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• 11 . Zeichne das Rechteck BERN mit B(3 10) , E(010) , R(01 - 5) und zerlege es von R aus
in
a) drei b) vier c) fünf flächengleiche Teile.

• 12 . Zeichne das Viereck ROMA mit R(0 111) , 0 (010) , M(8,5 | - 1) und A(6 19) und zerlege
es von 0 aus in
a) drei flächengleiche Teile
b) in zwei Flächenstücke , deren Inhalte sich verhalten wie 2 :7 (zwei Möglichkeiten) .

2 .2 Innere und äußere Teilung

Für einen Punkt T auf [PQ ] , der [PQ ] im Verhältnis r = 2 : 1 teilt , gilt PT =TQ = 2 : 1 .
_ T_
P Q

Wenn wir nur fordern , daß T auf der Gerade PQ liegt, dann gibt es noch einen zweiten
Punkt T*

, der die Gleichung PT* : T*Q = 2 = 1 erfüllt . Weil T* nicht auf der Strecke [PQ ] liegt,teilt er sie unserm Gefühl nach auch nicht . Aber die Mathematiker erweitern den Begriff
»Teilung einer Strecke« so , daß er auch für solche Fälle gilt : Man nennt T* äußeren Teil¬
punkt und ordnet ihm das Teilverhältnis r - - 2 zu . Um T und T* deutlicher zu unterschei¬
den , bezeichnet man T als inneren Teilpunkt ; für T ist r = + 2 .

_ T*
P Q

Definition :

Der Punkt T,
=t=Q auf [PQ ] teilt die Strecke [PQ ] innen im Verhältnis t = PT; : T;Q (t g 0) .

Der Punkt Ta =t= Q auf PQ (außerhalb [PQ ] teilt die Strecke [PQ ] außen im Verhältnis \r t
mit r = - PTa : TaQ (r < 0) .

innere Teilung von [PQ]
P

_
TL Q

X = PT] : f \ Q | x ? 0 |

äußere Teilung von [PQ]
P

_
Q Ta

X = - Pf [ : T^Q | x < 0 |
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Den äußeren Teilpunkt konstruiert man mit der V -Figur . Ein Beispiel mit PQ = 4 und
r = - 5/3 sehen wir im Bild. Wieder überprüfen wir die Zeichengenauigkeit . Wir berechnen
die Streckenlängen PT a und TaQ . Nennen wir TaQ = x , dann ist PT a = x + 4 .

T = -

Strahlensatz : - = — II kreuzweise multiplizierenx 3 1
3x + 12 = 5x

12 = 2x , also x = 6 .
Es ergibt sich TaQ = 6 und PT a = 10 .

Einfacher geht’s wieder mit folgender Überlegung:

Setzen wir PT a = 5t und TaQ = 3t , dann ist PQ = 2t
4 = 2t , also t = 2 ,

und es gilt PT a = 5t = 5 • 2 = 10 u_ 2t_ _ 3,_
TaQ = 3t = 3 • 2 = 6 P '- ' Q , -

X‘

Wenn T und Ta die Strecke [PQ ] innen und außen im selben Verhältnis teilen , sagt man : Tt
FT PT

~
und Ta teilen die Strecke [PQ ] harmonisch . Dann gilt — 1 = -== - = | r |

Durch eine einfache Umformung ergibt sich aus

PTi TjQ , . , . T,P TjQ= = - _ beziehungsweise -= = -
PTa

TaQ 6 PT a QTa
Q

P«

Q und P teilen [T,Ta] harmonisch

Tl Q

TLQ : QTa = TjP : PTa

Ti und Ta teilen [PQ ] harmonisch PT( : T Q = PTa:TaQ

TjQ
PT

die Gleichung



Die letzte Gleichung bedeutet aber : P und Q teilen die Strecke [TtTa] außen und innen im
Verhältnis | t! | , also harmonisch . Dabei gilt r7 + r.

harmonische Teilung der Strecke [PQ]

azm=D CjCXD

Vier Punkte P , Q , R und S heißen harmonische Punkte , wenn R die Strecke [PQ ] innen im
selben Verhältnis teilt wie S außen . Die Bezeichnung »harmonisch « kommt daher , daß
PQ = m das harmonische Mittel von P, Q, R und s sind harmonische Punkte
PR = a und PS = b ist . _

p_ m Q_ .

1 a
+ b

a - "R b _ jS

m ist harmonisches Mittel von a und b
m

Beweis : m - a b - m
ab - am = bm - ab

2ab = m(a + b) | | : (a + b)
2ab

kreuzweise multiplizieren
m 2ab

a + b

a + b
= m , bildet man den Kehrwert, so ergibt sich

2 2
1 _ a + b _ b +

a
m 2ab 2
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* Was ist eigentlich so harmonisch am harmonischen Mittel ?

Beispiel
C- Dur Drei klang

«- b-

große Terz
(Grund )Ton (b)

©

Quint

Ton( | b)

CD

Ton(lb )

CD
Stellen wir uns unter [PS ] eine gespannte Saite der Länge b vor. Reißen wir sie an , so
schwingt sie und gibt den Grundton von sich , das ist Ton (b) . Verkürzen wir den schwingen¬
den Teil auf a = fb , so hören wir einen höheren Ton , Ton (fb) . Ton (b) und Ton (fb) bestim¬
men eine Quint , ein angenehm klingendes Intervall , zum Beispiel die Töne C und G . Für
einen Dreiklang brauchen wir noch einen dritten Ton . Sehr wohlklingend ( = harmonisch ) ist
der Durdreiklang . Die Saitenlänge für diesen dritten Ton ist m = fb . Ton (b) und Ton (fb)
bestimmen eine große Terz, zum Beispiel C und E . Die Saitenlänge m für diesen mittleren

2ab 2 • fb • b
harmonischen Ton errechnet sich aus der Formel m = -

a + b b + b
die Formel einen (musikalisch harmonischen ) Mittelwert liefert , nennt man den Mittelwert
harmonisches Mittel , f ist das harmonische Mittel von 1 und f .
Das harmonische Mittel taucht auch bei den Obertönen auf. Die Obertöne eines Grundtons
ergeben sich durch Halbieren , Dritteln , Vierteln usw . ein und derselben Saite . Jede zu
einem Oberton gehörende Saitenlänge ist das harmonische Mittel der Saitenlängen , die zu
den beiden Nachbar - Obertönen gehören.

Grundton (l )Oktav

Quint

2:Oberton (J
Quart

3.0berton (J)
große Terz

4.0berton (§)
kleine Terz

5.0berton (g)
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Ein Maß für die Höhe eines Tons ist seine Frequenz f. Hat der Grundton die Frequenz f, das
ist Ton (f) , so hat der Ton im Abstand einer Quint die Frequenz ff , das ist Ton (ff) . Das har¬
monische Mittel von f und ff ist ff . Ton (f) und Ton (ff) bilden das Intervall der kleinen
Terz . Ton (f) , Ton (ff) und Ton (ff) bilden wieder einen harmonischen Dreiklang , diesmal
den Molldreiklang , zum Beispiel C - Es - G .

Beispiel
c- moll Dreiklang

(Grund )Ton(f)

kleine Terz

Ton(ff )

Quint

CD | f Ton (lf)

1fFrequenz

Übrigens läßt sich der mittlere Ton beim Molldreiklang auch noch anders erzeugen : man
wählt für den mittleren Ton das arithmetische Mittel der Saitenlängen , die zu den beiden
andern Tönen gehören.

* Zwei verblüffende Eigenschaften von Teilverhältnissen am Dreieck

1. Der Satz von Menelaos (Alexandria , um 100 n . Chr.)
Eine Gerade g schneide die Seiten eines Dreiecks bzw . deren Verlängerungen in den
Punkten R, S und T.
Teilt R die Seite [AB] im Verhältnis q,

S die Seite [BCJ im Verhältnis ff und
T die Seite [CA ] im Verhältnis t , dann gilt q ■ ff - 1 = - 1 .

9 = -AR : KB

S = BS : SC

X = CT : TA

g <sx = - 1
MENELAOS

g =-AR : RB

6 = -BS : SC

T= -CT : TA

- 6
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g T

Beweis : Wir projizieren die Punkte A , B und C
parallel zur Gerade g auf eine Hilfsge¬
rade h (die wir zweckmäßigerweise
durch R legen) . Dann ist

q = - AR : RB ,
cr = BS : SC und r = CT : TA .
Wegen der Strahlensätze gilt :

AR : RB = A*R : RB*
, BS : SC = B *R : RC * und CT : TA = C*R : RA* .

Dann ist

q ■ ff - t =
A*R B*R C*R

- ^= - - = - 1 q . e . d .
RB* RC * RA*

Von diesem Satz gilt auch die Umkehrung : Wählt man R auf AB , S auf BC und T auf CA , so
daß q - a - r = - 1 ist, dann liegen R, S und T auf einer Gerade .

Beweis : RS und AC schneiden sich in T '
. Nach Menelaos gilt

q - a - r ' = - 1 , folglich ist r ' = r und deshalb T' = T , q . e . d.

2. Der Satz von Ceva (Giovanni Ceva , Mantua , 1647 bis 1734)

Irgendein Punkt P sei mit den Ecken A , B und C eines Dreiecks verbunden . AP
schneide BC in S , BP schneide AC in T, und CP schneide AB in R .
Teilt R die Seite [AB] im Verhältnis g,

S die Seite [BC ] im Verhältnis <r und
T die Seite [CA] im Verhältnis t , dann gilt g - ff - 1 = l .

CEVA

ARBSCT = RBSC -TA

60 -100 -52 = 80 - 50 - 78

80 - 50 ■195 = 60 •200 ■65
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Beweis : Wir wenden den Satz von Menelaos aufs Dreieck ARC mit der Schnittgerade TP an.
Es ergibt sich = • = • = = 1 .BR PC TA
Machen wir dasselbe beim Dreieck RBC mit der Schnittgerade SP , so ergibt sich
RA BS CP
ÄB SC PR

Also ist AB RP CT RA BS CP
BR PC TA AB SC PR

, J . AR BSund damit -= ^ ■=
RB SC

CT
TA

= 1 , also g • a - x = 1 .

Der Satz gilt auch dann , wenn P außerhalb des Dreiecks liegt.
Besonders einprägsam ist die Deutung dieses Satzes in der Produktform :
AR ■BS • CT = RB • SC • TA.
Auch hier gilt die Umkehrung : Wählt man R auf AB , S auf BC und T auf CA , so daß
8 ’ (f ‘ t = 1 ist , so schneiden sich die Geraden CR, AS und BT in einem Punkt oder sie sind
parallel.
Beweis : AS und BT schneiden sich in P . CP schneide AB in R' .

Nach Ceva gilt g
' ■a - x = 1 , das heißt g ' = g,also R ' = R , 9 . e . d .



Aufgaben
1 . Gegeben ist eine Strecke [AB ] , Konstruiere den Teilpunkt Ta auf AB und berechneATa

und TaB .
a) AB = 5 , t = - 1,5 b) AB = 7 , r = — |
c) AB = 2,5 , r = - 0,8 d) AB = 3,5 , r = - 4,5 .

2 . Gegeben ist die Strecke [AB] , Teile sie innen und außen im gegebenen Verhältnis und
berechne ATi; TjB , ATa und TaB .
a) AB = 6,1 1 \ = | b) AB = 7 , | r | = 1 c) AB = 4 , | r \ = }

3 . Bei den Beispielen in Aufgabe 2 ist die Strecke [AB] durch Tj und Ta geteilt .
Umgekehrt wird die Strecke [T,Ta] durch A und B geteilt.
Berechne für a) , b) und c) jeweils das Teilverhältnis von A und B bezüglich der
Strecke [T,Ta] ,

• 4 . Zeichne ein Dreieck ABC . P teilt [AB ] innen im Verhältnis 2 : 1 . Konstruiere Q auf AC
so , daß CB die Strecke [PQ] halbiert . In welchem Verhältnis teilt Q die Strecke [AC]?

• 5 . Die inneren und äußeren gemeinsamen Tangenten zweier Kreise mit den Mittelpunk¬
ten Mj und M2 schneiden MjM2 in T bzw . in S .
Zeige : M 1; M2, T und S sind harmonische Punkte .

6 . Teile die Strecke [AB] mit AB = 6 harmoni sch im Verhältnis
a) 1 :3 b) 5 :1 Berechne jeweils AT ; und ATa.

• 7 . Die Strecke [AB] wird innen von P und außen von Q harmonisch im Verhältnis | r | ge¬
teilt . Dann teilen A und B die Strecke [PQ ] auch harmonisch , aber im Verhältnis | Z | .
Berechne T in Abhängigkeit von r.

8 . X(x 10) und T (t 10) teilen [AB ] mit A( - 3 10) und B (3 10) harmonisch .
a) Konstruiere T für x = - 2 , x = - 1 und x = 1,5 .
b) Berechne t allgemein in Abhängigkeit von x .

9. PERSPEKTIVE
Das Bild zeigt, wie man ein Gleis , eine Leiter oder einen Zaun perspektivisch darstellt .

a) Zeige : A , B , X und H sind harmonische Punkte .
X , Y , B und H sind harmonische Punkte .

vh A , C , B und H sind harmonische Punkte .
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b) Zeichne das Trapez A'B 'C 'D ' ab und konstruiere das Perspektive Bild eines Wegs
mit mindestens vier quadratischen Platten .

c) Zeichne das Trapez A'B 'C 'D ' ab und fülle es so aus , daß das Perspektive Bild des
quadratischen Gitters ABCD entsteht .

C

D’ C’
\\

\\
\B \

\Ä cd 3

10 . Eine Saite ist 60 cm lang . Zupft man sie , dann hört man ihren Grundton .
Berechne und konstruiere die Saitenlänge der Töne , die mit dem Grundton eine Quint
bzw . eine große Terz bilden .

11 . Zeichne ein Dreieck ABC und einen Punkt T auf c . Die Parallele zu CT durch Mcschneidet eine Seite in P und die Verlängerung der andern Seite in Q .
Zeige : CT ist das harmonische Mittel von PMC und QM C.

12 . Überprüfe durch Messen von Streckenlängen den Satz von Menelaos am 8
Dreieck ABC mit A(111) , B(ll | l ) und C(7 | 7) mit der Transversale RS 0 0 14
durch R (3 13) und S (711) . 4

13 . Überprüfe durch Messen von Streckenlängen den Satz von Ceva am Drei- 14
eck ABC mit A (111) , B(15 11 ) , C (10 113 ) für den Punkt P (9 | 7) . 0 0 16

0
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14. Beweise mit dem Satz von Ceva :
Die Seitenhalbierenden eines Dreiecks schneiden sich in einem Punkt .

15 . Zeichne ein Dreieck ABC . Wähle E auf [AC] und D auf [BC ] so , daß AE = kb und

BD = ka ist . Zeige mit dem Satz von Ceva:
AD, BE und sc treffen sich in einem Punkt .

• 16 . GERGONNE -PUNKT (nach dem französischen Mathematiker Joseph Diaz Ger-
gonne 1771 bis 1859) .
Der Inkreis eines Dreiecks berührt die Seiten in X , Y und Z .
Beweise mit dem Satz von Ceva:
AX, BY und CZ treffen sich in einem Punkt G .
G heißt Gergonne -Punkt des Dreiecks.
(Tip : gleich lange Tangentenabschnitte !)

• 17 . NAGEL -PUNKT (1836 gefunden von dem deutschen Mathematiker Heinrich von Na¬
gel )
Die Ankreise eines Dreiecks berühren die Seiten in X , Y und Z .
Beweise mit dem Satz von Ceva:
AX , BY und CZ treffen sich in einem Punkt N.
N heißt Nagel -Punkt des Dreiecks.
( Tip : gleich lange Tangentenabschnitte !)
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