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5 . 1 Die Sätze

Der berühmteste und wichtigste Satz der Geometrie ist nach dem griechischen Mathemati¬
ker Pythagoras von Samos ( =« 570 bis « 497 ) benannt .
Satz von Pythagoras :
Im rechtwinkligen Dreieck sind die Kathetenquadrate zusammen so groß wie das Hy¬
potenusenquadrat .

Für diesen Satz kennt man heute etwa 400 Beweise . Aus Platzgründen führen wir bloß ei¬
nige vor.
Beweis von Pythagoras : Der einfachste Beweis stammt vermutlich von ihm selber, man fin¬

det ihn aber auch im chinesischen Manuskript Chou-Pei aus der Han -Dynastie (206
v . Chr. bis 220 n . Chr.) .

Ö
2 * a

Der Beweis beruht auf der Ergänzungsgleichheit von Figuren . In einen quadratischen
Rahmen (Seitenlänge a + b) legt man vier kongruente rechtwinklige Dreiecke mit
den Katheten a und b . Je nach Anordnung bleibt einmal das Hypotenusenquadrat
(c2) und das andere Mal die beiden Kathetenquadrate (a2

, b2) übrig.
Beweis von Nairizi : Der arabische Mathematiker

und Astronom Abu- l -Abbasal -Fadlibn Ha-
tim an -Nairizi (um 900 , Bagdad ) zeigt , wie
man das Hypotenusenquadrat in die beiden
Kathetenquadrate verwandelt, indem man
zwei kongruente rechtwinklige Dreiecke ver¬
schiebt .

Beweis von nairizi
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Beweis von Bhaskara : Der indische Mathematiker und Astronom Bhaskara Atscharja
(1114 bis = 1178) bringt in seinem um 1150 entstandenen Werk »Stirnjuwel der Lehr¬
meinungen « einen Beweis , der nur aus zwei Zeichnungen und einem Hinweis be¬
steht . Wer’s indisch nicht sieht , studiere die erklärenden Bilder:

KUKMALDHA SCHAUHIN

Um 300 v . Chr. hat Euklid in seinem bedeutenden Werk »Die Elemente « einen Satz bewie¬
sen , der den Satz von Pythagoras einschließt . In diesem Satz kommen die Hypotenusen¬
abschnitte q und p vor - das sind die Teilstrecken , in die der Höhenfußpunkt die Hypote¬
nuse zerlegt.

an b anliegender an a anliegender
Hypotenusenabschnitt

Satz von Euklid:
Im rechtwinkligen Dreieck ist ein Kathetenquadrat so groß wie das Rechteck aus der
Hypotenuse und dem anliegenden Hypotenusenabschnitt . (Kathetensatz )

Euklid bei der Arbeit

säe!
mm

a = pc a = pc

Wendet man diesen Satz auf beide Katheten an , so ergibt sich der Satz von Pythagoras .
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Beweis nach Fegert : Dieser besonders einfache Beweis beruht auf der Ergänzungsgleichheit
zweier Figuren . In einen viereckigen Rahmen legt man zwei rechtwinklige Dreiecke.
Je nach Anordnung bleibt einmal das Kathetenquadrat (a2) und das andere Mal ein
Rechteck (pc) übrig.

a = pc

Beweis von Baravalle (Hermann von , Wien 25 . 5 . 1898 bis 6 . 7 . 1973 Buchenbach bei Frei¬
burg) : In einer Bildfolge kommen eine Verschiebung und zwei Scherungen vor.
(Aufgabe 113/1 .)

Beweis von Euklid : Kongruenz : ABCY = ABUA (SWS)
Scherung : Fläche (BCY) = Fläche (BFY) = 0,5 Fläche (BFXY )
Scherung : Fläche (BUA ) = Fläche (BUC) = 0,5 Fläche (BUVC)
also ist Fläche (BFXY) = Fläche (BUVC ) .
(Zur Kongruenz : Man kann sich auch vorstellen , daß das Dreieck BCY bei einer
Vierteldrehung um B ins Dreieck BUA übergeht . CY und UA sind zueinander senk¬
recht .)

»Die Elemente « von Euklid enthalten neben dem Satz von Pythagoras und dem Katheten¬
satz noch einen dritten Flächensatz :
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Höhensatz :
Im rechtwinkligen Dreieck ist das Höhenquadrat so groß wie das Rechteck aus den
Hypotenusenabschnitten .

Beweis mit Ergänzungsgleichheit : In einen dreieckigen Rahmen legt man zwei rechtwinklige
Dreiecke . Je nach Anordnung bleibt einmal das Höhenquadrat (h2) und das andere
Mal ein Rechteck (pq) übrig.

Beweis mit Scherung : Äh n lich wie beim Beweis von Baravalle läßt sich das Höhenquadrat
mit drei Scherungen in das Rechteck aus den Hypotenusenabschnitten verwan¬
deln.
(Aufgabe 2)

Der Pythagoras- , der Katheten - und der Höhensatz lassen sich aber auch ganz anders bewei¬
sen : Man nutzt die Eigenschaften ähnlicher Dreiecke aus.
Beweis für alle 3 Flächensätze : Die Höhe zerlegt ein rechtwinkliges Dreieck in zwei ähnliche

Teildreiecke , die auch noch dem ganzen Dreieck ähnlich sind . Wegen der Gleichheit
der Seitenverhältnisse ergibt sich durch einfache Umformung der Satz von Eu¬
klid :

c

AAFC - ACFB - AABC
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ACFB ~ AABC , also — = — und damit a2 = pc .
P a

Entsprechend ergibt sich b2 = pc und daraus der Satz von Pythagoras a2 + b2 = pc
+ qc = (p + q) • c = c2.
Den Höhensatz schließlich findet man so :

h qACFB ~ AAFC , also — = — und damit h2 = pq .
p h

Der letzte Beweis steht in der »Practica Geometria « (1220 ) von Leonardo Fibonacci
( 1170 bis 1240 , Pisa) .

Für den Katheten - und den Höhensatz gibt es noch eine andre Deutung : Der Kathetensatz
läßt sich auch schreiben als a = Vpc

"

, das heißt , eine Kathete (a) ist das geometrische Mittel
von Hypotenuse (c) und anliegendem Hypotenusenabschnitt (p) . Der Kathetensatz läßt sich
aber auch schreiben als Proportion c : a = a : p . In dieser Gleichung steht a nicht nur bildlich
zwischen c und p , auch dem Wert nach liegt a zwischen c und p . Deshalb bezeichnet man a
als mittlere Proportionale oder auch als geometrisches Mittel , das heißt : Eine Kathete (a) ist
die mittlere Proportionale von Hypotenuse (c) und anliegendem Hypotenusenabschnitt
(P) -
Entsprechende Überlegungen gelten auch für den Höhensatz h2 = pq oder h = Vpq

~
oder

p : h = h : q .
Der Zusammenhang a2 + b2 = c2 zwischen den Seitenlängen eines rechtwinkligen Dreiecks
hat von jeher findige Köpfe gereizt , natürliche Zahlen a , b und c zu suchen , die diese Glei¬
chung erfüllen . Schon vor 4000 Jahren haben die Babylonier solche Zahlen gekannt , wie
eine Liste auf einer altbabylonischen Keilschrifttafel beweist. Man nennt sie »Plimpton
322 « , weil sie in der Plimpton Bibliothek der Columbia Universität in New York aufbewahrt
wird . Man vermutet , daß die Babylonier auch schon von der Beziehung a2 + b2 = c2 gewußt
haben , aber als Baumeister und Landvermesser keine Notwendigkeit sahen , sie zu bewei¬
sen.

Eine der häufigsten und wichtigsten Aufgaben der Mathematik und ihrer Anwendungen ist
es , die Entfernung zweier Punkte bzw . eine Streckenlänge zu berechnen . Der Satz von Py¬
thagoras ist dazu das einfachste Mittel . Vor allem deshalb ist er in der Geometrie so unent¬
behrlich .
Man nennt drei natürliche Zahlen a , b und c ein pythagoräisches Zahlentripel , wenn für
sie gilt a2 + b2 = c2

. Das einfachste ist 3 , 4 und 5 . Auch 6 , 8 und 10 oder 9 , 12 und 15 sind
pythagoräische Tripel ; die zugehörigen Dreiecke sind ähnlich . Als primitive pythagoräische
Tripel bezeichnen wir nur solche, deren Zahlen keinen gemeinsamen Teiler haben . Man
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weiß heute , daß es unendlich viele primitive pythagoräische Tripel gibt . In der Tabelle ste¬
hen alle mit c < 100 .
a 3 5 8 7 20 12 9 28 11 16 33 48 13 36 39 65

b 4 12 15 24 21 35 40 45 60 63 56 55 84 77 80 72

c 5 13 17 25 29 37 41 53 61 65 65 73 85 85 89 97

Die Untersuchung der pythagoräischen Tripel hat zu einem der bekanntesten bis heute un¬
gelösten Probleme der Mathematik geführt . Der französische Jurist und Hobby-Mathemati¬
ker Pierre Fermat (1601 bis 1655) las in der »Arithmetica « des griechischen Mathematikers
Diophantos von Alexandria ( = 250 n . Chr .) , daß man mit den Formeln a = 2xy , b = x2 - y2
und c = x2 + y2 alle primitiven pythagoräischen Tripel erzeugen kann (wenn x , y teilerfremde
natürliche Zahlen sind und die Differenz x - y ungerade ist) . Fermat wollte wissen, ob sich
entsprechende Gleichungen wie a3 + b3 = c3

, a4 + b4 = c4 oder allgemein an + bn = cn mit
ganzzahligen Tripeln lösen lassen , und schrieb auf den Rand der Arithmetica die folgen¬
schwere Bemerkung : »Es ist unmöglich , einen Kubus in zwei Kuben oder ein Biquadrat in
zwei Biquadrate und allgemein eine Potenz , höher als die zweite, in zwei Potenzen mit dem¬
selben Exponenten zu zerlegen. Ich habe dafür einen wahrhaft wunderbaren Beweis ent¬
deckt, doch ist der Rand hier zu schmal , um ihn zu fassen« , das heißt : die Gleichung
xn + yn = zn hat nach Fermat für n > 2 keine Lösung mit natürlichen Zahlen .

Seit Fermat 1637 dies geschrieben hatte , suchte man nach diesem Beweis . Fermat fand
einen Beweis für n = 4 . 1825 bewies A . Legendre , daß die Vermutung für n = 5 stimmt .
Schon 1770 konnte L . Euler den Fall n = 3 und 1839 G . Lame n = 7 erledigen . E . Kummer
(1810 bis 1893) zeigte, daß Fermat für alle Primzahlen einer besonderen Art recht hatte .
Seit 1976 weiß man nach S . Wagstaff , daß die Vermutung für n g 125 000 stimmt . Einen
großen Schritt schaffte der deutsche Mathematiker G . Faltings (geb . 1954) im Jahr 1983 : er
zeigte, daß die Gleichung für n > 3 , wenn überhaupt , dann nur endlich viele Lösungen hat .
Für diese Leistung erhielt er 1986 die berühmte Fields-Medaille , das mathematische Gegen¬
stück zum Nobelpreis . Am 23 . Juni 1993 sorgte der englische Zahlentheoretiker Andrew Wi-
les für eine Sensation . In einem Vortrag an der Universität Cambridge gab er das Ergebnis
seiner neunjährigen Forschungsarbeit bekannt : Fermat hatte recht ! Der vollständige Beweis
für die Fermatsche Vermutung ist in einer mehrere hundert Seiten umfassenden Abhand¬
lung nachzulesen . Zur Zeit überprüfen ihn Mathematiker in der ganzen Welt . Wenn sie kei¬
nen Fehler entdecken , dann ist eine der härtesten Nüsse der Mathematik nach mehr als
350jährigem Ringen geknackt.

Beim Bau der Pyramiden haben die Ägypter rechte
Winkel schon verblüffend genau erreicht . Angeblich
verwendeten sie dabei das Verfahren des Seilspan-
nens . Die Seilspanner (Harpedonapten ) nahmen ein
Seil mit 13 gleichabständigen Knoten und zogen es
um Pflöcke zum 3 -4- 5 -Dreieck . So entstand der 90°-
Winkel ganz von selber.

t- ä 4
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Liefert jedes pythagoräische Tripel ein rechtwinkliges Dreieck , das heißt , ist der Satz von
Pythagoras umkehrbar ? Schon Euklid hat bewiesen , daß auch die Umkehrung stimmt .

Umkehrung des Satzes von Pythagoras :
Wenn für die drei Seiten a, b und c eines Dreiecks gilt a2 + b2 = c2, dann ist der Gegen¬
winkel von c gleich 90°.
Beweis : Nach dem Satz von Pythagoras hat in einem rechtwinkligen Dreieck mit den Ka¬

theten a und b die Hypotenuse die Länge c = Va2 + b2
. Weil es zu drei Seiten a , b

und c aber nur ein Dreieck gibt (SSS -Satz) , muß das Dreieck bei C rechtwinklig
sein.

5 .2 Wichtige Formeln

Diagonale im Quadrat und Höhe im gleichseitigen Dreieck

d2= a2+ a2 = 2a2

d = a/2

Diagonale
im Quadrat

a/

/ r-
1V3

Höhe im
gleichseitigen Dreieck

Raumdiagonale im Quader und Würfel

Länge der Diagonale im Deckflächen -Rechteck :

e2 = a2 + b2
, e = Va2 + b2 .

Die Raumdiagonale d ist Hypotenuse in einem rechtwinkligen Dreieck mit den Katheten e
und c :
d2 = e2 + c2

d2 = a2 + b2 + c2
, d = Va2 + b2 + c2 .

Beim Würfel ist a = b = c , also gilt :

d2 = V3a2
‘

, d = aVT .

Raumdiagonale im Quader

d = a/3

Raumdiagonale
im Würfel
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