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greifen. ])w am Umfang der Spindel wirkende Kraft iibt auf den
Umfang des Rades einen tangential gerichteten Druck aus, der sich
zu jener Lt.ﬂ't verhilt, wie der Umfang der Spindel zur Héhe des
Schraubengangs.

24. Mathematisches Pendel. Wiihrend der Fall auf der schiefen
Ebene nur eine verlangsamte Form des freien Falles ist, erhilt man
eine Bewegung ganz anderer Arf, wenn man einen Kérper auf einem
Kreisbogen fallen 1a6t. Man erreicht dies am einfachsten, indem
man einen kleinen, sehweren Koérper an einem mdglichst diinnen
Faden aufhingt. Eine solche Vorrichtung nennt man ein einfaches
oder Fadenpendel. Denkt man sich den Faden gewichtslos und den
Korper als ein einziges Massenteilchen, so nennt man das Pendel
ein mathematisches. Entfernt man das Pendel aus seiner lot-
rechten Gleichgewichtslage (04, Fig. 12)
und iiberliBt es danm sich gelbst, so Lkehrt F
es unter der Einwirkung der Schwerkraft /1N
dahin zuriick, indem es lings des Kreis- {,ﬁ
bogens (B.4) mit zunehmender Geschwindig- f
keit herabsinkt; in der Gleichgewichtslage
angekommen, geht es infolge der Trigheit ]
weiter und steigt mit abnehmender Geschwin- / \
digkeit einen gleich groBen Bogen (4 B') hinan, f’:
in dessen hochstem Punkte (B) seine Ge- ;}FTEL__#_);:’
schwindigkeit durch die entgegenwirkende T T
Schwerkraft erschépft ist. Von B’ liuft es / /f
denselben Weg iiber 4 nach B in derselben / /
Weise zuriick. Das Pendel beschreibt also / /
eine schwingende Bewegung, von éhnlicher g/
Art, wie wir sie oben (20) an der mit Masse -
beschwerten Feder b:_‘lf_ll- kennen sz&lm'm Fig. 12,
haben. DieSchwingungsweite ist der Bogen 4 B. Pendel.

Die Kraft, welche das Pendel in seine Gleich-

gewichtslage zuriickzukehren nétigt, ist eine Komponente der Schwer-
kraft. Stellt nimlich in der Figur BC = G den lotrecht abwiirts
wirkenden Zug des Pendelgewichtes vor, so kann man sich diese
Kraft nach dem Parallelogramm der Krifte in zwei zueinander
senkrechte Seitenkrifte B und BD zerlegt denken, von welchen
erstere in die Richtung des Fadens, lL,l.!LE‘rE_ in die Bemlnuntrb]ml
des Kreishogens, also in die Richtung der Bewegung fillt, welche
der Pendelkérper im Punkte B besitzt; nur diese letztere kann Ur-
sache der Bewegung sein, wilhrend jene keinen weiteren Erfolg hat,
als den Faden gespannt zu erhalten. Zieht man nun B F senkrecht
zu O 4, so folgt aus der Ahnlichkeit der Dreiecke B CD und B O F.
daB sich die bewegende Kraft BD zur ganzen Schwerkraft B ¢ ver-
hilt wie die Lul[mnuuw BF =y zur P(m[elldn'rt OB = I, oder daB

B D= {; ]
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fiir ein und dasselbe Pendel der jeweiligen Entfernung des Pendel-
kiorpers von der Gleichgewichtslage des Fadens proportional ist.
Wenn die Schwingungsweiten nur klein sind, d. h. 2—39 nicht iiber-
schreiten, so ist der bogenformige Weg B A, den der Pendelkérper
von irgendeinem Punkte seiner Bahn aus bis zur Gleichgewichtslage
zuriickzulegen hat, von der geradlinigen Strecke B I7 nicht merklich
verschieden., Unter diesen Umstéinden ist die Krafi der Entfernung
von der Ruhelage einfach proportional zu setzen. Ist dies aber der
Fall, so befolgen die Schwingungen des Pendels genau die gleichen
Gesetze, die wir oben [20) fir die Schwingungen einer Masse an
einer Feder aufgestellt haben. Vor allem gilt der Satz, dall das
Pendel bis zur Gleichgewichtslage dieselbe Zeit braucht, gleichviel
ob seine Schwingungsweite 3° oder 29 oder nur wenige Bozenminuten
oder -sekunden betrigt. Bei kleinen Schwingungsweiten sind also
alle Schwingungen des Pendels von gleicher Dauer oder sie
sind isochron. Der 20 jihrige Galilei entdeckte (1583) dieses Gesetz
bei zufilliger Beobachtung einer im Dome zu Pisa an langer Kette
-aufgehiingten Bronzelampe; durch Zihlung seiner Pulsschlige iber-
zeugte er sich, dafl die Schwingungen, obgleich sie nach und nach
immer kleiner wurden, doch immer die néimliche Dauer hatten. Auf
diesem (resetz des Isochronismus der Pendelschwingungen
beruht die von Huygens (1657) eingefiihrie Anwendung des Pendels
bei den Uhren, wo es die Aufzabe hat, die durch ein Gewicht oder
eine Feder hervorgebrachte Bewegung des Riderwerkes nach gleichen
Zeitabschnitten immer auf einen ;\ugeuhlic-k zu hemmen und dadurch
den sonst eintretenden ungleichformigen Gang in einen gleichméBigen,
oder vielmehr in einen nach gleichen Zeitabschnitten gehemmten,
zu verwandeln.

Wir erhalten ferner aus der in (20) aufuestellten Formel fiir
die Sechwingungsdauer unmittelbar die Schwingungsdauer eines Pendels,
wenn wir fiir p den entsprechenden Ausdruck einsetzen. Nun ist
die treibende Kraft P im Falle des Pendels

7

P=BD=—y,
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oder da das Gewicht & der Pendelmasse m gleich mg ist
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Im Abstande 4 = 1 wiire also P = f‘ und dieser Ausdruck ent-

spricche dem p in der Formel
T B
/ p

Also ist die Schwingungsdauer eines Pendels
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Es ist aber bei Pendelschwingungen iiblich, als Schwingungsdauer die
Zeit eines einfachen Hin- oder lIewuzcrm zu bezeichnen. Brauchen
wir fiir diese Rechnung der "ﬂ(,h“111[*1111”5(1;111(}]- den Buchstaben ¢, so
ist die Sch ».\1n=runfr~d.1ucr { des Pendels (fiir hinreichend kleine
Amplituden) demnach ausgedriickt durch:
e x ef__
/g

In dieser Gleichung sind alle Gesetze der Pendelschwingungen ent-
halten. Das Gesetz des Isochronismus spricht sich schon dadurch
aus, daB die Formel fir { die Schwingungsweite gar nicht enthilt.
'\uc]: von der Masse (oder dem (Jm\u-ht des Pendelkérpers ist die
Schwingungsdauer un.ihh.tu-fltr da auch m aus der Rechnung hinaus-
fie. In der Tat fand Newton, daB die Schwingungsdauer eines
Pendels, dessen Pendelkorper, damit er immer den gleichen Luft-
widerstand erfahre, aus einer Biichse bestand, in welche verschiedene
Substanzen gebracht wurden, stets genau die nimliche blieb. Daraus
folgt, dab alle I\_utpu ‘-\tl[.tLEE\ auch ihr Gewicht sein mag und
aus welchem Stoffe sie bestehen mogen, durch die Sehwerkraft die
gleiche Beschleunigung erfahren, oder dall alle Koérper gleich
schnell fallen. Der mittels des Pendels gefithrte Beweis fiir
diesen Satz ist weit genauer als die frither zu diesem Zweck an-
gefilhrten Versuche (vgl. 10). Denn da ein Pendel trotz des Luft-
widerstandes einige tausend Schwingungen ausfiihren kann, ehe es
zur Ruhe kommt, und alle diese Schwingungen, die anfiinglichen
von groflerer wie die spiteren von kleinerer Schwingungsweite, von
oleicher Dauer sind, so kann man, indem man die in bestimmter
Zeit stattfindenden Schwingungen zihlt, die Schwingungsdauer mit
grofler Genauigkeit ermitteln.

Unsere Formel sagt uns weiter, daBl 1) die Schwingungs-
dauer proportional der Quadratwurzel aus der Pendellinge
und 2) umgekehrt proportional der Quadratwurzel aus der
Seschleunigung der Schwere ist. Ersteres Gesetz wurde bereits
von Galilei durch Beobachtungen an ungleich langen Fadenpendeln
gefunden. Drei Pendel, deren Lingen sich wie 1:4:9 verhalten,
haben Schwingungsdauern, die sich wie 1:2:3 verhalten. Das
letztere Gresetz kann man nachweisen durch ein starres Stangenpendel,
das man in einer zur Vertikalebene unter dem Winkel ¢ geneigten
Ebene um eine zu letzterer senkrechte Achse schwingen lifit (Mach).
Es schwingt jetzt langsamer, als bei vertikaler Lage der b{'h\\n;wunwb—
ebene, weil statt der Beu_hlmmgung g nur no::h die ]\{:mpmwlm
g cos ¢ wirkt, und seine Schwingungsdauer erweist sich im Ver-
hiilinis von 1:/ cos e vergrofert.

Unter Schwingungszahl (z) eines Pendels versteht man die
Anzahl der in 1sec erfolgenden Schwingungen; sie ist »=1/¢ oder
n=7Jg/x)l. LiBt man ein und dasselbe Pendel unter der Ein-
wirkung zweier verschiedener Beschleunigungen ¢ und g’ schwingen,
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g0 verhalten sich hiernach die Schwingungszahlen n und #'
wie die Quadratwurzeln aus den Beschleunigungen, oder die
Beschleunigungen verhalten sich wie die Quadrate der
Schwingungszahlen:

g:g = ntin'%

25. Sekundenpendel. Bestimmung von g. Ein Pendel, dessen
Schwingungsdauer eine Sekunde betriigt, heifit Sekundenpendel.
Bezeichnet man die Linge des mathematischen Sekundenpendels mit
l;, so ergibt sich vermige obiger Formel, da jetzt # = 1 ist:

1=nx l ;?1. , ‘oder 1 = g {I
g g

und daraus
g9 =a*l.

Man findet also die Beschleunigung der Schwere, wenn man
die Liinge des Sekundenpendels mit dem Quadrate der Zahl 7 mul-
tipliziert. Da die Liinge des Sekundenpendels sehr genau gemessen
werden kann, so ist dieses Verfahren das genaueste zur Ermittelung
von g. Borda fand fir die Linge des Sekundenpendels in Paris
99,392 cm; daraus ergibt sich die Fallbeschleunigung ¢ = 980,95
em sec—?2, '

Als 1672 der franzbsische Astronom Richer in Cayenne, fiinf
Breitengrade nordlich vom Aquator, Beobachtungen anstellte, bemerkte
er, dab seine von Paris mitgebrachte Pendeluhr um 2!/, Minuten
taglich nachging; damit die Uhr wieder richtig ging, mubBte er das
Sekundenpendel um einige Millimeter verkiirzen; nach Paris zuriick-
gebracht, ging sie nun 21/, Minuten vor. Wenn aber ein und das-
selbe Pendel in Cayenne langsamer schwingt als in Paris, so kann
dies keine andere Ursache haben, als dafl die Schwerkraft dort
schwiicher wirkt als hier, so dafl dort auch ein frei fallender Korper
eine kleinere Beschleunigung erfihrt als hier.

Man hat nun, indem man die Linge des Sekundenpendels an
den verschiedensten Orten der Erdoberfliche bestimmte, gefunden, dal
diese Liinge von dem Aquator nach den Polen hin zunimmt; am
Aquator nimlich ist das Sekundenpendel 99,092 em, unter 45° Breite
99,355 ¢em, in Berlin 99,424 ¢m lang, und am Pol wiirde es, wie
man aus den iibrigen Beobachtungen schlieBen muf, 99,613 cm lang
sein. Daraus folgt, daB in gleichem MaB auch die Beschleunigung
der Schwere vom Aquator nach den Polen hin zunimmt.
Nach der Formel g = n®l, findet man die Beschleunigung der
:zlaﬁ;}cl‘e am sthfiuatgr .{)-?BJUU’ unter 459 Breite Eiﬁ[.hf_iﬂ, in Paris
980,95, in Berlin 981,28, am Pol 983,19 (cm sec—2).

26. Gleichgewicht von Kriften an einem starren Korper.
If] den bisher betrachteten Fillen handelte es sich um die Bewegung
eines I‘r'{asseupunktes unter der Einwirkung einer Kraft oder um
das Gllewhgewicht von Kriiften, die an einem und demselben Punkte
angreifen. Wir kénnen uns nun denken, daf eine Kraft an einem
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