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5 .Kapitel

Beweise

113/1 . AABC = ACEF (WSW ) 1132 . AAHC s ADCE (WSW ) ^ CD = q
AABC = ACHG (WSW ) AEDC = AFGB ( SWS ) => s = ß
=> ACEF s ACHG

113/3 . Umkehrung : Hat ein Quadrat über einer Dreieckseite denselben Inhalt
wie das Rechteck aus der längsten Seite und dem anliegenden Seiten¬
abschnitt , so ist das Dreieck rechtwinklig .
Beweis :
Es gelte a2 = cp . Wegen a2
b2 = q2 + h 2 gilt dann auch :
b2 = q2 + h 2 =

p2 + h 2 und

- r .2
q2 + a2 - p2 ; : q2 + cp - p2

= q“ + pq = cq
aus a2 = cp und b2 = cq folgt durch Addition :
a2 + b2 = c(p + q) = c2 ,
also ist das Dreieck rechtwinklig .
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113/4 . Umkehrung : Ist in einem Dreieck der Inhalt des Höhenquadrats gleich
dem des Rechtecks aus den beiden zugehörigen Seitenabschnitten , so ist
das Dreieck rechtwinklig .
Beweis :
aus b2 = q2 + h2 und a2 = p2 +h2

folgt a2 + b2 = 2h2 + p2 + q2 ,
wegen h2 = pq folgt:
a2 + b2 = p2 + 2pq + q2 = (p + q)2 = c2,
also ist das Dreieck rechtwinklig . c

113/5 . | (a + b)-(a + b) = | c2 + 2 • | ab => a2 + b2 = c2

113/6 . Dreht man das Viereck ABLT tun 90° nach rechts (um A) , so kommt es
mit Viereck APRC zur Deckung . Da ABLUFT durch Achsenspiege¬
lung an TL und CAPRIB durch Punktspiegelung am Mittelpunkt von
[CR] ensteht , folgt die Flächengleichheit der Sechsecke . Es gilt also :

a2 + b2 + 2 • | ab = c2 + 2 • | ab => a2 + b2 = c2 .

Ein Umkreis existiert , wenn <4 ACR + *4 P = 180° .
Wegen <4 ACR = «4ATL = 45° ist dies nur der Fall ,
wenn >4 ACR + 90° + 90° - a = 180° ist , das heißt a = 45° .

114/7 . a ) Die Kongruenz der entsprechenden Teilfiguren liefert die
Zerlegungsgleichheit .

b) Die gleich bezeichneten Teilfiguren sind kongruent . Ist b die kleinere
Kathete und gilt h > 2q , so braucht man mehr als vier Stücke .

114/8 . bis 12. Aus der Konstruktionsabfolge der Zerlegungen ergibt sich jeweils
die Flächengleichheit der gleich bezeichneten Teilfiguren . Durch
Addition ergibt sich jedesmal der Pythagoras .

H5/13 . @ = g
AEFG sAEGH =*

[ l ] + [2] + h2 = g + [4 ] + pq

=> h2 = pq

115/14 . Wegen m = ~ ~ = ~ gilt:
a ’ b '

a = — • c , b = — • c
c 7 c

Einsetzen in a2 + b2 = e2 ergibt a~ • c + b - ~ c = c2
, also aa ' + bb ' = cc ’.



115/15 . Für das Hypotenusenquadrat gilt : c2 = 4 - 1 ab + (a - b )2 = 2ab + III

für die Summe der Kathetenquadrate gilt : a2 + b2 = 4 - 1 ab + I + II

wegen c2 = a2 + b2 folgt : I + II = III .

115/16 . Ist h die zur Grundlinie c gehörige Höhe , so gilt:

[l ] + [2 ] = ch + —— =
2 > andrerseits gilt:

@ + @ = l b ‘hb + \ a ’ha = 1 ^ + ^ a2,

Gleichsetzen liefert a2 + b2 = c2 .

115/17 . Für den Flächeninhalt F des großen Quadrats gilt:
F = c2 beziehungsweise F = 4 - 1 ab + (a - b)2

=> c2 = 2ab + a2 - 2ab + b2 => c2 = a2 + b2 .

Pythagoräische Tripel

116/1 . a) ( 2x) 2 + (x2 - l )2 = 4x2 + x4 - 2x2 + 1 = (x2 + l )2
, (x > 1)

b) (2xy )2 + (x2 - y2)2 = 4x2y2 + x4 - 2x2y2 + y4 = (x2 + y2)2
, (x > y)

e) (2x + l )2 + (2x2 + 2x)2 = 4x2 + 4x + 1 + 4x4 + 8x3 + 4x2 =
= 4x4 + 4x2 + 1 + 8x3+ 4x2 + 4x = (2x2 + 2x + l )2

d) (x2 + 2xy)2 + (2y2 + 2xy)2 = x4 + 4x3y + 4x2y2 + 4y4 + Sxy3 + 4x2y2 =
x4 + 4y4 + 4x2y2 + 4x2y2 + 4x3y + 8xy3 = (x2 + 2y2 + 2xy)2

116/2 . k2 + n2 = (2n + 1) + n2 = n2 + 2n + 1 = (n + l )2

116/3 . Es sei aelN ; wegen a = b gilt dann a2 + a2 = c2 => c = ay/2 <2 IN .

116/4 . Es seien a, b und c ein Pythagoräisches Tripel. Dann gilt h = * .

Wäre helN , so würde folgen : ab = kc mit kslN und daraus

a = kc _ mit ] e j ^ wegen ggT (b,c) = 1 , also a = lc , Widerspruch !

116/5 . Wenn a, b und c ein primitives Pythagoräisches Tripel bilden , so sind sie
paarweise teilerfremd , das heißt , a und b können nicht beide gerade sein .
Wären a und zugleich b imgerade , so hätten sowohl a2 als auch b2 den
Rest 1 bei Teilung durch 4 . Damit würde c2 bei Teilung durch 4 den Rest
2 ergeben , was nicht möglich ist (weil dann c gerade und somit c2 durch
4 teilbar sein müsste ) .
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Man kann also ohne Einschränkung annehmen :
a gerade , b ungerade , c ungerade .
a ) Annahme : Eine Zahl ist durch 4 teilbar .

Wegen a = 2k und b , c ungerade folgt aus a2 = c2 - b2 :
4k2 = (c - b) (c + b ) ; weil ( c - b ) und ( c + b ) gerade sind , gilt :
4k2 = 21 -2m . Addition der Gleichungen c + b = 2m und c - b = 21
liefert : 2c = 2 (1 + m ) , also c= 1 + m , wobei entweder 1 oder m gerade
sein muss , da c imgerade ist . Es sei z .B . m gerade , also m = 2n ,
dann gilt 4k2 = 21 -2m => k2 = Im > k2 = l-2n => k ist gerade
a2 = 4k2 = 4(2k '

)2 = 16k ' 2 => a = 4k ’.

ß ) Annahme : Keine Zahl ist durch 3 teilbar .
Dann ergäben sich bei Teilung durch 3 die Reste a = 1 oder 2 ,
b = 1 oder 2 , c = 1 oder 2 . Die Quadrate a2

, c2
, b2 .hätten somit die

Reste a 2 = 1 , b 2 = 1 , c 2 = 1 . Wegen a 2 + b 2 = 2 =£ c 2 istdies
unmöglich .

y) Annahme : Keine Zahl ist durch 5 teilbar .
Dann ergäben sich bei Teilung durch 5 die Reste a = 1 , 2 , 3 oder 4,
ebenso b = 1,2 , 3 oder 4 und c = 1,2 , 3 oder 4. Die Quadrate hätten
die Reste a 2 = 1 oder 4, ebenso b 2 = 1 oder 4 und c 2 = 1 oder 4 .
=> a 2 + b 2 = 2 oder a 2 + b 2 = 0 oder a 2 + b 2 = 3

Widerspruch Widerspruch Widerspruch

116/6 . a ) Fläche (ABC ) = p - \ ( a + b + c)

=> 2p = 4Fläche (ABC )
a + b + c a + b + c _ a + b + c _ a + b + c

2ab (a + br
: a + b - c

b ) Man darf annehmen : a gerade , b ungerade imd c ungerade
a + b - c 2k + 21 + 1 - (2m + 1 ) , , mT=> p = — s- = - s—^- 2 = k + 1 - m elN

116/7 . ab imd (a + b) "\ja2 + b2 = (a + b )c sind natürliche Zahlen.
( ab )2 + [ (a + b ) Va2 + b2 ] 2 = a? b2 + (a2 + 2ab + b2)(a2 + b2) =
= a4 + 2a 3b + 3a 2b2 + 2ab 3 + b4 = (a +b)4 - (2a 3b + 3a 2b2 + 2ab 3)
= (a +b)4 - 2ab (a +b )2 + a2b2 = [ (a + b )2 - ab]2

116/8 . Nach DlOPHANTOS (Lehrbuch !) lässt sich ein Pythagoräisches Tripel a , b
und c so darstellen : a =2rs , b = r2 - s2

, c = r2 + s2
, (r , s elN )

a -b -c_ 2rs (r2 - s 2 )(r 2 + s2 )
a + b + c 2rs + r2 - s2 + r 2 + s2

2rs (r 2 - s2 )!!2 + s2 )
2r (r + s )

= s(r - s )(r2 + s2 )
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116/9 . Nach Aufgabe 5 . gilt : a = 4k und außerdem enthält das Tripel genau
eine durch 3 teilbare Zahl , diese kann nur a oder b sein . Wäre nämlich
c = 3n , so ließe a bei Teilung durch 3 den Rest a = 1 oder 2 und ebenso
b = 1 oder 2 . Die Quadrate a2

, b2 und c2 hätten also die Reste a 2 = 1,
b 2 = 1 und c 2 = 0 , was wegen a 2 + b 2 = 2 nicht möglich ist .

A = a + b 4kb = 2k -b = 2 -3 -1 = 61 .

Konstruktionsaufgaben

116/1 . a) Konstruktion eines rechtwinkligen Dreiecks mit
c = 8,5 , p = 6,5 und q = 2 ergibt b2 = 17 .

b) Konstruktion eines rechtwinkligen Dreiecks mit
a = 2,5 und b = 4 ergibt c2 = 22,25

c) Konstruktion eines rechtwinkligen Dreiecks mit
a = 2,5 und c = 4 ergibt b2 = 9,75

116/2 . a ) Gleichschenklig -rechtwinkliges Dreieck mit a = b = 3 => c2 = 18
b) Rechtwinkliges Dreieck mit a = 3 , b = 6 => c2 = 45
c ) Gleichschenklig -rechtwinkliges Dreieck mit c = 3 =5- a2 = b2 = 4,5

116/3 . a ) Rechtwinkliges Dreieck mit a = 6 , p = 4,5 => a2 = cp
b) a = 12 b = 3 c) a = 9 b = 4 d ) a = 9 b = 4

117/4 . a) Man verwandelt das Dreieck in ein Rechteck , dann das Rechteck
mithilfe des Kathetensatzes in ein Quadrat (a « 5,3) .

b) wie a ) (a « 3,95)

117/5 . a) ^/4^ 2 = 52 + 42 b) a/65
~ 2 = 72 + 42

c ) 32 = ^ 5 2 + 22 d) 82 = a/39
" 2 + 52

117/6 . a) a/3 2 = 3 -1

117/7 . a ) ( - -1)2 +

b) 92 = 82 +

b ) ^ 6 2 = 2 -3

n2 - 2n + 1

c) -̂ 14 2 = 2 -7

n2 + 2n + 1 / n + 1 \ 2
+ n = - j - - 1- Ö-

.J

117/8 . Durch Wegscheren einer Ecke entsteht ein Viereck , durch Wegscheren
einer weiteren Ecke ein Dreieck . Das Dreieck wird in ein Rechteck ver¬
wandelt . Aus dem Rechteck läßt sich mithilfe des Kathetensatzes das

gesuchte Quadrat konstruieren , ( a = 4a/3 « 6,9)
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Einfachere Aufgaben

117/1 . a b c h q P F
a) 7 24 25 6,72 23,04 1,96 84
b) 12 5 13 60

13
25
13

144
13 30

c) 7,5 4 8,5 60
17

61
31

225
31 15

d) 3a/5 H 7,5 3 1,5 6 11,25
e) 2a/5 > /6 5 2 1 4 5
f ) 2a/17 | VI7 8,5 2 0,5 8 8,5

(bei f) gibt es eine zweite symmetrische Lösung )

117/2 . a h F
a) 6 3a/3 9a/3
b) V6 | V5

c) 2a/15 3a/5 15 V 3

118/3 . a c h a hc F
a) 2,5a/5 5 2a/5 5 12,5
b) a/29

"
4 1 ^29 5 10

c) 3a/2 6 3a/2 3 9

118/4 . a ) d = 5a/2
d) e = f = 25

b) d = 10 c) e = 18 f =
e ) e = 41 f = a/337

118/5 . 2s + sa/2 = 30 =>

118/6 . u = S0 ^[ ^ß

118/8 . s =4 u = 10

U 8/10 . , ) | = ji = f
Fi a2 A/3/4 4

} F 2
=

a 2 V3/l6
=

1

s = 15 (2 - y/2 ) , b = 30(a/2

100/7 . b = 17 ( Vö - 1)

100/9 . a = 13 r = |

ui _ 4a a/2
U2

_
2a a/2

“ 1

ui 3a 2
U2

_ 3a/2 “ 1

118/11 . a ) fch = | ab => h = ^
b) hc = ab => h2c2 = a2b2 => h2(a2 + b2) = a2b2

24

1)

JL _ JL 1
h 2 “

a2 +
b2
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118/13 . a = 6,5 b = 8,5 c = 5^ 5

118/14 . a = 5y/2 b = 4y/2 c = ^ 82
"

wegen a2 + b2 = c2 ist AABC rechtwinklig , F = 20.

118/15 . Es gilt : a = c = 8,5 und b = d = 6,5 . Deshalb ABCD ein Parallelogramm .
ÄC = 10y/2 BD = y/29

~

119/16 . a ) AM = BM = CM = 5

b) Di (5 + 2a/6 | 5 ) D2(5 - 2^ 6 | 5 ) Ei ( 8 | 0 ) E2( 8 | 8)
c ) M F2 = 24,25 < 25 => F liegt im Kreis .

119/17 . Auf dem Kreis liegen A, E , Z , P , C , Y und V . Im Kreis hegen G, H und S .
Außerhalb liegen X, B und D . Der Kreis geht durch den Ursprung .

119/18 . A( 21 | 8 ) D (34 | 0 ) G(0 |21 ) R(8 | 16) GD = ^ 1597, 1GRAD = y/89 + 2y/233

119/19 . Mit M (x |y) ergeben sich die Gleichungen :
I (x - 3 )2 + (y - 3 )2 = r 2 II x2 + (y - 9)2 = r 2

III (x - 1,5 )2 + (y - 13,5)2 = r 2
, die Lösung ergibt M (7,5 | 9) und r = 7,5 .

119/20 . e = MB - MÄ = f ^/37
~
- a/ö

119/21 . Aus y/ (x - 6,5)2 + y2 = y/ (x - 2,5 )2 + (y - 6 )2 folgt y = | x.

119/22 . AB = y/45
~

F = 22,5 = | y/45d => d = y/45
"

120/23 . h = r - y/r 2 - 12/4 * 13,3 m

120/24 . Der Messwert 17 ist falsch , weil d irrational ist (Abweichung : 0,17%) .

120/25 . c = 8 a = b = y/65
~

= 0,778% a = ß > 60° wegen a = b > c.

120/26 . s = VS(T

120/27 . a ) e = ^ (r + h )2 - r 2 * 19,5km

b) mit e aus a ) gilt : e ' = e + x = e + y/ (r + h '
)2 - r 2 * 35,5 km
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120/28 . a ) m = % = 9%JÜ
c) 45° : m = 100%

b) m = 826
"\/150002 - 8262

30° : m = ± « 57,7%
V3

= 5,5%

60° : di = a/3 « 173 %

d) aus — = 0,2 uni
W 7

s2 + w2 = 40002
folgt s » 784m

121/29 . AS = 5a/2 - 2,5 * 4,6 < 5

Socket

B

121/30 . Aus x : 3 = 6,5 : 4
folgt x = 4,875
1 = V6,52 + 4,8752 = 8,125

121/31 . ED = Vb2 + c2

VM = | Va2 + b2 + c2
EC = Va2 + b2 + c2

BV= -V(a 2 + b2 )/4 + c2

121/32 . MC = 42,5 S = 5 -12 + 30-42 = 1320

121/33 . a ) aVö f a/TcT § Vl3
~

■
; V6 3

2 “ 2 2 2
~a/3

a^2

a

V = 1260

| Vl3
“

122/34 . M sei der Mittelpunkt des Quadrats und P die senkrechte Projektion
von X auf ABCD:
BM = a/2 BS = 3v/2 XP = 2 BP = a/^ 5 BX = # hi **« = 2,5
Fläche (BCYX ) = S = 4 + 4 - : : 4( 1 + ^ 17 )

122/35 . d = | Vi



122/36 . a) d = rt/2 b ) e = ta/2

122/38 . t = 25 - V252 - 242 = 18

y = aA/2,5 + a/2

1 + V2

103/37 . e = 10 cm

122/39 . x = | V6

122/40 . a)

c)

f + t ^2
2

i + Vs

b)

d)

a

aV3
a

z = a

V5
~

2

= Vs

V 1+ 0,5a/2

123/41 . 52 + 32 = a/52 + 32 2

123/42 . F = 4 - ^ = 2400

die Gleichungen = 2400 und e2/4 + f®/4 = 2500 ergeben :

e4 - 10 000 e2 + 4800 2 = 0 => ex = 80 e2 = 60 ^ = 60 f2 = 80

123/43 . s = a/5 , PA = a/10 ; die dritte Ecke des Dreiecks mit den Katheten 1 und 2
sei R , der Höhenfußpunkt H . Kathetensatz :

l 2 = a/5 RH => RH = | a/5 => QH = => Qk = Jw

das heißt , P und Q liegen auf einem Kreis um A.

123/44 . Der Diagonalenschnittpunkt des Vierecks ABCD sei M .
Wäre a = •£ DMA = 90°

, so würde gelten
MD = hi = ^ und ÄM = h2 = -^ V

V421 A481

wegen hi 2 + h2
2 * 152 ist dies unmöglich => a 90° .

123/45 . Für die Hypotenusen der gleichschenklig -rechtwinkligen Dreiecke

ergeben sich der Reihe nach at/2 , 2a , 2aA/2, 4a , 4a\ 2 , 8a , 8ay/2, 16a
aus 4a = 12 folgt a = 3 .

123/46 . ay/2 = 82 => a = 41a/2
h = | Ae

y = h + | a = fA2 (y/s + l )

x = 1ia/2 = 41a/3

123/47 . a) Wegen 202 = 122 + 162 und
3Q2 = 152 + 362 ist ABCD ein
Trapez , weil AB | | CD ist .

b) di = d2 = 45
e) x = 10 z = 12 b = d = Vl305
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123/48 . e = 51 , f = 74; zeichnet man die Höhe h des Trapezes durch C (Höhen¬
fußpunkt H) , so gilt : h = 24 , HB = 25
=> ß < 45°

, weil 24 < 25 und CHB = 90° ist .

105/49 . v = l ^/öa w = l ^/öa

123/50 . AEFC s AEAB ( SWS)
=> e = s

s2 = (a/2 )2 + ( a - a/2 ^ 3 )2

=> s = aVä - Vß
'
309 ^ 0

124/51 . h = | a/s z, x = a/3 z , y = | z

| z + y = 8m =>

z = 4m , x = 4a/3 m , h = 2a/3 m (X;

124/52 . a) Die Kongruenzsätze Q. CAx90 °- (x ) p
liefern (siehe Skizze !) : / 1 // 1 >. /
e = QC = CH = CP / 1 \/ I \/ 1 \/ 1

b) Die Behauptung folgt aus / 1/ 1/ 1
den Kongruenzsätzen . aM q Ai p /90°- <KB

124/53 . (t + 3 )2 = t2 + 15
6t + 9 = 225
=> t = 36 cm

oder Sehnensatz :
3 -(2t + 3 ) = 15 - 15
=> t = 36 cm
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Schwierigere Berechnungen

124/1 .

125/2 .

125/3 .

v + w = 2a => a = ; g2 = vw (Höhensatz ) => g = a/vw

g2 = ha (Kathetensatz ) => vw = h - yy => h =

q2 = a2 + (a - v)2 (Pythagoras ) => q2 = (—7 w )
2

+ ( y -w - v)
2

= — +
2

—

v2 = x (v + w)

w2 = y(v + w)
=> y =
h = v + w - x - y

Der Kreisradius sei r : a = v + r = v +

Sekantentangentensatz : g2 = vw => g = Vvw
Kathetensatz : g2 = ha => h =

° V + W

125/4 . d = DB= 25 ; ^ => y = 12 ; DP = QB = 9 (Pythagoras)

PQ = 25 - 2 -9 = 7 => x = y/l93 (Pythagoras )

¥ = “ =>

125/5 . Parallelogrammseite a = 26 , x = V31 2 + 122 = a/TIÖ5

y = V 182 + 122 = 6a/13
~
; | z2 = 132 - (3y[l3 )2 => z = 4^ 13

125/6 . Haben die abgesägten Dreiecke die Schenkellänge s , so gilt:

I b2 = 2s2 => s = | a/21) H b + 2s = a

I in II eingesetzt : b + Ioa/2 = a => b = a(^ 2 - 1)

F = a2 - 4 - 1 s2 = 2a2 ( yf2 - 1)

125/7 . a) r = | a b) r = | a^2

45



125/7 . c) I

III s2 + -Aa2 = 4r2

r "V2 + r = a\ 2 => r =
Sekanten -Tangenten - Satz :
xa = (a - r )2 => x = a (3 - 2^ 2 )
x2 + (a - r )2 = s2

= > MeAB

e) a = R + Ra/2 => R = a(^2 - 1)
rV2 + r = a^/2 - a => r = a(3 - 2a/2 )

f) a = r + -\ jr 2 + I q2 3
4 a ^ r _

8 3

g ) AAEDsABGF (WSW)
x = ~ aVö - h ,

=> Z =
2 a

a -a/2 _ 1 1 (
2 “

2
*

2 51̂ 5 h

y = ja
=> h = | aVö x = - a3 - Vs

46



h > \ - \ s - \ a ^ = bl a 'a

=> s = | av/5

x2 + s2 = a2 =;

^ a -v = | x -s :
x = | aA/ö

w = Vx2 - v2 = | a

t = Vw2 + ( a - v)2 = | av/lÖ

i) r + 1 a = | av/2 => r = | a( ^ 2 - 1)

j ) v2 = (a - | aA/2 )2 + (a - | aV2 )2 v = a (v/2 - 1 ) w= v

k) (r + | a)2 = (| a)2 + (| a - r)2 =3* r = a/8

l) ( 5-^ £ )
2

+ (a - r )2 = ( | a + r )2 => r = (2 - v/3 )a s = r

m ) h + r = a , h2 = r (a + r) (Sekanten -Tangenten - Satz )
=> a/t 2 + ar + r = a => r = a/3 (h ist Höhe in AABM)

n ) ist x die längere Teilstrecke von a , so gilt:
2x2 = s2 => x = ^ sa/2 ; s2 = a2 + (a - x)2 => s = a(Vß - ^ 2 )

o) a2 + (a + x)2 = 4a2

t2 = a2 + ( a - x):
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126/8 .

126/9 . Die kleinste Sehne ist
das Lot zu MA; s = 8
s = 2^1r 2- d2

s ' = 2^ r2- d '2 =>
wegen d '< d gilt s < s ' .

126/10 . x2 = t 2 + u2
, v2 = t2 + s2

y2 = r2 + s2
, w2 = r2 + u:

durch Addition folgt :
Y2 . v 2 . r2 . w 2

126/11 . y = | aV2 z = ^ af + (
’- af =

126/12 . AC = aV§ => x = a(^ 3 - 1)
z2 = (a - x)2 + a2/4 => z = aV2 - V3 = | a(^ 6 - -\]2 )
ap = | a ^ 3 - | a => p = ja ^ 3
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V/
126/13 . AMNU ist nach Konstruktion

gleichseitig , ebenso ist auch
AMWV gleichseitig , weil
* M = 60 ° undMW = MV ist .
Da für die Höhe in AMWV gilt
h = HV = MB , muss VW
Tangente sein .

126/14 . a ) h = 4,8 x = 2,8

126/15 . Nach PTOLEMAIOSgilt : e2 = vw + s2 => e

für die Flächen des Sehnenvierecks gilt :

-r, e(ab + cd) a/vw + s2 • (ws + vs ) , . , , ,
F = -^ r

- = - ^ - andrerseits aber auch

F = ^p .h = Z±^ a/s2 - (
w

2
- )2

gleichsetzen ergibt r = s

126/16 . Mit AM a = x und HM a = h gilt
x2 = v2 + h2 = b2 + a2/4, h2 = a2/4 - w2

=> v2 + a2/4 - w 2 = b2 + a2/4 => b2 = v2 - w2

126/17 . a ) x = | a >/2

c) r + ta/2 = | a

b ) 2r = \ a => r = a/4

r = | ( V2 - l )a

d) r2 = (3a/2)2 + (a/2)2 a = | a/IÖ
~
r

127/18 . a ) s = | b >/3
a/2b) Strahlensatz : j h

h = | aV3 • = | V3 :

2y + x = a => x = a(2A/3 - 3 )



127/18 . c ) 2r = \ ay[3 => r = \ ^ a

® r = lh = 5 - | “^ =
S a^

2r + 3p = h = | a^ 3 => p = ^ a^ 3

127/19 . a ) M cH c = q - | c und MCHC= ^ ( | c - r)
2 - r2 - r

Gleichsetzen dieser Gleichungen liefert schließlich r = b - q,
wenn man cq = b2 einsetzt .

b) Nach a ) gilt : ^ = b - q und analog r2 = a - p =» r1 + r2 = a + b -
Für die Dreieckfläche gilt : F = ^ ab = r - 1 u (u = a + b + c ) =>

2
ab = r -

g (a + b + c ) ^ 2r = = -
TTFrr ; = a + b - c ,

insgesamt folgt also : 2r = rx + r2 => M halbiert [MiM 2]

127/20 . Sekantensatz : a -ab = b -ba
=> a(a - ac) = b(b - bc)
=> b2 - a2 = b-bc - a -ac (*)
Pythagoras : c2 - ac

2 = b2 -
=> c2 = b2 + ac

2 - (a - ac)2
= b2 - a2 + 2a -ac

Einsetzen von (*) ergibt :
c2 = b -bc - a -ac + 2a -ac

= b -bc + a -ac

127/21 . Pythagoras :
„2 _ „ 2 , f 2+ U >ar
b2 : :

2 + fl2 ,
c2 ^
d2 =

e 2 + 12 ,
„ 2 , f 2e l + I2 ,

Addition ergibt : a2 + b2 = b2 + d2
Vertauscht man im Sehnen -
viereck ABCD die Seiten b und c ,
so bekommt man das Sehnen¬
viereck ABC 'D mit demselben
Umkreis und b ' = c , c ' = b .
Wegen cx2 = -äDAC = <* DBC
(Umfangswinkel ) und
a 2 = <£ DBC = BDC ' (Umfangs¬
winkel über gleich langen Sehnen )
gilt <>EADC ' = §! + a 2 = 90°,
da 6x + a 2 = 90 ° (AASD)
=> AAC 'D ist rechtwinklig =5- AC '= 2r => c'2 + d2 = b2 + d2 = är2
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127/22 . a ) 2r + a = 2a => r = ^ a

b) r + as[2 = 2a => r = a(2 - a/2 )

c) (2a - r )2 = a2 + (a + r )2 => r = \

d) x =
r + y = 2a

Va2 + r2 + ar = 2a => r =

127/23 . a) (r + ia ): a2 + (a - r ):

b) x2 = (a - r)2 - r 2 = a2 - 2ar ,
einsetzen in
( | a - r )2 + x2 = (r + 1 a )2

ergibt r = | a

c) a = r + r^2
= a(2 - ^ 2 ) -

=> p = (3 - 2'j2 ) a,

wegen x = r ist ABCD ein

Quadrat .

128/24 . a) Die Mittelpunkte der drei großen
Kreise bilden ein gleichseitiges
Dreieck mit h = ta/s . Der andere
Mittelpunkt ist zugleich Umkreis -
mittelpunkt .
=> p = ! W3 - r = 5 r(2V3 - 3)

r(3 - V3)

»D
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128/25 . MS = 12 , AS = 12^2 , BS = 4a/13 , Höhensatz : MS2 = BMx => x = 18
=> r = 13 , also ML = 5 => SL = 13

128/26 . Aus x2 = a2 + a2 (gleichschenklig -rechtwinkliges Dreieck ) und
x -2x = (r —a)(r + a ) (Sehnensatz ) folgt x = | r^jlÖ .

128/27 . ä) - = | >/3 b) - = a/E - 1ad a

128/28 . a ) a = d^2 , b = 2^2 d,
c = dVlO

b) | ab = | ch

=> h = | -y/icTd
h2 = q( c - q)
^ q = | VlS

"
d,

p = | ^Jvdd (q > p)

c) sa = | V34d
( Pythagoras )
sb = 2d, sc = lWd

129/29 . (R + r)2 = (R - r)2 + R2
=> R = 4r

129/30 . | + p = r => p = r(2V3 - 3)

129/31 . l .Fall : s = cp = 90°:
Addition liefert
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2 .Fall : Einer der beiden Winkel , z .B . s , ist spitz , also ist <p stumpf :
Der erweiterte Pythagoras für die Dreiecke ABM bzw . AMC

ergibt : c2 = sa
2 + (| a )2 - 2 - \ a -asa

b2 = sa
2 + (f a)2 + 2 - \ a -asa

Addition liefert wie im l .Fall : sa
2 = | (2b2 + 2c2 - a2 ) .

Analog gilt : sb
2 = | (2a2 + 2c2 - b2) , sc

2 = | (2a2 + 2b2 - c2) ,

durch Addition ergibt sich sa
2 + sb

2 + sc
2 = | (a2 + b2 + c2 ).

129/32 . l .Fall : a = ß = 90° => ABCD ist ein Rechteck ; es gilt :
a2 + b2 = e2

, a2 + b2 = f 2 => 2(a2 + b2 ) = e2 + f2

2 .Fall : Ein Winkel , z .B . a , ist spitz => ß ist stumpf .
Der erweiterte Pythagoras für AABC bzw . AABD ergibt :

e2 = a2 + b2 + 2aba und f 2 = a2 + b2 - 2aba => 2 (a2 + b2) = e2 + f 2

129/33 . a ) 2K 2 = s2 => K = \ s^ 2 = hb

ha
2 + ( s - ha)2 = c2 => c = sa/2 - V2

h(.
2 = s2 - c2/4 => hc = | s"V2 + Vi b ) c = sy/2- V2

c ) sc = hc sa = \ V2b 2 + 2c2 - a2 (vergleiche Aufgabe 31 . )

sa = | - 2 'ß = sb

129/34 . h2 = b2 - q2
, h2 = a2 - p2 => b2 - q2 = a2 - p2 => a2 - b2 = p2 - q2

129/35 . Die kürzere Kathete sei q , der Radius des großen Kreises sei r :

y2 = q -2r , x2 = q-r (Kathetensatz , q ist auch Hypotenusenabschnitt der

rechtwinkligen Dreiecke in den Thaieshalbkreisen !) => y2 = 2x2

129/36 . Mit d(P,c) = r , d(P,a ) = s und d(P,b ) = t gilt :
u2 + r2 = z2 + 12

, v2 + s2 = x2 + r2
, w2 + 12 = y2 + s2

Addition : u2 + r2 + v2 + s2 + w2 + 12 = z2 + 12 + x2 + r2 + y2 + s2 >

=> u2 + v2 + w2 = x2 + y2 + z2

129/37 . a ) Für die Höhe x des Dreiecks aus den drei Mittelpunkten gilt :

x = y/ (r + p )2 - p2 = V r2 + 2pr h = r + p + x = r + p + sjrir + 2p )

b) Mit x - wie in a ) - gilt : x = - ^ a2 = \ aA/2

^ b = | a + ia + | a^ 2 = \ (3 + 2^ 2 )a => f = 4(3 - 2a/2 )

130/38 . (s/2 )2 + (m - r )2 = R2 => s = a/R 2 - ( m - r ) 2



130/39 . a ) R2 - (m - r )2 > 0 b ) nein
c) s ' = 2 -\jr 2 - ( m - R )2

d) konzentrische Kreise : s = 2^ R2 - r2

Berührung von innen : s = 2^ R 2 - ( 2r - R )2

130/40 . a ) 2h = m + r + R => h = | (m + r + R)
für die Fläche des Dreiecks aus den beiden Mittelpunkten und
einem Schnittpunkt der Kreise gilt : F = Vh (h - R ) (h - r ) (h - m )
(HERON )
oder auch : F = | -m - 1 s = | ms ,
Gleichsetzen ergibt : s = ^ v/h( h - R )(h - r )(h - m )

b) s = 2r => m = a/R2 - r 2

130/41 . Fällt man von P aus die Lote auf die Schenkel , so ergibt sich ein Recht¬
eck mit den Seiten | vy2 imd | wa/2 .
Aus CP2 = ’ v2 + | w2 folgt v2 + w2 = 2CP .

130/42 . Dreieck VAM ist gleichseitig wegen VM= AM und «fcAMV = 60°,
=> AV = r = | sV3 => VP = -\^ s (Pythagoras ),
Sehnensatz : CP(2r - CP) = VP -PW => PW= \ ,
VW = VP + FW = ~ sV21 .

131/43 . z = 7 (Pythagoras )
y = 7 (Sehnensatz )
r = 20 (Pythagoras )
Sekantensatz :
(x - 20 )(x + 20 ) = 18 -50
=> x = 10a/13
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131/44 . a ) CLDE ist wegen
seiner rechten
Winkel einRechteck
=> EL = CD = 24

b) eine Winkelbe¬
trachtung zeigt :
EL 1 MLund
EL INE
=> EL ist gemein¬
same Tangente .

c ) £ B = 90°- a A
£ DEB = 90°

* DEL = 90°- a => ^CA + ■stE = 180

90°- ä

ABEL ist ein Sehnenviereck .

131/45 . p2 + ( 1 - q)2 = x2 + 1 + (x + p )2 + q2 => x2 + px + q = 0

a ) Xj = 0 x2 = - 3 b) Xj = - 2 x2 = 1

c) xx = —3 x2 = 4 d) x1;2 - 2 e ) Xj = - 2,5 x2 =2

f) keine Schnittpunkte ,
also keine Lösung

131/46 . Wegen gleicher Grund¬

linien und Höhen gilt :

Fi = F2 = F3 = F4
F5 = F6 = F7 = Fg

131/47 . Ist H der Höhenfußpunkt und DH = x,
so folgt aus dem erweiterten Pythagoras :

b2 = q2 + d2 + 2qx => 2x = ^ (b2 - q2 - d2 ) ,

a2 = p2 + d2 - 2px => 2x = ^ (p2 + d2 - a2)

=> - (b2 - q2 - d2 ) = - (p2 + d2 - a2)
q p

=> a2q + b2p = (p + q)d2 + pq(p + q) a2q + b2p = c(d2 + pq)
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131/48 . ADCE s ADHC (SsW) ^ DH = x SJ ff fieldeshalb ist EDHC ein Drachen / §
undsCDCH = | ß , \ /
wegen <£ CDB = CDH / h
= 90°- iß = a + | ß /

/
\ y

ist ADBC gleichschenklig , ^ ^ /fly

131/49 . Umkehrung : GiltimAABC : 1 ) c2 = a2 + b2 => y = 90°
2 ) c2 = a2 + b2 - 2aab => y < 90°
3) e2 = a2 + b2 + 2aab => y < 90°

Beweis : 1 ) siehe Umkehrung des Pythagoras
2 ) wäre y > 90°

, so ergäbe sich mit dem erweiterten Satz
von Pythagoras ein Widerspruch

3 ) analog wie 2)

131/50 . l .Fall : s = (p = 90°
, das heißt ,

AABC ist gleichschenklig
sc

2 = b2 - c2/^ sc
2 = a2 - c2/4

=> sc = | V2 ( a2 + b2 ) - c2

2 .Fall : Ein Winkel ist spitz , z .B . cp
b2 = sc

2 + + 2 - 1 c -csc
a2 = sc

2 + c2/4 - 2 - i c -Cgc
=> 2sc

2 = | [2(a2 + b2) - c2]
=> sc = | y/2(a2 + b2 ) - c2

132/51 . a ) Im Fall a = b gilt x = 0 , das heißt , die Formel stimmt ,
im Fall a > b gilt : a2 = sc

2 + c? /A + 2 - 1 c -x
b2 :

im Fall a < b gilt analog : b2 - a2 = 2cx

: sc
2 + c2/4 - 2 - 1 c -x

a2 - b2 = 2cx

insgesamt folgt : x =
- b2 |

2c
b) ist die Differenz der Quadrate

der Entfernungen konstant ,
so ist nach a ) auch die senk¬
rechte Projektion x von [MC]
auf AB konstant => C e g 1 AB.
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Liegt umgekehrt C auf g J . AB, so folgt:
b2 = ÄH 2 + CH 2

, a2 = CH2 + HB2

=> b2 - a2 = ÄH 2 - HB 2 = const

132/51 . c) hat P gleiche Potenz bzgl . ki imd k2, so gilt mit PMi = a undPM 2= b:

a2 - r!2 = b2 - r 2
2 => a2 - b2 = r x

2 - r 2
2 ist konstant .

Nach b ) liegt P deshalb auf einem Lot zur Zentrale .

132/52 . a ) Pythagoras : hc2 = b2 - Cb
2 = (b + Cb )(b - Cb)

erweiterter Pythagoras : a2 = b2 + c2 (±>2ccb
=> Cb = ~ | b2 + c2 - a2 |

b) hc
2 = b2 - cb

2 = [b + ^ (b2 + c2 - a2)] [b - i (b2 + c2 - a2)]

= ~ [ (b + c)2 - a2] • ^ [ a2 - (b - c)2]

= -K (b + c + a)(b + c - a )(a+ b - c )(a - b + c)
4c

c ) 2s = a + b + c b + c - a = 2 (s - a)
a + b - c = 2(s - c) a - b + c = 2(s - b)

h<;
2 = 7^

2 -2s -2 ( s - a ) -2 (s - c) -2 (s - b )
4c

F = | c-h c = | c- 2 Vs ( s - a ) ( s - e)(s - b ) = a/s (s - a ) ( s - c ) ( s - b)

132/53 .
h ~

^ ’4 = ^
(Strahlensatz , x ist 2 .Kathete ) => hx = 2,4(h + x)

aus h2 + x2 = 49 und hx = 2,4(h + x) folgt:

h2 + 2hx + x2 = 49 + 2hx => h2 + 2hx + x2 = 49 + 4,8 (h + x)

=> (h + x)2 = 49 + 4,8(h + x) => (h + x)2 - 4,8(h + x) + 2,42 = 54,76

=> (h + x - 2,4 )2 = 54,76 ^ h + x = 9,8 I

weiter gilt : h2 - 2hx + x2 = 49 - 4,8 (h + x)

=> (h - x)2 = 49 - 47,04 => h - x = 1,4 II

Addition von I und II liefert : h = 5,6

132/54 . u = 2v/612,5 - 35 » 14,5 x = | u « 7,25 w = x

v = 35 - a/612,5 « 10,25 y = a/918,75 - a/612,5 » 5,56

z = 35 - ^ 918,75 * 4,69
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133/55 . a ) Das Lot durch Mi auf AB schneide AB in F , z = MiF , CB = x, und
BF = y . Dann gilt für AFDMi : z2 = r 2 - (x + y)2 und M -| M | =
z2 + (R + y)2 = r2 - (x + y)2 + (R + y)2 = r 2 + R2 - x2 - 2xy + 2Ry [Tj

Wegen der harmonischen Teilung gilt aber AC : CB = AD : DB,
das heißt —^ — = 2R

^ ^ x
+ X => 2Ry - 2xy - x2 = 0 ,

damit lautet [l ] : MiM # = r2 + R2 => £ T = 90° ;
schneiden sich umgekehrt die Kreise rechtwinklig , so gilt :
r2 + R2 = (R - x + r )2 => x2 + 2rR - 2rx - 2Rx = 0 =>
2x2 + 4rR - 4rx - 4Rx = 0 r=> 4rR - 2Rx - 2rx + x2 = - x2 + 2Rx + 2rx
=> (2R - x)( 2r - x) = 2x(R + r ) - x2

2R - x 2(R + r ) - x , -7-7= -7==; -77= 777,=> —- — = —2jLlt —
> also AC : CB = AD : DB

b) Weil ein Apollonioskreis zu [AB] einen Durchmesser eines Kreises
durch A und B immer harmonisch teilt , schneiden sich die Kreise
nach a ) senkrecht .
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