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2 . Kapitel
Teilung einer Strecke
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2 . 1 Teilverhältnis

Eine der einfachsten Konstruktionen ist die Halbierung einer Strecke . Damit lassen sich
Strecken auch in 4 , 8 , 16 . . . gleiche Teile zerlegen . Wie aber teilt man eine Strecke mit Zir¬
kel und Lineal in 3 oder 5 oder gar 37 gleiche Stücke? Die Verallgemeinerung des 1 . Strah¬
lensatzes hilft uns weiter.

Um die Strecke [PQ ] zu dritteln , zeichnen wir von P aus einen Strahl und tragen auf ihm
eine beliebige Strecke a dreimal ab . Den Endpunkt Z der 3 . Strecke verbinden wir mit Q .
Die Parallelen zu ZQ durch X und Y teilen [PQ ] in drei gleich lange Strecken . Es gilt näm¬
lich :

r a
s a ’ das heißt

s a
T ~ ~

ä
~’ das heißt

Bei der Konstruktion

r = s

s = t
» also r = s = t = | PQ

spielt es keine Rolle , welchen Winkel Strecke und Strahl bilden .

Der Punkt T zerlegt [PQ ] in zwei Teilstrecken , die sich wie 2 : 1 oder wie 1 :2 verhalten , je
nachdem , mit welcher Teilstrecke man die Proportion anfängt :

PT : TQ = 2 : 1 ,
aber QT : TP = 1 : 2

p T
Q

Man sagt: Der Punkt T teilt die Strecke [PQ ] im Verhältnis 2 : 1 , aber er teilt die Strecke [QP]
im Verhältnis 1 :2 . Den Quotienten 2 : 1 bzw . 1 :2 nennt man hier Teilverhältnis . Um das Teil¬
verhältnis eindeutig anzugeben , unterscheidet man zwischen Anfangs- und Endpunkt der
Strecke. Der Anfangspunkt steht beim Streckensymbol an 1 . Stelle:

[PQ] hat den Anfangspunkt P
[QP] hat den Anfangspunkt Q
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Definition :

Liegt der Punkt T =t= Q auf der Strecke [PQ ] und wählt man P als Anfangspunkt ,

dann heißt % = PT : TQ Teilverhältnis von T bezüglich [PQ ] .

Sind Strecke und Teilverhältnis gegeben, so findet man den Teilpunkt T mit der V-Figur
oder der X-Figur . _ _
Beispiel: Konstruiere T , falls AB = 6 und r = 0,6 . Es gilt die Proportion AT : TB = 3 : 5 .

KONSTRUKTION MIT DER

V-FIGURX -FIGUR

A>A - ■B •B

AT _ 3
TB

" 5

Bei dieser Konstruktion haben wir eine einfache Möglichkeit , die Zeichengenauigkeit zu

überprüfen : wir berechnen die Längen AT und TB .

AT 3 _ —
Strahlensatz : ^ = - = —

, wir nennen AT = x , dann ist TB = 6 - x .
TB 5

x 3
Es ergibt sich - = — • 5 (6 - x)

5x = 18 - 3x , also 8x = 18 und damit

Also ist AT = 2,25 und TB = 3,75 .

Einfacher geht’s mit folgender Überlegung : Wir denken uns AB in 3 + 5 = 8 gleiche Teile t
geteilt . Dann ist 6 = 8t , also t = 3/4 , und es gilt

AT = 3t = 3 - 7 = 1 = 2,25 und V- y 3t7 ÜE
TB = 5t = 5 - i = T = 3,75 .

—1J

Winkel lassen sich - genau wie Strecken - in 2 , 4 , 8 . . . gleiche Teile zerlegen . Große Ma¬
thematiker haben sich jahrhundertelang den Kopf darüber zerbrochen , wie sie einen Winkel
allein mit Zirkel und Lineal dritteln oder fünftein oder . . . könnten . Dank Algebra und Ana¬
lytischer Geometrie wissen wir heute , daß dies unmöglich ist.
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Vielecke dagegen lassen sich von einer Ecke aus (mit Zirkel und Lineal) in beliebig viele flä¬
chengleiche Teile zerlegen . Am einfachsten geht ’s beim Dreieck : hier müssen wir bloß die
gegenüberliegende Seite in gleich lange Strecken teilen . Das Bild zeigt eine Drittelung von P
aus . Die Teildreiecke haben gleich lange Grundseiten und dieselbe Höhe , also denselben
Flächeninhalt .

Dreieck PQR
von P aus dritteln

Ergebnis

Etwas vertrackt ist die Drittelung eines Vierecks von einer Ecke aus : Zuerst scheren wir das
Viereck BOLD zum Dreieck BOA : © bis ® . Dann dritteln wir das Dreieck BOA von der
Ecke B aus : @ bis © . Schließlich scheren wir Y aufs Viereck BOLD zurück : ® .

Viereck BOLD
von B aus dritteln

Ably “ Abi

Ergebnis
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Aufgaben
1 . Zeichne eine Strecke [AB ] mit der Länge a = 9 und konstruiere die Strecke [AC ] mit

a) AC = fa b) AC = fa c) AC = fa
d) ÄC = ^ a e) AC = 1,4a.

2 . Zeichne die Strecke [AB ] mit A(111) und B(811) . In welchem Verhältnis teilt T die
Strecke [AB]?
a) T (2,5 11) b) T (7 11 ) c) T (3 | 2)

3 . Zeichne die Strecke [AB] mit A(112) und B(1016,5 ) .
Konstruiere den Teilpunkt T und gib seine Koordinaten an.
a) T teilt [AB] im Verhältnis 1 :2
b) T teilt [AB ] im Verhältnis 3,5 :1
c) T teilt [BA] im Verhältnis 8 :1

4 . Gegeben ist eine Strecke [AB] . Konstruiere jeweils den Teilpunkt T auf [AB] und be¬
rechne AT und TB .
a) AB = 5 , r = y b) AB = 5 , r = \
c) AB = 10 , x = 0,8 d) AB = 9 , r = 1,2

5 . Berechne AT und TB , wenn T die Strecke [AB] mit AB = 11 im Verhältnis

a) 5 :7 b) 1 :13 teilt.

6 . Zeichne das Dreieck ABC mit A(211 ) , B(9,513,5 ) und C (5,519,5 ) . Konstruiere Punkt T
auf dem Dreieck und gib seine Koordinaten an :

a) AT zerlegt das Dreieck ABC in zwei Teildreiecke , deren Flächen sich verhalten wie
3 : 1 .

b) CT zerlegt das Dreieck ABC in zwei Teildreiecke , deren Flächen sich verhalten wie
3 :2 .

7 . In einem gleichschenkligen Dreieck mit dem Umfang u = 17 verhalten sich die Schen¬
kel zur Basis wie 2 :1 .
Konstruiere das Dreieck.

8 . Das Dreieck ABC hat den Umfang u = 16 .
Konstruiere das Dreieck , wenn a : b : c = 5 : 6 : 7 ist . (Diese Schreibweise für a : b = 5 : 6
und b : c = 6 : 7 und a : C = 5 : 7 .)

9. Zeichne ein Rechteck mit AB = 7 und AD = 5 .

a) Konstruiere das Viereck A 'B 'C'D ' mit A'B ' = f AB und A'D ' = f AD.
b) Wie verhalten sich die Flächeninhalte?

10. Geobold schlägt ein Verfahren vor, wie man Winkel halbieren , dritteln , vierteln usw.
kann . Er zeichnet um den Scheitel einen Kreis und halbiert , drittelt , viertelt usw. die
Sehne , die der Winkel aus dem Kreis ausschneidet .
Halbiere , drittle und viertle einen 120°-Winkel nach Geobolds Vorschlag und miß die
Teilwinkel.
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• 11 . Zeichne das Rechteck BERN mit B(3 10) , E(010) , R(01 - 5) und zerlege es von R aus
in
a) drei b) vier c) fünf flächengleiche Teile.

• 12 . Zeichne das Viereck ROMA mit R(0 111) , 0 (010) , M(8,5 | - 1) und A(6 19) und zerlege
es von 0 aus in
a) drei flächengleiche Teile
b) in zwei Flächenstücke , deren Inhalte sich verhalten wie 2 :7 (zwei Möglichkeiten) .

2 .2 Innere und äußere Teilung

Für einen Punkt T auf [PQ ] , der [PQ ] im Verhältnis r = 2 : 1 teilt , gilt PT =TQ = 2 : 1 .
_ T_
P Q

Wenn wir nur fordern , daß T auf der Gerade PQ liegt, dann gibt es noch einen zweiten
Punkt T*

, der die Gleichung PT* : T*Q = 2 = 1 erfüllt . Weil T* nicht auf der Strecke [PQ ] liegt,teilt er sie unserm Gefühl nach auch nicht . Aber die Mathematiker erweitern den Begriff
»Teilung einer Strecke« so , daß er auch für solche Fälle gilt : Man nennt T* äußeren Teil¬
punkt und ordnet ihm das Teilverhältnis r - - 2 zu . Um T und T* deutlicher zu unterschei¬
den , bezeichnet man T als inneren Teilpunkt ; für T ist r = + 2 .

_ T*
P Q

Definition :

Der Punkt T,
=t=Q auf [PQ ] teilt die Strecke [PQ ] innen im Verhältnis t = PT; : T;Q (t g 0) .

Der Punkt Ta =t= Q auf PQ (außerhalb [PQ ] teilt die Strecke [PQ ] außen im Verhältnis \r t
mit r = - PTa : TaQ (r < 0) .

innere Teilung von [PQ]
P

_
TL Q

X = PT] : f \ Q | x ? 0 |

äußere Teilung von [PQ]
P

_
Q Ta

X = - Pf [ : T^Q | x < 0 |
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Den äußeren Teilpunkt konstruiert man mit der V -Figur . Ein Beispiel mit PQ = 4 und
r = - 5/3 sehen wir im Bild. Wieder überprüfen wir die Zeichengenauigkeit . Wir berechnen
die Streckenlängen PT a und TaQ . Nennen wir TaQ = x , dann ist PT a = x + 4 .

T = -

Strahlensatz : - = — II kreuzweise multiplizierenx 3 1
3x + 12 = 5x

12 = 2x , also x = 6 .
Es ergibt sich TaQ = 6 und PT a = 10 .

Einfacher geht’s wieder mit folgender Überlegung:

Setzen wir PT a = 5t und TaQ = 3t , dann ist PQ = 2t
4 = 2t , also t = 2 ,

und es gilt PT a = 5t = 5 • 2 = 10 u_ 2t_ _ 3,_
TaQ = 3t = 3 • 2 = 6 P '- ' Q , -

X‘

Wenn T und Ta die Strecke [PQ ] innen und außen im selben Verhältnis teilen , sagt man : Tt
FT PT

~
und Ta teilen die Strecke [PQ ] harmonisch . Dann gilt — 1 = -== - = | r |

Durch eine einfache Umformung ergibt sich aus

PTi TjQ , . , . T,P TjQ= = - _ beziehungsweise -= = -
PTa

TaQ 6 PT a QTa
Q

P«

Q und P teilen [T,Ta] harmonisch

Tl Q

TLQ : QTa = TjP : PTa

Ti und Ta teilen [PQ ] harmonisch PT( : T Q = PTa:TaQ

TjQ
PT

die Gleichung



Die letzte Gleichung bedeutet aber : P und Q teilen die Strecke [TtTa] außen und innen im
Verhältnis | t! | , also harmonisch . Dabei gilt r7 + r.

harmonische Teilung der Strecke [PQ]

azm=D CjCXD

Vier Punkte P , Q , R und S heißen harmonische Punkte , wenn R die Strecke [PQ ] innen im
selben Verhältnis teilt wie S außen . Die Bezeichnung »harmonisch « kommt daher , daß
PQ = m das harmonische Mittel von P, Q, R und s sind harmonische Punkte
PR = a und PS = b ist . _

p_ m Q_ .

1 a
+ b

a - "R b _ jS

m ist harmonisches Mittel von a und b
m

Beweis : m - a b - m
ab - am = bm - ab

2ab = m(a + b) | | : (a + b)
2ab

kreuzweise multiplizieren
m 2ab

a + b

a + b
= m , bildet man den Kehrwert, so ergibt sich

2 2
1 _ a + b _ b +

a
m 2ab 2
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* Was ist eigentlich so harmonisch am harmonischen Mittel ?

Beispiel
C- Dur Drei klang

«- b-

große Terz
(Grund )Ton (b)

©

Quint

Ton( | b)

CD

Ton(lb )

CD
Stellen wir uns unter [PS ] eine gespannte Saite der Länge b vor. Reißen wir sie an , so
schwingt sie und gibt den Grundton von sich , das ist Ton (b) . Verkürzen wir den schwingen¬
den Teil auf a = fb , so hören wir einen höheren Ton , Ton (fb) . Ton (b) und Ton (fb) bestim¬
men eine Quint , ein angenehm klingendes Intervall , zum Beispiel die Töne C und G . Für
einen Dreiklang brauchen wir noch einen dritten Ton . Sehr wohlklingend ( = harmonisch ) ist
der Durdreiklang . Die Saitenlänge für diesen dritten Ton ist m = fb . Ton (b) und Ton (fb)
bestimmen eine große Terz, zum Beispiel C und E . Die Saitenlänge m für diesen mittleren

2ab 2 • fb • b
harmonischen Ton errechnet sich aus der Formel m = -

a + b b + b
die Formel einen (musikalisch harmonischen ) Mittelwert liefert , nennt man den Mittelwert
harmonisches Mittel , f ist das harmonische Mittel von 1 und f .
Das harmonische Mittel taucht auch bei den Obertönen auf. Die Obertöne eines Grundtons
ergeben sich durch Halbieren , Dritteln , Vierteln usw . ein und derselben Saite . Jede zu
einem Oberton gehörende Saitenlänge ist das harmonische Mittel der Saitenlängen , die zu
den beiden Nachbar - Obertönen gehören.

Grundton (l )Oktav

Quint

2:Oberton (J
Quart

3.0berton (J)
große Terz

4.0berton (§)
kleine Terz

5.0berton (g)
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Ein Maß für die Höhe eines Tons ist seine Frequenz f. Hat der Grundton die Frequenz f, das
ist Ton (f) , so hat der Ton im Abstand einer Quint die Frequenz ff , das ist Ton (ff) . Das har¬
monische Mittel von f und ff ist ff . Ton (f) und Ton (ff) bilden das Intervall der kleinen
Terz . Ton (f) , Ton (ff) und Ton (ff) bilden wieder einen harmonischen Dreiklang , diesmal
den Molldreiklang , zum Beispiel C - Es - G .

Beispiel
c- moll Dreiklang

(Grund )Ton(f)

kleine Terz

Ton(ff )

Quint

CD | f Ton (lf)

1fFrequenz

Übrigens läßt sich der mittlere Ton beim Molldreiklang auch noch anders erzeugen : man
wählt für den mittleren Ton das arithmetische Mittel der Saitenlängen , die zu den beiden
andern Tönen gehören.

* Zwei verblüffende Eigenschaften von Teilverhältnissen am Dreieck

1. Der Satz von Menelaos (Alexandria , um 100 n . Chr.)
Eine Gerade g schneide die Seiten eines Dreiecks bzw . deren Verlängerungen in den
Punkten R, S und T.
Teilt R die Seite [AB] im Verhältnis q,

S die Seite [BCJ im Verhältnis ff und
T die Seite [CA ] im Verhältnis t , dann gilt q ■ ff - 1 = - 1 .

9 = -AR : KB

S = BS : SC

X = CT : TA

g <sx = - 1
MENELAOS

g =-AR : RB

6 = -BS : SC

T= -CT : TA

- 6
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g T

Beweis : Wir projizieren die Punkte A , B und C
parallel zur Gerade g auf eine Hilfsge¬
rade h (die wir zweckmäßigerweise
durch R legen) . Dann ist

q = - AR : RB ,
cr = BS : SC und r = CT : TA .
Wegen der Strahlensätze gilt :

AR : RB = A*R : RB*
, BS : SC = B *R : RC * und CT : TA = C*R : RA* .

Dann ist

q ■ ff - t =
A*R B*R C*R

- ^= - - = - 1 q . e . d .
RB* RC * RA*

Von diesem Satz gilt auch die Umkehrung : Wählt man R auf AB , S auf BC und T auf CA , so
daß q - a - r = - 1 ist, dann liegen R, S und T auf einer Gerade .

Beweis : RS und AC schneiden sich in T '
. Nach Menelaos gilt

q - a - r ' = - 1 , folglich ist r ' = r und deshalb T' = T , q . e . d.

2. Der Satz von Ceva (Giovanni Ceva , Mantua , 1647 bis 1734)

Irgendein Punkt P sei mit den Ecken A , B und C eines Dreiecks verbunden . AP
schneide BC in S , BP schneide AC in T, und CP schneide AB in R .
Teilt R die Seite [AB] im Verhältnis g,

S die Seite [BC ] im Verhältnis <r und
T die Seite [CA] im Verhältnis t , dann gilt g - ff - 1 = l .

CEVA

ARBSCT = RBSC -TA

60 -100 -52 = 80 - 50 - 78

80 - 50 ■195 = 60 •200 ■65

41



Beweis : Wir wenden den Satz von Menelaos aufs Dreieck ARC mit der Schnittgerade TP an.
Es ergibt sich = • = • = = 1 .BR PC TA
Machen wir dasselbe beim Dreieck RBC mit der Schnittgerade SP , so ergibt sich
RA BS CP
ÄB SC PR

Also ist AB RP CT RA BS CP
BR PC TA AB SC PR

, J . AR BSund damit -= ^ ■=
RB SC

CT
TA

= 1 , also g • a - x = 1 .

Der Satz gilt auch dann , wenn P außerhalb des Dreiecks liegt.
Besonders einprägsam ist die Deutung dieses Satzes in der Produktform :
AR ■BS • CT = RB • SC • TA.
Auch hier gilt die Umkehrung : Wählt man R auf AB , S auf BC und T auf CA , so daß
8 ’ (f ‘ t = 1 ist , so schneiden sich die Geraden CR, AS und BT in einem Punkt oder sie sind
parallel.
Beweis : AS und BT schneiden sich in P . CP schneide AB in R' .

Nach Ceva gilt g
' ■a - x = 1 , das heißt g ' = g,also R ' = R , 9 . e . d .



Aufgaben
1 . Gegeben ist eine Strecke [AB ] , Konstruiere den Teilpunkt Ta auf AB und berechneATa

und TaB .
a) AB = 5 , t = - 1,5 b) AB = 7 , r = — |
c) AB = 2,5 , r = - 0,8 d) AB = 3,5 , r = - 4,5 .

2 . Gegeben ist die Strecke [AB] , Teile sie innen und außen im gegebenen Verhältnis und
berechne ATi; TjB , ATa und TaB .
a) AB = 6,1 1 \ = | b) AB = 7 , | r | = 1 c) AB = 4 , | r \ = }

3 . Bei den Beispielen in Aufgabe 2 ist die Strecke [AB] durch Tj und Ta geteilt .
Umgekehrt wird die Strecke [T,Ta] durch A und B geteilt.
Berechne für a) , b) und c) jeweils das Teilverhältnis von A und B bezüglich der
Strecke [T,Ta] ,

• 4 . Zeichne ein Dreieck ABC . P teilt [AB ] innen im Verhältnis 2 : 1 . Konstruiere Q auf AC
so , daß CB die Strecke [PQ] halbiert . In welchem Verhältnis teilt Q die Strecke [AC]?

• 5 . Die inneren und äußeren gemeinsamen Tangenten zweier Kreise mit den Mittelpunk¬
ten Mj und M2 schneiden MjM2 in T bzw . in S .
Zeige : M 1; M2, T und S sind harmonische Punkte .

6 . Teile die Strecke [AB] mit AB = 6 harmoni sch im Verhältnis
a) 1 :3 b) 5 :1 Berechne jeweils AT ; und ATa.

• 7 . Die Strecke [AB] wird innen von P und außen von Q harmonisch im Verhältnis | r | ge¬
teilt . Dann teilen A und B die Strecke [PQ ] auch harmonisch , aber im Verhältnis | Z | .
Berechne T in Abhängigkeit von r.

8 . X(x 10) und T (t 10) teilen [AB ] mit A( - 3 10) und B (3 10) harmonisch .
a) Konstruiere T für x = - 2 , x = - 1 und x = 1,5 .
b) Berechne t allgemein in Abhängigkeit von x .

9. PERSPEKTIVE
Das Bild zeigt, wie man ein Gleis , eine Leiter oder einen Zaun perspektivisch darstellt .

a) Zeige : A , B , X und H sind harmonische Punkte .
X , Y , B und H sind harmonische Punkte .

vh A , C , B und H sind harmonische Punkte .
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b) Zeichne das Trapez A'B 'C 'D ' ab und konstruiere das Perspektive Bild eines Wegs
mit mindestens vier quadratischen Platten .

c) Zeichne das Trapez A'B 'C 'D ' ab und fülle es so aus , daß das Perspektive Bild des
quadratischen Gitters ABCD entsteht .

C

D’ C’
\\

\\
\B \

\Ä cd 3

10 . Eine Saite ist 60 cm lang . Zupft man sie , dann hört man ihren Grundton .
Berechne und konstruiere die Saitenlänge der Töne , die mit dem Grundton eine Quint
bzw . eine große Terz bilden .

11 . Zeichne ein Dreieck ABC und einen Punkt T auf c . Die Parallele zu CT durch Mcschneidet eine Seite in P und die Verlängerung der andern Seite in Q .
Zeige : CT ist das harmonische Mittel von PMC und QM C.

12 . Überprüfe durch Messen von Streckenlängen den Satz von Menelaos am 8
Dreieck ABC mit A(111) , B(ll | l ) und C(7 | 7) mit der Transversale RS 0 0 14
durch R (3 13) und S (711) . 4

13 . Überprüfe durch Messen von Streckenlängen den Satz von Ceva am Drei- 14
eck ABC mit A (111) , B(15 11 ) , C (10 113 ) für den Punkt P (9 | 7) . 0 0 16

0
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14. Beweise mit dem Satz von Ceva :
Die Seitenhalbierenden eines Dreiecks schneiden sich in einem Punkt .

15 . Zeichne ein Dreieck ABC . Wähle E auf [AC] und D auf [BC ] so , daß AE = kb und

BD = ka ist . Zeige mit dem Satz von Ceva:
AD, BE und sc treffen sich in einem Punkt .

• 16 . GERGONNE -PUNKT (nach dem französischen Mathematiker Joseph Diaz Ger-
gonne 1771 bis 1859) .
Der Inkreis eines Dreiecks berührt die Seiten in X , Y und Z .
Beweise mit dem Satz von Ceva:
AX, BY und CZ treffen sich in einem Punkt G .
G heißt Gergonne -Punkt des Dreiecks.
(Tip : gleich lange Tangentenabschnitte !)

• 17 . NAGEL -PUNKT (1836 gefunden von dem deutschen Mathematiker Heinrich von Na¬
gel )
Die Ankreise eines Dreiecks berühren die Seiten in X , Y und Z .
Beweise mit dem Satz von Ceva:
AX , BY und CZ treffen sich in einem Punkt N.
N heißt Nagel -Punkt des Dreiecks.
( Tip : gleich lange Tangentenabschnitte !)



2 .3 Der Apollonioskreis

Jede Winkelhalbierende im Dreieck hat eine überraschende Eigenschaft : sie teilt eine Seite
des Dreiecks im Verhältnis der beiden andern .

a q

Man sieht das leicht ein , wenn man die Figur zu einer V-Figur ausbaut :
Die Parallele zur Winkelhalbierenden von y schneidet AC in D .
Es gilt 4 TCB = 4 CBD (Z -Winkel) ,

4 ACT = 4 CDB (F-Winkel ) .
Also ist das Dreieck CBD gleichschenklig , das heißt CD = a .
In der V-Figur ATBDC lesen wir die behauptete Proportion ab : p =q = b : a.

Die Außenwinkelhalbierende hat eine ähnliche Eigenschaft , so gilt zum Beispiel (Bild !)
b =a = p : q . Wieder machen wir uns das an einer V-Figur klar:

a q

Die Parallele zur Außenwinkelhalbierenden von y schneidet AC in E .
Es gilt 4 EBC = 4 BCT (Z-Winkel)

4 CEB = 4 (AC , CT) (F-Winkel ) _Also ist das Dreieck EBC gleichschenklig , das heißt EC = a .
In der V-Figur ABTCE lesen wir die Behauptung ab :
b : a = p : q .



Wir fassen zusammen :

Satz:
Jede Winkelhalbierende im Dreieck teilt die Gegenseite innen im Verhältnis der anlie¬

genden Seiten .
Jede Winkelhalbierende eines Außenwinkels am Dreieck teilt die Gegenseite außen
im Verhältnis der anliegenden Seiten . (Ausnahme : gleichschenkliges Dreieck )

Anders gesagt:
Die innere und die äußere Winkelhalbierende eines Dreieckswinkels teilen die Gegenseite

harmonisch im Verhältnis der anliegenden Seiten : ATj '• T;B = b =a = ATa : TaB . Auch die

Umkehrung ist richtig : Teilt man eine Dreieckseite harmonisch im Verhältnis der anliegen¬
den Seiten , so halbieren die Geraden durch die Teilpunkte und die Gegenecke den Innen -

und Außenwinkel .

h;

/ '

Beweis : Man teilt [AB] innen und außen im Verhältnis b :a und verwendet die Dreieckseite b

gleich als Hilfslinie . Es entstehen zwei gleichschenklige Dreiecke mit den Schen¬
keln a . Aus der Gleichheit der Basiswinkel und aus dem Satz über die Z -Winkel

folgt die Behauptung .

Der Satz über die Winkelhalbierenden eines Dreiecks ist die Grundlage für einen berühm¬
ten Satz der Antike . Um 200 v . Chr. hat der griechische Mathematiker und Astronom Apol -

lonios in Alexandria folgende Entdeckung gemacht :



Satz:
Der geometrische Ort der Punkte , deren Entfernungen von zwei gegebenen Punkten
A und B ein festes Verhältnis b :a haben , ist der Kreis mit dem Durchmesser [TiTJ .
Ti und Ta teilen [AB] harmonisch im Verhältnis b :a.

APOLLONIOS - KREIS

Apollonios zu Ehren heißt dieser Kreis Apollonioskreis .
Der Apollonioskreis ist nichts anderes als der Thaieskreis über [TiTJ . Weil er ein geometri¬scher Ort ist , müssen wir zwei Sätze beweisen:

© Wenn das Entfernungsverhältnis paßt , dann liegt der Punkt auf dem Kreis.
Vor . : b : a = ÄT\ : TjB = A© : © B
Beh. : e = 90°

_ CT ist Winkelhalbierende von vBew. : CTa ist Winkelhalbierende von y*

also ist CT, -l CTa , das heißt s = 90 ° .
© Wenn der Punkt auf dem Kreis liegt, dann paßt das Entfernungsverhältnis .

Vor. : <£ TjCTa = 90°

Beh. : b : a = ÄTVTJ3
Bew . : Die Parallele zu CB durch A schneidet die Winkelhalbierenden in Dx und D2.

ÄD^ KTj Ä© ÄD^a
CB T\B

_
TJ3

~
CB

also ist A Mittelpunkt von [Di D2] .
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b) Weil das Dreieck D , D2 C bei C einen rechten Winkel hat , liegt C auf dem
Thaieskreis über [D , D2] . Wegen a) ist A Mittelpunkt dieses Kreises, das heißt

AC und damit

Sogar Kamele brauchen den Apollonioskreis , wie folgendes Beispiel aus dem Tierreich lehrt :

Karawane
sd4.no)

K(14I0 )

TS :TK = 1:1,5=2:3

Eine Karawane zieht im KOSY auf der Gerade y = 10 nach links . Im Punkt K (1410) steht
ein einsames Kamel , das sich der Karawane anschließen will . Es sieht die Karawane im
Punkt S (14110 ) . Welchen Punkt T der Karawanenbahn muß das Kamel ansteuern , um die
Karawane zu treffen , wenn es eineinhalbmal so schnell läuft wie die Karawane und vorher
Apollonios fragt ?

Die Weglängen bis zum Treffpunkt T verhalten sich wie die Geschwindigkeiten , also wie
1 :1,5 . Deshalb liegt T
1 ) auf der Karawanenbahn und
2) auf dem Apollonioskreis zu [SK] zum Verhältnis 1 : 1,5 .
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Der Zeichnung entnimmt man , daß die Karawane eine Strecke der Länge 9 zurücklegt . Der
exakte Wert der Streckenlänge ist aber ißo . Wie man ihn berechnet , erfahren wir im 5 . Ka-

Aufgaben
1. Konstruiere den geometrischen Ort der Punkte , deren Entfernungen von 8

A (2 14) und B (8 14) sich verhalten wie 4 0 14
a) 2 :1 b) 5 :1 c) 1 :2 d) 6 :2 e) 1 :1 0

• 2. Beweise die Sätze über die Teilungs-Eigenschaften der inneren bzw . äußeren Winkel¬
halbierenden mit dem 1 . Strahlensatz anhand der beiden Bilder.
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3 . Zeichne die Strecke [AB] mit A(411 ) , B (815) und dem Teilpunkt 13
T (6,5 | 3,5 ) .

0 0 16
Von wo aus sieht man die Teilstrecke [AT] unter dem gleichen Winkel wie 0
[TB] ?
Konstruiere die Menge dieser Punkte .
Falls du den Umfangswinkel- Satz kennst , konstruiere die Punkte , von de¬
nen aus man die Strecke [AB] unter 45 ° sieht.

• 4 . Der Gepard ist das schnellste Säugetier , er schafft bis zu 30 m/s . 28
Ein Jäger J(5 10) sieht den Geparden G(5 124) in Richtung R(12,5 118) mit 0 0 13
Höchstgeschwindigkeit rasen . Auf welchen Punkt Z der Geparden -Bahn 0
muß der Jäger zielen , wenn er den Geparden mit seiner Kugel (210 m/s ) er¬
legen will ?

5 . Zeige : Ist im Dreieck ABC bei A ein rechter Winkel , dann ist BC Tangente am Apol-
lonioskreis zur Kathete [AB] ,

(c + b)Zeige : CQ = BP

7. ABCD ist ein Trapez mit den Basen a und c . Die Seitenlängen stehen im Bild.

a) Berechne DT , CT , 3AT und BT.
b) Berechne x , y , u und v.

,./|T

D.-'' c =4/E :C



8. Bekannt sind die Seiten a , b und c eines Dreiecks ABC.
Bestimme aus a , b und c
a) die Teilstreckenlänge r und s
b) die Teilstreckenlängen x, y und z .

9 . Zeige : AW : WB = DV : VC = d : b

10 . Im Dreieck ABC liegt T so auf [AB ] , daß AT : TB = b : a ist .
Begründe : CT halbiert y

• 11 . ABCD ist ein beliebiges Viereck . T liegt so auf [BC ] , daß BT : TC = DA : CD ist . B , T , C
und N sind harmonische Punkte .
Zeige : DB und DF sind innere und äußere Winkelhalbierende von Winkel 5.
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• 12 . [AB ] ist Durchmesser eines Kreises und [CD] eine dazu senkrechte Sehne . P sei ein be¬
liebiger Kreispunkt . AP schneidet CD in E , BP schneidet CD in F.
Zeige : C , D , E und F sind harmonische Punkte .

( Tip : Umfangswinkelsatz !)
13 . Konstruiere ein Dreieck ABC mit

a) c = 5 , b : a = 2 : 1 , wy
= 3,5 b) b = 6 , a : c = 2 : 5 , sb = 4,5

c) a = 7 , b •’ c = 1 •• 3 , ha = 2 « d) b = 5 , c : a = 2 : 1 , ha = 3 .

14. a) Konstruiere ein Dreieck ABC mit c = 6 , b : a = 5 : 2 und hc = 2,5 .
Wieviel verschiedene Lösungen gibt es?

b) Berechne , bei welcher Länge von hc nur eine Lösung existiert , falls c = 6 und
b •’ a = 5 •' 2 ist.

15 . Vom Dreieck ABC sind bekannt A(010) und B(610) .
Konstruiere das Dreieck , wenn wy
a) AB in W(3 | 0) schneidet und die Länge 5 hat,
b) AB in W(410 ) schneidet und die Länge 7 hat.

• 16 . Im Ort A wohnen 300 000 Menschen , im Ort B 100 000 und im Ort C 200 000 .
Die Entfernungen zwischen den Orten sind in km:

AB = 80 , BC = 60 und CA = 50 .
Für A, B und C ist ein gemeinsamer Flughafen geplant . Das Produkt von Einwohner¬
zahl und Entfernung vom Flughafen soll für jeden Ort gleich sein.
Wo muß der Flughafen gebaut werden?

17 . In einem alten Manuskript ist die Lage eines Schatzes S beschrieben :
Von der Buche B ist es zum Schatz S doppelt so weit wie von der Eiche E . Von der
Tanne T sind der Schatz und die Buche gleich weit entfernt . Der Schatz und die
Tanne sind auf derselben Seite der Gerade BE .
Konstruiere die Lage des Schatzes und gib seine Koordinaten so genau wie möglich
an . B (210) , E (6,5 | 3) , T(313,5 ) .
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3 . 1 Grundlagen

Verschiedene Vergrößerungen ein und dessel¬
ben Bilds lassen sich immer so anordnen , daß
entsprechende Punkte auf Strahlen liegen , die
alle von einem Punkt Z , dem Zentrum , ausge¬
hen . Diesen Bildfolgen liegt eine geometrische
Abbildung zugrunde , die zentrische Streckung.
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