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X . Licht .

in der Einfallsebene schwingende Strahl stets stärker als der senk¬
recht zur Einfallsebene schwingende . Unter dem Polarisationswinkel
geht der erstere ganz in das Glas über , da nichts von ihm reflektiert
wird , der zweite aber nur teilweise . Daher ist der hindurchgehende
Strahl unter allen Einfallswinkeln stets nur teilweise , niemals voll¬
ständig polarisiert . Gleichwohl läßt sich eine nahezu vollständige
Polarisation der durchgegangenen Strahlen erzielen , wenn man statt
einer einzigen Glasplatte eine Schicht von hinlänglich vielen Platten
oder eine sogenannte Glassäule anwendet . Fällt nämlich auf eine
solche Plattenschicht unter dem Polarisationswinkel ein natürlicher
Lichtstrahl , so geht der in der Einfallsebene schwingende Teilstrahl ,
weil er gar nicht zurückgeworfen wird , durch sämtliche Platten ohne
Verlust hindurch ; der senkrecht zur Einfallsebene schwingende Teil¬
strahl dagegen erleidet an jeder Fläche eine teilweise Zurückwerfung
und wird dadurch bis zur Unmerklichkeit geschwächt . Die Glas¬
säule läßt daher unter dem Polarisationswinkel nur solche Strahlen
durch , deren Schwingungen parallel zur Einfallsebene vor sich gehen .

Der Polarisationswinkel ist für verschiedene Stoffe verschieden ;
er wächst mit dem Brechungsverhältnis , wie schon Malus , der Ent¬
decker der Polarisation durch Spiegelung ( 1810 ), erkannt hatte , und
beträgt z . B . für Wasser 53 °

, für Schwefelkohlenstoff 59 °
, für Flint¬

glas 60 ° usw . Die gesetzmäßige Beziehung zwischen Polarisations¬
winkel und Brechungsverhältnis wurde aber erst 1815 von Brewster
aufgedeckt , welcher zeigte , daß der Polarisationswinkel derjenige Ein¬
fallswinkel ist , für den der zurückgeworfene Strahlte , Fig . 397 ) mit

Fig . 397.
Polarisationswinkel (Brewstersches Gesetz ).

Fig . 398.
Doppelbrechung .

dem gebrochenen (b d) einen rechten Winkel bildet . Da hiernach zum
Polarisationswinkel p der Winkel 90 0 —p als Brechungswinkel gehört ,
so ergibt sich vermöge des Brechungsgesetzes sin pf sin ( 90 ° — p )
= sinp/cosp = n oder tgp = n als Ausdruck des Brewsterschen
Gesetzes . Weißes Licht kann daher , weil für jede homogene
Farbe der Brechungsindex n und deshalb auch der Polarisationswinkel
ein anderer ist , durch Reflexion niemals vollständig polarisiert werden .

365 . Doppelbrechung . Alle nicht zum regelmäßigen Kristall¬
system gehörigen kristallisierten Körper besitzen die Eigenschaft ,
einen in sie eindringenden Lichtstrahl (ab ) im allgemeinen in zwei
Strahlen (bo und b d) zu trennen (Fig . 398 ) . Durch die Spaltbarkeit
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der Kristalle nach bestimmten Richtungen verrät sich eine Regel¬
mäßigkeit ihres inneren Gefüges , welche sich aus der gesetzmäßigen
Anordnung und gleichheitlichen Orientierung ihrer Moleküle erklärt .
Jedes Molekül ist aus Atomen von bestimmter Anzahl und Beschaffen¬
heit aufgebaut , welche man sich um drei zueinander senkrechte Achsen
nach bestimmter Regel geordnet denken kann . Im allgemeinen sind
diese drei Achsen voneinander verschieden , so daß Kräfte , welche in
den Richtungen dieser Achsen auf das Molekül einwirken , verschiedenen
Widerständen begegnen . Eine große Anzahl gleicher Moleküle bilden
einen Kristall , wenn sie so zusammentreten , daß ihre gleichwertigen
Achsen zueinander parallel zu liegen kommen . Die Folge davon ist ,
daß auch der Kristall als Ganzes nach verschiedenen Richtungen
verschiedene physikalische Eigenschaften zeigt , z . B . die Wärme je
nach der Richtung ungleich schnell fortpflanzt , sich bei der Er¬
wärmung nach verschiedenen Richtungen ungleich ausdehnt usw.
Lagern sich aber die Moleküle regellos durcheinander , so daß die
gleichwertigen Molekülachsen nach allen möglichen Richtungen orien¬
tiert sind , so bilden sie einen unkristallisierten oder amorphen
Körper . Eine solche Regellosigkeit der Orientierung findet auch bei
den flüssigen Körpern statt . Da in diesem Falle keine Richtung
vor den anderen sich auszeichnet , so besitzen unkristallisierte feste
Körper und Flüssigkeiten nach allen Richtungen die gleichen physi¬
kalischen Eigenschaften . Solche Körper nennt man isotrop . Auch
die Kristalle des regulären oder tesseralen Systems , die drei gleich¬
wertige Achsen haben , verhalten sich in der Mehrzahl ihrer Eigen¬
schaften , so auch in ihrem optischen Verhalten , wie isotrope Körper (52 ).
Die Kristalle des quadratischen und hexagonalen Systems sind durch
eine Symmetrieachse ausgezeichnet , während die zu dieser senkrechten
Achsen von ihr verschieden , aber unter sich gleichwertig sind . Die
Kristalle des rhombischen , monoklinen und triklinen Systems da¬
gegen besitzen drei ungleichwertige Achsen (vergl . 52 ). Körper , welche ,
wie die Kristalle dieser fünf letzten Systeme , nach verschiedenen
Richtungen verschiedene Eigenschaften zeigen , heißen anisotrop
oder heterotrop .

Eine Lichtwelle kann sich durch den Äther , welcher die Zwischen¬
räume der Moleküle eines Körpers erfüllt , nicht fortpflanzen , ohne
auf die Moleküle einzuwirken und wiederum von ihnen eine ent¬
sprechende Einwirkung zu erfahren . Diese Einwirkung gibt sich
einerseits durch eine Schwächung der Welle (Absorption ) , anderer¬
seits durch eine Änderung ihrer Fortpflanzungsgeschwindigkeit kund .
In einem isotropen Körper , welcher nach allen Richtungen sich gleich
verhält , werden die Lichtschwingungen , welche Richtung sie auch
haben mögen , immer in gleicher Weise beeinflußt . Werden in einem
Punkte eines solchen Körpers (z . B . Glas ) beliebig gerichtete Schwin¬
gungen erregt , so pflanzen sie sich zwar mit einer geringeren
Geschwindigkeit fort als im freien Äther , aber nach allen Seiten
mit der gleichen Geschwindigkeit und erzeugen rings um jenen Punkt



X . Licht . 575

kugelförmige Wellen . Man sagt daher , daß die Wellenfläche der
isotropen Mittel eine Kugel sei . Durch diese Gestalt der Wellen -
fläche ist die Fortpflanzungsweise des Lichts in solchen Mitteln er¬
schöpfend gekennzeichnet ; man lernt die Lichtbewegung für die
anisotropen Körper ebenso vollständig kennen , wenn man ihre
Wellenfläche ermittelt , d . i . die Fläche , auf welcher bei allseitiger
Ausbreitung der Schwingungen von einem Punkte aus alle Teilchen
sich gleichzeitig in gleichem Schwingungszustand (in gleicher Phase )
befinden .

Als Beispiel eines solchen Körpers diene der Kalkspat , welcher
die Eigenschaft der Doppelbrechung in besonders hervorragendem
Grade besitzt (Erasmus Bartholinus , 1669 ) . Seine durchsichtigen
farblosen Kristalle sind nach drei Richtungen sehr vollkommen spalt¬
bar ; es ist daher leicht , Stücke aus ihnen zu spalten ,

"welche von
sechs gleichen rautenförmigen Flächen begrenzt sind und deshalb
Rautenflächner (Rhomboeder , Fig . 399 ) genannt werden . Zwei
gegenüberliegende Ecken a und b sind von drei stumpfen Kanten¬
winkeln gebildet , die übrigen sechs von einem stumpfen und zwei
spitzen . Die gerade Linie ab , welche die zwei stumpfen Ecken
miteinander verbindet , beißt die Hauptachse oder auch bloß die
Achse des Kristalls ; rings um sie sind die Flächen , Kanten und
Ecken symmetrisch geordnet . Eine jede durch die Achse oder eine
zu ihr parallele Linie gelegte Ebene wird Hauptschnitt genannt .
Nun stelle in Fig . 400 die Ebene der Zeichnung einen Haupt¬
schnitt eines Kalkspatkristalls vor und a b die Achsenrichtung . In
dem Punkt m mögen Schwingungen erregt werden , welche teils in
der Ebene des Hauptschnitts erfolgen , teils zu ihr senkrecht stehen ;
die letzteren , welche auch zur Achse senkrecht sind , pflanzen sich
nach allen Seiten mit der nämlichen Geschwindigkeit fort und er¬
zeugen die in der Figur angedeutete kreisförmige Welle . Die in
der Ebene des Hauptschnitts liegenden Schwingungen aber pflanzen
sich mit verschiedenen Geschwindigkeiten fort , je nach dem Winkel ,
den sie mit der Achse bilden . Schwingungen z . B . , welche nach ab
parallel der Achsenrichtung selbst erfolgen , geben Anlaß zu einem
Strahl md , der in der nämlichen Zeit , in welcher die zur Achse
senkrechten Schwingungen den Halbmesser jener Kreiswelle durch¬
laufen , eine größere Strecke md zurücklegt , weil im Kalkspat die
zur Achse parallelen Schwingungen sich schneller fortpflanzen (s . u .)
als die zur Achse senkrechten . Schwingungen dagegen , die nach cd
gerichtet sind , erzeugen , weil sie senkrecht zur Achse stehen , einen
Strahl ma , welcher in der gedachten Zeit nur bis zu jenem Kreis
vordringt . Solchen Strahlen endlich , deren Schwingungen einen
schiefen Winkel mit der Achse bilden , wird eine Fortpflanzungs¬
geschwindigkeit (z . B . mf ) zukommen , die kleiner ist als md , aber
größer als ma . Die im Hauptschnitt gelegenen Schwingungen er¬
zeugen nämlich , wie Huygens ( 1678 ) gezeigt hat , eine Welle von
elliptischem Umriß acbd , welche die Kreiswelle , die den zum Haupt -
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schnitt senkrechten Schwingungen entspricht , an den Achsenend¬
punkten a und b berührt . Da für alle Hauptsehnitte das nämliche
gilt , so braucht man nur die Fig . 400 um die Achse ab gedreht
zu denken , um die Wellenfläche zu erhalten , welche für die allseitige
Fortpflanzung des Lichts im Kalkspat maßgebend ist . Diese Wellen¬
fläche besteht aus zwei Schalen , einer Kugel für die zur Achse

c.

Fig . 399 .
Khoniboöder.

CL

o

Fig . 400 .
Ausbreitung des Lichts im Kalkspat .

senkrechten Schwingungen und einem abgeplatteten Rotationsellipsoid ,
welches die Kugel umschließt und sie an den Endpunkten der Achse
berührt , für die zur Achse nicht senkrechten Schwingungen . Fig . 401
zeigt drei zueinander rechtwinklige Durchschnitte , nämlich zwei Haupt¬
schnitte und einen zur Achse senkrechten Schnitt , zu einem leicht
verständlichen Modell der Wellenfläche zusammengefügt .

Nun werde die Oberfläche MN (Fig . 402 ) eines Kalkspatkristalls
von einem Bündel paralleler Lichtstrahlen abef getroffen ; zieht man
von b aus , wo die Oberfläche von der Lichtbewegung zuerst erreicht
wird , eine Senkrechte , bg , zur Strahlenrichtung , so stellt diese das
zu dem Lichtbündel gehörige ebene Wellenstückchen vor , in welchem
sich sämtliche Ätherteilchen gleichzeitig im nämlichen Schwingungs¬
zustand befinden (vgl . Fig . 381 ). Indem die Welle bg gegen die
Kristalloberfläche fortschreitet , werden die zwischen b und f liegenden
Ätherteilchen der Reihe nach von der Bewegung ergriffen , und jedes
entsendet eine Wellenbewegung in den Kristall hinein . Der Einfach¬
heit wegen werde angenommen , daß die Einfallsebene , d . h . die Ebene
der Zeichnung , zugleich ein Hauptschnitt des Kristalls sei. Alsdann
haben wir uns jeden einfällenden natürlichen Lichtstrahl aus zwei
gleich hellen Strahlen bestehend zu denken , von welchen der eine
im Hauptschnitt , der andere senkrecht dazu schwingt . Letztere
Schwingungen , welche senkrecht zur Kristallachse bi erfolgen , werden
sich , während die Welle bg von g bis f fortschreitet , im Kristall
von b aus zu einer kreisförmigen Welle ih ausgebreitet haben , deren
Halbmesser bh sich zu gf verhält wie die Fortpflanzungsgeschwindig¬
keit dieser Art Schwingungen im Kristall zur Fortpflanzungs¬
geschwindigkeit des Lichts in der Luft . Von jedem zwischen b
und f gelegenen Punkte der Kristallfläche wird gleichzeitig eine
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Kreiswelle ausgegangen sein, deren Halbmesser jedoch um so kleiner
ist , je später der zugehörige Punkt von der einfallenden Welle er¬
faßt wird . Alle diese Kreiswellen sind in dem Augenblick , in
welchem der Punkt f von der einfallenden Welle erreicht wird , bis
zur Linie fh vorgedrungen , welche die gemeinsame Berührungslinie

Modell der Wellenüäche der einachsigen
Kristalle .

Fig . 402.
Doppelbrechung im Kalkspat .

sämtlicher Kreiswellen ist . Die Linie fh stellt demnach die ebene
Welle vor , welche sich in den Kristall hinein fortpflanzt , und die
von b nach dem Berührungspunkt h gezogene Gerade bh gibt die
zugehörige Richtung der gebrochenen Strahlen an . Da die bei dieser
Zeichnung in Anwendung gekommene Wellenschale , wie bei den ein¬
fach brechenden (isotropen ) Mitteln , kugelförmig ist , so befolgt ein
Strahl , der senkrecht zum Hauptschnitt schwingt , das gewöhnliche
Snelliussche Brechungsgesetz . Will man sich in ähnlicher Weise
von der Brechung der im Hauptschnitt schwingenden Strahlen Rechen¬
schaft geben , so hat man , wenn b i die Richtung der Achse ist , um
b den Umriß ni der elliptischen Wellenschale und von f aus die
Berührungslinie fn an ihn zu ziehen ; diese Linie gibt alsdann
die Lage der gebrochenen Welle , und die von b aus nach dem Be¬
rührungspunkt n gezogene Gerade die zugehörige Strahlenrichtung an .
Dieser Strahl befolgt nicht das gewöhnliche , sondern infolge der
ellipsoidischen Gestalt seiner Wellenfläche ein viel verwickelteres
Brechungsgesetz . Man sieht also , daß ein auf einen Kalkspatkristall
treffender natürlicher Lichtstrahl (ab ) im allgemeinen in zwei mit
ungleicher Geschwindigkeit sich fortpflanzende Strahlen zerlegt wird :
einen gewöhnlich gebrochenen oder ordinären (bk ) und einen
außergewöhnlich gebrochenen oder extraordinären Strahl (bn ) \
beide sind vollständig polarisiert , und zwar schwingt dieser im
Hauptschnitt , jener aber senkrecht zum Hauptschnitt . Steht die
Einfallsebene senkrecht zur Achse , so schneidet sie die Wellenfläche
in zwei konzentrischen Kreisen (vgl . Fig . 401 ) und beide Strahlen
befolgen das Snelliussche Brechungsgesetz . Dies findet statt bei der

Lommel , Experimentalphysik . 14. bis 16 . Aufl. 37
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Brechung durch ein Kalkspatprisma , dessen brechende Kante zur
Kristallachse parallel ist . Man kann daher mittels eines solchen
Prismas die beiden Hauptbrechungskoeffizienten n m für den ordinären
und n e für den extraordinären Strahl nach der Methode der kleinsten
Ablenkung (329 ) bestimmen ; man findet für Natriumlicht nm = 1,6585 ,n e = 1,4865 , und daraus , wenn die Geschwindigkeit des Lichts in
der Luft = 1 gesetzt wird , die kleinste Fortpflanzungsgeschwindig¬
keit im Kalkspat = 1 jn m — 0,6030 (kleine Halbachse m a der Ellipse
Fig . 400 ) und die größte 1 jn s = 0,6727 (große Halbachse md ) .

Da in der Richtung der Achse nur eine einzige Fortpflanzungs¬
geschwindigkeit stattfindet , so erleidet ein längs der Achse in den
Kristall eindringender natürlicher Lichtstrahl keine Zerlegung . Jede
solche Richtung in einem doppelbreehenden Kristall , längs welcher
keine Doppelbrechung erfolgt , heißt eine optische Achse . Alle
Kristalle des quadratischen und hexagonalen Systems (zu welch letz¬
terem der Kalkspat gehört ) besitzen nur eine einzige optische Achse ,welche mit ihrer kristallographischen Hauptachse zusammenfällt , und
heißen daher optisch - einachsig . Solche Kristalle , bei welchen
sich die außergewöhnlichen Strahlen schneller fortpflanzen als die
gewöhnlichen , bei welchen also die ellipsoidische Wellenschale die
Kugelwelle umschließt , wie Kalkspat , Turmalin , salpetersauresNatrium usw . , heißen einachsig - negativ , weil man von dem
Brechungsexponenten des ordinären Strahles etwas abziehen muß ,um den des extraordinären Strahles zu erhalten . Wird dagegen das
Ellipsoid von der Kugel welle umschlossen , oder besitzen die ge¬wöhnlichen Strahlen die größere Fortpflanzungsgeschwindigkeit , so
heißen die Kristalle einachsig -positiv , wie z. B . Bergkristall oder
Quarz , Zirkon , Zinnstein , Eis usw . ; dem Brechungsexponenten des ordi¬
nären Strahles muß bei diesen Kristallen etwas hinzugefügt werden ,um denjenigen des extraordinären Strahles zu erhalten . Auch in
den Kristallen der drei übrigen Systeme pflanzen sich zwei zu¬
einander senkrecht polarisierte Strahlen mit ungleicher Geschwindigkeitfort , wovon jedoch keiner im allgemeinen das gewöhnliche Brechungs¬
gesetz befolgt . Man findet in jedem dieser Kristalle zwei Richtungenohne Doppelbrechung oder zwei optische Achsen und nennt sie
daher optisch - zweiachsig . Dahin gehören z. B . Aragonit , Topas ,
Gips , Salpeter , Zucker u . a.

Die Doppelbrechung , indem sie jedes natürliche Lichtbündel in
zwei zueinander senkrecht polarisierte zerlegt , bietet ein vortreffliches
Mittel zur Herstellung polarisierten Lichts , wenn man nur dafür Sorge
trägt , daß das eine der beiden durch Doppelbrechung entstandenen
Lichtbündel beseitigt werde , weil es sonst , mit dem anderen sich ver¬
mischend , wieder unpolarisiertes Licht geben würde . Dies geschiehtin sehr sinnreicher Weise durch das Nicolsche ( 1829 ) Prisma
(Fig . 403 ) ; es wird aus einer durch Spaltung erhaltenen Kalk¬
spatsäule verfertigt , an wrelche man statt der natürlichen End¬
flächen , die mit den stumpfen Seitenkanten PH einen Winkel von
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71 ° bilden , neue Flächen PP anschleift , deren Winkel mit diesen
Kanten 68 ° beträgt . Nun wird das Prisma durch einen zu den
neuen Endflächen senkrechten Schnitt HH entzweigesägt und die
Schnittflächen , nachdem sie poliert sind , mittels Kanadabalsams wieder

zusammengekittet . Trifft nun ein natürlicher
Lichtstrahl ab auf die Vorderfläche ] ‘ P , so

p spaltet er sich in einen gewöhnlich gebrochenen
Strahl bo und einen ungewöhnlich gebrochenen

1 '
gjP b d. Der erstere , dessen Brechungsverhältnis
1
^

( 1,658 ) größer ist als dasjenige des Kanada -
I balsams (1,53 ) , trifft so schief auf die Kitt -
| fläche , daß er nicht in sie einzudringen

Fi °\ 404.Fio -, 403 .
Nicolsches Prisma .

vermag , sondern an ihr eine vollständige Zurückwerfung nach seit¬
wärts erfährt . Der außergewöhnliche Strahl dagegen , welcher sich
im Kalkspat rascher fortpflanzt als im Kanadabalsam , durchdringt
letzteren und verläßt die Hinterfläche als vollkommen polarisierter
Strahl def , dessen Schwingungen parallel zum Hauptschnitt PHP
oder parallel zur Ebene der kürzeren Diagonalen der rautenförmigen
Endflächen erfolgen , wie in Fig . 404 angedeutet ist . Für Strahlen ,
welche senkrecht zu seinem Hauptschnitt schwingen , erscheint das
Nicolsche Prisma vollkommen undurchsichtig .

Auch die polarisierende Eigenschaft des Turmalins steht mit
seiner Doppelbrechung im Zusammenhang . Wie oben bereits an¬
gedeutet worden , ist in doppelbrechenden Kristallen nicht nur die
Fortpflanzungsgeschwindigkeit , sondern auch die Absorption der
Schwingungen abhängig von dem Winkel , welchen diese mit der
optischen Achse bilden , so daß die zur Achse senkrecht schwingenden
Strahlen eine andere Absorption erleiden und daher anders gefärbt
erscheinen können als die parallel zur Achse schwingenden . Man nennt
diese Eigenschaft Zweifarbigkeit oder Dichroismus ; sie tritt bei
manchen Kristallen so auffallend hervor , daß man sie ohne weitere
Hilfsmittel beim bloßen Anblick des Kristalls wahrnimmt ; der Pennin
z . B . erscheint , in der Richtung seiner Achse betrachtet , dunkel blau¬

grün , senkrecht dazu braun , der Kordierit (Dichroit ) in der Richtung
der Achse dunkelblau , senkrecht zu ihr dagegen gelblichgrau . Der
Turmalin ist nun ebenfalls ein „dichroitischer “ Kristall , in welchem
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die zur Achse senkrechten Schwingungen des gewöhnlichen Strahles
durch Absorption fast vollständig ausgelöscht und nur die zur Achse
parallelen des außergewöhnlichen Strahles durchgelassen werden.

366 . Polarisationsapparate dienen dazu,
durchsichtige Gegenstände im polarisierten Licht zu
untersuchen . Da jede Vorrichtung zur Polarisierung
des Lichts auch umgekehrt dazu dienen kann,
polarisiertes Licht als solches zu erkennen , so bildet
jede zweckmäßige Zusammenstellung zweier polari¬sierender Vorrichtungen , von denen die erste als
Polarisator das polarisierte Licht liefert, die zweite
als Polariskop oder Analysator (Zerleger ) das¬
selbe zu untersuchen gestattet , einen Polarisations¬
apparat . Der einfachste aller Polarisationsapparateist wohl die Turmalinzange (Marx, 1827 ; Fig . 405 ) ;zwei Turmalinplatten sind mittels Korkscheiben dreh¬
bar in Drahtringe gefaßt ; durch einen mehrfach
gebogenen federnden Draht werden sie sanft gegen¬einander gedrückt , so daß ein zwischen sie gelegter
Gegenstand wie von einer Zange festgehalten wird .

Bei Nörrembergs Polarisationsapparat (Fig . 406)dient eine durchsichtige Spiegelglasplatte AB , welche mit der Achse Sodes Instruments einen Winkel von 33 ° bildet , als Polarisator . Das

Fig . 405.
Turmalinzange .

Fig . 406.
Nörrembergs Folarisationsapparat .

Fig . 407.
Nörrembergs mikroskopischer Polarisationsapparat .

in der Richtung ab einfallende, etwa vom bewölkten Himmel kommendeLicht wird zunächst nach unten (b o) gelenkt und von dort durch
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