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AABC = ACEF (WSW) 1132. AAHC = ADCE (WSW) = CD=gq
AABC = ACHG (WSW) AEDC = AFGB (SWS) = =8
— ACEF = ACHG
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Umkehrung: Hat ein Quadrat iiber einer Dreieckseite denselben Inhalt
wie das Rechteck aus der lingsten Seite und dem anliegenden Seiten-
abschnitt, so ist das Dreieck rechtwinklig.

Beweis: /7|\ \

Es gelte a? = cp. Wegen a®=p?+h? und e | N

Ik ) Bl b- a
b®=q*+ h® gilt dann auch: _ / h S
bz=q2+h2= q2+32_p2:q2+cp_p2

:q2+pq:cq ¥ __q I/"- .-.p _\_\

aus aZ=cp undb?=cq folgt durch Addition: c
a?+b?=clp+q =c%
also ist das Dreieck rechtwinklig.




113/5.

113/6.

114/7.

Umkehrung: Ist in einem Dreieck der Inhalt des Hohenquadrats gleich
dem des Rechtecks aus den beiden zugehérigen Seitenabschnitten, so ist
das Dreieck rechtwinklig.

Beweis: P T\\

aus b?2=q2+h?2und a?=p®+h e N
folgt a2+ b2 =2h?+p?+¢?, b h 8
wegen h? = pq folgt: ,,/"/ \\
a2 +b2=p?+2pq+q®=(p+ Q=2 o5 q /’{ p "
also ist das Dreieck rechtwinklig. ¢

1 < 1 ¢ c
2(a+b)-(a+b)= ici+2»2ab — aZ + bZ=c*

Dreht man das Viereck ABLT um 90° nach rechts (um A), so kommt es
mit Viereck APRC zur Deckung. Da ABLUFT durch Achsenspiege-
lung an TL und CAPRIB durch Punktspiegelung am Mittelpunkt von

[CR] ensteht, folgt die Flachengleichheit der Sechsecke. Es gilt also:
a2+h2+2-1-,ab:c2+2-éah = a?+b?=¢c%

Ein Umkreis existiert, wenn <ACR + <P = 180°.

Wegen XACR = <ATL = 45° ist dies nur der Fall,

wenn <ACR + 90° + 90° — o = 180° ist, das heiBit o = 45°.

a) Die Kongruenz der entsprechenden Teilfiguren liefert die
Zerlegungsgleichheit.

b) Die gleich bezeichneten Teilfiguren sind kongruent. Ist b die kleinere
Kathete und gilt h > 2q, so braucht man mehr als vier Stiicke.

114/8. bis 12. Aus der Konstruktionsabfolge der Zerlegungen ergibt sich jeweils

115/13.

115/14.
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die Flichengleichheit der gleich bezeichneten Teilfiguren. Durch
Addition ergibt sich jedesmal der Pythagoras.

Wl HI ' 6
1]=[3], 2] =[4

AEFG =z AEGH =

!"r+..2_.?+h2:_3_+;.4_ +pq ' e ' @

= h®=pq e
el -
Wegen m = E: = E - ; gilt:
a=2.¢c, b= L
C C

; . ; ‘ - : a’ b ‘ : , d
Einsetzen in a?+b%=c¢? ergibt a-=-c+ b-t_j .¢=c2,also aa' +bb' =cc..




115/15. Fiir das Hypotenusenquadrat gilt: ¢* = 4. : ab + (a — b)* = 2ab + III

fiir die Summe der Kathetenquadrate gilt: a® + b* = 4. i ab+1+1I
wegen c?=a’+b* folgt: I+ 11 =TIL

115/16. Ist h die zur Grundlinie ¢ gehoérige Hohe, so gilt:

ch+clc—h) _ ¢

7l +[2] - ; 5 ; andrerseits gilt:

= i 1iat :
1| +(2| = S bhy + _])a-h;,: b2 + la*’,

5
Gleichsetzen liefert a® + b? = ¢2.

115/17. Fiir den Flicheninhalt F des grofien Quadrats gilt:
F = ¢? beziehungsweise F = 4- _;-ab +{a—b)?

— c2=%2ab+a%2—2ab+b%® = c2=a%+b%

Pythagoriische Tripel

116/1. a) 23?2+ x2-12 =42 +x*-2x%+1=(x*+ 17, (x> 1)

i

by (2xy)? + (2 —y2)? = 4x%y? + x} — 2%y + ¥t = (X + ¥, (x> )

e) (2x+ 12 +(2x% + 2x)2 = 4x? + dx + 1 + 4x* + 8x® + 4x* =
—Ax* + 4x% + 1 + 85+ 4x? + 4x = (2x% + 2x + 1)

d) (x2 + 2xy)2 + (2y2 + 2xy)? = x* + 4x3y + 4x%y? + 4y* + Bxy® + 4x’y® =
<t + 4yt + dx?y? + 4x2y? + 4x%y + 8xy® = (x% + 2y” + 2xy)*

116/2. K2+n2=2n+1+n2=n2+2n+1=m+ 1)

116/3. Essei acIN; wegen a=b giltdann a’>+a’=¢* = c= ay2 ¢IN.

ab
c’

116/4. Es seien a, b und ¢ ein Pythagoraisches Tripel. Dann gilt h =
Wire helN, so wiirde folgen: ab =ke¢ mit keIN und daraus
A= Ll:" = l'&” mit 1eIN wegen ggT(b,c) = 1, also a =l¢, Widerspruch!

116/5. Wenn a, b und c ein primitives Pythagoréisches Tripel bilden, so sind sie
paarweise teilerfremd, das heifit, a und b kénnen nicht beide gerade sein.
Wiiren a und zugleich b ungerade, so hitten sowohl a” als auch b* den
Rest 1 bei Teilung durch 4. Damit wiirde ¢* bei Teilung durch 4 den Rest
2 ergeben, was nicht moglich ist (weil dann ¢ gerade und somit ¢ durch
4 teilbar sein miisste).
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Man kann also ohne Einschrdnkung annehmen:
a gerade, b ungerade, ¢ ungerade.

o) Annahme: Eine Zahl ist durch 4 teilbar.
Wegen a =2k und b, ¢ ungerade folgt aus a®=c¢*—b*:
4k = (¢ — b)(c + b); weil (¢ — b) und (¢ + b) gerade sind, gilt:
4k? = 21.2m. Addition der Gleichungen ¢+b=2m und ¢—b =2l
liefert: 2¢ = 2(1 + m), also ¢=1+ m, wobei entweder 1 oder m gerade
sein muss, da ¢ ungerade ist. Es sei z.B. m gerade, also m = 2n,
dann gilt 4k®=212m = k?=Im = k?=12n = kist gerade
a® = 4k® = 42k')® = 16k” = a = 4k’
) Annahme: Keine Zahl ist durch 3 teilbar.
Dann ergében sich bei Teilung durch 3 die Reste a = 1 oder 2,
b=1oder 2, c¢=1oder2. Die Quadrate a2, ¢ , b2 héitten somit die
Reste a2=1, b2=1, ¢2=1.Wegen a?+ b2=2% c 2ist dies
unmdoglich.
y) Annahme: Keine Zahl ist durch 5 teilbar.
Dann ergiben sich bei Teilung durch 5 die Reste a = 1, 2, 3 oder 4,
ebenso b=1,2 3oder4 und ¢=1,2, 3 oder 4. Die Quadrate héitten
die Reste a2 =1 oder 4, ebenso b2=1oder4 und c?2=1 oder 4.
= a?+b2%2=2 oder aZ+b2=0 oder a2+ b2%=3
Widerspruch Widerspruch Widerspruch

116/6. a) Fliache(ABC) = p- l(a +b+¢)

4.Fliche(ABC)  4;ab 2ab (a+b)° — ¢2

= WS b mat b

T a+b+c” a+b+e” a+b+e

b) Man darf annehmen: a gerade, b ungerade und ¢ ungerade
a+b-c 2k+21+1-(2m + 1)
= = ~=k+]l-m elN

wn BFs =g 2

116/7. ab und (a +b)Va? + b? = (a + b)c sind natiirliche Zahlen.
(ab)? + [(a + b)VaZ + b? |2 = a?h? + (a2 + 2ab + b?)(a? + b?) =
= a*+ 2a% + 3a%b? + 2ab® + b* = (a +b)* — (2a%b + 3aZb? + 2ab®)
= (a +b)* — 2ab(a +b)? + a?b%= [(a+ b)>—ab)?

116/8. Nach DIOPHANTOS (Lehrbuch!) lasst sich ein Pythagoriisches Tripel a, b
2

und ¢ so darstellen: a=2rs, b=r*—s?, c=r*+s% (r,selN)
a-bc 2rs(r? = H?‘_}(rz i s2) s 21‘5{1'2 — 9% + %)

- —t > [ i = - - — 2 "‘2
a+h+c Sraprr—s? srf e gt 2r(r + 8) 8(r - 8)(r® + 5%




116/9.

Nach Aufgabe 5. gilt: a = 4k und auBlerdem enthélt das Tripel genau
eine durch 3 teilbare Zahl, diese kann nur a oder b sein. Wire ndmlich

¢ = 3n, so lieBe a bei Teilung durch 3 den Rest a =1 oder 2 und ebenso
b = 1 oder 2. Die Quadrate a2 , b2 und ¢ hitten also die Reste a *= 1,
b2=1und ¢2=0, was wegen a’+ b?=2 nicht moglich ist.

= A=220 - 5D - 9kb=231=6l

Konstruktionsaufgaben

116/1.

116/2.

116/3.

117/4.

117/5.

117/6.

119/17.

117/8.

a) Konstruktion eines rechtwinkligen Dreiecks mit
¢c=85 p=6,5 und q=2 ergibt b*=17.

b) Konstruktion eines rechtwinkligen Dreiecks mit
a=25 und b=4 ergibt ¢=22725

¢) Konstruktion eines rechtwinkligen Dreiecks mit
a=25und c=4 ergibt b*=9,75

a) Gleichschenklig-rechtwinkliges Dreieck mit a=b =3 = c¢*=18
b) Rechtwinkliges Dreieck mit a=3, b=6 = ¢?=45
¢) Gleichschenklig-rechtwinkliges Dreieck mit ¢=8 = a®=b*=45

a) Rechtwinkliges Dreieck mit a=6, p=4,5 = a*=cp
b a=12 " 'h=3 c) a=9 b=4 d a=9 b=4

a) Man verwandelt das Dreieck in ein Rechteck, dann das Rechteck
mithilfe des Kathetensatzes in ein Quadrat (a = 5,3).
b) wie a) (a = 3,95)

a) V4l 2=52+42 Db) V65 2=T72+42
c) 32=+52+22 d) 82=1/39 *+5

a) V32=31 b) V62 =23 c) V14 2 =27

(11—1)2 Sl n—2n+1 nZ+2n+1 = (n —2_r__1)2

a) +yn "= 1 +n= 1

b) 92=8%+17
Durch Wegscheren einer Ecke entsteht ein Viereck, durch Wegscheren

einer weiteren Ecke ein Dreieck. Das Dreieck wird in ein Rechteck ver-
wandelt. Aus dem Rechteck 148t sich mithilfe des Kathetensatzes das

gesuchte Quadrat konstruieren. (a = 443 ~ 6,9)

39




Einfachere Aufgaben

117/1. a b C h q p F
a) 24 | 25 [6,72 |23,04] 1,96 | 84
3 [ &0 5 I
W) ol hislSelirn sl s
3 = 60 E'?i 225 -
(.) {2 "1'_ SJS 17 2% e 15
d |3V5 (35| 75| 3 [15]| 6 (11,25
e |2v5] 5 5 | 2 1 4 5
D |2V17|;V17| 85| 2 |05 | 8 | 85
(bei f) gibt es eine zweite symmetrische Losung)
117/2. a h F
a) 6 |33 |93
b |2v15| V5 [2+3
c) |2v15] 35 154/3
118/3. a i ha hs | |
a) [25V5| 5 [2V5| 5 |[125
b |~v29| 4 ‘1’ V29| 5 10
e [3vV2| 6 |3V2| 3 9
118/4. a) d =542 b) d=10 c) e=18 =24
d) e=f=25 e) e=41 f=+/337
118/5. 2s+sV2=30 = s=15(2-2), b=30(2 - 1)
118/6. u = :B(WF\TE 100/7. b=17(+5 - 1)
118/8. s=4 u=10 100/9. a=13 r=2
1187104y TL L B0 w _ 4a A2
i Fj i azf‘i ==l g T 28.\;'—2 See
F; a%Vy34 4 e da.. 2
b) F = = i _l = ..'?" '—J;;' —
2 a%y3/16 uz da2 1
Tt e oab
118/11.a) é-:,h— éab > h= =

b) hc=ab = h%?=a%h?—= h%a?+b?)=ah? -




118/13.a=

118/14.

118/15.

119/16.

119/17.

119/18.

119/19.

119/20.

119/21.

119/22,

120/23,

120/24.

120/25.

120/26.

120/27.

A= 5"\.'i2 b= 4\-'!2 i “\.'ié.fi.
wegen a® + b% = ¢? ist AABC rechtwinklig, F = 20.

Es gilt: a=c=8,5 und b=d =6,5. Deshalb ABCD ein Parallelogramm.
AC =10V2 BD =129

a) AM=BM =CM=5

b) Di(5+2V6[5)  Da5-2V6 |5 Ei(8|0) Ex(88)

c) MF2=2425<25 = F liegtim Kreis.

Auf dem Kreis liegen A, E, Z, P, C, Y und V. Im Kreis liegen G, H und S.
AuBerhalb liegen X, B und D. Der Kreis geht durch den Ursprung.

A(21[8) D(34]0) G(0|21) R(8|16) GD =v1597, lorap = V89 +2v233
Mit M(x|y) ergeben sich die Gleichungen:

I (x—82+(y—82=r2 II x2+(y—-9P=r?

III (x-15)2+(y—13,5) =r?, die Losung ergibt M(7,5[9) und r=7,5.

e=MB —MA = ;'\,ﬁ'— 5

Aus \l"(x - 6,5)2; 3.:2_-= '\,"-(x - 2,5)2_ + (y —6)* folgt y = i X

'l 1. A

A—_B - \lfd_-f) F = 2255 — ‘\I'45 d — d = ,\|.45

a2
h=r—-+r?2-124 ~13,3m
Der Messwert 17 ist falsch, weil d irrational ist (Abweichung: 0,17%).
c=8 a=b=v65 = =0,778% a=f>60°wegen a=b>c.
gi= \,‘TSO

a) e=\(r+ h)2-r2? ~19,5km

b) miteausa)gilt: e =e+x=e+ \(r + h')? —r? ~355km
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120/28.

121/29.

121/30.

121/31.

121/32.

121/33.

122/34.

122/35.

&6

a) m= 'J: = 9% b) M= ——e——_ 5h 5%
X V150007 — 8267
©) 45% m=100% 30 m=— ~57,7% 60> m=+3 ~173%

d) aus ; =0,2 und

s? + w? = 40002
folgt s~ 784m

AS=5v2-925~46<5

Aus x:3 = 65:4

folgt x = 4,875

1=+/6,5%+4,8752 = 8,125

ED =b? + ¢2 EC=vaZ+bZ+c2

VM= i Va2 + b? + ¢2 BV=+(a2 + b2)/4 + ¢

MC =425 S =512 + 30-42 = 1320 V = 1260

a) a\5 ; V10 _; \13 _j \5 av2 _: \13
e 3, a_ln a [ e

h) 3-\6 ':’d 2\6 z\ld Zd

M sei der Mittelpunkt des Quadrats und P die senkrechte Projektion
von X auf ABCD:

BM=vV2 BS=3V2 XP=2 BP=V25 BX=V65 huue=25
1+ i

Fliche(BCYx) = 231.0 =% S=4+4-231 =40 +17)
:a\.l';f e z]\:‘j .d — g \E




122/36.

122/38.

122/39.

122/40.

123/41.

123/42.

123/43. s

123/44,

123/45.

123/46.

123/47.

a) d =rv2 b) e=ry2 103/87. e = 10cm
t =25 -+252 - 242 =18

)c:j\?:‘» ‘i—d\f2,5+\,? xza\’?+0"\'2

- 2 .;\_“ : 1:+2\."2 b) zl\f‘ ” \'.2_':

c) : ja\ﬁa =1 Jf,-\:-ﬁ d) “:_] = 3

52 4+ 32 =52 + 32 2

F =422 = 2400

aaf
e+l
|}

und e%/4 + 2/4 = 2500 ergeben:
_60 f,=60 f,=80

die Gleichungen — = 2400

et —10000e2 + 48002=0 = e; =80

Eqo

5 PA= \10 die dritte Ecke des Dreiecks mit den Katheten 1 und 2
3. der HohenfuBBpunkt H. Kathetensatz:

1i=x._5 RH > RH=:V5 = QH=A/}

das heiBt, P und Q liegen auf einem Kreis um A.

=

Der Diagonalenschnittpunkt des Vierecks ABCD sei M.
Wire o = {DI\'IA = 90°
MD=h=22 und AM=hy=

:_3-2| V481

ist dies unméglich = o = 90°.

, so wiirde gelten
240

wegen h;2 + ho? = 152

Fiir die Hypotenusen der glu(‘h%henkhg renhlwmkhgen Dreiecke

ergeben sich der Reihe nach d\,i. 2a, _,m,*z 4a, 4a\‘»’ 8a, 8:1\2 16a

aus 4a =12 folgt a=3. 7
ay2=82 = a=41\2 a-:"iﬁ’ hrrl \.X

£ Iu'__b | a.’ ! %
Bl 60~ ol e
| . £ 1 ;

41 T [ 7 !
('\: 3 =+ 1" \p — 1 /
la Ifﬁsg Ji {;;\j"._ [+ [ [45°
' L AN60°) y \&5°

xdh+ ;A= )\z

= ]1\2 - 41'\-'!)

a) Wegen 202 = 122 + 16® und Eﬂa\H e A\ /
392 = 152 + 362 ist ABCD ein <459 S
Trapez, weil AB || CD ist. o N e

b) d;=dp=45 45> /

e) x=10 z=12 b=d=v1305




105/49.

123/50.

124/51.

124/52.

124/53.

fuBpunkt H), so gilt: h =24, HB =25
= Pp<45° weil 24 <25 und L CHB = 90° ist.

e D)
1= 2iTE
v=3Voa w=:\5a \ -
2
AEFC = AEAB (SWS) E\ﬁ,’ T
> e=8 “{\‘_'f"
53 = {df.?)z 1, 5 l:a = ch)_\fE )2 Sx\hx = o f‘_,r'l;
.' = /e N /.a
= s=aV2 -3 N/ R
s S
o R
h = 1\.5 7, K= '\;ﬁzﬁ V= 3 5
1) Zz+y=8m =

z=4m, x =43 m, h=2V3m

a) Die Kongruenzsitze
liefern (siehe Skizze!):
e=QC =CH =CP

b) Die Behauptung folgt aus
den Kongruenzsitzen.

123/48. e = 51, f=74; zeichnet man die Hohe h des Trapezes durch C (Hohen-

F=ab=12

3_ '"““'“-EE_H
e 15 =i
SR
(t+32=t2+15
6t + O =995
= t=36cm t t+3

LA AL L I T E R R Y TY ]
oder Sehnensatz:
3-(2t + 3) = 15-15
— t=36cm




Schwierigere Berechnungen

124/1.

125/2.

125/3.

125/4.

125/5.

125/6.

125/7.

v+w=2a = a= ‘f';“-" g'.'ﬁ - vw (Hohensatz) = g= \vw
: T W Duw
g? = ha (Kathetensatz) = vw=h->% = h=" .WW
2 2 2 2 v w2 v+ W 2 Ve 4 we
g?=a’®+(a—v)? (Pythagoras) = g =(EEF) 4 (L2 e
= q Ve 4+ w2
e
/
v2 = x(v + w)
-
SR i
2 — — Py J/
w? =y(v + w) = .
w2 __f;' '“-—._‘.)/’
= ¥ W faf _ W -l
h:V+ W '—K—_‘,f ,-"; j.,r | ’/r \
2 LA L I.-'l .f‘ = # \ ,'I
T v+w (Y \ [
| : 1 ¥
IJ' .’f .III-
% 3 |
)
= v 9
1 = . . ¥ —V f W
Der Kreisradius seir: a=v+r=v+—— = ~——

e o i

Sekantentangentensatz: gZ=vw = g=\VW
21.“.

Kathetensatz: g=ha = h= _

V+w

d = DB=25; dy _ _1_1';20 =y =12 DP=QB = 9 (Pythagoras)

2

Q=25-29=T7 = x= \-"r% (Pythagoras)

7-12 el BT
5 —Z ]%\,193

w|g O

Parallelogrammseite a = 26, X = \31Z + 122 = 1105

y =182 + 12% = 613; 1,2-132(3v187 = 2=4113
Haben die abgeséigten Dreiecke die Schenkellédnge s, so gilt:

I b?=2s? :;s:,‘;x:ib OIb+2s=a

I inII eingesetzt: b + by2 =a = b= a(\2 — 1)

F=a?—4 1s2=2a%2-1)

a)r= ;]Ja b)) r= ;lja\‘_2

[1=%




125/7.

c)

d)

e)

g)

I a? + (a—x)? = 4r® L '““\

O =+ a’=¢ i . .
> r ; ; .J_.l' ¥ \-._\‘
Il s°+ ;a%=4r? / r //
1 5 s ey =l i
= X=ga r=—-a,5= aNs | 7z / \

- _ij
\‘-.\ ,'/ /afzvrg f.-’
H\‘\.\ .-':JIJ
5 /
x \‘\.H:"‘“'\\_. -—1"! ’_//
,‘_h_:\:\(:. 7 o
a2 ' a/;
[ re= = s =
rN2+r=a\2 =r=a(2—12) o =h e

Sekanten-Tangenten-Satz:

xa=(a—-r) = x=a(3- 2\5_2 ) ’f/\ \

: T . ; .
<+ (a _1—”5 = s a-r/ /s \ r 5
(o 'III "l: = !

a =90° wegen (a—x)?= 2r2 ) e o 'fj,f% |

= MeAB

a=R+ R\;E — R=a(/2 - 1)

I-\‘fz +r= af\v:‘i__?‘ —a = r= 3{3 == 2.—.\||§)

c Lk H
ri+ za? S r=la

d=I+ A

AAED = ABGF (WSW) = z=ja =y=la

2

Lol a:af2 1 1 15 o iz Aol = 5o
x=;aVvb—h, 5 =3 5aV6-h =5 h = £avh x= saybh
D & Q!.j\ \E/FE =1 = =

h“\.u_, ST MHH“‘\

il .\\
/ ‘.-.”'H“"x y \\
i X
,-/ : \‘E‘N F \-"\
e \
.,r" =
: "a\_- |II
I B |
AlE a B (a6




h)“ 25‘23\;5: 'Qaa

> 5= ia'\."n

X +gé=a" =>'x=zaNo

,_:a‘vz X5 = V= 'fa

E [Eanmeo 1 a

w=7\X*-v'= za

t = \,."‘;,2 + {a M V}E_ﬂ ;a,\,'lo

o)
) rela=lay® = r=laG2-1
=y 2 5=

s 2 1 T2 1 To\2 il
i) v?=(a- ;aV2P+(a- ;aVy2F = v=a(N2-1) W=V
k) (r+ sa?=(a) + '{;;Ja—r)‘3 > r=a/8

I 2 ‘ ‘ o T
D (35E) + (a-r? = Ga+r? = r=(2-V3)a T

m) h+r=a, h®=rla+r) (Sekanten-Tangenten-Satz)
— \rl+ar +r=a = r=a/3 (hist Hohe in AABM)
n) ist x die lingere Teilstrecke von a, so gilt:

] = f

: : i ; : ; : z
2 =8*\ = x= ;8V2; 2=2a2+ (a—x? = s=a(y6-V2)

o) a?+ (a+x)=4a’
—x=a(y3-1)
D= b -' X e X o

= s=(6-2)a \ B e | \

! : ‘ f\ et g
t2 =a%+ (a—x)? \ e JRe

= t=a(\V6-2)

47




126/9.

126/10.

126/11.

126/12.

AC=a \."'3

Die kleinste Sehne ist e -~ =
das Lot zu MA: s=8 v Al -7 sp
s = 2\r2_ g2 i \ ey § [.'/ ,
=] BT - X |I'_2— 12 _ " i l,
S —2\.1'. d = 4 ,,\“\\\ & d /
wegend'< dgilt s <s'. RS >
[ Sof
=
N i 7
=t?+u?, vV=t24g2 ; o
vo=rf+s?, wi=r2+y? Y it y
durch Addition folgt: o rd
Fo gl =D Rl
Y= V4w Ml
b - NGE e
// e s .
. /"’fy i wxm"'-ﬁﬂ_x

y= %a\,@ Z= '\/(i a)’ + (1 a)? = ;a\‘ﬁ

= = a(\i"'f-i - 1)

72 =

T e
ap=z;avd-;a = p= 1aV3

; = T = = -
(a—-xP+a%4 = z= ay2—3 = ') a(\6 —2)




126/13.

126/14.

126/15.

126/16.

126/17.

127/18.

AMNU ist nach Konstruktion —
gleichseitig, ebenso ist auch

AMWYV gleichseitig, weil

XM = 60° und MW =MV ist.

Da fiir die Hohe in AMWYV gilt
h=HV=MB, muss VW

Tangente sein.

a) h=48 x=28
b) wieina) gilt h=4,8
= z=2.8

Nach PTOLEMAIOS gilt: €2 =vw + 82 = e=\vw + s’

fiir die Fldchen des Sehnenvierecks gilt:

e e(ab +cd) _ \"vﬁ_-f_sg . (Ws + v8)
= 4r = 4r

_3+C 5 o W=y
Fo2ilp. Li¥ (73

andrerseits aber auch

gleichsetzen ergibt r = s

Mit AM,=x und HM,=h gilt
x? = v2 + h% = b? + a%/4, h? = a%/4 — w?

— v2yaa—wi=bZ+a%s = b2=vi-wt

3)1:%3\‘@ b) 21’:%3 — r=al4
c) r+r'\;'r2: ia :f>r=%(\ﬂ'§ —1)a /N
d r2=(3a2P+ @R =a=;V0r / i
/ L
/ \
a) s= %b\,"S f,r-’f _h .\\
s e Sl i \
b) Strahlensatz: | = 3 i ‘ \
h=lay3 = y= 2438x i \
AN s iy i) el 0N

2y+X=a = x =a(2y3 - 3)




127/18.

127/19.

127/20.

127/21.

c) 2r= ;a\.g = ; \-"_Ig a

L ks il T I.'__l.l".
d)r=zh=:.;aV3= ;ay3

2r+3p=h-= _], ay3 = p= -IL ay3

a) M;H.=q- ¢ und M.H,= \/(L e e
Gleichsetzen dieser Gleichungen liefert schlieBlich r =b —q,
wenn man cq = b® einsetzt.

b) Nach a) gilt: ry=b~-q und analog ry=a-p = r;+ry=a+b—c
Fiir die Dreieckfléiche gilt: F = iab =r- L u (u=za+b+c¢) =

2ab _ (a+ b)Y - ¢2

- =a+b-—c¢
a+b+c a+b+e-.T" b-c,

1 1
2ah=11'-,){a+b+cll = 2r=

insgesamt folgt also: 2r =r; +r, = M halbiert [M;M;]

Sekantensatz: a-ay, =b-b, ST

= ala—a,) =b(b-b,)

= b*—a?=bb,—aa, (¥

Pythagoras: ¢*—a2 =b?- a2 v

= ¢?=Db%+a’—(a—a,)
= b*-a®+ 2a.a,

Einsetzen von (*) ergibt:

¢ =b-b.—a-a,+ 2a-a,
=b-b, + a-a,

Pythagoras:
af=e+f?, F=e2+f2,
b2=e?+12, d2=e2+1;2,
Addition ergibt: a® + b% = b? + 42
Vertauscht man im Sehnen- i Y i
viereck ABCD die Seiten b und ¢, | e
so bekommt man das Sehnen- | Yers S ) !
viereck ABC'D mit demselben A ) !
Umkreisund b'=¢, ¢ =bh. \
Wegen o, = <DAC = < DBC
(Umfangswinkel) und

ag =<DBC = < BDC' (Umfangs- U5

winkel iiber gleich langen Sehnen) = B @
gilt SADC' = Oy + oy = 9[)3_ = e e

da &; + ag =90° (AASD)

= AAC'D ist rechtwinklig = AC'=2r = ¢2+d2=b? + d2 = 4r2




127/22.

127/23.

128/24.

a) 2r+a=2a => r=

1
2&’(

b) r+ aw‘ré =2a = r=a(2— \E)

e) 2a-—rP=a’+(a+r® = r=

d) xz\j(r+ La)f’"— _liaz =r2 +ar
r+y==2a

r+Val+ri+ar =2a => r= iq

¢ 3 [
a) (I‘+;’d)‘3= -‘iaz+(a—r)2
1
= r=;a
b) x2= (a—rP-r?
einsetzen in
{;a-—r]2+xz=(r+‘la)2

ergibt r=:a

¢) a=r+m2 = r= a(v2 - 1)
X = a—p—l‘=a(2—‘\'§]~p
(r+pP=r2+x

= p=(3 - 2\"&)8,

wegen x =r ist ABCD ein

Quadrat.

Die Mittelpunkte der drei groBen
Kreise bilden ein gleichseitiges
Dreieck mit h = r\3. Der andere
Mittelpunkt ist zugleich Umkreis-
mittelpunkt.

= p=2r{3-r= ;r(2V3-3)

a)

b) p= :r\,TB 4r= 1 r(2V3 + 3)

—_ 2 ]'-':'_?'_
p—f""L )lr\':_——

e Ta
2 FTEAND)

c)

d)z=r—;

r\;ﬁ s Y= ir\.%

p=y+2= :: r(3 —v3)



128/25. MS=12, AS=12v2, BS=413, Hihensatz: MS?=BMx — x= 18

= r=13, also ML=5 — SL=13

128/26. Aus x*=a” + a’ (gleichschenklig-rechtwinkliges Dreieck) und

X-2x = (r —a)(r + a) (Sehnensatz) folgt x = i /10 .

128/27. a) 2 = 243 B a1

128/28. a) a=d\2, b=2v24d.

128/30. 2p\8+p=r = p=r2y3-3)

129/31. 1.Fall: &=¢ =905 g4 =

a

0= d'\l:l_D

b) éab:;ch

:}hzi\"ﬁd PEA Sl /-;;Z;____' 0

h? = q(c—q) ;
: 4 f_q /
= q = F! ,\‘, 10 d: "./
¢) s,= 1344 A;_.iﬁ.-/a—-'
(Pythagoras)

s=2d. 5.= ; \J1o0d.

e T o | ; N
5 L) 'Irr u r \l
129/29. R+r2=R-1r2+R% | o = % )

= R=4r

Addition liefert
29,2 =b%+c2—2a?

= §,2= ; (2b2 + 2¢2 — a2)




129/32.

129/33.

129/34.

129/35.

129/36.

129/37.

130/38.

9 Fall: Einer der beiden Winkel, z.B. ¢, ist spitz, also ist ¢ stumpf:
Der erweiterte Pythagoras fiir die Dreiecke ABM bzw. AMC

2 : : 1 \2 1
ergibt: =852+ (a) -2 ;aa.

bZ = Saz + (l a)z + 2 :1- a-dgg
Addition liefert wie im 1.Fall: 5,2 = § (2b% + 2¢* — a%).
Analog gilt: s,% = ]1 (2a2 + 2¢%2 —b?), sk = ltf&az 2= o),

durch Addition ergibt sich s,2 + 8,2 + 8.2 = i (a2 + b% + .

1.Fall: o=p=90° = ABCD ist ein Rechteck; es gilt:
a2+b?=e? a?+b2=f2 = 2(a®+b?) =e?+f°
2 Fall: Ein Winkel, z.B. o, ist spitz = P ist stumpf.
Der erweiterte Pythagoras fiir AABC bzw. AABD ergibt:

e? = a2 + b? + 2ab, und 2 =a?+b?—2ab, = 2(a*+b?) =e? + f2

a8 2hi-s= h.,= _]sz':z- = hy,

. ) : ; ] _
ha,Z + (s _hL-l)2 =c¢t = c¢= gN2 —2

2 2 24 — 1 .o fe — ) ll{) f 4
h?=s%—c%4 = h.= ;SN2 + V2 b) c=s\V2-V2

e) s,=h, g§= L V2b? + 2¢% — a? (vergleiche Aufgabe 31.)
1 !

I = .
Sa= 55V5 — 2V

1

s

=5y

h?=bh?—q2 h?=a-p? = b?—q2=a’-p? - i e

Die kiirzere Kathete sei q, der Radius des groflen Kreises sei r:

y? = q-2r, x°=qr (Kathetensatz, qist auch Hypotenusenabschnitt der
rechtwinkligen Dreiecke in den Thaleshalbkreisen!) = y*= 2x>

Mit d(P,c)=r, d(P,a)=s und dPb)=t gilt:
EileZitt Vire=xt+r, wiiti=yies?
Addition: W2+r2+ v+ 2+ wl+t= 2+ 2+ X2 +1%+y°+5
2

2,
i i iy o i
= W+ +wi=x2+y +2

a) Fiir die Hohe x des Dreiecks aus den drei Mittelpunkten gilt:

|

x=\(r+p2-p? = VrZ+2pr > h=r+p+x=r+p+ \rlr+2p)

1 |I£)
\) a\' i

b) Mitx — wieina) — gilt: x=

I
g A R p=l G o S O e R S
= b= ;a+ ja+ ;aN2 = 4(13+2N~))3 = =4@ 2N2)

(8P + (@m—rP=R? = s=R?—(m - r)?




130/39.

130/40.

130/41.

130/42.

131/43.

a) R*-(m-r)2=0 b) nein

¢) s =2Vr2 — (m - R)?

Beriihrung von innen: s = 2yR? — (2r — R)?

a)2h=m+r+R = h= _1)(111+r+R)
fiir die Flédche des Druie_cks aus den beiden Mittelpunkten und
einem Schnittpunkt der Kreise gilt: F = Vh(h — R)(h — r)(h — m)
(HERON)
oder auch: F = 1.m. ; 8= 1 ms ,

e

Gleichsetzen ergibt: s = ]']l] Vvh(h - R)(h —r)(h — m)
b) s=2r = m= VRZ - r? \
Fillt man von P aus die Lote auf die Schenkel. so ergibt sich ein Recht-
eck mit den Seiten 2 v\/2 und w2,

Aus CP?= _v?+ 1w? folgt v2+ w2=2CP,

Dreieck VAM ist gleichseitig wegen VM= AM und XAMYV = 60°,
= AV=r= L sV3 = VP= \jz s (Pythagoras),

Sehnensatz: CP(2r — CP)= VP . PW — PW= 4]5\]? ;
VW= VP+PW = ; ‘1‘\..2_1 .

Z= (Pythagoras) e
y=7 (Sehnensatz) ot s HH\\ @
= I.'-. \‘\ r .
r=20 (Pythagoras) / "-.\25 \‘\ \
Sekantensatz: .__/ |I 24 \ >ﬂ\ \
(x - 20)(x + 20) = 1850  / | e e
= x=10v13 e
[ S ) BY I"-. \ I|
| Lo Z H’ J
III|
S “L—,_ P e




131/44.

131/45.

131/46.

131/47.

a) CLDE ist wegen
seiner rechten
Winkel einRechteck
-~ EL=CD=24

b) eine Winkelbe- ;’/ ol
trachtung zeigt: f/
EL L MLund ’f/

EL L NE

— EL ist gemein- ."
same Tangente. |

¢) <B =90°- « A
‘tDEB = g()°

/f&'ﬁ

XDEL = 90°— & = <A +<E =180° = ABEL ist ein Seh nenviereck.

p24(1-qP=xt+1+@x+p? +a?=> x2+px+q=0

a) x;=0 Xp = —3 b x;=-2 %=1

e) x;=-3 xXp=4 d x5=2 e) x,=-25 x3=2
f) keine Schnittpunkte, \

also keine Losung

Wegen gleicher Grund-
linien und Héhen gilt:
Fy=F;=F3=Fy
Fy=F=F;=Fs

= |1]+ 2 = |3

Ist H der HohenfuBpunkt und DH=x,

so folgt aus dem erweiterten Pythagoras:
b2=q?+d?+2qx = 2x= 34 (b2 — q* — d?),

a?=p?+d?-2px = 2x= ;(p2+d2—az)

= J—I(bg—qz—dz) = ]'J(p2 +d2-a?)

= alq+b%= (p+)d®+pa(p+a) = a’q+bp= o(d®+pg)




131/48.

131/49.

131/50.

132/51.

ADCE = ADHC (SsW) = DH=x
deshalb ist EDHC ein Drachen
und <DCH = B,

wegen < CDB = < CDH

=90°- B=o+:p =

ist ADBC gleichschenklig, A\/
das heift, DB=CB = x=y A

Umkehrung: Gilt im AABC: 1) Z=a2+b% = y=90°
2) c*=a’+b?—2aa, = y<90°
3) cZ=a’+b?+2aa, = ¥ < 90°
Beweis: 1) siehe Umkehrung des Pythagoras _
2) wirey > 90°, so ergibe sich mit dem erweiterten Satz

von Pythagoras ein Widerspruch
3) analog wie 2)

LFall: &=¢=90° das heiBt,
AABC ist gleichschenklig
si=b%—c%4, s2=a?_c4
=gy = é V2(a2 + b2) — ¢

2.Fall: Ein Winkel ist spitz, z.B. ¢
b% =52+ c%4+ 2. 1 C-Cge

1

a =g2+ %42 5 CCee

= 2§52 = l [2(a2 + b?) - ¢2]

= §, = ; V2(a? + b2) — ¢2

a) Im Fall a=b gilt x = 0, das heiBt, die Formel stimmt,
im Fall a>b gilt: a?=s2+ %4+ 2. i eX
1

i

b2=s2+c¥4—-2 lex

= a®—b?%=2cx
im Fall a<b gilt analog: b?—a? = 2¢cx
; o |a® — b?|
insgesamt folgt: x = — ot
b) ist die Differenz der Quadrate

der Entfernungen konstant, A
so ist nach a) auch die senk-

rechte Projektion x von [MC]
auf AB konstant = C e g | AB.




me”

132/51.

132/52.

132/53.

132/54.

Liegt umgekehrt C auf g 1 AB, so folgt:
h?2=AH?+CH?Z,a%2=CH? + HB?
— b2 -a?=AH2-HB? = const

¢) hat P gleiche Potenz bzgl. ki und kg, so gilt mit PM,; =a und PM,=Db:

a2 —r2=b?-r2 = a’- b%=r>-r,? ist konstant.
Nach b) liegt P deshalb auf einem Lot zur Zentrale.

a) Pythagoras: h.? =b? —cp? = (b + cp)(b — cp)
erweiterter Pythagoras: a2 = b% + ¢2 @ 2ccp

= O = jc lb3+02—::12
b) h=b?—c2=[b+ . b2 +c?-ad)] [b—5 O +c*~a?)]
= ;C[(b+c}v")‘raz]-;L_{az—(bﬁc)z]
:4ig[b+c+a)(b+c—a}(a+b—c}(a—b+c)

c) 2s=a+b+c b+ec—a=2(s—a)
a+b—-c=2(s—c) a—-b+c=2(s—Db)

hi= ai_"’f 25.2(s —a) -2(s — ¢) -2(s — b)

F=lche= o 2vs(s—als—cls—D) = ys(s —a)(s —c)(s —b)

E ;zﬁ = : (Strahlensatz, x ist 2.Kathete) = hx =2,4(h +x)

aus h? +x%=49 und hx =24(h +x) folgt:
h2 4+ 2hx + x2 =49 + 2hx = h?+ 2hx + x* =49 + 4,8(h + x)
— (h+x2=49+48h+x) = (h+x*-48h+x)+ 2 42 = 54,76
— (h+x—2,4)% = 54,76 — h+x=98 1
weiter gilt: h? — 2hx + x* = 49 — 4,8(h + X)

— (h —x)? =49 —-47,04 — h—-x=14 II
Addition von I und II liefert: h = 5,6

u=2V612,5 -85~ 14,5 x=,u=~725 W =X
v=235-+612,5 ~ 10,25 v = 918,75 — V612,5 ~5,56

7 = 35 — 918,75 ~ 4,69

=]




133/55. a)

b)

Das Lot durch M; auf AB schneide AB in F, z = M;F, CB=x. und
BF =y. Dann gilt fiir AFDM;: 2% =r? - (x + y)* und M;M%=

Z+R+yP=r-x+y2+R+y>2=r2+ R%—x2? — 2xy + 2Ry [1]

; 2R —x 2R + 2y +x
das heifit = — = Gt

damit lautet | 1: MiM£=r2+R2 = &T = 90°:

= 2Ry - 2xy —x2 =0,

schneiden sich umgekehrt die Kreise rechtwinklig, so gilt:
r’+R?= R-x+r2 = x2+2rR-2rx—2Rx=0 =
2x° + 4rR —4rx — 4Rx =0 = 4rR — 2Rx — 2rx + x% = —x2 + 2Rx + 2rx
=> (2R - x)(2r — x) = 2%(R + r) — %2
polt = Sl ) , also AC :CB=AD:DB

X 2r—x

Weil ein Apollonioskreis zu [AB] einen Durchmesser eines Kreises
durch A und B immer harmonisch teilt, schneiden sich die Kreise
nach a) senkrecht.
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