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3 . Kapitel
Zentrische Streckung



3 . 1 Grundlagen

Verschiedene Vergrößerungen ein und dessel¬
ben Bilds lassen sich immer so anordnen , daß
entsprechende Punkte auf Strahlen liegen , die
alle von einem Punkt Z , dem Zentrum , ausge¬
hen . Diesen Bildfolgen liegt eine geometrische
Abbildung zugrunde , die zentrische Streckung.



Definition :

Eine Abbildung heißt zentrische Streckung mit Zentrum Z und Streckfaktor m > 0 ,
wenn für jeden Punkt P der Figur gilt :
1 . Zentrum Z , Urbild P und Bild P ' liegen auf einem Strahl mit Anfang Z , das heißt P'

liegt auf ZP.
2 . Das Bild P ' ist m mal so weit vom Zentrum Z entfernt wie das Urbild P , das heißt

ZP7 = m ■ZP .
Man bezeichnet die zentrische Streckung symbolisch mit S (Z , m) .

m = 2

Der Streckfaktor m heißt auch Abbildungsmaßstab . Vergrößerungen der Figuren ergeben
sich für m > 1 , Verkleinerungen für m < 1 .
Auf Fernrohren und Mikroskopen ist der Abbildungsmaßstab angegeben . 200 x bedeutet
m = 200 , das heißt , das Bild ist 200mal so groß wie das Original . Bei Modellen , Plänen und
Landkarten ist das Original verkleinert . Man gibt den Maßstab meist in der Form 1 : 100 bzw .
1 :1000000 an , das heißt m = Y100 bzw . m = ^ oooooo-

NEU» m ALT

Im Gegensatz zur Praxis gibt es in der Mathematik auch negative Streckfaktoren : Man er¬
weitert den Begriff zentrische Streckung auf m < 0 . Das Bild P ' liegt dann so auf der Gerade
ZP, daß P und P ' auf verschiedenen Seiten von Z liegen . Es gilt : ZP ' = | m | - ZP . Die Bilder
einer Figur zu m = s und m = - s sind zueinander punktsymmetrisch bezüglich Z .



Eigenschaften der zentrischen Streckung :

- Jede Gerade g wird auf eine dazu parallele Bildgerade g' abgebildet .
- Jede Bildstrecke s' ist | m | mal so lang wie ihre Urbildstrecke s.
- Jeder Kreis k mit Radius r wird auf einen Kreis k' mit Radius r' = | m | r abgebildet .
- Winkel und Bildwinkel sind gleich groß.
- Der Flächeninhalt der Bildfigur ist m2 mal so groß wie der Flächeninhalt des Origi¬

nals

Beweis : Jede Gerade PQ durch Z wird wegen der Definition der zentrischen Streckung auf

sich selber abgebildet (Fixgerade mit Fixpunkt Z) . Geht PQ nicht durch Z , dann gilt
für einen beliebigen Punkt X auf PQ

ZP : ZP7 = ZQ : ZQ7 = ZX ; ZX7 = | m | .

Wegen der Umkehrung des 1 . Strahlensatzes ist P 'X '
| | PX und Q 'X '

| | QX , das heißt ,
X' liegt auf P'Q'

. Also ist das Bild von PQ die dazu parallele Gerade P 'Q' .

... Z (Fixpunkt )



-*&**!■:*

Wegen des 2 . Strahlensatzes gilt außerdem

P 'Q ' : PQ = P 'Z : PZ = | m | , also P'Q ' = | m | • PQ .
Liegt Z auf PQ , dann gilt

ZP7 = Iml - ZP "

ZQ ' = | m | ZQ
| ZQ ' - ZP'

| = | m | • | ZQ - ZP |

P 'Q ' PQ
Der Kreis k (M ; r) ist die Menge aller Punkte P mit PM = r . Deshalb gilt für alle
Punkte P ' der Bildfigur P 'M ' :
(M '

; r') .
| m |r = r'

, das heißt , die Punkte P ' bilden den Kreis k

(X = 0L = Ot

Die Schenkel des Bildwinkels sind parallel zu den Schenkeln des Winkels , Winkel
und Bildwinkel sind also gleich groß : Ein Dreieck wird auf ein Dreieck mit densel¬
ben Winkelmaßen abgebildet.
Für die Fläche eines Dreiecks gilt A = Igh . Demnach hat das Bilddreieck den Flä¬
cheninhalt A ' = | g'h' = i | m | - g - | m | h = m2 - igh = m2A . Weil sich jedes Vieleck in
Dreiecke zerlegen läßt , stimmt diese Beziehung auch für Vieleckflächen . Sie gilt so¬
gar für krummlinig begrenzte Flächen . Der Beweis ist allerdings kompliziert .

Geobold hat Schwierigkeiten mit Flächeninhalten . Die Bundes¬
republik paßt in ein Rechteck mit den Seitenlängen 600 km und
900 km, folglich paßt ihr Bild im Maßstab 1 :20 Millionen in ein
Rechteck mit den Seitenlängen 3 cm und 4,5 cm . Geobold
schließt messerscharf : Weil die etwa 80 Millionen Bundesbürger
bequem Platz haben , müßte doch auf seiner kleinen Karte be¬

quem der 20millionste Teil , das sind 4
Personen , Platz haben .

Maßstab1:20000000
200_ 400

WOHIN MIT DEN
. VIER LEUTEN ? ,
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In der Umgangssprache unterscheidet man oft nicht deutlich genug zwischen Längen- und

Flächenverhältnissen . Was bedeutet zum Beispiel:
ein doppelt so großes Rechteck,
ein doppelt so großes Zimmer ,
ein doppelt so großes Foto?

Der Klarheit halber sollte man den Maßstab immer nur auf Längenverhältnisse beziehen ,
so , wie es bei der zentrischen Streckung üblich ist.

doppelt

so groß ?

Grundkonstruktionen zur zentrischen Streckung

Konstruktion des Bildpunkts

Gegeben : Urbildpunkt P , Zentrum Z und Streckfaktor m
Gesucht : Bildpunkt P'

Lösung : Bei positivem Streckfaktor verwenden wir die V-Figur , bei negativem Streckfaktor
verwenden wir die X -Figur.

Konstruktion des Bildpunkts

ZP’: ZP = 3:4

ZP’: ZP = 5:3
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Konstruktion des Zentrums
Gegeben : Urbild P , Bildpunkt P' und Streckfaktor m
Gesucht : Zentrum Z
Lösung : Bei positivem Streckfaktor verwenden wir die Y -Figur , bei negativem Streckfaktor

verwenden wir die X-Figur.

Konstruktion des Zentrums

ZP ’: ZP = 2:3

ZP ’= fZP
ZP ’: ZP = 7 :5

Aufgaben
1 . Die zentrische Streckung S (Z , m) mit Z (2 12) bildet

a) A (7 12 ) auf A '(8 12) ab . b) B(5 15) auf B '(616 ) ab .
c) C(610 ) auf C'(3 11,5) ab .
Zeichne jeweils die Punkte und berechne m.

2 . Zeichne die Punkte A(5 12) , B (3 14) , D (114) und Z(2 11) .
Konstruiere für die zentrische Streckung S (Z , 1,5 ) das Bild
a) von [AB] b) von C c) des Kreises um D mit r = 1 .

3 . A(111) , B(611) und C(3 16) sind die Ecken des Dreiecks ABC .
Konstruiere das Bilddreieck A'B 'C ' für die zentrische Streckung S (Z , m)
a) Z = D (013) , m = 1,5 b) Z = B , m = 0,75
c) Z = H (Höhenschnittpunkt ) , m = 2
d) Berechne den Flächeninhalt der Dreiecke ABC und A'B 'C' .
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4 . Zeichne ein Parallelogramm ABCD mit a = 6 , a = 75 ° und b = 4 .
Konstruiere das Bild des Parallelogramms für die zentrische Streckung S (Z , m)
a) Z = B , m = 0,5 b) Z ist Mitte von [AD] , m = 0,5
c) Z ist Fußpunkt des Lots durch D auf AB , m = 1,5 .

5 . Zeichne die Punkte A (7 10) , B (3 10) , C(012,5 ) und Z (4 | 3) .
Konstruiere für die zentrische Streckung S (Z ,

- 0,5) das Bild
a) von A b) von [BC ] c) des Kreises um A mit r = 3 .

6 . Zeichne das Dreieck ABC mit a = 3 , b = 4 und c = 5 .
Konstruiere das Bilddreieck für
a) S (C ,

- 1 ) b) S (H c,
- 2) c) S (A,

- 1,5) .
7 . Zeichne die parallelen Strecken a und b mit a = 3,5 und b = 2 im Abstand 3 .

Konstruiere die Zentren der Streckungen , die b auf a abbilden , und gib m an.
8 . Zeichne die Strecke [MjM2] der Länge 5 , den Kreis kt um Mi mit rt = 1 und den Kreis

k2 um M2 mit r2 = 2 .
Konstruiere die Zentren der Streckungen , die k2 auf k2 abbilden , und gib m an.

9. Zeichne die Strecke [PP '
] der Länge 4 . Die zentrische Streckung S (Z , m) bildet P auf

P ' ab .
Konstruiere Z für
a) m = 2 b) m = 0,5 c) m = f
d) m = - 1 e) m = - y f) m = - 2 .

• 10 . Zeichne das Viereck ABCD mit A(011 ) , B(811) , C (917) und D (517 ) . M ist der Schnitt¬
punkt der Diagonalen .
a) Die zentrische Streckung S (M , m) bildet [AB] auf [CD] ab . 14

Bei welchem Viereck ist das möglich? Wie groß ist m? 0 0 19
Konstruiere das Bildviereck von ABCD. 0

b) Die zentrische Streckung S (M , k) bildet [CD] auf [AB ] ab .
Wie groß ist k? Konstruiere das Bildviereck.

c) Wie verhalten sich die Umfänge und die Flächeninhaltevon Urbild und Bild in a)
und b) ?

• 11 . Im Dreieck ABC mit A(111 ) , B (13,5 11 ) und C (5,517 ) haben die Katheten die Länge
7,5 und 10 .
a) Bilde ABC mit S (Hc, m) so ab , daß das Bilddreieck den Umfang 20 hat . 9

(Zwei Lösungen) 0 0 14
b) Bilde ABC mit S (Hc, k) so ab , daß das Bilddreieck den Flächeninhalt™ 7

hat . (Zwei Lösungen)
12 . Ein gleichschenkliges Dreieck ABC (Spitze bei C) wird durch die Streckung S (C ; m)

mit m > 0 auf das Dreieck A'B'C ' abgebildet .
Bekannt ist : AB = 4 , A 'B' = 3 , d (AB , A 'B') = 1
a) Zeichne die Figur mit den Punkten A , B , C , A '

, B '
, C' !

b) Berechne m , hc, h'
, FabC und FA.B.C !
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13 . Ein Dreieck ZAB wird von Z aus auf das Dreieck ZA'B ' gestreckt (m > 0) . Die Fläche
des Vierecks AA'B 'B ist viermal so groß wie die Fläche des Dreiecks ZAB . Berechne
den Streckfaktor m!

14. Bei einer zentrischen Streckung mit negativem Streckfaktor m wird das Dreieck
A (3 11) , B (415 ) , C (015 ) auf ein Dreieck mit Flächeninhalt 4,5 abgebildet .
a) Berechne m!
b) Zeichne das Bilddreieck A 'B 'C '

, wenn Z (513) gegeben ist und gib seine Koordina¬
ten an !

15 . Zeichne das rechtwinklige Dreieck ABC mit den Kathetenlängen a = 4 und b = 3 und
bilde dieses Dreieck durch die Streckung S (C ; mx) mit m2 > 1 so ab , daß AA' = 2 gilt.
a) Berechne m, !
b) Berechne die Länge B 'C !
c) Welchen Abbildungsfaktor m2 hat eine Streckung mit dem Zentrum A'

, die C auf A
abbildet ? Konstruiere für diese Streckung das Bild B" von B' !

d) Was für eine Figur ist AB"B 'B?
e) Welchen Inhalt hat das Dreieck AA'B"?

16 . Von drei Punkten A, B und C ist bekannt : es gibt eine zentrische Streckung S (Z ; m)mit m > 0 , die A auf B und B auf C abbildet .
a) Zeichne die drei Punkte , wenn AB = 3,5 und BC = 2 !
b) Berechne m und konstruiere Z !

17. Zeichne zwei parallele Geraden g und g' mit dem Abstand 3 . Wähle auf g einen
Punkt A und bestimme dazu auf g' einen Punkt A' so , daß AA ' = 4 .
a) Konstruiere das Zentrum Z der Streckung S (Z ; f) , die A auf A' abbildet !
b) Das gemeinsame Lot von g und g ' durch Z schneidet g in F und g' in F'

. Warum
bildet die in a) angegebene Streckung F auf F ' ab?

c) Berechne den Abstand von Z zu g ' !

3 .2 Berühmte Sätze

Mit der zentrischen Streckung beweisen wir einige berühmte Sätze der Geometrie . (Die bei¬den ersten haben wir schon bei den Strahlensätzen bewiesen.)

Satz über die Mittelparallele im Dreieck :
Die Verbindungsstrecke zweier Seitenmitten im Dreieck ist parallel zur dritten Seite
und halb so lang wie sie .
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Beweis : Die zentrische Streckung S (C , {) bildet die Strecke [AB ] ab auf die dazu parallele
und halb so lange Strecke [WV ] . _
Außerdem gilt : CW = {CA und CV = {CB .

Schwerpunktsatz :
Die drei Seitenhalbierenden eines Dreiecks schneiden sich in einem Punkt , dem
Schwerpunkt des Dreiecks .
Die Abschnitte , in die der Schwerpunkt eine Seitenhalbierende teilt , verhalten sich
wie 2 : 1 . Das längere Stück ist immer an der Ecke .

c

Beweis : Die Seitenhalbierenden AV und BW schneiden sich in S . Die zentrische Streckung
S (S ,

- 2) bildet dann die Mittellinie [VW] auf [AB] und die Mittelparallele [WX]
auf [BC] ab, C ist das Bild von X. S liegt deshalb auch auf der dritten Seitenhalbie¬
renden CX . Weil [CS] , [AS ] und [BS] die Bilder von [XS ] , [VS ] und [WS] sind , gilt :
CS = 2XS , ÄS - 2 VS und BS = 2 WS .

* Satz über die Euler -Gerade:
In jedem Dreieck liegt der Schnittpunkt H der Höhen , der Schnittpunkt S der Seiten¬
halbierenden und der Schnittpunkt M der Mittelsenkrechten auf einer Gerade.
Es gilt HS = 2 MS . c
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Diese Gerade heißt Euler-Gerade . (Leonhard Euler , Schweizer Mathematiker , Basel 1707
bis 1783 Petersburg)
Beweis: Die zentrische Streckung S (S ,

- 0,5) bildet das Dreieck ABC aufs Mittendreieck
MaMbMc ab . Die Höhen im Dreieck ABC werden auf die Höhen im Mittendreieck
abgebildet , das sind aber die Mittelsenkrechten im Dreieck ABC . Also ist das Bild
des Höhenschnittpunkts H der Mittelsenkrechten - Schnittpunkt M , das heißt , H , S
und M liegen auf einer Gerade , und es ist MS = 0,5 • HS bzw . HS = 2MS .

* Satz über den Feuerbach -Kreis:
In jedem Dreieck liegen die drei Seitenmitten , die drei Höhenfußpunkte und die drei
Mitten zwischen dem Höhenschnittpunkt H und den Ecken auf einem Kreis.

Der Kreis heißt Feuerbach -Kreis oder auch Neunpunktekreis .
(Karl Wilhelm Feuerbach , deutscher Mathematiker , 1800 bis 1834 Erlangen)

FEUERBACH - KREIS

harmonische Punkte

HF :FS - HM:MS = 3

Beweis : Der Umkreis des Dreiecks ABC (Mittelpunkt M , Radius r) wird bei der zentrischen
Streckung S (S ,

- 0,5) auf den Umkreis des Mittendreiecks MaMbMc (Mittelpunkt F,
Radius r/2) abgebildet . Wegen SM : SF = 2 : 1 halbiert F die Strecke [MH] .
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Auch die zentrische Streckung S (H , 0,5) bildet den Umkreis des Dreiecks ABC auf
den Umkreis des Mittendreiecks ab . Die Höhen sind Fixgeraden . Also liegen die
Mitten A'

, B ' und C' zwischen den Ecken und dem Höhenschnittpunkt auch auf
dem Umkreis des Mittendreiecks .
Jetzt müssen wir nur noch zeigen, daß auch die Höhenfußpunkte H a , Hb und H c auf
diesem Kreis liegen . hc schneidet den Umkreis des Dreiecks ABC in U . S (H , 0,5)
bildet U auf Hc ab . Hc liegt also auf dem Umkreis des Mittendreiecks . Weil hc Fixge-
rade ist , liegt H c auch auf hc. H ' ist das Bild von H c, und es gilt : H CH

' = H ' H . Folg¬
lich liegt H ' auf A'B' und ist Höhenfußpunkt im Dreieck A'B 'C'

. Deshalb ist das Ur¬
bild H c von H ' Höhenfußpunkt im Dreieck ABC .

* Sonderfall des Satzes von Desargues

(Gerard Desargues , französischer Mathematiker , Lyon 1593 bis 1662 Lyon )

Liegen zwei nicht kongruente Dreiecke so , daß ihre Seiten paarweise parallel sind, so
schneiden sich die Verbindungsgeraden entsprechender Ecken in einem Punkt.

z

Beweis : AA' und BB ' schneiden sich in Z . Die zentrische Streckung S (Z , c'/c) bildet [AB]
auf [A'B '

] ab . Das Bild C* von C ist Schnittpunkt der Parallele zu BC durch B' und
der Parallele zu AC durch A'

. Die Parallelen schneiden sich aber in C'
, das heißt ,

C' = C*
, also liegt C' auf ZC .

* Der allgemeine Satz von Desargues lautet :
Schneiden sich die Verbindungsgeraden entsprechender Ecken zweier Dreiecke in
einem Punkt, so liegen die Schnittpunkte entsprechender Seiten (bzw . ihrer Verlänge¬
rungen) auf einer Gerade.
Dieser Satz hat in der Geometrie eine große Bedeutung , wir können ihn hier jedoch nicht
beweisen. Mit einer räumlichen Deutung läßt er sich zumindest plausibel machen :
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Wir stellen uns ZABC als Pyramide mit der Spitze Z vor . Die Ebenen E (A, B , C) und F (A',B '
, C') schneiden die Pyramiden in den beiden Dreiecken . Im allgemeinen sind die beiden

Ebenen nicht parallel und schneiden sich in d .

* Und nun als Krönung der Satz von Pascal
(Blaise Pascal , französischer Mathematiker , Physiker und Philosoph , Clermont -Ferrand
1623 bis 1662 Paris)
Wählt man sechs Punkte auf einem Kreis und numeriert sie beliebig mit 1 bis 6, dann
liegen die Schnittpunkte der Geraden 12 und 45 , 23 und 56, 34 und 67
(Ecke 7 = Ecke 1) selber wieder auf einer Gerade , der Pascal - Gerade.

Je nachdem , wie man die sechs Punkte numeriert , ergibt sich eine andere Pascal-Gerade .
Insgesamt gibt’s davon 60 Stück ! Zum Beweis braucht man den richtigen Blick :

C ist Schnittpunkt von 61 und 43 ,
u ist Umkreis des Dreiecks 1 C4,
54 schneidet u in D , 12 schneidet u in E

Umfangswinkel in den Kreisen k und u :
oc = y (Kreis u) j
y = 8 (Kreis k) J
ß = 8 (Kreis k) 1
8 = a (oben !) I
a = ß (Kreis u) J

a = (5 = > DE || 52 e = ip (Kreis u) 1
ip = cp (Kreis k) J e = ip => DC | | 5B

ß = H => CE | | B2
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Die Dreiecke CDE und B52 haben also paarweise parallele Seiten . Deshalb liegen A, B und
C nach Desargues auf einer Gerade .

Übrigens hat Pascal diesen Satz mit 16 Jahren bewiesen und 1640 in seinem »Essai pour les
Coniques« veröffentlicht .

Aufgaben
1 . Folgere aus dem Satz über die Mittelparallele im Dreieck den Satz :

In einem beliebigen Viereck ist das Mittenviereck ein Parallelogramm.
Wie lang sind die Parallelogrammseiten ?
Begründe , daß der Satz auch dann gilt , wenn die vier Ecken im Raum liegen (also
nicht in einer Ebene) .

• 2 . Konstruiere ein Dreieck ABC aus
a) a = 8 , sb = 9 , sa = 7,5 b) sa = 3 , sc = 6 , sa x sc.

3 . Bei welchen Dreiecken ist die EuLER -Gerade zugleich auch
a) Winkelhalbierende b) Seitenhalbierende ?

4 . Konstruiere die EuLER -Gerade im Dreieck ABC :
a) A(010) , B(15 10) , C (3 112 )
b) A(112) , B ( 13 15) , C (10111)
c) A(111) , B (13 14) , C(717)
d) A(012 ) , B(15 12) , C(918)
e) A(110) , B (13 16) , C (10 [ 12)
f) A(011 ) , B (15 14) , C(9110 )
g) A(13 10) , B(7112 ) , C(116)
h) A(014) , B(15 11) , C (9 110)

12
0 0 15

0



5 . Bei welchen Dreiecken
a) geht der FEUERBACH -Kreis durch eine Ecke
b) berührt der FEUERBACH -Kreis eine Seite
c) schneidet der FEUERBACH -Kreis eine Seite genau einmal
d) ist der FEUERBACH -Kreis zugleich auch Inkreis
e) fallen die Mittelpunkte von Umkreis und FEUERBACH -Kreis zusammen
f) berühren sich Umkreis und FEUERBACH -Kreis
g) schneiden sich Umkreis und FEUERBACH -Kreis?

6 . Konstruiere den FEUERBACH -Kreis im Dreieck ABC : 13
a) A (011 ) , B(1011) , C (4113 ) 00 13
b) A (114) , B(13 14) , C(417 )

0

c) A(111) , B (13 15) , C (13 113 )
d) A (1 17) , B (7 11 ) , C (13 113)

7 . Zeige : Der Radius des FEUERBACH -Kreises ist halb so groß wie der des Umkreises.
• 8. Der FEUERBACH -Kreis eines Dreiecks ABC um F(91 8) geht durch Ma(913) . 16

Konstruiere das Dreieck , wenn M (1016) Umkreismittelpunkt ist. 0 0 18
0

9. Zwei nicht kongruente Dreiecke liegen so , daß ihre Seiten paarweise parallel sind .
Zeichne sie so , daß der »DESARGUES -Punkt Z« zwischen den entsprechenden Punkten
liegt.

• 10 . A (1413) , B(16 19) , C (12 111) A'(714) , B '(416)
Die Dreiecke ABC und A 'B'C' liegen so , daß sich die Verbindungsgeraden 12
entsprechender Ecken in einem Punkt Z treffen . 0 0 16
Konstruiere C' so , daß die »DESARGUES -Gerade d« parallel zu AC ist, und 0
zeichne d . Welcher Punkt C ' ergibt sich, wenn d parallel AB ist?

11 . Die Punkte 1 bis 6 liegen auf einem Kreis.
Konstruiere die Pascal-Gerade für 12
a) 1 (13,5 15) , 2 (7 111,5 ) , 3 (2,5 17) , 4 (13 13,5) , 5 (10,5 11 ) , 6(3 13,5) 0

J
14

b) 1 (8 116,5 ) , 2 (4113,5 ) , 3 (8 15,5) , 4(3,5 110) , 5 (1418,5 ) , 6 (11,5 16) 17
0 0 15

0
c) 1 (14,5 18,5) , 2 (12 111) , 3 (417 ) , 4(14,5 13,5) , 5 (12 11) , 6(4,5 13,5) 12

0 0 17
0

12 . Die Punkte 1 bis 6 liegen auf einem Kreis . Fallen zwei Punkte in einem Punkt zusam¬
men , dann zeichne statt der Sekante die Tangente in diesem Punkt .
Konstruiere die Pascal-Gerade für 15
a) 1 (9 113 ) , 2 (119) , 3 (11 9) , 4 ( 101 9) , 5 (917) , 6(917) 0 0 13

0
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10
b) 1 (2 [ 4) , 2(10 12) , 3 (2 16) , 4(1116 ) , 5 (1116) , 5 (1116) , 6(5,5 10,5 ) 0 0 12

0
17

c) 1 (7112 ) , 2 (711) , 3 (7 11 ) , 4 (1119) , 5 (111 9) , 6 (7 112) 0 0 19
0

13 . Der Satz von Pappos (um 300 n . Chr . , Alexandria )
Auf zwei Geraden liegen die Punkte 1 bis 6 so , daß die ungeraden auf der einen Ge¬
rade und die geraden auf der andern Gerade liegen . Die Schnittpunkte der Geraden
12 und 45 ,
23 und 56 ,
34 und 61 liegen dann selber wieder auf einer Gerade .
Überprüfe den Satz mit 14
a) 1 (5 110) , 2 (3 16) , 3 (3 19) , 4 (415 ) , 5 (13 114) , 6 (5 14) 0 0 13

b) 1 ( 14 10) , 2 (3,5 14,5 ) , 3 (8 19) , 4(8 118) , 5 (5 113,5 ) , 6(5 | 9) 18
0 0 14

0

3 .3 S -Multiplikation

Urvektor v Urvektor v

Bildvektor mv

■Z (m=0,6) Z Im = - 0,8)

Bildvektor mv
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Wendet man die zentrische Streckung S (Z ; m) auf den Vektor v an , so ist das Bild wieder
ein Vektor . Man bezeichnet den Bildvektor mit m - v . Die Pfeile von m - v sind parallel zu
den Pfeilen von v und | m | mal so lang . Für m > 0 sind die Pfeile von v und m • v gleich ge¬
richtet (gleichsinnig parallel ) , für m < 0 sind die Pfeile von v und m • v entgegengesetzt ge¬
richtet (gegensinnig parallel ) . Unter 0 • v versteht man den Nullvektor Ö . Die Schreibweise
m • v erinnert an ein Produkt . Im Gegensatz zum Produkt von Zahlen »multipliziert « man
jetzt aber eine Zahl und einen Vektor . Weil Zahlen auch Skalare heißen , ne nn t man diese
besondere Multiplikation die S -Multiplikation . Die Bezeichnung »Multiplikation « ist ge¬
rechtfertigt , weil viele Gesetze der Zahlenmultiplikation auch hier gelten , zum Beispiel
Zahlen -Multiplikation S -Multiplikation

(m • n) • v = m • (n • v)

(m + n ) - v = m - v + n - v

1 . Distributivgesetz

2 . Distributivgesetz

Assoziativgesetz

2 - (3 + 5) = 2 - 3 + 2 - 5 m - (v + w) = m - v + m - w

. <

Die S -Multiplikation erlaubt eine knappe und elegante Formulierung mancher mathemati¬
schen Sachverhalte . Die Definition der zentrischen Streckung ist dafür ein schönes Beispiel .



Eine zentrische Streckung mit Zentrum Z und Streckfaktor m ist eine Abbildung P —» P '
, für

die gilt : ZP' = mZP . In dieser einen Gleichung stecken alle Eigenschaften der zentrischen
Streckung, Beispiele :

- Z ist Fixpunkt_
Begründung : ZZ' = mZZ = 6 , also ist Z = Z ' .

ZP’=| ZP

m <0

- Z , P und P ' liegen auf einer Gerade
Begründung : Folgt direkt aus der Definition der S -Multiplikation .

- Für einen beliebigen Vektor AB und sein Bild A'B ' gilt : A'B' = mAB
Begründung : ZA' = mZA = > A 'Z = mAZ (I)

ZB ' = mZB' 01} _ __
I + II : A 'Z + ZB ' = m (AZ + ZB)

A 'B ' = mAB
Damit ist auch gezeigt:

Gerade und Bildgerade sind parallel,
die Bildstrecke [A 'B'

] ist | m | mal so lang wie die Strecke [AB] ,

Om Bild ist m = —^-)

ÄB’in- iAB

Aufgaben
1 . Die Punkte A(010 ) , B (3 10) und C (112) legen die Vektoren a = AB und b = AC fest . Be¬

stimme zeichnerisch
a) a + b b) a - b c) 2b - 1,5a d) 2a - b .

2. Löse die Vektorgleichung nach c auf:
a) 5 (a - c) - 3b = 6 (a - 0,5b) + 4c
b) 2a - (5 - 2) b - 3c = 4b - 3a + c
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3 . Zeichne die Punkte A(010 ) , B (4 12) , C (1 13) und die Vektoren v =AB , w =AC .
Überprüfe durch Zeichnung das
a) Assoziativgesetz (mn) v = m (nv) für m = 1,5 und n = 0,5
b) 1 . Distributivgesetz (m + n) v = mv + nv für m = 1,5 und n = 0,5
c) 2 . Distributivgesetz m(v + w) = mv + mw für m = 1,5 .

4. Zeichne ein beliebiges Dreieck ABC , seine Seitenmitten und den Schwerpunkt S .
Drücke folgende Vektoren mit a = AB und b = AC aus.
a) ÄM C b) ÄM a c) CMc d) SMa
e) BS f) - BMC.

5 . In einem Parallelogramm mit Diagonalenschnittpunkt M gilt a = AB und b = AD.
Drücke mit a und b aus:
a) BC b) DM c) MC d) - AB + MB .

6 . Zeichne die Vektoren AB und AC mit A(010) , C(311,5) und bestimme den Punkt D so ,daß AB +AD = AC gilt :
a) B ( l,5 10) b) B ( - 0,5 | - 1,5 ) c) B (11 - 2) .

• 7. Im Trapez ABCD mit AB | | CD und AB = 2CD liegt E so auf [PC ] , daß DC = 3DE ist ; M
ist der Mittelpunkt von [AD] . Drücke mit a = AB und b = AD folgende Vektoren aus :
a) ÄE b) ÄC c) CE d) BE
e) CE - MC f) DM - MC.

• 8 . Fünf Männer wollen den Gordischen Knoten G (010 ) lösen . Ihre Kraft ist proportional
zur Seillänge, alle ziehen gleichzeitig am Knoten , vier Männer stehen in A(2 12) ,
B(211 ) , C (11 - 2) , D ( - 2 | - 3) .
a) Wo muß E stehen und ziehen, damit der Knoten G im Ursprung bleibt ?
b) Mit welcher Kraft zieht E , wenn die Kraft von D 800 N beträgt?
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