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o

greifen . Die am Umfang der Spindel wirkende Kraft übt auf den
Umfang des Rades einen tangential gerichteten Druck aus , der sich
zu jener Kraft verhält , wie der Umfang der Spindel zur Höhe des
Schraubengangs .

24 . Mathematisches Pendel . Während der Fall auf der schiefen
Ebene nur eine verlangsamte Form des freien Falles ist , erhält man
eine Bewegung ganz anderer Art , wenn man einen Körper auf einem
Kreisbogen fallen läßt . Man erreicht dies am einfachsten , indem
man einen kleinen , schweren Körper an einem möglichst dünnen
Faden aufhängt . Eine solche Vorrichtung nennt man ein einfaches
oder Fadenpendel . Denkt man sich den Faden gewichtslos und den
Körper als ein einziges Massenteilchen , so nennt man das Pendel
ein mathematisches . Entfernt man das Pendel aus seiner lot¬
rechten Gleichgewichtslage ( 04 , Fig . 12)
und überläßt es dann sich selbst , so kehrt
es unter der Einwirkung der Schwerkraft
dahin zurück , indem es längs des Kreis¬
bogens (BÄ ) mit zunehmender Geschwindig¬
keit herabsinkt ; in der Gleichgewichtslage
angekommen , geht es infolge der Trägheit
weiter und steigt mit abnehmender Geschwin¬
digkeit einen gleich großen Bogen (AB '

) hinan ,
in dessen höchstem Punkte (B '

) seine Ge¬
schwindigkeit durch die entgegenwirkende
Schwerkraft erschöpft ist . Von B ' läuft es
denselben Weg über A nach B in derselben
Weise zurück . Das Pendel beschreibt also
eine schwingende Bewegung , von ähnlicher
Art , wie wir sie oben (20 ) an der mit Masse
beschwerten Feder bereits kennen gelernt
haben . Die Schwingungsweite ist der Bogen AR .
Die Kraft , welche das Pendel in seine Gleich¬
gewichtslage zurückzukehren nötigt , ist eine Komponente der Schwer¬
kraft . Stellt nämlich in der Figur B G — O den lotrecht abwärts
wirkenden Zug des Pendelgewichtes vor , so kann man sich diese
Kraft nach dem Parallelogramm der Kräfte in zwei zueinander
senkrechte Seitenkräfte BE und BD zerlegt denken , von welchen
erstere in die Richtung des Fadens , letztere in die Berührungslinie
des Kreisbogens , also in die Richtung der Bewegung fällt , welche
der Pendelkörper im Punkte B besitzt ; nur diese letztere kann Ur¬
sache der Bewegung sein , während jene keinen weiteren Erfolg hat ,
als den Faden gespannt zu erhalten . Zieht man nun B F senkrecht
zu O A, so folgt aus der Ähnlichkeit der Dreiecke B CD und B 0 F ,
daß sich die bewegende Kraft B D zur ganzen Schwerkraft B G ver¬
hält wie die Entfernung BF = y zur Pendellänge 0 B — 1, oder daß

bd = 4 <,

WA

Fig . 12 .
Pendel .
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36 I . Bewegung .

für ein und dasselbe Pendel der jeweiligen Entfernung des Pendel¬
körpers von der Gleichgewichtslage des Fadens proportional ist .
Wenn die Schwingungsweiten nur klein sind , d . h . 2 — 3 ° nicht über¬
schreiten , so ist der bogenförmige Weg BA , den der Pendelkörper
von irgendeinem Punkte seiner Bahn aus bis zur Gleichgewichtslage
zurückzulegen hat , von der geradlinigen Strecke BF nicht merklich
verschieden . Unter diesen Umständen ist die Kraft ; der Entfernung
von der Ruhelage einfach proportional zu setzen . Ist dies aber der
Fall , so befolgen die Schwingungen des Pendels genau die gleichen
Gesetze , die wir oben (20 ) für die Schwingungen einer Masse an
einer Feder aufgestellt haben . Vor allem gilt der Satz , daß das
Pendel bis zur Gleichgewichtslage dieselbe Zeit braucht , gleichviel
ob seine Schwingungsweite 3 0 oder 2 0 oder nur wenige Bogenminuten
oder -Sekunden beträgt . Bei kleinen Schwingungsweiten sind also
alle Schwingungen des Pendels von gleicher Dauer oder sie
sind isochron . Der 20jährige Galilei entdeckte (1583 ) dieses Gesetz
bei zufälliger Beobachtung einer im Dome zu Pisa an langer Kette

.aufgehängten Bronzelampe ; durch Zählung seiner Pulsschläge über¬
zeugte er sich , daß die Schwingungen , obgleich sie nach und nach
immer kleiner wurden , doch immer die nämliche Dauer hatten . Auf
diesem Gesetz des Isochronismus der Pendelschwingungen
beruht die von Huygens (1657 ) eingeführte Anwendung des Pendels
bei den Uhren , wo es die Aufgabe hat , die durch ein Gewicht oder
eine Feder hervorgebrachte Bewegung des Räderwerkes nach gleichen
Zeitabschnitten immer auf einen Augenblick zu hemmen und dadurch
den sonst eintretenden ungleichförmigen Gang in einen gleichmäßigen ,
oder vielmehr in einen nach gleichen Zeitabschnitten gehemmten ,
zu verwandeln .

Wir erhalten ferner aus der in (20 ) aufgestellten Formel für
die Schwingungsdauer unmittelbar die Schwingungsdauer eines Pendels ,
wenn wir für p den entsprechenden Ausdruck einsetzen . Nun ist
die treibende Kraft P im Falle des Pendels

P = BD = ~ y ,
oder da das Gewicht O der Pendelmasse m gleich m g ist ,

Im Abstande y = 1 wäre also P = und dieser Ausdruck ent¬
spräche dem p in der Formel

Also ist die Schwingungsdauer eines Pendels



I . Bewegung . 37

Es ist aber bei Pendelschwingungen üblich , als Schwingungsdauer die
Zeit eines einfachen Hin - oder Herganges zu bezeichnen . Brauchen
wir für diese Rechnung der Schwingungsdauer den Buchstaben t , so
ist die Schwingungsdauer t des Pendels (für hinreichend kleine
Amplituden ) demnach ausgedrückt durch :

In dieser Gleichung sind alle Gesetze der Pendelschwingungen ent¬
halten . Das Gesetz des Isochronismus spricht sich schon dadurch
aus , daß die Formel für t die Schwingungsweite gar nicht enthält .
Auch von der Masse (oder dem Gewicht ) des Pendelkörpers ist die
Schwingungsdauer unabhängig , da auch m aus der Rechnung hinaus¬
fiel . In der Tat fand Newton , daß die Schwingungsdauer eines
Pendels , dessen Pendelkörper , damit er immer den gleichen Luft¬
widerstand erfahre , aus einer Büchse bestand , in welche verschiedene
Substanzen gebracht wurden , stets genau die nämliche blieb . Daraus
folgt , daß alle Körper , welches auch ihr Gewicht sein mag und
aus welchem Stoffe sie bestehen mögen , durch die Schwerkraft die
gleiche Beschleunigung erfahren , oder daß alle Körper gleich
schnell fallen . Der mittels des Pendels geführte Beweis für
diesen Satz ist weit genauer als die früher zu diesem Zweck an¬
geführten Versuche (vgl . 10 ). Denn da ein Pendel trotz des Luft¬
widerstandes einige tausend Schwingungen ausführen kann , ehe es
zur Ruhe kommt , und alle diese Schwingungen , die anfänglichen
von größerer wie die späteren von kleinerer Schwingungsweite , von
gleicher Dauer sind , so kann man , indem man die in bestimmter
Zeit stattfindenden Schwingungen zählt , die Schwingungsdauer mit
großer Genauigkeit ermitteln .

Unsere Formel sagt uns weiter , daß 1 ) die Schwingungs¬
dauer proportional der Quadratwurzel aus der Pendellänge
und 2 ) umgekehrt proportional der Quadratwurzel aus der
Beschleunigung der Schwere ist . Ersteres Gesetz wurde bereits
von Galilei durch Beobachtungen an ungleich langen Fadenpendeln
gefunden . Drei Pendel , deren Längen sich wie 1 : 4 : 9 verhalten ,
haben Schwingungsdauern , die sich wie 1 : 2 : 3 verhalten . Das
letztere Gesetz kann man nachweisen durch ein starres Stangenpendel ,
das man in einer zur Vertikalebene unter dem Winkel a geneigten
Ebene um eine zu letzterer senkrechte Achse schwingen läßt (Mach ).
Es schwingt jetzt langsamer , hls bei vertikaler Lage der Schwingungs¬
ebene , weil statt der Beschleunigung g nur noch die Komponente
g cos a wirkt , und seine Schwingungsdauer erweist sich im Ver¬
hältnis von 1 : ]/ cos « vergrößert .

Unter Schwingungszahl (n ) eines Pendels versteht man die
Anzahl der in 1 sec erfolgenden Schwingungen ; sie ist n = 1 j t oder
a — ~

j g l %
~
\[ l . Läßt man ein und dasselbe Pendel unter der Ein¬

wirkung zweier verschiedener Beschleunigungen g und g' schwingen ,
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so verhalten sich hiernach die Schwingungszahlen n und n
wie die Quadratwurzeln aus den Beschleunigungen , oder die
Beschleunigungen verhalten sich wie die Quadrate der
Schwingungs zahlen :

g : g = n 2 : w' 2.
25 . Sekundenpendel . Bestimmung von g. Ein Pendel , dessen

Schwingungsdauer eine Sekunde beträgt , heißt Sekundenpendel .
Bezeichnet man die Länge des mathematischen Sekundenpendels mit
llt so ergibt sich vermöge obiger Formel , da jetzt t — 1 ist :

und daraus

1 — m
h
9

oder 1 = jr 2 —
9

9 = Ji 2 h ■
Man findet also die Beschleunigung der Schwere , wenn man

die Länge des Sekundenpendels mit dem Quadrate der Zahl % mul¬
tipliziert . Da die Länge des Sekundenpendels sehr genau gemessen
werden kann , so ist dieses Verfahren das genaueste zur Ermittelung
von g . Borda fand für die Länge des Sekundenpendels in Paris
99,392 cm ; daraus ergibt sich die Fallbeschleunigung <7 = 980,95
cm sec- 2.

Als 1672 der französische Astronom Richer in Cayenne , fünf
Breitengrade nördlich vom Äquator , Beobachtungen anstellte , bemerkte
er , daß seine von Paris mitgebrachte Pendeluhr um 2 1 /2 Minuten
täglich nachging ; damit die Uhr wieder richtig ging , mußte er das
Sekundenpendel um einige Millimeter verkürzen ; nach Paris zurück¬
gebracht , ging sie nun 2 1/2 Minuten vor . Wenn aber ein und das¬
selbe Pendel in Cayenne langsamer schwingt als in Paris , so kann
dies keine andere Ursache haben , als daß die Schwerkraft dort
schwächer wirkt als hier , so daß dort auch ein frei fallender Körper
eine kleinere Beschleunigung erfährt als hier .

Man hat nun , indem man die Länge des Sekundenpendels an
den verschiedensten Orten der Erdoberfläche bestimmte , gefunden , daß
diese Länge von dem Äquator nach den Polen hin zunimmt ; am
Äquator nämlich ist das Sekundenpendel 99,092 cm , unter 45 ° Breite
99,355 cm , in Berlin 99,424 cm lang , und am Pol würde es , wie
man aus den übrigen Beobachtungen schließen muß , 99,613 cm lang
sein . Daraus folgt , daß in gleichem Maß auch die Beschleunigung
der Schwere vom Äquator nach den Polen hin zunimmt .
Nach der Formel g = jz 2 ^ findet man die Beschleunigung der
Schwere am Äquator 978,00 , unter 45 ° Breite 980,60 , in Paris
980,95 , in Berlin 981,28 , am Pol 983,19 (cm sec - 2) .

26 . Gleichgewicht von Kräften an einem starren Körper .In den bisher betrachteten Fällen handelte es sich um die Bewegungeines Massenpunktes unter der Einwirkung einer Kraft oder um
das Gleichgewicht von Kräften , die an einem und demselben Punkte
angreifen . Wir können uns nun denken , daß eine Kraft an einem
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