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5.1 Die Sitze

Der berithmteste und wichtigste Satz der Geometrie ist nach dem griechischen Mathemati-
ker PYTHAGORAS VON Samos (=570 bis =497) benannt.

Satz von Pythagoras:
Im rechtwinkligen Dreieck sind die Kathetenquadrate zusammen so groll wie das Hy-
potenusenquadrat.
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a+b=c
Fiir diesen Satz kennt man heute etwa 400 Beweise. Aus Platzgriinden fiihren wir bloB ei-
nige vor.
Beweis von PytHAGORAS: Der einfachste Beweis stammt vermutlich von ihm selber, man fin-

det ihn aber auch im chinesischen Manuskript Chou-Pei aus der Han-Dynastie (206
v. Chr. bis 220 n. Chr.).
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Der Beweis beruht auf der Erginzungsgleichheit von Figuren. In einen quadratischen
Rahmen (Seitenldnge a + b) legt man vier kongruente rechtwinklige Dreiecke mit
den Katheten a und b. Je nach Anordnung bleibt einmal das Hypotenusenquadrat
(c?) und das andere Mal die beiden Kathetenquadrate (a?, b?) iibrig.

Beweis von NaIrizi: Der arabische Mathematiker
und Astronom ABU-L-ABBASAL-FADLIBN Ha-
TIM AN-NATRIZI (um 900, Bagdad) zeigt, wie .
man das Hypotenusenguadrat in die beiden B
Kathetenquadrate verwandelt, indem man
zwei kongruente rechtwinklige Dreiecke ver- - J &
schiebt. iy

Beweis von NAIRIZI




Beweis von Buaskara: Der indische Mathematiker und Astronom BHASKARA ATSCHARJA

(1114 bis =~1178) bringt in seinem um 1150 entstandenen Werk »Stirnjuwel der Lehr-
meinungen« einen Beweis, der nur aus zwei Zeichnungen und einem Hinweis be-
steht. Wer’s indisch nicht sieht, studiere die erklirenden Bilder:
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Um 300 v.Chr. hat EukLiD in seinem bedeutenden Werk »Die Elemente« einen Satz bewie-
sen, der den Satz von PYTHAGORAS einschlieBt. In diesem Satz kommen die Hypotenusen-

abschnitte q und p vor — das sind die Teilstrecken, in die der HéhenfuBpunkt die Hypote-
nuse zerlegt.
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Hypotenusenabschnitt
Satz von Euklid:

Im rechtwinkligen Dreieck ist ein Kathetenquadrat so groB wie das Rechteck aus der
Hypotenuse und dem anliegenden Hypotenusenabschnitt. (Kathetensatz)

b’ +a’=qe +pe = [gsple = ¢?

Eukrip bei der Arbeit

Wendet man diesen Satz auf beide Katheten an, so ergibt sich der Satz von PYTHAGORAS.
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Beweis nach FEGERT: Dieser besonders einfache Beweis beruht auf der Ergdnzungsgleichheit
zweier Figuren. In einen viereckigen Rahmen legt man zwei rechtwinklige Dreiecke.
Je nach Anordnung bleibt einmal das Kathetenquadrat (a?) und das andere Mal ein
Rechteck (pe) iibrig.

Beweis von BARAVALLE (HERMANN voN, Wien 25.5.1898 bis 6.7.1973 Buchenbach bei Frei-
burg): In einer Bildfolge kommen eine Verschiebung und zwei Scherungen vor.

(Aufgabe 113/1.)
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Beweis von EUKLID: Kongruenz: ABCY = ABUA (SWS)
Scherung: Fliche (BCY) = Fliche (BFY) = 0,5 Flidche (BFXY)
Scherung: Flache (BUA) = Fliche (BUC) = (0,5 Fliche (BUVC)
also ist Fliche (BFXY) = Fliche (BUVC).
(Zur Kongruenz: Man kann sich auch vorstellen, daB das Dreieck BCY bei einer
Vierteldrehung um B ins Dreieck BUA libergeht. CY und UA sind zueinander senk-
recht.)

»Die Elemente« von EUkLID enthalten neben dem Satz von PyrHAGORAS und dem Katheten-
satz noch einen dritten Flachensatz:
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Hohensatz:
Im rechtwinkligen Dreieck ist das Hohenquadrat so groB wie das Rechteck aus den
Hypotenusenabschnitten.

h* = pq

Beweis mit Ergdinzungsgleichheit: In einen dreieckigen Rahmen legt man zwei rechtwinklige
Dreiecke. Je nach Anordnung bleibt einmal das Héhenquadrat (h?) und das andere
Mal ein Rechteck (pq) iibrig.

13 T
Pq X

Beweis mit Scherung: Ahnlich wie beim Beweis von BAravaLLE 1dBt sich das Hohenquadrat
mit drei Scherungen in das Rechteck aus den Hypotenusenabschnitten verwan-
deln.

(Aufgabe 2)

Der Pythagoras-, der Katheten- und der Hohensatz lassen sich aber auch ganz anders bewei-
sen: Man nutzt die Eigenschaften dhnlicher Dreiecke aus.

Beweis fiir alle 3 Flachensitze: Die Hohe zerlegt ein rechtwinkliges Dreieck in zwei dhnliche
Teildreiecke, die auch noch dem ganzen Dreieck dhnlich sind. Wegen der Gleichheit
der Seitenverhiltnisse ergibt sich durch einfache Umformung der Satz von Eu-
KLID:

AAFC ~ ACFB ~ AABC
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ACFB ~ AABC, also E e und damit a®= pc.
Entsprechend ergibt sich b? = pc und daraus der Satz von PYTHAGORAS a’ + b? = pc
+qc=(@p+4q)c=c’

Den Hohensatz schlieBlich findet man so:
h C : ;
ACFB ~ AAFC, also —-= F! und damit h?=pq.
Der letzte Beweis steht in der »Practica Geometria« (1220) von Leonardo FiBoNAccI
(1170 bis 1240, Pisa).

Fiir den Katheten- und den Hoéhensatz gibt es noch eine andre Deutung: Der Kathetensatz

4Bt sich auch schreiben als a = +/pe , das heiBt, eine Kathete (a) ist das geometrische Mittel
von Hypotenuse (c) und anliegendem Hypotenusenabschnitt (p). Der Kathetensatz 1aft sich
aber auch schreiben als Proportion c:a = a: p. In dieser Gleichung steht a nicht nur bildlich
zwischen c und p, auch dem Wert nach liegt a zwischen ¢ und p. Deshalb bezeichnet man a
als mittlere Proportionale oder auch als geometrisches Mittel, das heiBt: Eine Kathete (a) ist
die mittlere Proportionale von Hypotenuse (¢) und anliegendem Hypotenusenabschnitt

(p).

Entsprechende Uberlegungen gelten auch fiir den Hohensatz h? = pq oder h = ypq oder
p:h=h:q.

Der Zusammenhang a* + b? = ¢? zwischen den Seitenlingen eines rechtwinkligen Dreiecks
hat von jeher findige Kopfe gereizt, natiirliche Zahlen a, b und c zu suchen, die diese Glei-
chung erfiillen. Schon vor 4000 Jahren haben die Babylonier solche Zahlen gekannt, wie
eine Liste auf einer altbabylonischen Keilschrifttafel beweist. Man nennt sie »Plimpton
322« weil sie in der Plimpton Bibliothek der Columbia Universitidt in New York aufbewahrt
wird. Man vermutet, daB die Babylonier auch schon von der Beziehung a* + b* = ¢? gewuBt
haben, aber als Baumeister und Landvermesser keine Notwendigkeit sahen, sie zu bewei-

sen.

r [Tl T
e S £ T
i 1 S R
[ ref - et |
F k‘ r A
L S - i [
Lt Er o
r=r T I
T - FIEE o i v
rr “I -
I -+ 2 % !
| J ¥ !E’?’. s o
br d T 3 ,‘I:
- e Ty g en S -

Eine der hdufigsten und wichtigsten Aufgaben der Mathematik und ihrer Anwendungen ist
es, die Entfernung zweier Punkte bzw. eine Streckenldnge zu berechnen. Der Satz von Py-
THAGORAS ist dazu das einfachste Mittel. Vor allem deshalb ist er in der Geometrie so unent-
behrlich.

Man nennt drei natiirliche Zahlen a, b und ¢ ein pythagordisches Zahlentripel, wenn fiir
sie gilt a> + b? = ¢. Das einfachste ist 3, 4 und 5. Auch 6, 8 und 10 oder 9, 12 und 15 sind
pythagoridische Tripel; die zugehorigen Dreiecke sind dhnlich. Als primitive pythagoridische
Tripel bezeichnen wir nur solche, deren Zahlen keinen gemeinsamen Teiler haben. Man

103




weil heute, daB es unendlich viele primitive pythagoriische Tripel gibt. In der Tabelle ste-
hen alle mit ¢ < 100.

a }3 5 ‘ g 7120 | 12 ‘ glifeag g lite ‘ 33 | 48 | 13 | 36 | 39 | 65

. _ | -
b‘f‘r 12 | 15 ‘24 21 35‘4() |4."1 60 | 63 56‘55 84|??i80 72

5uled 3% [l ol 25 (290137 ! 41 e L6l INGS | 65 | 73 | 85 | 85 ‘ 89 | 97
Die Untersuchung der pythagordischen Tripel hat zu einem der bekanntesten bis heute un-
gelosten Probleme der Mathematik gefithrt. Der franzosische Jurist und Hobby-Mathemati-
ker Pierre FERMAT (1601 bis 1655) las in der »Arithmetica« des griechischen Mathematikers
DI10PHANTOS VON ALEXANDRIA (=250 n.Chr.), daB man mit den Formeln a = 2xy, b = x* — y?
und ¢ = x* + y* alle primitiven pythagoriischen Tripel erzeugen kann (wenn x, y teilerfremde
natiirliche Zahlen sind und die Differenz x — y ungerade ist). FERMAT wollte wissen, ob sich
entsprechende Gleichungen wie a’+b’=c¢? a*+ b*=c* oder allgemein a"+ b" = ¢c* mit
ganzzahligen Tripeln 16sen lassen, und schrieb auf den Rand der Arithmetica die folgen-
schwere Bemerkung: »Es ist unmoglich, einen Kubus in zwei Kuben oder ein Biquadrat in
zwel Biquadrate und allgemein eine Potenz, héher als die zweite, in zwei Potenzen mit dem-
selben Exponenten zu zerlegen. Ich habe dafiir einen wahrhaft wunderbaren Beweis ent-
deckt, doch ist der Rand hier zu schmal, um ihn zu fassen«, das heiBt: die Gleichung
x" + y" = z" hat nach FERMAT fiir n > 2 keine Ldsung mit natiirlichen Zahlen.

Seit FERMAT 1637 dies geschrieben hatte, suchte man nach diesem Beweis. FErmAT fand
einen Beweis fiir n =4. 1825 bewies A. LEGENDRE, daB die Vermutung fiir n = 5 stimmt.
Schon 1770 konnte L. EuLer den Fall n = 3 und 1839 G.LamE n =7 erledigen. E. KUMMER
(1810 bis 1893) zeigte, daB Fermar fiir alle Primzahlen einer besonderen Art recht hatte.
Seit 1976 weiB man nach S. WaGsTaAFF, daB die Vermutung fiir n = 125000 stimmt. Einen
groBen Schritt schaffte der deutsche Mathematiker G. FALTINGS (geb. 1954) im Jahr 1983: er
zeigte, dall die Gleichung fiir n > 3, wenn iiberhaupt, dann nur endlich viele Losungen hat.
Fiir diese Leistung erhielt er 1986 die beriihmte Fields-Medaille, das mathematische Gegen-
stiick zum Nobelpreis. Am 23.Juni 1993 sorgte der englische Zahlentheoretiker ANDREW Wi-
LEs fur eine Sensation. In einem Vortrag an der Universitit Cambridge gab er das Ergebnis
seiner neunjiahrigen Forschungsarbeit bekannt: FERMAT hatte recht! Der vollstindige Beweis
fir die Fermatsche Vermutung ist in einer mehrere hundert Seiten umfassenden Abhand-
lung nachzulesen. Zur Zeit liberpriifen ihn Mathematiker in der ganzen Welt. Wenn sie kei-
nen Fehler entdecken, dann ist eine der hirtesten Niisse der Mathematik nach mehr als
350jdhrigem Ringen geknackt.

Beim Bau der Pyramiden haben die Agypter rechte
Winkel schon verbliiffend genau erreicht. Angeblich
verwendeten sie dabei das Verfahren des Seilspan-
nens. Die Seilspanner (Harpedonapten) nahmen ein
Seil mit 13 gleichabstdndigen Knoten und zogen es
um Pflécke zum 3-4-5-Dreieck. So entstand der 90°-
Winkel ganz von selber.
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Liefert jedes pythagordische Tripel ein rechtwinkliges Dreieck, das heiBt, ist der Satz von
PyrHAGORAS umkehrbar? Schon Eukrip hat bewiesen, daBl auch die Umkehrung stimmt.

Umkehrung des Satzes von Pythagoras:

Wenn fiir die drei Seiten a, b und c eines Dreiecks gilt a? + b? = c¢?, dann ist der Gegen-

winkel von c gleich 90°,

Beweis: Nach dem Satz von PyrHAGORAS hat in einem rechtwinkligen Dreieck mit den Ka-
theten a und b die Hypotenuse die Linge ¢ = ya*+ b* . Weil es zu drei Seiten a, b

und ¢ aber nur ein Dreieck gibt (SSS-Satz), mull das Dreieck bei C rechtwinklig
sein.

5.2 Wichtige Formeln

Diagonale im Quadrat und Hohe im gleichseitigen Dreieck

d'=a'+a’ = 2a° b= a’-(2) = 34
a 4
= h =
d=a+2 h 273
: [
Diagonale ’ ] 2y S Hohe im
- J ;
- im Quadrat E

gleichseitigen Dreieck

Raumdiagonale im Quader und Wiirfel
Linge der Diagonale im Deckflichen-Rechteck:
£ b

e’=a’+b?, e=ya’

Die Raumdiagonale d ist Hypotenuse in einem rechtwinkligen Dreieck mit den Katheten e
und c:

d?. — c.? £ C_"

d?= a’+b% +¢?, d=qva?+b>+c?.

Beim Wiirfel ist a = b = ¢, also gilt:

d2=43a%, d=2ay3.

d=av3

Raumdiagonale
im Wiirfel

Raumdiagonale im Quader
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