß ) cos a - (cos a cos ß - sin a sin ß ) sin a
= ( cos a )2 sin ß + (sin a )2 sin ß = sin ß

b) ( cos a cos ß - sin a sin ß ) cos a + (sin a cos ß + cos a sin ß ) sin a
= ( cos a )2 cos ß + ( sin a )2 cos ß = cos ß

c) ( sin a cos ß + cos a sin ß ) (cos a cos ß + sin a sin ß ) +
+ ( cos a cos ß - sin a sin ß ) (sin a cos ß - cos a sin ß ) =
= 2 sin a cos ß = sin 2a

d) (sin a cos ß - cos a sin ß ) (cos ß cos y + sin ß sin y) +
+ ( cos a cos ß + sin a sin ß ) ( sin ß cos y - cos ß sin y) =
= sin a cos y - cos a sin y = sin ( a - y)

177/6. a) cos g sin ß
sin a cos ß

tan ß
tan a b) - sin a sin ß

cos a cos ß
= - tan a tan ß

tan 2a
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177/7.

177/8.

177/9.

177/10 .

177/11.

a) 2 sin a cos ß _ tan a
2 cos a sin ß

— tan ß

. - 2 sin a sin ß ,c ) t ;- =—r = - tan a2 cos a sm ß

, . 2 sin a cos ß ,b ) 2 cos a cosß
= tana

a )

c)

d)

2 ( cos a/2 )2

2 ( sin a/2 )2

1 + cos a
sin a

1 - sin g
cos a

1
( tan a/2 )

2 (cos a/2)2

2 sin a/2 cos a/2

1 - eos (90 °- a )
sin (90 °- a )

b)
2 (cos a/2 r

( 2sin a/2 cos a/2 )2

1
tan a/2

= tan (45 °- a/2 )

2 ( sin <*/2 r

a )
2 sin a - 2 sin a cos a
2 sin a + 2 sin a cos a

1 - cos a
1 + cos a = (tan a/2 )2

b ) 2 cos a + 2 sin a cos a 1 + sin a 1 + cos (90 °- a )
2 cos a - 2 sin a cos a 1 - sin a 1 - cos (90 °- a ) (tan (45 °- a/2 ))

2

. ( 1 + cos ß ) sin a _ 2 sin a/2 cos a/2 ■2 (cos ß/2 )2
_ tan a/2

C
( 1 + cos a ) sin ß 2 sin ß/2 cos ß/2 ■2 (cos a/2 )2 tan ß/2

a )

b )

2 ( sin a/2 )2 + 2 sin a/2 cos a/2 _ 2 sin a/2 ( sin a/2 + cos a/2 )
2 (cos a/2 )2 + 2 sin a/2 cos a/2 2 cos a/2 (cos a/2 + sin a/2 )

2 (cos a/2 )2 - 2 sin a/2 cos a/2 2 cos a/2 (cos a/2 - sin a/2 )
2 (sin a/2 )2 - 2 sin a/2 cos a/2 2 sin a/2 (sin a/2 - cos a/2 )

tan a/2

_ 1
tan a/2

a ) cos 2a ( cos a )2 - ( sin a )2

1 - (tan a )2 1 - ( sin a/cos a )2
(cos a )2

sin a - sin ß 2 cos si
b ) cos a + cos ß o a+ß a- ß2 cos cos

= tanö

x 2 ( cos a/2 )2 sin a/2c ) - T . 3 — = cos a/22 sm a/2 cos a/2

d)
V2 (cos 2ß + cos 2a )

( sin a cosß + cos a sin ß ) ( sin a cosß - cos a sin ß ) + (cos a )

V2 ( 1 - 2 (sin ß)2 + 2 (cos a )2 - 1 ) _ (cos a )2 - (sin ß )2

( cos ß )2 (cos ß )2



Beweise

178/1 . a ) sin a + sin a cos 120 ° + cos a sin 120 ° + sin a cos 240 ° + cos a sin 240 °

= sin a - | sin a + | \ /3 cos a - | sin a + | V3 cos a = 0

, , , tan g + tan 120 “ tan g + tan 240°
_D ) tan a + i _ tan a tan 120 ° + 1 - tan a tan 240° _

. tan a - yß tan a + yß= tan a + -- ;=- + - p- =
1 + V3tana 1 - V3tana

_ tan a - 3(tan g )3 + tan a - yß (tan q )2 - V3 + 3 tan a + tan a + -ß + yß (tan k )2 + 3 tan a
1 - 3(tan a )2

9 tan a - 3(tan a )3 „ , . . , „ .=
1 - 3(tan a )2

= 3 tan 3a (vergleiche 3 . )

c ) cos a [ (cos aX- 1^ ) - ( sin a )( V2\ /3 )] [ (cos cx)(—V2 ) - ( sin a )(- V2\ /3 ) ] =
= (cos a )( V4 ) (cos a. + sin a )(cos a - \f3 sin a ) =
= 1/4 cos a [ (cos a )2 - 3 (sin a )2 ] =
= V4 cos a [4(cos a )2 - 3 ] = V4 cos 3a (vergleiche 2 .b )

[(tan a )2 - 3] tan a _
1 - 3(tan a )2

(vergleiche 3 . )

d ) tan a
tan q - y3

1 + yß tan a
3 tan a - (tan q )3

1 - 3(tan a )2

tan a + y3
1 —yß tan a

= - tan 3a

178/2 . a ) sin ( 2x + x ) = sin 2x cos x + cos 2x sin x =
2 sin x ( cos x )2 + ( 1 - 2 ( sin x )2 ) sin x =
2 sin x ( 1 - (sin x)2 ) + sin x - 2 ( sin x )3 =
3 sin x - 4 ( sin x )3

b ) cos ( 2x x ) = cos 2x cos x - sin 2x sin x =
= ( 2 (cos x )2 - 1 ) cos x - 2 sin x cos x sin x =
= 2 ( cos x )3 - cos x - 2 cos x ( 1 - ( cos x )2 ) =
= 4 ( cos x )3 - 3 cos x

178/3 . tan ( 2x + x)
2 tan x

1 - (tan x )2
tan x

1 - 2 tan x
1 - ftan x )2

tan x

3 tan x - (tan x )3

1 - 3(tan x )2

2 tan x + tan x - (tan x )3

1 - (tan x )2 - 2( tan x )2
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178/4 . a ) sin ( 3x + x ) = sin 3x cos x + cos 3x sin x =
= [ 3 sin x - 4 ( sin x )3 ] cos x + [ 4 ( cos x )3 - 3 cos x] sin x =

= - 4 (sin x )3 cos x + 4( cos x )3 sin x =
= 4 sin x cos x [- ( sin x )2 + (cos x )2 ] =
= 4 sin x cos x [ 2 ( cos x )2 - l ] =
= 8 sin x ( cos x )3 - 4 sin x cos x (vergleiche 2 . a )

b ) cos ( 3x + x ) = cos 3x cos x + sin 3x sin x =
= [ 4(cos x )3 - 3 cos x ] cos x - [ 3 sin x - 4 ( sin x )3 ] sin x =
= 4 ( cos x )4 - 3 (eos -x )2 — 3 [ l — (cos x )2 ] + 4 [ l - (cos x )2 ] 2

= 8 (cos x )4 - 8 (cos x )2 + 1 (vergleiche 2 .b )

178/5 . tan ( 3x + x) tan 3x + tan x
1 - tan 3x tan x

3 tan x - (tan x > ,- 5— + tan x
1 - 3 (tan xr

3 tan x - (tan x )'

1 - 3 (tan xf
■tan x

3 tan x - (tan x )3 + tan x - 3(tan x )3 _ 4 tan x - 4 (tan x )3

1 - 3 (tan x )2 - 3(tan x )2 + (tan x )4 1 - 6 (tan x )2 + (tan x )4
(vergl .3 . )

178/6 . a ) cos 2x = 2 ( cos x )2 - 1 = 1 - 2 ( sin x )2
, ist a = 2x und a spitz , so gilt :

cos a = 2 ( cos a/2 )2 - 1 = 1 - 2 ( sin a/2 )2

a /2 = ^
l(cos a/2 )2 = | ( l + cosa )

( sin a/2 )2 = | ( 1 - cos a )

cos 1

sin a/2 =

b ) tan a/2 = Vi1 - cos a
cos a

178/7 . a ) sin ( 45 °+ a ) = cos [90 °- ( 45 °+ a ) ] = cos ( 45 °- a )
1 , In sin a + cos a= | \[2 cos a + | \[2 sin a

V2

b ) sin (45 °- a ) = cos [90 °- (45 °- a )] = cos ( 45 °+ a )
1 . In sin a - cos a= | \ /2 cosa - | \/2 sin a :

V2

c ) tan ( 45 °+ a ) =

d ) tan ( 45 °- oO =

tan 45 ° + tan q _ 1 + tan a
1 - tan 45 " tan a ~

1 - tan a

tan 45 ° - tan a 1 - tan a
1 + tan 45 ° tan a 1 + tan a



178/8.

178/9 .

178/10.

i ) tan (45 °+ a )
1 + tan a
1 - tan a

4 tan g
1 - (tan a )2

- tan (45 °— a ) =
1 - tan g _ ( 1 + tan a )2 - ( 1 - tan a )2

1 + tan a -
( 1 - tana )2

= 2 tan 2a

tan (45 °+ a ) + tan (45 °- a ) =

_ 1 + tan a 1 - tan a _ ^
1 + (tan g )2

—
1 - tan a + 1 + tan a _

1 - (tan a )2

= 2 -
1

=
2

(cos a )2 - ( sin a )2 cos 2a

= 2 -

1 +

1 -

°sin a
cos a
sin a
cos a

2

2

1 + sin a _ sin 90 ° + sin a _ 2 sin (45 °+ a/2 ) cos (45 °- a/2 )
cos a “ cos 90 ° + cos a ~

2 cos (45 °+ “/2 ) cos (45 °- <ty2 )
tan (45 °+ a/2 )

cos a _ cos 90 ° + cos a
1 - sin a ~ sin 90 ° - sin a

1
tan (45 °- a/2 )

2 cos (45 °+ a/2 ) cos (45 °- a/2 )
2 cos (45 °+ a/2 ) sin (45 °- a/2 )

tan [90 °- ( 45 °— a/2 )] = tan (45 °+ a/2 )

tan (45 °+ a/2 )
tan [90 °- (45 °+ a/2 ) ] = tan (45 °- a/2 ) (vergleiche a ) )

0 sin 2a

1
(cos a )

2 sin a cos a =

(cos a )2 + ( sin a )2

( cos a )2

2 sin a ( cos a )2

cos a

= 1 + ( tan a )2

2 tan a
1 + (tan a )2

) ) cos 2a

sin 2a
1 + cos 2a

(cos a )2 - (sin a )2 =

2 tan q

_ 1 + (tan a )2

1 - ( tan q )2
+

1 + ( tan a )2

(cos q )2 (sin q )2

( cos a )2 (cos a )2
_ 1 - ( tan q )2

1 _
1 + ( tan a )2

( cos a )2

_ 2 tan q _
1 + ( tan q )2 + 1 - ( tan q )2

tan a

^
1 - ( tan q )2

1 - cos 2a _ 1 + (tan q )2

sin 2a - 2 tan a
1 + (tan a )2

1 + (tan a )2 - 1 + (tan q )2
2 tan q tan a



179/11. a ) sin 55 ° + sin 5 ° = 2 sin 55 "
^

5 '
cos 55

2
■5 °

- = 0 . 1 .z 2 cos 25 ° =

b ) sin 80 ° - sin 40 ° = 2 cos 60 ° sin 20 ° = sin 20 °

c ) cos 170 ° + cos 70 ° + cos 50 ° = 2 cos 120 ° cos 50 ° + cos 50
= - COS 50 ° + cos 50 ° = 0

d ) sin 20 ° + sin 40 ° = 2 sin 30 ° cos 10° = cos 10 ° = sin 80 °

e ) 8 sin 20 °sin 40 °sin 80 ° = 8 -

\ (- sin 20 ° + sin 100 ° + sin 60 ° - sin 140 °
) =

= 2 (sin 60 ° + sin 100 ° - sin 140 ° - sin 20 °
) =

= 2 [ | V3 + 2 cos 120 °sin (- 20 °
) - sin 20 °] =

= 2 [ | V3 - sin (- 20 °
) - sin 20 °] = V3

[ sin a sin ß sin y = V4 [ sin ( a + ß- y) + sin ( ß+y- a ) + sin (y+a - ß ) - sin (a + ß+y) ] ]

f ) 8 cos 20 °cos 40 °cos 80 ° = 8 -

| (cos 20 ° + cos 100 ° + cos 60 ° + cos 140 °) =

= 2 [ | + cos 100 ° + cos 140 ° + cos 20 °] =

= 2 [ | + 2 cos 120 °cos 20 ° + cos 20 °] = 2 [ | - cos 20 ° + cos 20 °] = 1

[ cos a cos ß cosy = V4 [ cos ( a + ß- y) + cos ( ß + y- a ) + cos (y+a - ß ) + cos (a + ß+y) ] ]

g) tan 20 ° tan 40 ° tan 60 ° tan 80 sin 20 ° sin 40 ° sin 80 ° n; 8 V3 <->
cos 20 ° cos 40 ° cos 80 ° = ~

8T ^ Ö ~ Ö

179/12. a ) sin 75 ° + sin 15 ° = 2 sin 45 °cos 30 ° = | \ /6

sin 75 ° - sin 15 ° = 2 cos 45 °sin 30 ° = | V2

b ) x := sin 75 °
, y := sin 15 ° :

x + y = | \ /6 , x - y = | \ /2

=> 2x = | (\ /6 + \ /2 ) => x = \ (\J6 + \I2 )

=> 2y = | (yl6 - \l2 ) => y = \ (y[6 - yj2 )

179/13. tan 3a - tan 2a - tan a = 3 tan q - ( tan q )3

1 - 3( tan a )2
2 tan a

1 - (tan a )2
■tan a =

tan a

= tan a

[3 - (tan a )2] [ l - (tan a )2] - 2 [ 1 - 3(tan a )2] — [ 1 - 3 (tan a )
2] [ l - (tan q )2] _

[ 1 - 3(tan a )2] [ l - (tan a )2]

[3 tan a - (tan a )3] 2 tan a
[ 1 - 3(tan a )2] [ l - (tan a )2

: tan 3a tan 2 (X tan a
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179/14 . a ) sin a sin ß + sin y tan «? ,
«? 90 " - «/2cos ß + cos y 2 cos

2 sin a/2 cos a/2 = tan (90 °- a/2 )
2 sin a/2 cos a/2 = .

1
, 2 ( sin a/2 )2tan a/2

= 1 =t, a = 90 °

b ) sin a = cos ß + cos y
sin ( ß +y) = 2 cos ^ cos ^ ; sin [ 180 °- ( ß + y) ] = sin ( ß + y)

= 2 cos ^ cos ^2 sin ^ cos
sin ^ = cos 2
sin P/2 cos 7/2 + cos ß/2 sin Y/2 = cos ß/2 cos Y/2 + sin ß/2 sin Y/2
sin ß/2 (cos Y/2 - sin Y/2) = cos ß/2 (cos Y/2 - sin Y/2 )
sin ß/2 = cos ß/2 ß = 90 °

(bzw . sin Y/2 = cos Y/2 => y = 90

179/15 . sin a = sin ß -2 cos y = 2 sin ß cos ( [ 180 °- ( a + ß )] =
= - 2 sin ß cos ( a + ß ) = - [sin (- a ) + sin ( a + 2ß )]

=> 0 = - sin (a + 2ß ) => a + 2ß = 180 °
wegen a + ß + y = 180 ° gilt ß = y,
das heißt , das Dreieck ist gleichschenklig .

179/16 . a ) a + ß + y = 180 °

=> tan y = tan [ 180 °- (a + ß )] = - tan ( a +ß ) = - i
^

tanatonß
=> tan y - tan a tan ß tan y = - tan a - tan ß
=> tan a + tan ß + tan y = tan a tan ß tan y b ) analog a )

179/17 . a ) sin a + sin ß + sin y = 2 sin a/2 cos a/2 + 2 sin ^| Y cos fLl =
2 cos cos a/2 + 2 cos a/2 cos ^
2 cos a/2 -2 cos ß/2 cos Y/2 =
4 cos a/2 cos ß/2 cos Y/2

b ) sin a + sin ß - sin y= 2 sin a/2 cos a/2 + 2 cos -̂ sin ^ =
2 sin a/2 [sin -^ + sin 1^4 ] =
2 sin a/2 -2 sin ß/2 cos Y/2 =
4 sin a/2 sin ß/2 cos Y/2

c ) cos a + cos ß + cos y = 1 - 2 (sin a/2 )2 + 2 cos -̂ cos ^ =
= 1 - 2 (sin a/2)2 + 2 sin a/2 cos ^ =
= 1 - 2 sin a/2 [sin a/2 - cos ^ I ] =
= 1 + 2 sin a/2 -2 sin ß/2 sin Y/2 =
= 4 sin a/2 sin ß/2 sin Y/2 + 1
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179/18 .

180/19.

d ) cos a + cos ß - cos y = 2 (cos a/2 )2 - 1 - 2 sin -̂ sin =

= 2 cos a/2 [sin ^
^l - sin ^ ] - 1=

= 2 cos a/2 -2 cos ß/2 sin 7/2 - 1=
= 4 cos a/2 cos ß/2 sin 7/2 - 1

a ) sin 2a + sin 2ß + sin 2y = 2 sin a cos a + 2 sin ( ß + y) cos ( ß - y) =
= 2 sin a [- cos ( ß + y) + cos ( ß - y) ] =
= — 4 sin a sin ß sin (- y) = 4 sin a sin ß

denn cos a = - cos ( ß + y) und sin a = sin ( ß + y)

b ) sin 2a + sin 2ß - sin 2y =

c ) cos 2a + cos 2ß + cos 2y =

2 sin a cos a + 2 cos ( ß + y) sin ( ß - y) =
2 cos a [ sin ( ß + y) - sin ( ß - y)] =
4 cos a cos ß sin y

2 (cos a )2 - 1 + 2 cos ( ß + y) cos ( ß - y) =
2 cos a [- cos ( ß + y) - cos ( ß — y) ] — 1 =
- 4 cos a cos ß cos y - 1

d ) cos 2a + cos 2ß - cos 2y = 1 - 2 (sin a )2 - 2 sin (ß + y) sin (ß - y) =
- 2 sin a [ sin ( ß + y) + sin ( ß - y)] + 1 =
- 4 sin a sin ß cos y + 1

a ) (sin a )2 + (sin ß )2 + (sin y)2 =
= | ( l - cos2a ) + | ( l - cos2ß ) + | ( l - cos2y ) =

= | [3 - (cos 2a + cos 2ß + cos 2y) ] =

= | [3 + 4 cos a cos ß cos y + l ] = 2 + 2 cos a cos ß cos y
(vergleiche 18 . c ) )

b ) ( sin a )2 + ( sin ß )2 - (sin y)2 =
= | ( l - cos2a ) + | ( l - cos2ß ) - | ( l - cos2y ) =

= | [ l - (cos 2a + cos 2ß - cos 2y)] =

= | [ l + 4 sin a sin ß cos y - l ] = 2 sin a sin ß cos y
(vergleiche 18 . d ) )

c ) (cos a )2 + ( cos ß )2 + (cos y) 2 =
= | ( 1 + cos 2a ) + | ( 1 + cos 2ß ) + | ( 1 + cos 2y) =

= | (3 + cos 2a + cos 2ß + cos 2y) =

= | ( 3 - 4cosa cos ß cosy - 1 ) = 1 - 2 cos a cos ß cos y
(vergleiche 18 . c ) )

sin y
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d) (cos a )2 + (cos ß )2 - (cos y )2 =
= | ( 1 + cos 2a ) + | ( 1 + cos 2ß ) - | ( 1 + cos 2y) =

= ^ ( 1+ cos 2a + cos 2ß - cos 2y) =

= i (1 - 4 sin a sin ß cos y + l ] = 1 - 2 sin a sin ß cos y
(vergleiche 18 . d ) )

180/20 . a ) ct = c + | (co - s ) = ^ (e + co) , x = i (cö - £)

denn wegen AB = AF = AD gilt:
Dreieck AFD gleichschenklig , AH ist Winkelhalbierende .

b) Sei K Schnittpunkt von EF und BG , L Schnittpunkt von EF und AH :
Fläche (ABCD ) + Fläche (ABEF ) =
= Fläche (ABKL ) + 2Fläche (LKGH ) + Fläche (ABKL ) =
= 2 -Fläche (ABGH ) (gescherte Parallelogramme)

sei N Schnittpunkt von AD und EF , M Schnittpunkt von BC und EF :

ABEMs AAFN und ANFD s AMEC
Fläche (ABCD ) - Fläche (ABEF ) = Fläche (ABCD ) - Fläche (ABMN )

= Fläche (NMCD ) = Fläche (FECD )

c ) AB 2 sinco + AB 2 sine = 2AB - AH sine
AB 2 sin co + AB 2 sine = 2 AB 2 • cos x sin a
sin co + sin e - 2 sin a cos x
sin co + sin e = 2 sin cos -—^

AB 2 sin co - AB 2 sine = FE - EC - sin (90 °- cj)
AB 2 sin co - AB 2 sine = AB -2 AB sin x cos a
sin co - sin e = 2 cos a sin x
sin co - sin e = 2 cos

180/21 . a ) ^ = cos Y/2 , ^ = sir

=> sin y = c cos Y/2
ch . .

wegen y = sm Y/2

A H c B

b ) F ist Mittelpunkt von [ BH a] , also gilt CHa = CF - FB
CH a : 1 = cos y => CHa = cos y
FB : c/2 = sin Y/2 => FB = c/2 sin Y/2 = ( sin Y/2 )2
CF : hc = cos Y/2 => CF = h c cos Y/2 = (cos Y/2 )2
deshalb gilt auch : cos y = ( cos Y/2 )2 - (sin Y/2 )2
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180/22 .

181/23 .

181/24 .

c ) BC - CHa = BH a = 2 BF => 1 - cos y = 2 ( sin Y/2 )2

h a , 2 sin Y/2 cos Y/2 sin Y/2
1 + cos y

" tan Y/2 1 + cos y

=> 1 + cos y = 2(cos y/2 )2
COS Y/ 2

V2 ab sin (a + ß ) = V2 a sina + 1/2 b sin ß
—3— ■— sin ( a + ß ) = —— sina + -^+7
cos a cos ß r cos a cos ß
=> sin ( a + ß ) = sina cos ß + cos a sin ß

AC = b = 2r sin ß , A 'C = b = 2r ' sin ß

c = a cos ß + b cos a
2r sin y = 2r sin a cos ß + 2r sin ß cos a
sin [ l80 °- ( a + ß ) ] = sin a cos ß + cos a sin
sin (a + ß ) = sin a cos ß + cos a sin ß

Der Beweis klappt auch mit bloß einem
Umkreis (r = 0,5 ) , siehe Bild rechts :
c = sin y = sin [ l80 °- (a +ß )] = sin (a +ß )
c = a cos ß + b cos a , Einsetzen von a , b und c ergibt
sin ( a + ß ) = sin a cos ß + cos a sin ß

b cosa acos ß / ß
c = sirvy

I : e2 = 2r 2 - 2r 2 cos ( a + ß )
II : e2 = (xB - xA) 2 + (yB - Ya ):

e2 = (r sin a + r sin ß )2 + ( r cos a - r cos ß )2

I = II : 2r 2 - 2r 2 cos (a + ß ) = r 2 [ (sin a + sin ß )2 + (cos a - cos ß )2]
2 - 2cos (a + ß ) = (sin a )2 + 2 sin a sin ß + ( sin ß )2 +
+ ( cos a ) 2 - 2cos a cos ß + ( cos ß )2

- cos ( a + ß ) = sin a sin ß - cos a cos ß
cos ( a + ß ) = cos a cos ß - sin a sin ß
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c

181/25.

16F 2 :

181/26.

181/27.

, \ \ba ) Die Flächenformel für die Teildreiecke ergibt d\ \ \
F = 1/2 ad sin a + V2 bc sin y = V2 ( ad sin a + bc sin y) \ \

b ) Kosinussatz für die Teildreiecke a”

a 2 + d2 - 2ad cos a = f 2 = b2 + c2 - 2bc cos y
=> a 2 + d2 - b2 - c2 = 2 (ad cos a - bc cos y)
=> ( a2 t d2 - b2 - c2 )2 = 4 [a 2d2(cos a )2 + b2 c2(cos y)2 - 2abcd cos a cos y] V

aus a ) folgt : 4F = 2 ( ad sin a + bc sin y)
=> (4F )2 = 4 [ a 2d2 (sin a )2 + b2c2

( sin y)2 + 2abcd sin a sin y] A
V + A :
( 4F )2 + ( a 2 + d2 - b2 - c2 )2 = 4 [ a 2d2 + b2c2 + 2abcd (sin a sin y - cos a cos y)]
(4F )2 + (a 2 + d2 - b2 - c2 )2 = 4 [a 2d2 + b2c2 - 2abcd cos (a + y)]
16F 2 = - ( a2 + d2 - b2 - c2)2 + 4( a2 d2 + b2c2 ) - 8abcd cos ( a + y)
16F 2 = - ( a 2 + d2 - b2 - c2 )2 + 4( a 2d2 + b2c2 ) + 8abcd -[ l - 2 (cos -̂ )2]
16F 2 = - (a 2 + d2 - b2 - c2 )2 + 4(a 2 d2 + b2 c2 ) + 8abcd - 16abcd (cos )2

(a + d + b - c)( a + d - b + c )(b + c + a - d )(b + c - a + d ) - 16abcd (cos )2

F = yjis - a )( s - b )( s - c )( s - d ) - abcd ( cos -5^ 1)2

Beim Sehnenviereck gilt y = 90 °
,

und wegen cos 90 ° = 0 ist die Fläche maximal .

Trigonometrische Lösung
Dreieck ABT : sin 80 ° sin 40 °

sin 80 ° 2 sin 40 ° cos 40 "
a sin 40 ° sin 40 °

Dreieck AST : x2 = 1 + a 2 - 2a cos 20 °
sin a sin 20— — = —-— => sin a

: 2 cos 40

sin 20

Vl + a2 - 2a cos 20

Nenner 2 = 1 + a 2 - 2a cos 20 ° + ( cos 20 ° )2 - (cos 20 °
)2

= 1 - (cos 20 °)2 + (a - cos 20 °)2
= ( sin 20 ° )2 + ( 2 cos 40 ° - cos 20 ° )2

cos 40 ° - cos 20 ° = - 2 sin 30 °sin 10 ° = - sin 10°
= ( sin 20 ° )2 + ( cos 40 ° - sin 10 °)2
= ( sin 20 °

)2 + (cos 40 ° - cos 80 °)2
cos 40 ° - cos 80 ° = - 2 sin 60 °sin (- 20 °

) = V3 sin 20 °

= ( sin 20 °
)2 + (\ /3 sin 20 °)2

= ( sin 20 °)2 + 3 ( sin 20 °)2 1
= 4 ( sin 20 °

)2
Nenner = 2 sin 20 °
=4> sin a = 0,5 => a = 30 °
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Elementargeometrische Lösung
Viel eleganter dagegen ist der Beweis
allein mit Winkelrechnung : es tuts
schon der Lehrstoff der 7 . Klasse .
Man zeichnet die beiden Hilfslinien :

BU mit 4 . ABU = 60°

UT mit UT II AB
und weist mit Winkel¬
rechnung nach , daß gilt :
Dreieck AIS ist gleichschenklig ,
Viereck SITU ist ein Drachen .

Gleichungen

182/1 . a ) L = 10,38 . . . ; 2,75 . . . } b ) L = {0,71 . . . ; 5,57 . . . }

182/2. a ) L = {0 ; rc/3 ; 7c ; 5rc/3 } b ) L = {0 ; Jii c ) L = {2,80 . . . ; 5,94 . . . }

d ) L = {0 ; */3 ; 2ji/3 ; n ; 4k/3 ; 5jt/3 ) e ) L = U/3 ; V2 ; 3lt/2 ; 5lt/3}

182/3. a ) L = {0 ; */6 ; 5K/ß ; 7t } b ) L = {0,67 . . . ; 5,60 . . . }

c ) L = {3?t/8 ; 7n/g ; TZ■ 11ji/8 ; 15n/g |

a) L = {1,75 . . . ; 6,09 . . . } b ) L = {0,64 . . . ; 0,80 . . . } c ) L = {2,33 . . . ; 2,49 . . . }
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182/5 . a ) L = {*/4 ; 1,89 . . . ; 5ji/4 ; 5,03 . . . } b ) L = F /4 ; 3lt/4 ; n ; 5n/4 ; 77t/4}

c ) L = |0,92 . . . ; 2,15 . . . ; 4,06 . . . ; 5,30 . . . } d ) L = W4 ; 0,92 . . . ; 5 tc/4 ; 4,06 . . .}

182/6 . a ) L = {1,76 . . . ; 4,90 . . . } b ) L = (0,48 . . . ; 3,62 . . . }

182/7 . a ) L = | 0,64 . . . ; 2,49 . . . } b ) L = {0 ; 0,72 . . . ; 1,91 . . . ; n ; 4,37 . . . ; 5,56 . . . }

182/8 . a ) L = {0,39 . . . ; 1,17 . . . ; 1,96 . . . ; 2,74 . . . ; 3,53 . . . ; 4,31 . . . ; 5,10 . . . ; 5,89 . . . }

b ) L = {1,10 . . . ; 1,24 . . . ; 1,89 . . . ; 2,03 . . . ; 4,24 . . . ; 4,39 . . . ; 5,03 . . . ; 5,17 . . . }

182/9 . a ) L = { § ( 2k + 1 ) mit k = 0 , 1 , . . . , 15 ; £ -21 mit 1 = 0,1 , . . . , 5 }

b ) L = { ^ -2k mit k = 0 , 1 , . . . , 17 ; | -21 mit 1 = 1,2,3,5,6,7 }

c ) L = { (4k + 1 ) mit k = 0 , 1 , . . . , 9 ; £ ( 41 + 1 ) mit 1 = 0,1,2,3,4 }

d ) L = { 2k mit k = 0 , 1 , . . . , 11 }

e ) L = {0 ; 7t ; | ( 2k + 1 ) mit k = 0 , 1 , . . . , 7 ;

^ (41 + 3 ) mit 1 = 1,2,4,5 , 7 , 8,10 , 11 }

182/10 a ) L = {0 ; ^/2 ; 2k/3 ; K ; 4it/g ; Sn/2 j b ) L = {*/4 ; 2n/3 ; 3n/4 ; 5n/4 ; 4n/3 ; 7jc/4)

182/11. a ) L = {0 ; */2 ; 7t ; Sn/2 ; 1,25 . . . ; 2,51 . . . ; 3,76 . . . ; 5,02 . . . }

b ) L = {0 ; 7t ; 0,62 . . . ; 1,88 . . . ; 4,39 . . . ; 5,65 . . . }
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8 . Kapitel

198/1.

198/2.

198/3.

198/4.

198/5.

198/5 .

198/7 .

sin (7C/2 + x ) = sin n/2 cos x + cos n/2 sin x = cos x
sin / 71̂ - x ) = sin ^ 2 cos x - cos sin x = cos x
Achsensymmetrie zu x = rc/2

sin ( jt + x ) = sin n cos x + cos n sin x - - sin x
- sin (jt - x) = - (sin n cos x - cos n sin x) = - sin x
Punktsymmetrie zu (7t 10 )

cos ( rt/2 + x ) = cos n/2 cos x - sin n/2 sin x = - sin x
- cos /71̂ - x ) = - (cos W2 cos x + sin K/2 sin x ) = - sin x
Punktsymmetrie zu (K/2 10 )

cos (xc + x ) = cos n cos x - sin n sin x = - cos x
cos (7i - x ) = cos 71 cos x + sin 7t sin x = - cos x
Achsensymmetrie zu x = 7t

tan (7t + x ) =

- tan (7t - x ) :

tan n + tan x
1 - tan 7t tan x

tan 7t - tan x
1 + tan 7t tan x

= tan x

tan x

Punktsymmetrie zu (ttl0 )

Symmetrieachsen der Sinuskurve : x = n/2 + k ?t , keZ

Symmetriezentren der Sinuskurve : (ktt | 0 ) , keZ

Symmetrieachsen der Kosinuskurve : x = ktt , keZ

Symmetriezentren der Kosinuskurve : { n/2 + k7t | 0 ) , keZ

(0 |0 ) , (Jt |0 ) , (27t |0)
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198/8.

y = 1 - sin x

y = cosx - 2

y = - tanx

y = ( sin x )
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198 /8 .
iy y = (cosx )

198 / 10 .

y = 3 sin x

y = sin (- 3x )
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198/10.

y = 2cos x - 1
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198/11.

y = 2sin (ix

y = fsinfjx - ^ jt )
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198/11.

198/12 . a ) Keine Nullstellen , Hochpunkte (n + 2kjtll,5 ) ,
Tiefpunkte (2kjtl0,5) , keZZ Wertemenge : W = [0,5 ; 1,5]

b ) Nullstellen : x = 0,53 . . . + kn
Hochpunkte : (-k/4 + 2kn I 1,5 ) Tiefpunkte : (3n/4 + 2kn I - 2,5)
Wertemenge : W = [- 2,5 ; 1,5]

y = 2cos (x + jjr ) -
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199/13.

199/14.

199/15.

200/16.

201/17.

X x - sin x X tan x - x X tan x - sin x
0,39
0,181

0,0098
0,00099

0,30
0,143

0,0093
0,00098

0,26
0,125

0,0089
0,00098

a ) x = n p = 7t x = nl2 W = [- 5 ; 5 ]

b ) x = n/ß p = 27t/g x = rc/io W = [- 1 ; 1]

c ) X = 5 + 71 p = 27t x = 5 + k/2 W = [- 1 ; 1 ]

d ) x = 5n p = 107t x = 2,57t W = [- 1 ; 1 ]

e ) x = 7t p = 27t x = 3te/2 W = [- 5 ; 5]

f ) x = tc/5 p = 2tc/5 X = 371/jq W = [- 1 ; 1 ]

& X IIOl1 p = 27t x = 5 - rc/2 W = [- 1 ; 1 ]

h ) x = 5n p = 10?t x = 7,57t W = [- 1 ; 1 ]

i) x = 271/3 P = 27t x = 77t/g W = [- 2 ; 2 ]

j ) x = n/g p = 7t x = 57t/ i 2 W = [- 2 ; 2 ]

k ) x = k/2 p = 7t x = 7̂ /4 W = [- 2 ; 2 ]

1) x = nl2 p = 47t x = 771/2 W = [- 1,5 ; 1,5]

B X II P = 7t x = n/2 W = [- 1 ; 1 ]

n ) x = rt/4 P = 67t x = 7tc/4 W = [- 1 ; 1 ]

0 ) x = rt/2 P = 471/3 X = 57I/ß W = [- 1 ; 1 ]

a ) Ai = 2 A5- = - 1 b ) Ai = 2 - V2 A2 = 2^2

a ) sin (x - rc/3) b ) - 3 sin x c ) sin x/3 d ) - 2 sin (x

e ) sin 2 (x + K/g ) f ) - 3/2 sin 3/2x g ) 3/2 sin V2(x - 2/371)

a ) sin (2x + ^ 2 ) b ) sin (7/ i2x + 7t/12 ) c ) ~5/2 sin ( 7/4x - 71/4)
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201/18 . a ) y = sin x b ) y = 0,5 sin 2x c ) Vj[ sin tcx 2

f ) a sin l / a xd ) 10 sin l/io x e ) n sin Vn x

201/19 .

2 + sin x

J - cosx

rhhnTI

sinx + 2

- 1

d )
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202/20 .

202/21 .

202/22 .

202/23 .

a ) D == B , p = 2n b ) D := ir \ {k/2 + :kn] , p = 27t

c) D == ]R\ {«/2 + kn } , P = 7t d) D := K \ {kjt } , p = 27t

a ) x - 0,10 . . . oder X = 3,04 . . . b ) x = 4,14 . . . oder x = 5,28 . .

c ) X = 0,32 . . . oder X = 1,24 . . . oder x = 3,46 . . . oder x = 4,39 . . .

d ) X = 0,50 . . . oder X = 2,64 . . . oder x = 3,64 . . . oder x = 5,78 . . .

e ) X = 0,00 . . . oder X = 2,09 . . . oder x = 3,14 . . . oder x = 5,23 . . .

f ) X = 0,50 . . . oder X = 4,21 . . .

a ) X = 1,77 . . . oder X = 4,51 . . . b ) x = 1,99 . . . oder x = 4,28 . .

c ) X = 0,14 . . . oder X = 2,99 . . . oder x = 3,28 . . . oder x = 6,14 . . .

d ) X - 0,49 . . . oder X = 2,64 . . . oder x = 3,64 . . . oder x = 5,78 . . .

e ) X = 0,94 . . . oder X = 1,14 . . . oder x = 4,08 . . . oder x 4,28 . . .

f ) X = 2,21 . . ,

a) X = 2,76 . . . b ) X := 1,14 . c) x = 0,42 . . . oder x == 2,00 . . .

d ) X == 0,14 . . . oder X == 2,99 . . e ) x = 0i,00 . . . oder x = 2 .

f ) keine Lösung

202/24 . a ) 3,34 . . . < x < 6,08 . . . b ) 0 < x < 2,55 . . . oder 3,72 . . . < x < 2n

c ) 0 < x < 0,64 . . . oder 0,92 . . . < x < 3,78 . . . oder 4,06 . . . < x < 2n

d ) 0 < x < 0,49 . . . oder 2,64 . . . < x < 3,64 . . . oder 5,78 . . . < x < 2n

e ) 2,51 . . . < x < 2,71 . . . oder 5,65 . . . < x < 5,85 . . .

f ) 0 < x < 3/4 n oder 3,92 . . . < x < 2n
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202 /25 . sinx

cos 2x
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202/25 . e ) Die Aufgabe in der ersten Auflage
führt zur Schnittgleichung

tanx = x
und zur simplen Lösung x = 0 .
Von der zweiten Auflage an heißt
die Schnittgleichung tanx = 2 - x

f ) Lösungen ±KU + kx

202/26 . a ) V >5 + 2\fÜ sin (x + 0,5299 . . . ) b ) 5 sin (x + 0,9272 . . . )

c ) !/2\ /21 sin (x + 0,8570 . . . ) a ) V3 sin (2x + n/2)

5sin ( x + 0,9272 . . .

3sinx

V . ■ /



202/26 .
V5 + 2V2 sin ( x + 0,5299 . . . )

sin x

0 ,5 V21 sin ( x + 0,8570 .

2sin (x + 7V3 )

0 .5 sin x

„sin 2x

202/27 . P (x | y ) = P (r cos cp | r sin cp )
r sin ( a + cp ) = r sin a cos cp + r cos a sin cp = x sin a + y cos a
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Aufgaben aus der Besonderen Prüfung ( 1985 bis 1988 )

Planimetrie

263/1 . a ) a = ß = 45 °
, M A = | ^ 2 a , AD = ^ 2 a - a

Bogen (AC ) = | -2 - | ^ 2 an = ~ \J2 an ,Bogen (DC ) = | -2 -a n = | a 7t

Umfang : u = a [ | n (\l2 + 1 ) + \J2 - 1 ]

b > Fläche : F = | • | a 2 7t + | • | a 2 - | a 2 n = \ a2

263/11 . a) Seite vom regelm . Achteck mit Diagonale 8 : HB = = 4^/2

b ) Fläche (ABMH ) = 2 - | MA • | • HB = 8%/2

c ) AB = 4 \]2 - yß => Umfang u = 32V2 - V2

d )
1 3 ^ ° *3

wegen <£ BAH = 135 ° gilt : Bruchteil = ggQr = g = 37,5 %

e) Kreisbogenlänge = | -2AB n = 3 \/2 - V2 n ~ 7,2

263/III . a ) ClT = | • y/3 ■ AB
-

n = ay/3 , F = \ ÄB
~

■ CID = a 2\ /3

b ) Fläche ! schraff . ) = ^ (AB/2 ) 2 7t + Fläche (ABC ) - | CD 2nl b
= | a 2 n + Fläche (ABC ) - | a 2 n = Fläche (ABC )

264/IV . a ) e = 2 - | V3 s = -s/3 s,F = 2 - | \ /3 s -s = ^ 3 s 2

b ) \ sd = iV3 s 2 => d = | v/3 s

c ) £ ADC = 120 ° = | -120 ° => b = | -2 -s -n = | stt
d ) Fläche ! schraff . ) = Fläche ( Sektor ADC ) - Fläche ( Halbkreis DMC )

= | S 2 7t - | (s/2 ) 2 7t = | S 2 Jt - | S 2 7t = Jj S 2 7C
wenn s = 4cm , dann F = y 7t cm 2
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Trigonometrie

264/1 . L

2.

264/11 . L

2 .

265/III . L

2 .

AT = 795m -tan 67,5 °
, BT = 795m -tan 37 °

,
AB = 795m (tan 67,5 ° - tan 37 °

) = 1320 m

1 + \[3 sin x cos x = (cos x )2 => 1 - (cos x )2 + V3 sin x cos x = 0
( sin x )2 + V3 sin x cos x = 0 => (sin x + ^ 3 cos x ) sin x = 0

sin x = 0 => x = 0 oder x = k oder x = 2n
sin x + \[3 cos x = 0 I : cos x => tan x = - ^ 3 => x = ^ oder x

L = {0 , f , 7t , f , 2ji }

2 cos (n/2 - x ) - sin (- x ) + cos 5lt/6 = \[3
2 sin x + sin x - | \/3 = ^ 3

3 sin x = | ^ 3 =^>sin x = | ^ 3 => x = K/3

a ) Abstand a = 54,87m -tan 4,45 ° = 4,27m
b ) Länge 1 = sin s = 27,59m° sm 60 ’

a ) Nenner = V1 - cos x • V1 + cos x =
= V1 - (cos x )2 = V (sin x )2 = Isin xl

D = ] - ji ; 7t [ \ | 01 beziehungsweise x £ {—tc , 0,7 t}

b ) Zähler = cosU ^ + x ) = - sin x,
Nenner = Isin xl = sinx (wegen 0 < x < k ) => Term = - 1

tan a h + s -sin ß
s -cos ß a = 49 °

57t
3

265/IV . L 2 sin x + y/2 > o
=> sin x > - | V2
=> 0 < x < 7 n oder4

7 n < x < 2n4

2 . a) BC = 5 /̂95 mm ~ 49 mm
V96sin a = Aö- => a = 54

b ) 5 = 360 ° - 2a = 251 °
g

Bogen ( CD ) = -2 -35 mm -Tt = 154 mm
Umfang = 2BC + Bogen ( CD ) = 251 mm
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1 . 1 . Die Ellipse als Zylinder schnitt
Lehrbuch Seite 214

1 . a) a = 45°
, b = 6 , a = 6^2 = 8,5 b ) a = 60°

, b = 6 , a = 4^3 = 6,9
c ) a = 90°

, b = 6 = a

2 . a ) a = 5 , b = 3 , r = 3 , a = 36,9° b ) a = 5 , b = 4 , r = 4 , a = 53,l °
c ) a = 10 , b = 4 , r = 4 , a ~ 23,6°

3 . a ) r = 5 , h = 24 , b = 5 , a = Vl22+52 = 13 b ) r = h , b = r, a = V (r/2 )2+r2 = r/2V5
"

c ) 2r = h , b = r, a = Vr2 +r2 = rVsT

4 . a = 6 , b = 4 5 . a = 15/2 , b = 5 6 . klar !

( 5 112 )

oder

a = 13

a = 13

,E (5 14)

b ) b = 5 , E (6 | 4 ) , genau eine Lösung: a = 10 (waagrecht)

c ) a = 10 , E (6 | 6 ) , genau eine Lösung: b = 7,5 ; dazu passen zwei kongruente
Ellipsen : eine mit waagrechtem a und eine mit senkrechtem a.

8 . a = 6cm , b = 4cm

9 . Die Streifenlänge a + b = r ist die Entfernung von Zirkelspitze und Zirkelmine.Ein Punkt P der Haupt - oder Nebenachse sei Mittelpunkt eines Kreises mit
Radius r . Dieser Kreis schneide die andere Ellipsenachse in U und V.
PU und PV schneiden den Kreis um P mit dem Radius einer Halbachse
in zwei Ellipsenpunkten .

10 . Die Achsenpunkte der Sprosse , die die Leiterlänge 4 halbiert ,rutschen auf einem Viertelkreis , weil nur für sie gilt a = b = 2 = Kreisradius .
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1. 1 . Die Ellipse als Zylinderschnitt
Lehrbuch Seite 214

11. a )

Die Schritte ® bis ®
zeigen die Streckung
von g in y-Richtung :
V(x | b ) wird zu V '(x | a)

T ( 7,5 |- 4)



1 . 1 . Die Ellipse als Zylinder schnitt
Lehrbuch Seite 214

Thaieskreis über [OP ]

12 . a ) P (- 12,51 0 )

b ) P (- l,5 | - 7 ) , A2(- 7,5 | 0 ) , B2(0 | - 5 )

S(—61 —3 )

T (4,5 | - 4)
S '(—6 | —4,5 )

Thaieskreis über [OP ]
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1 .2 . Die Mittelpunkt -Gleichung der Ellipse
Lehrbuch Seite 221

1 . a) 1 1 1

2 . a) a = 4 , b = 2 V
"
2 , Querformat

c ) a = 1 , b = 0,5 , Hochformat
h ) a = 2 , b = 1 , Querformat
d ) a = 1,5 ; b = 1,25 ; Querformat

3 . a) b = Vö b) a = 10 V2 c) b = 3 d) a = 5 / l3

X
c ) ^ r +

b) 145 1305/16
= 1

545 545/16

Lehrbuch Seite 222

= 1

2 2x yd) — + —’ 377 377
1 (Kreis !)

5 . Die Winkelhalbierende y = x
schneidet die Ellipse in (2,41 2,4)
also ist s = 4,8.

6. Gerade 9y2 = 4x2 - lOOx + 625 eingesetzt
in die Ellipse 9x2 + 4 -9y2 = 9 -500
ergibt 9x2 + 16x2 - 400x + 2500 = 4500,
vereinfacht 25x2 - 400x - 2000 = 0 ,
dividiert durch 25x2 - 16x - 80 = 0 ,
faktorisiert (x - 20 )(x + 4 ) = 0 liefert die
x-Werte 20 und - 4 der Schnittpunkte .
20 und - 4 eingesetzt in die Geradengleichung ergibt die y-Werte
der Schnittpunkte 5 und - 11 . Schnittpunkte (—4 | —11 ) und (20 | 5)

7 . Formel O U Ellipse
= 7l [ § ( a +b ) - A/ab

"
]

a ) a = 5 , b = 3 , Flächeninhalt A = ab7t = 1571 = 47,1
Umfang ( 1 . Näherungsformel ) U = jt( l,5 -8 - VTö

"
) , U = 25,5

b ) a = 10 , b = 1 , Flächeninhalt A = ab7t = 107t ~ 31,4
Umfang ( 1 . Näherungsformel ) U = tc( 1,5 -11 - VlÖ

"
) , U = 41,9



1 .2 . Die Mittelpunkt -Gleichung der Ellipse
Lehrbuch Seite 222

Kreissegment Fk = | - 167t - 4V3
~
= 9,8

Ellipsensegment A = | -Kreissegment

A = | tt - 2 \/3 - 4,9

Der Kreis um P mit
Radius b = 2,5 schneidet
die x-Achse in S .
Die Gerade PS schneidet
die y-Achse in R.
a = [PR ] = 7,5

10 . Siehe Lehrbuch Seite 219

11 . a ) rb = 2b = a2/b , also a2 = 2b2
, a = bV2

Jedes DIN A . . . Blatt bildet das Bestimmungsrechteck der Fagnano -Ellipse .

e

r .

= Va2 - b2 = V2b 2 - b2

b? .
a

b2 _
bV2

also e = b

b ) b = 3 , a = 3 -̂ 2 = 4,24 Bestimmungsrechteck = DIN A Rechteck
Die kleinen Scheitel -
krümmungs -Kreise
berühren sich .

Quadrat der Seitenlange a
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1 .2 . Die Mittelpunkt -Gleichung der Ellipse
Lehrbuch Seite 222

11. c ) a = bV2

b = -ia = -̂ ^2
V 2 2

Ineinandergeschachtelte
Fagnano -Ellipsen

1 .3 . Die Brennpunkte der Ellipse
Lehrbuch Seite 230

1 . a b e e

a) 4 2 2V3 -/3 /2
b ) 4 2a/3 2 0,5

c ) 7 W 3,5 0,5

d ) 5 3 4 0,8 (p = 90 °

3 - b fl i a> 0,5V3 « 0,87 b ) 0,25 ^7 « 0,66 c ) 0,lVl9 « 0,44- - Vl - e d ) 0,05V39 = 0,31 e ) 0,0lVl99 « 0,14

4 . EJ « 0,48 e2 = 0,65 5 . e 1 = l,öV3 e2 = 2V¥

6 . r min = 87,8 -106 km , r max = 5232,5 -106 km
a = 0,5 (r min + rmax ) « 2,66 -10 9 km , e = a - r min « 2 .572 -109 km
b2 = a 2 - e2

, b « 0,678 -109 km , e = e/a « 0,967

7 . a = 0,5 (r min + rmax) arithmetisches Mittel
a — a — bnin ~ 0,5r max 0,5r m jn — rmin — 0,5 (rmax — rminj
b2 = a 2 - e2 = 0,25 (rmax

2 + 2r minrmax + rmin
2 - rmax

2 + 2r minr max - r min
2)

b = V rmax
-r min geometrisches Mittel

8 . klar !
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1.3 . Die Brennpunkte der Ellipse
Lehrbuch Seite 230
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1.3 . Die Brennpunkte der Ellipse
Lehrbuch Seite 230

Ellipsentangenten

F]R = 2a , H halbiert [FiR]

.
- • A.

Lehrbuch Seite 231



t 1. ,
I ’3 ' Die Brenn Punkte der Ellipse

Lehrbuch Seite 231
**

Haupt -

Leitkreis 2 Leitkreis\l

&
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1 .3 . Die Brennpunkte der Ellipse
Lehrbuch Seite 231
Leitkreis und Hüllgeraden

>16. a) Beweis :
FxF2

* = F, P + PF2 = 2a

h)
Verbindet man den Mittelpunkt M der Ellipse
mit dem Mittelpunkt H der Strecke [F2F2

*] ,
dann bekommt man die Mittellinie [MH]
im Dreieck F1F2F2

*
, das heißt MH ■

Wegen der Definition von F2
*

ist H aber auch Fußpunkt
des Lots von F2 auf die
Ellipsentangente . Diese \ Ft
Fußpunkte liegen also auf
dem Kreis um M mit Radius a.

2a ‘ H
a

M

M
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1 .3 . Die Brennpunkte der Ellipse
Lehrbuch Seite 232
Leitkreis und Hüllgeraden

17 . Jeder Kreispunkt L ist Bild von F 2 bei Spiegelung an einer Tangente t .
Die Mittelsenkrechte von [F2L ] ist die Tangente t , siehe Aufgabe 16 . b ) .

L = Fo*

18 . Das Lot in H auf [F2H ] ist
eine Ellipsentangente ,
siehe Aufgabe 16 . b ) .



Lehrbuch Seite 243

II .2 . Die Hyperbel

Hyperbel 1^ mit a = 1 , b = 2 : x2 - 4y2 = 4 , 4y 2 = x2 - 4
Hyperbel h 2 mit a = 4 , b = 3 : 9x2 - 4 -4y 2 = 144 ergibt 9x2 - 4x 2 + 16 = 144
hi eingesetzt in h 2 ergibt 9x2 - 4x 2 + 16 = 144 x2 = 128/5 , y2 = 27/5 ,

der Rest steht im Bild .
2 . Hyperbelgleichung 16x 2 - 16y 2 = 16
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Lehrbuch Seite 243

II .2 . Die Hyperbel

2 - 1 = 1 , x3 . b ) b 13 - 4 = 9 , 9x - 4y = 36

a
*
= 2 , e = 2 V

"
2 , b2 = 8 - 4 = 4

=> b = 2 gleichseitige Hyperbel

a = 3
b = 2,25
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II .2 . Die Hyperbel
Lehrbuch Seite 244
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Lehrbuch Seite 244

II .2 . Die Hyperbel

9 .

Ellipse 2a = 2 + 5 + 2 = 9 , a = 4,5
Hyperbel 2a = 5 - 2 - 2 = 1 , a = 0,5

Ellipse , Hyperbel r = b2/a , b2 = ra
Ellipse b2 = 2 -4,5 = 9 , b = 3

Hyperbel b2 = 2 -0,5 = 1 , b = 1

Thaies

11 . a )

x o ~ Yo — a
Hyperbelgleichung

y = - x
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II .2 . Die Hyperbel
Lehrbuch Seite 244

b2x2 ± a 2y2 = a 2b2 einsetzen x2 = e2 = a 2 + b2

b2(a 2 + b2) ± a 2y2 = a 2b2 b2a 2 + b4 ± a 2y2 = a 2b2

+ b4 ±a 2y2 = 0 ±a 2y2 = ±b4 y2 = b4/a 2 y = ±b 2/a

14 . a ) Gerade g : y2 = 4 (x- 12 )2 eingesetzt in h : 4x 2 - 9 -4(x2- 24x + 144 ) = 256
x2 - 9x2 + 9 -24x - 9 -144 = 256 , 8x2 - 9 -24x + 9 -144 + 64 = 0
x2 - 27x + 170 = 0 = > (x - 10 )(x - 17 ) = 0 => xA = 10 , xB = 17
eingesetzt in g ergibt yA = - 4 , yB = 10 ; Schnittpunkte A( 10 | - 4 ) , B( 17 110)b ) a2 = 4 , b2 = 16/9 , Asymptoten -Gleichungen : y = ±2x/3
Asymptote y = 2x/3 schneidet Gerade y = 2x - 24 in P ( 18 112 )
Asymptote y = - 2x/3 schneidet Gerade y = 2x - 24 in Q(9 | - 6)

c ) Mab = MPQ(13,5 | 3 ), Folgerung :
A und B liegen symmetrisch zu ( 13,5 13) , ebenso P und Q,
also liegen auch die Strecken [AP ] und [PQ ] symmetrisch zu ( 13,5 13 )
[AP ] und [PQ ] sind also gleich lang .

13 . Ellipse
Hyperbel
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II .2 . Die Hyperbel
Lehrbuch Seite 245

15 . Allgemeine Rechnung
Gerade g : y2 = (mx + t )2 eingesetzt in die Hyperbel : b2x2 - a 2(mx + t )2 = a 2b2

ergibt b2x2 - a 2m 2x2 - 2a 2mxt - a 2t 2 = a 2b2 geschrieben als quadratische
Gleichung in x : (b2 - a 2m 2 )x2 - 2a 2mt -x - a 2(t 2 + b2 ) = 0
Diskriminante D = 4a 4m 2t 2 + 4 (b2 - a2m 2)-a2(t 2 + b2 ) = 4a 2b2(t 2 + b2 - a 2m 2)
g trifft die Hyperbel , falls D > 0 , 2a 2mt + VT)
in Punkten mit dem x -Wert X = -

2(b2 - a 2m 2)
In der Mitte zwischen diesenPunkten
liegt der Punkt mit dem x -Wert Xm = a 2mt

b2 - a 2m 2

Die Gerade y = mx + t schneidet die Asymptote y = bx/a bei x+ = at
b - am

Die Gerade y = mx + t schneidet die Asymptote y = - bx/a bei x_ = — —■
b + am2

arithmetisches Mittel : 0,5 (x+ + xj =
2

a- ^1
g
t

2
= Xm

b - a m

16

< 0 = < R = * S
(paarweise parallele Schenkel )

AR = OV und BS = OU (Parallelogramm )

< P = « S
also ARAP = ASQB (WWS )
also AOVUsARAP (SWS )

also ÜV = PA = BQ und UV | | PA | | BQ

Scherungen :

OVAR - > UVAP - > UVQP - > UOSB q . e .d.

121



Lehrbuch Seite 245

II .2 . Die Hyperbel

17 . Man schert das Parallelogramm so , daß seine
Grundseite w auf der x-Achse liegt .
Sein Flächeninhalt ist F = w -h . \
Im Bild macht man sich klar , y
wie man h und w in Abhängigkeit

yi vom zuständigen Punkt (x0 | y0) ^
der Hyperbel h berechnet . .X

Zp _ b A

w = x0 - z = x0

Raute

Hyperbel h :

Scherung

2ab

- konstant
= w -h

122
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II .2 . Die Hyperbel
Lehrbuch Seite 246
•*• 18. Umkehrung des 1 . Flächensatzes

Als Schenkel nehmen wir die Geraden mit den Gleichungen y = ± ~x.
Ist A(x0 | yo) freie Ecke , dann gilt nach dem obigen Beweis für die

Parallelogramm -Fläche Ff = ^ (b
2
X()

2 - aVo )
Ist F konstant , dann ist es auch b2x0

2 - a2y0
2

, q .e .d .

19 . Die Asymptoten sind hier die Koordinatenachsen ,
die Parallelogramme sind Rechtecke mit dem Flächeninhalt 1 .
Also liegen die freien Ecken auf einer Hyperbel .

• • 20 . 2 . Flächensatz
Beweis
Die Tangente ist ein Grenzfall der Sekante . Also halbiert (nach Aufgabe 15 .)
der Berührpunkt B die Tangentenstrecke [PQ ] zwischen den Asymptoten .
Die Parallele RB zur Asymptote MQ ist also Mittelparallele im Dreieck MQP,
das heißt , R halbiert die Strecke [MP ] . Ebenso halbiert S die Strecke [MQ] ,
Deshalb sind die Dreiecke SQB , MSR , SBR und RBP kongruent . Zwei von
ihnen bilden das Parallelogramm MSBR , das nach dem 1 . Flächensatz den
Inhalt -| ab hat . Also hat das Dreieck MQP den Inhalt a -b . /
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P (2 | ?)a) 1 : y = - 1

Die Mittelsenkrechte von [FL]
schneidet die Achsenparallele

V durch L in P. Ay proh s

F (0 | 0)

F(2 | - 2) P (41 ?): y = x

P(41 0)

ABC ist ein bei C rechtwinkliges
Dreieck . Der Höhensatz ist die
Parabelgleichung : x2 = 2p -yB (0 | - 2p )
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23 . Parabel mit Scheitel im Ursprung , oben offen : 2p -y = x
Die Sehnen -Endpunkte haben denselben y-Wert wie der Brennpunkt : p/2 .
Eingesetzt in die Parabelgleichung ergibt sich für den x -Wert des rechten
Sehnenpunkts : p . Also ist die Sehnenlänge 2p .

Brennstrahl /4 . Leitgerade

PLFN ist ein Parallelogramm ,
dessen Diagonale [PF ] so lang
ist wie eine waagrechte Seite .
Das Dreieck PFN hat die gleich
langen Schenkel [PF ] und [FN ] ,

P (4 | 2 )Scheiteltangente

F gespiegelt an der Tangente ergibt L .
Die Parallele zur Achse durch L schnei¬
det die Tangente im Berührpunkt . Der
Scheitel S ist die senkrechte Projektion
des Mittelpunkts von [FL ] auf die Achse .
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Lot auf die
Leitgerade \ o

Die beiden Tangenten sind die Winkelhalbierenden
der Geradenkreuzung , die aus dem Brennstrahl und
dem Lot auf die (parallelen ) Leitgeraden besteht .

8.
Man zeichnet einen Kreis k so um einen
Punkt M der Gerade , daß er die Leitgerade
berührt . Die Gerade durch F und T (0 | 6)
schneidet k in G und H .
Man streckt k am Zentrum T so , daß der
gestreckte Punkt G auf F fällt . Der Mittel¬
punkt P des gestreckten Kreises k ' ist der
eine Parabelpunkt .
Der andere Parabelpunkt Q ist der Mittel¬
punkt des Kreises k "

, der sich bei Streckung
von k an T ergibt für den Fall , daß H in F
übergeht .
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