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Aufsuchung und Auswahl der Dreieckspunkte . 15§ 2.

Kapitel I .

Triangulierung erster Ordnung .

§ 2 . Aufsuchung und Auswahl der Dreieckspunkte.
In dem zu vermessenden Gebiete werden solche hervorragende Punkte aufge¬

sucht , zwischen welchen zusammengesehen werden kann , auf welchen feste Beobacht¬
ungsplätze eingerichtet werden können , und welche günstige Dreiecksverbindungen
geben . Die Entfernungen solcher Punkte nimmt man etwa 20km bis 50 *“ , nötigenfalls
auch noch erheblich grösser .

Zur Aufsuchung von Triangulierungs -Punkten muss man das Land bereisen ,
namentlich alle hoch gelegenen Punkte , hohe Berge , Kirchtürme u . s . w . besteigen und
jedenfalls alles was man sieht , durch flüchtige Winkelmessung , oder auch nur durch
Kompasspeilung , vorläufig bestimmen .

In früheren Zeiten mass man wohl auch sofort endgültige Winkel ; so berichtete
z . B . Bolmehberger über seine erste Triangulierung von Württemberg , von 1797 : „Eine
vorläufige Bereisung des Landes wurde nicht vorgenommen , um die schicklichsten
Punkte zu den Hauptdreiecken aufzusuchen , daher wurden an jedem Standpunkte alle
Winkel zwischen Punkten genommen , von denen man eine zur Fortsetzung der Arbeit
günstige Lage erwarten konnte . Erst am Ende der Reise war ich im stände , die
Hauptdreiecke heraus zu suchen , deren Winkel nachher bei der Kleinaufnahme nach -
gemessen und durch Vervielfältigung genauer bestimmt wurden .“

Dieses Verfahren ist heute nicht mehr am Platz aus zahlreichen Gründen : Zu¬
nächst ist im allgemeinen zu bemerken , dass Württemberg ein Hügelland ist , in
welchem das Aufsuchen der Punkte am leichtesten ist , dann sind aber seit 1797 die
Ansprüche an die Genauigkeit und an die günstige Form der Dreiecke so sehr ge¬
stiegen , dass das , was damals Bohnenberger als endgültige Triangulierung lieferte ,
heute kaum als erschöpfende Rekognoszierung gelten würde (ohne dass damit Bohnen¬
bergers Arbeit von 1797 in ihrer damaligen Bedeutung beeinträchtigt würde) .

Was günstige Dreiecksverbindungen sind , die man aufsuchen soll , das lässt sich
allgemein schwer sagen , zumal die Anschauungen hierüber verschieden sind ; jedenfalls
ist ein Netz von nahezu gleichseitigen Dreiecken gut .

Indem weitere Betrachtungen hierüber auf später verschoben werden , bringen
■wir hier einen Auszug einer sehr wertvollen Abhandlung , welche im Jahre 1887



16 Aufsuchung und Auswahl der Dreieckspunkte . 2 .

für die „Zeitschrift für Vermessungswesen “ von einem sehr erfahrenen Beamten der
Landesaufnahme geschrieben wurde , und deren Abdruck vom Verfasser der Abhandlung
uns besonders gestattet wurde .

Technischer Betrieb der Feldarbeiten der Triangulation erster Ordnung bei der trigono¬
metrischen Abteilung der preussischen Landesaufnahme , von Vermessungsdirigent Erfurth . „Zeit¬
schrift für Vermessungswesen “ 1887, S. 377—383 und S. 421—437.

I . Die Erkundung im allgemeinen .

Schon vor der Bereisung des Gebietes , auf welchem eine Triangulierung vor¬
bereitet werden soll, sind gewisse Vorarbeiten zu machen , welche gewöhnlich in dem
der Feld -Rekognoszierung vorhergehenden Winter ausgeführt werden . Diese Vorarbeiten
sind im wesentlichen folgende :

1) Kartenstudien .
Hier kommt hauptsächlich die topographische Spezialkarte von Mittel -Europa

im Massstabe 1 : 200 000 (früher Reymannsche Karte genannt ) in Betracht . In diese
werden alle Punkte und Seiten der bereits fertigen Triangulierung , an welche ange¬
schlossen werden muss , eingetragen . Nur für die Erkundung von Grundlinien und
Basisvergrösserungsnetzen können Karten in grösserem Massstabe nötig werden .
Sehr wichtig sind UöAerczahlen der Karte , sind solche nicht genügend vorhanden , so
wird es sich empfehlen , nach weiteren Hilfsmitteln , nach Spezialkarten , geographischen
Handbüchern und ähnlichen Publikationen die Höhenangaben der Karte möglichst zu
vervollständigen .

2 ) Studium der Vorgänge .
Fast immer handelt es sich um Gebiete , welche in früherer Zeit schon mehr¬

fach als Operationsfeld für grössere Triangulationen gedient haben . Die Landesauf¬
nahme ist in der bevorzugten Lage , von diesen Vermessungen zum grössten Teil noch
die Originalakten , Protokolle , Tagebücher , Rechnungen und eine grosse Zahl von
Skizzen und Übersichtsblättern der verschiedensten Dreiecks -Konfigurationen zu be¬
sitzen . Dieses ganze ältere Material wird , so weit es für das Arbeitsgebiet in Betracht
kommt , gründlich durchforscht , alles , rvas wertvoll oder von Interesse erscheint , heraus¬
gezogen und einem besonderen Tagebuche einverleibt .

Auf Grund dieser Studien und mit ihnen fortschreitend , werden sich ganz von
selbst Projekte über vorhandene und wünschenswerte Dreiecks -Konfigurationen bilden ,
welche in vorläufigen Übersichtsdarstellungen zum Ausdruck gebracht , und deren Punkte ,
soweit sie älteren Triangulationen angehören , durch vorläufige rohe Rechnungen be¬
stimmt werden . Dies geschieht in dem bei der trigonometrischen Abteilung eingeführten
ebenen rechtwinkligen Coordinatensystem , und — da es hierbei auf einige Meter nicht
ankommt — mit 4 - oder Sstelligen Logarithmen .

Die Abscissenaxe dieses Systems ist der 31 . Längengrad , und die Coordinaten
werden in diesem System einheitlich in ganz Preussen gezählt .

Alle Rechnungsergebnisse werden in übersichtlicher Form , nötigenfalls durch
Handrisse erläutert , in das Tagebuch eingetragen . Dieses Buch nimmt ferner Notizen
auf über Kommunikationen , Quartier -Verhältnisse , Beschaffung von Fuhrwerk , Bau¬
holz u . s . w.
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3) Ausrüstung zu den Feldarbeiten .
Jedes Mitglied der trigonometrischen Abteilung , welches während des Sommers

mit Feldarbeiten betraut wird , erhält die nötige Zahl von „Offenen Ordres “ . Es sind
dies Kollektiv -Erlasse der beteiligten Ministerien an die Landesbehörden , ausgestellt
für den Chef der trigonometrischen Abteilung bzw. die diesem unterstellten Offiziere
und Beamten , wodurch dieselben legitimiert werden und ihnen vorkommenden Falles
die Unterstützung der Behörden gesichert wird .

Zur weiteren Ausrüstung des Dirigenten gehören :
ein kleines Universal -Instrument von 1,5 *'» Gewicht, *)
ein kleiner Messtisch mit Stativ und Dosenlibelle ,
ein grosses Handfernrohr ,
ein Aneroidbarometer ,
Massstäbe , Bandmass , ein Lot , Transporteur ; —
ferner das gesammelte Material an Karten , Büchern und Manuskripten ,

Schreibmaterial , Formulare und Vorschriften .
Die zur Sektion gehörigen Trigonometer sind im wesentlichen ebenso ausge¬

rüstet , führen aber ein erheblich grösseres Winkelmess -Instrument mit sich .
Ausserdem treten noch hinzu :

ein bis zwei kleinere Fernrohre ,
einige Heliotrope ,
ein Stativ zur Aufstellung des Universal -Instruments ,
ferner Werkzeuge und Gerätschaften , welche für den Signalbau erforderlich

sind , dazu gehören Werkzeuge des Zimmermanns und des Tischlers ,
Seil- und Tauwerk , Flaschenzüge u . s . w .

Näheres darüber wird sich beim Signalbau (§ 3 .) ergeben .

II . Die Arbeiten im Felde behufs Auswahl der Punkte , oder die eigentliche
Erkundung .

Der Zweck der Erkundung besteht darin , die Konfiguration einer neuen Drei¬
eckskette oder eines neuen Dreiecksnetzes festzustellen und anzugeben , welche bau¬
lichen Einrichtungen auf jedem Punkte getroffen werden müssen , um die Konfiguration
zu ermöglichen . So einfach diese Aufgabe klingt , so schwierig ist sie . Sie verlangt
besondere körperliche und geistige Eigenschaften des Erkundenden und bürdet
ihm zugleich eine erhebliche persönliche Verantwortlichkeit auf , da sich Vorschriften ,wie die Arbeit auszuführen ist , allgemein gar nicht geben lassen . Es ist zunächst
alles seiner Initiative und seinem Ermessen anheimgegeben .

Als Grundsatz ist festzuhalten , dass die Erkundung eine in sich selbständige
Arbeit ist , welche die Grundlage für die ganze spätere Triangulation bildet , dass
Fehler und Unterlassungssünden , welche etwa hierbei Vorkommen , später gar nicht
mehr gut zu machen sind .

*) Nach unserer Ansicht können noch mit Vorteil gebraucht werden : Ein
Kompass zum Aufsetzen auf das kleine Universal -Instrument , jedenfalls ein Taschen -
Kompass ; ferner ein Spiegel Sextant oder kleiner Reflexionskreis zum Winkelmessen
auf hohen Türmen , auf Umschaugerüsten u . s . w ., überall , wo kein fester Instrumenten¬
stand zu gewinnen ist . Das Messen mit dem Sextanten in freier Hand muss aber
wohl geübt sein , vgl . Jordan , Grundzüge der astr . Zeit - und Orts -Bestimmung , 1885, § 40.

Jordan , Handb . d . Vermessungskunde . 4. Auü . TU. Ed . 2
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In Bezug auf dieses Thema sei hierbei auf die verdienstvolle Arbeit von Oaede,
. Beiträge zur Kenntnis von Gauss ’ praktisch -geodätischen Arbeiten “

, . Zeitschrift für

Vermessungswesen “
, Jahrgang 1885 , S . 136 u . ff. verwiesen .

Die Erkundung eines Dreieckssystems , sei es nun Kette oder Netz , muss als
eine einheitliche Arbeit für das ganze System aufgefasst werden . Sie darf nicht eher

abgeschlossen werden , als bis das ganze Arbeitsfeld gründlich durchforscht ist , und
bis alle möglichen brauchbaren Konfigurationen festgestellt sind . Bei einer Kette ,
für welche an beiden Enden feste Anschlussseiten gegeben sind , ist man nach der
Mitte zu unabhängiger , hat grösseren Spielraum ; doch ist nicht zu vergessen , dass
jeder dieser Punkte bei späteren Arbeiten wiederum Auschlusspunkt für eine andere
Kette oder für ein Netz werden kann .

Schwieriger ist die Erkundung eines Netzes , für welches rundum ein ganzes
Polygon von festen Anschlussseiten gegeben ist . Man kann von fast keinem Punkte ,
wenn er zunächst auch noch so brauchbar erscheint , von vornherein sagen , dass er
wirklich endgültig brauchbar ist . Selbstverständlich giebt es einzelne Punkte , die
vermöge ihrer dominierenden Lage gar nicht zu umgehen sind , wie z. B . den Brocken ,
Inselsberg , Feldberg im Taunus , Melibokus u . s . w . Solche Punkte sind aber Ausnahmen .

Die Erkundung wird für gewöhnlich auf den gegebenen Anschlusspunkten be¬
ginnen , ferner diejenigen Punkte umfassen , welche man durch die Vorstudien als
frühere Punkte kennen gelernt hat , und endlich auf alle Punkte sich erstrecken , welche
während der Arbeiten im Felde sich sonst noch als vielleicht geeignet heraussteilen .
Die Erkundung ist eine sehr mühsame , zeitraubende und aufregende Arbeit , welche
an die körperliche und geistige Ausdauer hohe Anforderungen stellt .

Die angeführten Schwierigkeiten beziehen sich zunächst nur auf Norddeutsch¬
land . In südlicheren Ländern von günstigerer Bodengestaltung , mit geringerer Be¬
waldung und klarerer Luft (z . B . Süddeutschland , Frankreich , Spanien , Italien ) werden
sie kaum , oder doch nicht in dem Masse vorhanden sein.

Die Erkundung auf einem Punkte gestaltet sich folgendermassen : Bevor man
sich auf ihn begiebt , empfiehlt es sich , alles , was man über ihn schon festgestellt
hat , nochmals zu rekapitulieren und etwa fehlende rechnerische Vorarbeiten zu er¬
gänzen . Auf ihm angekommen , hat man den ganzen Horizont gründlich zu durchforschen .
Zu dem Ende stellt man den Messtisch und darauf das kleine Universal -Instrument
auf und lässt den ganzen Umkreis langsam durch das Fernrohr wandern . Alle her¬
vorragenden Punkte stellt man ein , liest die Winkel ab und schreibt sie auf . Hierzu
gehören trigonometrische Signale , Türme , Windmühlen , ferner hervorragende Berg¬
kuppen , markierte Baumgruppen , Punkte , wo etwa näherer Horizont auf hört und
fernerer anfängt , die Grenzen von Gebirgszügen , Wäldern u . dergl . Dabei dient das
Instrument zur Messung der Winkel , dagegen zur näheren Untersuchung der Objekte
das stärkere Handfernrohr . Die Entfernungen werden geschätzt . Die Resultate mit
erläuternden Bemerkungen werden graphisch in einer Skizze auf starkem Zeichenpapier
zur Darstellung gebracht . Solche Skizze nennt man bei der Abteilung „ Spinne “ . Im
Quartier findet die Verarbeitung , Sichtung und ordnungsmässige Eintragung des ge¬
wonnenen Materials unter Zuhilfenahme von Karte , Zirkel und Transporteur statt .
Dies muss stets sofort erfolgen , damit weitere Entschlüsse gefasst und Vorbereitungen
für den folgenden Tag getroffen werden können .

Es wird häufig der Fall eintreten , dass man auf dem in Aussicht genommenen
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Punkte zu ebener Erde keinen Rundblick hat , wenn an der betreffenden Stelle Wald
vorhanden ist , oder wenn die Gegend in hoher Kultur steht und anderweite Hinder¬
nisse bietet , Gehöfte , Gärten u . s . w . Dann muss man zunächst einen möglichst hohen
Standpunkt zu gewinnen suchen , indem man Bäume erklettert , Windmühlen , Türme
besteigt . In Ermanglung von solchen kann man sich mitunter dadurch helfen , dass
man eine Leiter , wie man sie in jedem Dorfe findet , senkrecht aufrichten lässt (Fig . 1 .) .

Fig . l .
Vorläufige Aufstellung von Leitern .

Den nötigen Halt giebt man ihr dadurch , dass man sie mit dem unteren Ende in die
Erde gräbt und das obere durch Seile halten lässt ; eine zweite und dritte Leiter kann
daran in die Höhe geschoben und ähnlich festgestellt werden . Man kommt auf diese
Weise leicht 10—15”“ hoch . Es ist dies jedoch alles nur eine vorläufige Massregel ,
welche die Auswahl des zweckmässigsten Platzes erleichtern soll.

Zur Ausführung der wirklichen Erkundung , also zur Feststellung , ob die
gewünschten Richtungen vorhanden , und in welcher Höhe sie zu haben sind , wird
dann die Errichtung eines Umschau -ßeriistes (Fig . 2 . S . 20) notwendig . Man wird
das Gerüst immer einige Meter höher bauen lassen , als man voraussichtlich ge¬
brauchen wird .
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Kg- 2- Ein solches Umschau -Gerüst ist
Umschau -Gerust . leicht in die Höhe getrieben . Vier Stän¬

der , welche bei grösserer Höhe aus star¬
ken Stangen zusammengesetzt werden ,
geben das Gerippe und werden durch
mehrere horizontale Kränze zusammenge¬
halten . Jede Wand dieses Gerüstes er-
h alt durch Kreuzverbindungen (Verschwert -
ungen ) den nötigen Halt . Oben wird ein
Fussboden gelegt , ein Geländer gezogen
und ein roher Tisch oder ein Brett als
Leuchtstand angebracht . Auf die Ständer
wird eventuell eine Pyramidenspitze von
schwarz angestrichenen Brettern aufge¬
setzt , um das Gerüst von den umliegen¬
den Punkten leichter aufzufinden , und um
es auch als Zielpunkt benützen zu können .
— Man kann rechnen , dass durchschnitt¬
lich in einem Tage 10 *“ gebaut werden ,
und dass das Meter ungefähr 4—5 Mark
kostet . Wird später der Punkt endgültig
gewählt , so kann das Holz des Gerüstes
beim Bau des Signals verwendet werden .

Bei der Erkundung des Weser¬
netzes im Sommer 1883 sind von dem
Vermessungsdirigenten Hauptmann Gaede
über zwanzig Umschau -Gerüste leichtester
Konstruktion bis zu 82 ” Höhe mit bestem
Erfolge benützt worden .

Eine weitere wichtige Gattung von
Punkten bilden Türme und ähnliche Bau¬
werke . Sie bieten im allgemeinen den Vor¬
teil , dass sie meist die Umgegend erheblich
überragen , haben aber den Nachteil , dass
sie besondere und oft recht schwierige Ein¬
richtungen behufs Ausführung der Beob¬
achtungen erfordern , und dass zu ihrer
Benützung die Erlaubnis der Behörden und
Besitzer erwirkt werden muss . — Es giebt
aber Gegenden , wo sie durchaus nicht zu

umgehen sind , wie z . B . in dem stark angebauten Flaehlande des nordwestlichen
Deutschlands . In der hannoverschen Kette und im Wesernetz mussten deshalb , ent¬
sprechend dem Vorgänge von Gauss , unverhältnismässig viele Türme zu Punkten I .
Ordnung gemacht werden .

Für die vorläufige Erkundung auf Türmen wird es zunächst genügen , eine
flüchtige Einrichtung zu treffen , dass das kleine Instrument aufgestellt , vielleicht auch
ein Heliotrop angebracht werden kann .
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Erdkrümmung und Strahlenbrechung . Man kann manchmal durch Höhenwin¬
kelmessung entscheiden , ob eine wünschenswerte Eichtung überhaupt möglich ist .
( Die nötigen Theorien hiezu , mit Erdkrümmung und Strahlenbrechung , haben wir in
unserem II . Bande , „ Handb . d . Verm . “ 4 . Aufl. 1893, Kap . XI . behandelt ) .

Durchhau von Wäldern .

Die Fälle , dass einzelne Bäume hindern und gefällt oder wenigstens ausgeästet
weiden müssen , kommen häufig vor . Von diesen ist hier nicht die Rede , da sie wenig
Schwierigkeiten bieten . Anders liegt der Fall , wenn eine Eichtung längere Wald¬
strecken durchschneidet . Solche grössere Durchhaue sind als äusserstes Gewaltmittel
zu betrachten und nur durch die höchste Not gerechtfertigt , da sie erhebliche Ein¬
griffe in private Rechte darstellen , viele , oft recht unerquickliche Verhandlungen
mit den Besitzern erfordern und endlich grosse Kosten an Zeit und Geld verursachen .
Nichtsdestoweniger wird man sich doch mitunter dazu entschliessen müssen , wenn nur
dadurch eine wesentliche Verbesserung der Dreiecksformen gewonnen werden kann .

Ein solcher Fall trat bei¬
spielsweise im Sommer 1883 bei
Erkundung des Wesernetzes mit
der Eichtung Bremen -Brake ein .

Diese Richtung war der ein¬
zige Strahl , welcher zur Vollstän¬
digkeit des Polygons um Bremen
noch fehlte ; ihre Herstellung er¬
schien für die ganze Konfiguration
von grossem Werte . Die örtlichen
Verhältnisse lagen folgendermassen :
Von Brake aus schlossen , etwa 16*“
entfernt , in der Eichtung nach
Bremen bewaldete Berge den Hori¬
zont . Auch von Bremen aus er¬
schien hochgelegener Wald , etwa
14 fa" entfernt , als Abschluss des
Gesichtskreises gegen Brake . Es
lag somit ziemlich in der Mitte der
35lm langen Richtung als Hindernis ein etwa 5*™ breites Waldgebiet , über welches
hinaus auch die Turmspitzen gegenseitig nicht sichtbar waren . Eine örtliche Er¬
kundung der Hindernisse ergab , dass eine Reihe parallel streichender , ziemlich be¬
deutender Höhenzüge die projektierte Verbindung der beiden Türme von Bremen und
Brake annähernd senkrecht durchschnitt , und dass die ganze Gegend mit vielen ein¬
zelnen Waldparzellen bedeckt war , welche besonders auf den Kämmen der Berge sehr
hohe Bäume , Eichen und Buchen von 30—40m Höhe , enthielten .

Nun musste zunächst durch besondere schärfere Messung und Rechnung die
Richtung in horizontaler Beziehung mit einer Genauigkeit von 10 —20” festgelegt
werden . In vertikaler Beziehung wurden die Höhen in der Gegend der Hindernisse
teils aus älteren Daten , teils durch besondere Messungen festgestellt . Es ergab sich
daraus mit Sicherheit , dass nicht etwa die Berge selbst , sondern nur die Bäume das

rtR . s.
Durchhau eines Waldes .

Massstab 1 : 1200000 .

BriJIit

■Oldenburg

Wildeshausen

Twistringen
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Hindernis bildeten . Nunmehr wurde zur Markierung und Freilegung der Richtung
geschritten .

Das allgemeine Verfahren bei solcher Arbeit ist im Prinzip einfach , in der
Ausführung jedoch mitunter recht schwierig und zeitraubend . Man richtet auf beiden
Endpunkten Beobachtungsstände ein und bringt in dem Hindernis einige Flaggen
auf den höchsten Bäumen an , so dass sie schon möglichst in der Richtung liegen .
Um sie nicht mit einander zu verwechseln , müssen sie durch verschiedene Farben oder
dergl . kenntlich sein . Die Winkel nach den Flaggen werden gemessen , und aus ihnen
unter Zuhilfenahme der angenähert festgestellten , etwa aus der Karte entnommenen
Entfernungen die seitlichen Verschiebungen berechnet , welche nötig sind , um die Flaggen
in die Richtung zu bringen . (Vgl . hiezu den Abschnitt „Abstecken von langen Ge¬
raden “ in unserem II . Bande „Handb . d . Verm. “ 4 . Aull . , 1893 , § 199 ) .

Bei dem Durchhau Bremen -Brake sind rund 1620 Mark an Entschädigungen
gezahlt worden .

(Lrösse der Dreiecksseiten . Rein theoretisch lässt sich über die Vorzüge oder
Nachteile kürzerer oder längerer Dreiecksseiten wenig sagen ; so einfache allgemeine
Gesetze, wie sie z . B . über die Zielweiten bei Polygonzügen , bei Nivellierung u . s . w .
bestehen , giebt es für Triangulierung nicht . (Vergl . hiezu die späteren § 18 . und § 19 .)

Lange Seiten haben den Vorteil , dass man rasch weiter kommt , und wenn man
einmal eine lange Seite aus einer kurzen Basis abgeleitet hat , dann ist es auch für
die rein theoretische Genauigkeit besser , mit grossen Dreiecken fortzufahren , sowohl
in Hinsicht auf Azimutübertragung als auch in Hinsicht auf Längenübertragung ; lange
Sichten sind aber schwieriger und seltener zu messen , und werden daher verhältnis¬
mässig , d. h . mit Rücksicht auf die aufgewendete Zeit und Mühe ungenauer als kurze .

Die Erfahrung hat dazu geführt , im Mittel nur etwa 20—501'”* Seitenlänge zu
nehmen , jedoch wenn besondere Gründe Vorlagen , ist man auch schon bis zu 100im,
200m und noch weiter gegangen .

Einige besonders lange Dreiecksseiten stellen wir im folgenden zusammen :
Dreiecksseite Meter Bogen

Trunz -Galtgarben (Preussen , Bessel ) . 79 644 0 ° 43'
Brocken -Inselsberg (Hannover , Gauss) . 105 977 0 ° 57 '
Kamiensberg -Knibiskow (Afrika , Maclear ) . 128 028 1 ° 9 '
Campvey-Desierto (Frankreich ) . 160 903 1 ° 27 '
Slieve Donard -Sca Fell (England , Ord . trig . survey S . 434) 178 932 1 0 36'
Ararat -Godarebi (Kaukasus , Struve ) . 202 384 1 ° 49'
Mulhacen -Filhaoussen (Mittelländ . Meer, Ibanez ) . . . 269 926 2 ° 26'

Nach Helmert math . u . ph . Th . d . höheren Geodäsie I . S . 70 sind in Vorder¬
indien von den Engländern nach dem Himalaya Sichten bis zu 340'™ genommenworden.

Von der vorerwähnten trigonometrischen Überspannung des mittelländischen
Meeres geben wir in Fig . 4 . S . 23 eine Darstellung mit eingeschriebenen Längen ,Höhen und Winkeln . Das Unternehmen wurde im Herbst 1879 von Ibanez und Perrier
ausgeführt .

Zur Signalisierung reichte Heliotropenlicht nicht aus , es wurde deshalb elek¬
trisches Licht mit Nachtbeobachtung angewendet .
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(Weiteres hierüber geben die Verhandl . d . 6 . Konf . d . Bur . Gr . , General -Bericht
für 1880, S . 44 — 57 ; vgl . auch zwei Berichte in der „ Zeitschr . f. Verm . “

, Pattenhausen
1881 , S. 247—257 und Penner 1882 , S. 303— 308 .)

Fig . 4.
Triangulierung über das mittelländische Meer zwischen Spanien und Algier , 1879.

Massstab 1 : 4 500 000.

Spanien

Mulhacen
(3US2 mJ

M Sabiha

Filhaotissen
( 11 ¥0 m)

§ 3. Pfeilerbau und Signalbau.
Nachdem die Triangulierungspunkte ausgewählt sind , hat man Einrichtungen

zu treffen , erstens zum festen Aufstellen des Theodolits auf jedem Punkte und zweitens
zum gegenseitigen Sichtbarmachen der Punkte für die Winkelmessung .

Diese Einrichtungen sind verschieden , je nachdem man es mit einem Punkte
auf dem natürlichen Erdboden , z. B . auf dem Gipfel eines Berges , oder mit einem
Punkte auf einem Turme oder ähnlichem Bauwerke zu thun hat .

Zur Sichtbarmachung dient heutzutage fast ausschliesslich das Heliotrop , von
welchem später in § 4 . die Rede sein wird . Die Einrichtung der Heliotropstände
erfolgt gemeinsam mit dem Bau der Theodolitstände .

Zu ebener Erde nahm man früher als Theodolitstände allgemein hölzerne Stative ;
indessen in neuerer Zeit erbaut man für Messungen erster Ordnung steinerne Pfeiler .

Nach Mitteilung von Vermessungs -Dirigent Erfurth (vgl . das Citat technischer
Betrieb u . s . w . S . 16 ) hat die trigonometrische Abteilung der Landesaufnahme hiefür
folgende Einrichtungen :

„Ein Beobachtungspfeiler der trigonometrischen Abteilung der Landesaufnahme
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besteht entweder aus einem einzigen behauenen Stein , lang genug , um ihm den nötigen
Halt im Erdboden zu geben , oder , da solche Monolithe schwer zu haben und teuer
sind , aus mehreren behauenen Bruchsteinen von ganzem Querschnitt , welche mit Zement
gemauert und lagenweise durch Dübel oder durch eine oder zwei durchgehende Eisen¬
stangen fest verbunden werden . Aus Ziegelsteinen aufgemauerte Pfeiler sind möglichst
zu vermeiden , da sie bei wechselndem Wetter , namentlich durch Regen und Prost ,
baldiger Zerstörung anheimfallen , auch mutwilligen Beschädigungen mehr ausgesetzt
sind . Um den Pfeiler wird eine vierseitige Pyramide errichtet ; die Spitze derselben
wird mit Brettern bekleidet und schwarz angestrichen . Ausserdem wird ein Fussboden
von Brettern gelegt , um bei windigem Wetter das Aufwirbeln von Sand und Staub
möglichst zu verhindern . “

Über Pfeilerbau und Punktversicherungen , teils auf dem natürlichen Erdboden ,
teils auf Türmen , können wir einige Erfahrungen mitteilen von den 10 „ Gradmessungs¬
pfeilern “

, welche vom Verfasser 1869—1873 erbaut wurden . — Wir benützten dabei
auch die von Nagel im Generalbericht d . Europ . Gradm . für 1864 , S . 39 —40 mit¬
geteilten Erfahrungen .

Die badischen Pfeiler mit ihren Versicherungen wurden zugleich an die vor¬
züglichen Punktfestlegungen der badischen Landes -Triangulierung angeschlossen .

Ein Beispiel für beides ist in Pig . 1 a , und Pig . 1 b . gegeben .

Trigonometrischer Punkt Kandel (Schwarzwald ') .
Fig . 1 a .

P = Pfeiler . B = Pyramide .
Massstab 1 : 500.

Fig . lb .
Beobaclitungspfeiler .

Massstab 1 : 50.

< 0,52 >

7: 500

Die Bezeichnung eines Punktes der (alten ) badischen Landes -Triangulierung
wurde etwa im Jahr 1820 durch eine von Felsstücken aufgebaute vierseitige abgekürzte
Pyramide S bewerkstelligt . Der trigonometrische Punkt ist auf der Mitte der Pyramide



25§ 3 . Pfeilerbau und Signalbau .

durch ein eingehauenes + bezeichnet . Ferner wurden noch vier solche Zeichen auf der
Pyramide angebracht , und ausserdem der Dreieckspunkt gegen 8 benachbarte Gemarkungs -
Grenzsteine durch unmittelbare Messung von 11 Entfernungen und 14 Winkeln fest¬
gelegt (letzteres ist in unserer Fig . 1 a. nicht angedeutet ).

Im Jahr 1870 fand ich die Lage der 50 Jahre alten Versicherungspunkte noch
auf wenige Centimeter übereinstimmend mit den früheren Messungen ; jedoch wurde
die Pyramide nun verlassen und ein neuer Punkt P auf einem Pfeiler mit einem 2”*
tiefen Fundament hergerichtet , wie die Einzelzeichnung Fig . 1 b . zeigt , und ferner
wurden 4 Versicherungsquader S W N 0 auf Fundamentquadern versenkt .

In dem Fundamentquader des Pfeilers bei M und in jedem der 4 anderen Quader
ist ein Messingcylinder in Blei eingegossen , und ein sechster Cylinder P lotrecht über
M ist oben auf dem Pfeiler eingegossen , um die Theodolitmitte zur Winkelmessung
zu bezeichnen .

Unten ist auch ein Glascylinder G eingesenkt , ein Schriftstück enthaltend , das
der Nachwelt die Bedeutung der ganzen Anlage übermitteln soll.

Die 4 Versicherungspunkte wurden nicht willkürlich , sondern nach Nord , Ost,
Süd , West eingewiesen , was leicht auf etwa 1 ' genau gemacht werden konnte mit
Hilfe der alten badischen Landes -Triangulierung (trigonometrische Richtungswinkel mit
Rücksicht auf Meridian -Konvergenz ) .

Nachdem somit die 5 unteren Punkte auf ihren Fundamentquadern in den Bau¬
gruben festlagen , wurden ihre Abstände gemessen :

hl N = 6,059“ NO = 8,579“
MO = 6,075 OS = 8,427
MS — 5,840 S W = 8,465
MW = 6,125 WN = 8,620

Man hat dabei 4 Hypotenusenproben , welche innerhalb weniger Millimeter
stimmen sollen.

Um nun nach dem Aufbau des Pfeilers selbst den Punkt P genau lotrecht über
M zu bringen , verfuhren wir so : Während der Theodolit centrisch über M stand und
die 4 Azimute 0 °

, 90 °
, 180 °

, 270 ° eingewiesen wurden , musste mindestens ein ferner
Punkt JE mit angezielt werden , der durch sein berechnetes Azimut jene 4 Einweis -
Azimute lieferte . Nach dem Aufbau des Pfeilers wurde der Theodolit vorläufig auf¬
gestellt , mit Hilfe des fernen Punktes H orientiert und die 4 nahen Punkte wieder
angezielt . Wegen der Excentricität der vorläufigen Theodolitstellung wurden nun nicht
wieder genau 0 °

, 90 °
, 180 °

, 270 ° erhalten , sondern kleine Abweichungen , welche aber
mit Zuziehung der 4 Entfernungen vollends zur genauen Centrierung führten .

Vor und nach der Pfeileraufstellung wurden alle Punkte nivelliert .
Das Endergebnis drückt sich in folgenden Coordinaten und Höhen aus , im

badischen System + x :nach Süden , + y nach Westen , Ti ungefähr um 2"* zu gross
im Vergleich mit Höhen über N . N .

Punkt « X i,
Pyramide , Kreuz + + 33 403,830 “ + 158 255,280“ 1247,010“
Pfeiler oben p + 33 421,215 + 158 271,909 1244,360

„ unten M » V 1242,986
Versicherung N + 33 421,180 + 158 265,850 1243,216

J» O + 33 415140 -f 158 271,944 1242,993„ S + 33 421,249 + 158 277,749 1242,711
n w + 33 427,340 + 158 271,873 1242,861
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Wir haben diese Zahlen beispielshalber hier hergesetzt , weil solche oder ent¬
sprechend genaue Angaben , mit Zeichnungen , den amtlichen Triangulierungs -Veröffent¬
lichungen beigegeben werden sollen.

Über Signalbau im besonderen haben wir die wertvollsten Mitteilungen in der
Abhandlung von Erfurth , welche wir schon auf S . 16 citiert haben bei dem Abdruck
des ersten Teiles .

Folgendes ist ein Auszug aus dem zweiten Teil von Erfurth :
Der Signalbau muss den Winkelmessungen mindestens ein Jahr voraus sein.

Es wird schon im Laufe des Winters , sobald die Projekte festgestellt sind , Auftrag
erteilt , welche Signale im folgenden Sommer gebaut werden sollen , damit das nötige
Holz noch im Winter geschlagen werden kann . Denn die Bäume müssen vor dem
Einschiessen des Saftes gefällt werden .

Der Signalbau umfasst die Herstellung aller Einrichtungen , welche erforderlich
sind , um auf den endgültig bestimmten Punkten Beobachtungen machen , sowie auch
dieselben von anderen Punkten aus als Zielpunkte benützen zu können . Für gewöhnlich
dient der Stand des Theodolits , der Beobachtungsstand , zugleich auch als Stand für
den einzustellenden Heliotropen , als Leuchtstand . Es kommt jedoch nicht selten vor,
dass für schwierige Richtungen noch besondere Leuchtstände in grösserer Höhe ein¬
gerichtet werden müssen . Bei Winkelmessungen erster Ordnung wird zwar in der
Regel nur auf Heliotrope eingestellt , nichtsdestoweniger erhält aber jedes auf dem
Erdboden erbaute Signal eine schwarze Spitze , welche hauptsächlich für die Messungen
der niederen Ordnungen als Einstellungs -Zielpunkt dient .

Signale mit erhöhten Beobachtungs - und Leuchtständen werden bei der trigono¬
metrischen Abteilung aus Holz bis zu ungefähr 25 m Beobachtungshöhe und 30” Leucht¬
höhe noch mit solcher Festigkeit gebaut , dass auch bei ziemlichem Winde die Beob¬
achtungen mit vollster Genauigkeit und Zuverlässigkeit gemacht werden können . Es
ist dies dadurch möglich , dass die Beamten , welche die Signalbauten ausführen , seit
Jahren in diesen Arbeiten thätig sind und reiche Erfahrungen unter den verschiedensten
Verhältnissen gesammelt haben .

Bei jedem solchen Signal sind zwei vollständig von einander unabhängige und
für sieh isolierte Bauten zu unterscheiden : der Beohachtungspfeiler als Stand für das
Instrument , und das den Pfeiler umgebende Gerüst für die Beobachter , Die Pfeiler
sind entweder Standpfeiler oder Hängepfeiler .

Standpfeiler werden bei grösseren Beobachtungshöhen errichtet , ein Beispiel
giebt die nachfolgende Fig . 4 S . 29 .

Hängepfeiler werden seitwärts durch Streben getragen und reichen in der Mitte
nicht bis zum Erdboden herab , sondern lassen in der Mitte so viel freien Raum , dass
der Beobachtungspunkt von oben herunter gelotet und centrisch festgelegt werden
kann (was bei Sfawdpfeilern nicht möglich ist ) . Aus diesem Grunde werden in neuerer
Zeit bei der trigonometrischen Abteilung fast nur noch Hängepfeiler gebaut , z . B.Steuerndieb in Band II , 4 . Aufl. 1895 , S . 256.

Ein gutes Beispiel eines Hängepfeilers werden wir später auch in § 12 . als End¬
pfeiler der Göttinger Basismessung kennen lernen .

Zur Verbindung von Pfeiler und Streben dienen durchgehende eiserne Schrauben¬
bolzen . Zur Befestigung der unteren Stammenden in der Erde werden hölzerne Anker
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angebracht ; bei leichtem Boden werden ausserdem Steinbrocken in die Löcher geschüttet ,
schichtweise mit Wasser eingeschlemmt und festgerammt .

Das ganze System von Pfeiler
und Streben muss nun noch gegen
Winddruck , Durchbiegen und Verziehen
besonders gesteift werden . Dies ge¬
schieht

1) durch Verbindungen zwischen
zwei nebeneinander liegenden
Streben , sogen. Kränze und
Schwerter , Fig . 2 .,

2) durch Verbindungen zwischen
Pfeiler und Streben , Kreuze
und Quirle , Fig . 3 .

Ein Kranz besteht aus vier
Hölzern , welche in gleicher Höhe über
dem Erdboden von Strebe zu Strebe
geführt werden .

Schwerter sind diagonale Ver¬
bindungen in den durch die Kränze
entstandenen Paralleltrapezen . Bei sehr
hohen Signalen können für die unterste
Verschwertung noch besondere Hilfs¬
stützen und Unterzüge nötig werden ,
welche immer in den Erdboden zu
führen sind.

Kreuze sind Hölzer , welche je zwei gegenüberliegende Streben unter sich und
mit dem Pfeiler verbinden . Quirle werden zwischen Pfeiler und je einer Strebe gesetzt ;
sie müssen die letztere möglichst rechtwinklig treffen .

Das Beobachtungs -Gerüst .
Um den Pfeiler wird das Beobachtungs -Gerüst unabhängig so errichtet , dass

dasselbe nirgends mit dem Pfeilerbau in Berührung kommt . Es besteht aus vier
Ständern , welche nicht senkrecht , sondern nach oben zu mit einer Neigung von un¬
gefähr 1 : 15 nach innen gestellt werden . Die Feststellung der Ständer erfolgt wie
beim Pfeilerbau durch Kränze und Schwerter ; doch können diese selten so regelmässig
angebracht sein , sondern müssen den Verhältnissen angepasst werden , da die völlige
Isolierung beider Bausyteme von einander streng gewahrt werden muss . In Höhen von
5 — 8™ werden Fussböden gelegt , zu denen man auf Leitern emporsteigt . Der oberste
Fussboden bildet den Beobachtungsraum in quadratischer Form von 2,3— 2,5 ” Seite .
Die Höhe des Beobachtungs -Punktes über dem obersten Fussboden beträgt 1,12—1,16”.
Zum Schutze wird ein Geländer aus starken Latten gezogen . Zwei Meter über dem
Fussboden läuft um alle 4 Gerüstständer ein horizontaler Kranz von Latten zum An¬
bringen von Leinwandplanen , welche später beim Beobachten zum Schutze des Instru¬
ments gegen Sonne und Wind ausgespannt werden . Bei der ersten Anlage des Ge¬
rüstes muss schon darauf geachtet werden , dass vom Beobachtungspunkt aus gesehen
keine der zu messenden Richtungen durch einen Ständer verdeckt wird . Jede dieser

Fig . 2.
Kränze und Schwerter .

Fig . 3.
Kreuze und Quirle .
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letzteren muss mindestens 5"” daran vorbeistreichen . Auf die Ständer wird eine vier¬
seitige Pyramide aufgesetzt , deren Spitze mit Brettern bekleidet und geschwärzt wird ;
die Spitze liegt in der Kegel 4 — 5” über der Beobachtungsplatte . Wird für einzelne
Richtungen ein erhöhter Leuchtstand notwendig , so muss das Gerüst entsprechend
höher und solider gebaut werden . Die Leuchtplatte , welche dieselbe Grösse hat wie
die Beobachtungsplatte , wird gewöhnlich auf der Pyramidenspitze befestigt .

Da die Signale der ersten Ordnung auf eine längere Reihe von Jahren bis zur
Beendigung aller Vermessungsarbeiten stehen bleiben müssen , so werden diejenigen
Holzteile , welche dem Verderben am meisten ausgesetzt sind , d . h . die in oder nahe
dem Erdboden befindlichen Stammenden , zum Schutze gegen Fäulnis und Insektenfrass
imprägniert . Die Imprägnierung erfolgt durch Anstrich der betreffenden Holzteile und
ausserdem durch Einguss in das Innere der Hölzer . Der dazu verwendete Stoff be¬
steht aus Chlorzink , kaltem Wasser und Karbolsäure . .

Zur besseren Erläuterung des bisher über den Bau erhöhter Signale Gesagten
wird nachstehend auf S. 29 die Zeichnung eines solchen gegeben . Auch sei noch hin¬
zugefügt , dass die Gesamtkosten in runden Summen betragen haben :

für das Signal Wöpse 1800 Mark
11 QflBrüttendorf

Wittekind
Ein Pyramiden -Signal von 31 “ Höhe , auf Steuerndieb bei Hannover , haben wir

bereits in unserem II . Bande , „Handb . d . Verm . “ 4 . Aufl . 1893 , S . 256 gegeben , nebst
anderen Angaben über Pfeilerbau u . s . w . , welche auch hier hergehörig sind .

Kleinere Signale von 4—10“ Beobachtungshöhe kosten ungefähr 150 — 500 M .,
von 10 —20“ Beobachtungshöhe 500— 1000 M . Die Kosten können durch örtliche Ver¬
hältnisse , höhere Preise für Fuhrwerk und Arbeitskräfte , sowie namentlich durch
etwaigen weiten Transport des Holzes sehr verschieden ausfallen . Was die erforder¬
liche Bauzeit für ein höheres Signal anbetrifft , so kann man bis zu 20” Beobachtungs¬
höhe ungefähr 1 Tag für 1 Meter rechnen , für jedes Meter über diese Höhe hinaus
2 Tage .

Die Einrichtung von Türmen und ähnlichen Bauwerken zu Beobachtungszwecken
bietet häufig besondere Schwierigkeiten . Es lassen sich für diese Arbeit keine allge¬
meinen Regeln geben , da dieselbe von der Bauart des Turmes abhängig ist . Als
Grundbedingung ist festzuhalten , dass für das Instrument ein besonderer , möglichst
fester und isolierter Stand , und für den Beobachter ausreichender und gesicherter Raum
geschaffen werden muss . Dabei ist stets auf möglichste Schonung des Turmes Rück¬
sicht zu nehmen und Vorkehrung zu treffen , dass durch die zu machenden Öffnungen
nicht Regen und Schnee eindringen kann , damit eine Beschädigung des Turmes ver¬
hindert wird .

In dem nördlichen Teil der hannoverschen Kette und des Wesernetzes haben
fast durchweg Kirchtürme und Leuchttürme zu Beobachtungs -Stationen eingerichtetweiden müssen , und trotz der verschiedenen und mitunter recht mangelhaften Bauart
der Türme ist es doch gelungen , die Einrichtungen so zu treffen , dass die Beobacht¬
ungen mit genügender Sicherheit gemacht werden konnten . Es trat hierbei nicht
selten der Fall ein , dass , um den Horizont rundum zu beherrschen und alle Richtungeneinstellen zu können , sogar zwei Beobachtungsstände auf einem Turme gebaut werden
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Fig . 4.
Signal Wittekind der trigonometrischen Abteilung der Landesaufnahme ,

gebaut 1885 von Trigonometer Otto.

Theodolitstand 18,25” über
dem Boden,

Leuchtstand 29,25“ über dem
Boden .

Maßstab = 1: 200 .
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mussten , wie z. B . bei den Kirchtürmen von Brake und Westerstede und bei dem
Leuchtturm von Neuwerk .

Am einfachsten gestaltet sich der Bau , wenn um den Turm in der erforderlichen
Höhe ein Rundgang aus Mauerwerk führt . In diesem Palle wird ein Pfeiler aufge¬
mauert , und für den Beobachter ein Stand geschaffen , indem Balken aus dem Innern
des Turmes herausgestreckt werden . — Wenn ein Rundgang nicht vorhanden ist , son¬
dern auf die Mauern des Turmes sich das Dach ohne Absatz aufbaut , so muss letzteres
geöffnet werden . Der Pfeiler wird wieder auf Mauerwerk errichtet und der Beobacht¬
ungsstand von innen heraus balkonartig konstruiert . Es kann hierbei nötig werden ,
die Pfeiler zu grösserer Höhe aufzumauern . So hat beispielsweise der Kirchturm von
Wangeroog einen gemauerten Pfeiler von 4” , derjenige von Wildeshausen sogar einen
solchen von 5 "* Höhe erhalten . Um dem Pfeiler dann den nötigen Halt zu geben ,
wird eine Eisenbahnschiene oder starke Eisenstange mit eingemauert ; auch werden
besondere Verstrebungen angebracht . Die Oberfläche des Pfeilers muss 1,10 bis 1,16”*
über dem Fussboden des Beobachtungsstandes liegen .

Hat der Turm eine genügend geräumige Laterne , so pflegt man einen Pfeiler
von Holz zu verwenden und denselben wie den hängenden Pfeiler eines erhöhten Sig¬
nals mit Streben zu versehen , welche sich auf das tiefer liegende Mauerwerk aufsetzen .
Diese Einrichtung ist z . B . bei dem Kirchturme von Cloppenburg getroffen worden .
Auf dem Ruinenturm der Landskrone im südlichen Eisass wurde der Fussboden der
sehr geräumigen freien Plattform durchbrochen und ein gemauerter Pfeiler auf die
tiefer gelegenen Gewölbedecken aufgesetzt , darüber eine vollständige Signalpyramide
gebaut .

Der Kirchturm von Brake hat zwei Pfeiler auf dem Mauerwerk des Turmes
erhalten ; die beiden Beobachtungsstände mussten hängend konstruiert werden , wozu
starke Balken als Träger aus den höher gelegenen Luken herausgestreckt wurden ,
dieses ist in Fig . 5 . S . 31 dargestellt .

Dieselbe zeigt zugleich die Anbringung mehrerer Leuchtstände in der Spitze
des Turmes .

Diese Einrichtung des Turmes von Brake mit zwTei Ständen hat rund 520 Mark
gekostet . Bei der Einrichtung des Kirchturmes von Twistringen sind beispielsweise
für Kupferschmiede - und Dachdecker -Arbeiten besondere Kosten im Betrage von 380 M .
entstanden . Weiteres über Turm -Stationen ist schon in unserem II . Bande „Handb .
d . Verm . “ 4 . Aufl. 1893, § 84 . und § 85 . mitgeteilt .

Von den Signalen werden genaue Zeichnungen und von den Türmen photogra¬
phische Aufnahmen gemacht . Zu dem letzteren Zwecke besitzt die trigonometrische
Abteilung einen leicht transportablen photographischen Apparat . Die aufgenommenen
Platten werden , gegen die Einwirkung des Lichts geschützt , nach Berlin gesandt und
dort entwickelt .

Nach dem Wiedereintreffen in Berlin wird durch die Erkundungs -Sektion
auf Grund des Erkundungs -Berichtes des Dirigenten und der beim Signalbau ge¬
machten Aufnahmen und Notizen für jeden trigonometrischen Punkt I . Ordnung ein
sogenannter Stammbogen angelegt . Derselbe enthält die Beschreibung der Örtlichkeit ,
die topographische Lage , Historisches über ältere Triangulationen , Angaben über bis¬
herige Messungen der Abteilung , bauliche Einrichtungen , Centrierungen , allgemeine
Bemerkungen über Festigkeit,

'
schwierige Richtungen , endlich Notizen über Quartier ,
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bezahlte Entschädigungen , Abmachungen wegen des Stehenbleibens bezw. des Abbruches
der Signale und Beohachtungsstände etc . Der Stammbogen ist sozusagen das Curri¬
culum vitae des Punktes . Jeder später folgende Beobachter hat für die nötige Ver¬
vollständigung Sorge zu tragen .

Fig . 6.
Kirchturm von Brake

mit zwei Theodolitständen und mehreren hohen Leuchtständen .

Drehen der Beobachtungs -Pfeiler .
Bei hohen Türmen und Gerüsten beobachtet man die für Winkelmessungen

missliche Erscheinung des Drehern , infolge ungleichförmiger Erwärmung durch die
Sonne . Vollständig fest stehen auch steinerne Türme nicht , indessen wird das Drehen
hauptsächlich bei hölzernen Gerüsten gefunden .

Eine eingehende Untersuchung dieser Sache mit vielen Beobachtungen hei der
mecklenburgischen Triangulierung wurde von Pascher in den astronom . Nachrichten ,
453. Band ( 1865) Nr . 1492—1493 mitgeteilt .
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Es fanden sich hei einem 11 Meter hohen Pfeiler anf der Station Karbow ,
welcher änsserst haltbar ans vierkantig beschlagenen Balken konstruiert , uud vom
Standpunkt des Beobachters völlig unabhängig gestellt im Juli 1857 erbaut worden
war , bei der Beobachtung im Juni 1858 starke Drehungen , die einen ziemlich regel¬
mässigen Tagesverlauf zeigten , Morgens — 2 '

, Mittags 0 '
, Abends + 2 ' . (Astr . Nachr .

1492 , S . 56 .)
Das Drehen der Beobachtungs -Pfeiler wirkt offenbar am schlimmsten , wenn

man lange Sätze nimmt ; durch Hingang und Rückgang wird das Drehen zum Teil
unschädlich gemacht . Am besten ist es in dieser Hinsicht , immer nur zwei Zielpunkte
in einen Satz zusammen zu nehmen , d . h . reine „Winkel “ -Messungen zu machen .

§ 4 . Das Heliotrop .
Während bei kürzeren Entfernungen die Zielpunkte durch Baken mit Fahnen ,

durch kleine Pyramiden , durch Zieltafeln u . dgl . genügend bezeichnet werden können ,
ist bei grösseren Entfernungen die Sichtbarmachung der Dreieckspunkte oft eine sehr
schwierige Sache . Früher dienten bei grossen Entfernungen hauptsächlich Kirchtürme
und besonders erbaute grosse hölzerne Pyramiden als Zielpunkte . In Frankreich und
England wurden auch künstliche Lichtsignale bei Nacht als Zielpunkte genommen
(auf welche man neuerdings wieder teilweise zurückkommt ) .

Im Jahr 1821 hat Gauss das Heliotrop erfunden , welches seit jener Zeit haupt¬
sächlich zur Anzielung von Hauptdreieckspunkten benützt worden ist .

L Die Wirkungsweise des Heliotrops ist
Wirkungsweise des Heliotrops . einfach zu erklären (Pig . Wenn von einem

Punkte A (Heliotrop ) nach einem entfernten
Punkte T (Theodolit ) ein Signal gegeben
werden soll , so stellt man in A einen ebenen
Spiegel B B ' so auf , dass durch ihn die Sonnen¬
strahlen S A nach T geworfen werden . Dieses
ist bekanntlich nach dem Reflexionsgesetze
der Fall , wenn die Ebene des Spiegels recht¬
winklig ist anf der Ebene SAT und wenn
die Winkel SAB und TAB ' einander
gleich sind .

Da die Sonne einen scheinbaren Durch¬
messer S’AS ” von etwa >/2 0 hat , so sendet

der Heliotropen Spiegel B B ' einen Lichtkegel T 'A T " von ebenfalls etwa i/2
° Öffnung

aus , und ein entfernter Punkt T bekommt Licht , wenn er nur wenigstens innerhalb
dieses Strahlenkegels fällt , ohne gerade von der Axe A T des Kegels getroffen zu
werden .

Dieser Umstand ist für die Anwendung des Heliotrops in zweifacher Beziehung
günstig ; erstens ist infolge hievon bei der Einstellung des Instruments keine grosse
Genauigkeit erforderlich , und zweitens kann eine Einstellung während der Dauer von
nahezu 1 Minute beibehalten werden , obgleich sich während dieser Zeit die Sonne um
einen merkbaren Bogen bewegt . (1 Zeitminute entspricht einer Sonnenbewegung von
15 ') . Das fortgesetzte Einstellen des Heliotrops , entsprechend der Sonnenbewegung ,
kann zwar durch mechanische Mittel (Heliostat ) erzielt werden , doch hat man bei
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Triangulierungen bis jetzt im allgemeinen das fortgesetzte Richten durch einen Gehilfen
vorgezogen , weil ein solcher Gehilfe zur Bedienung des Instruments aus anderen Gründen
ohnehin notwendig ist .

Hach dieser allgemeinen Darlegung wollen wir auf die Beschreibung verschie¬
dener Heliotrope im einzelnen eingehen , und zwar wollen wir , aus geschichtlicher
Rücksicht mit einem Werkzeuge beginnen , welches jetzt kaum noch gebraucht wird :

I . Das Sextanten -Heliotrop von Gauss („ Vice -Heliotrop “) .
Dasselbe wird zuerst von Gauss in einem Briefe an Schumacher in den astr .

Nachr . 1 . Band , S . 106 (Februar 1822) kurz erwähnt . Weiteres hierüber geben die
Mitteilungen von Hauptmann Gäde in der „ Zeitschr . f. Verm. “ 1885, S . 125.

Hiernach fiel die Erfindung des Sextanten -Heliotrops in die Zeit der Ausführung
des eigentlichen Gauss sehen (Spiegelkreuz -) Heliotrops , das wir nachher (S . 34— 35 )
beschreiben .

Gauss schreibt (vgl . „ Zeitschr . f. Verm . “ 1885, S . 125 ) : „ Noch vor dessen (des
eigentlichen Heliotrops ) Vollendung war ich auf die Idee gekommen , einen blossen
Spiegelsextanten zu einer Art Vice -Heliotrop einzurichten , freilich viel unvollkommener ,
als jenes Instrument selbst , aber doch bei geschickter Behandlung gleichfalls brauchbar . “

Fig . 2. Sextant . Fig . 3 Sextanten -Heliotrop .

Die Theorie dieses „Vice-Heliotrops “ erklärt sich an Fig . 2 . und Fig . 3 . , bei
welchen wir die Sextantentheorie selbst als bekannt voraussetzen (vgl . Jordan , Grund¬
züge der astronomischen Zeit - und Orts -Bestimmung , Berlin 1885 , S . 155 und S . 175 ).

In Fig . 2. ist (S) die Sonne und A der Zielpunkt , welcher Licht erhalten soll ,
Fig . 2. zeigt also diejenige Sextantenstellung , welche zur Messung des Winkels «
zwischen A und (S) erforderlich ist . Der Sextant wird hiebei auf einem festen Stativ
gebraucht , und nachdem die Einstellung Fig . 2 . gemacht ist , wird die Alhidade um
den doppelten Schärfungswinkel , d . h . um 2 ß vorwärts gedreht (Fig . 3 .) , worauf man
erwarten darf , dass das am grossen Spiegel 8 reflektierte Sonnenbild (S '

) nun in die
Richtung (S '

) parallel S A geworfen wird.
Um dieses nach Fig . 2 . und Fig . 3 . einzusehen , hat man sich des allgemeinen

Sextanten -Reflexions -Gesetzes zu erinnern , dass eine Spiegeldrehung (oder Alhidaden -
drehung ) um den Winkel ß an dem reflektierten Strahl s S, bzw . s (S) eine Drehung
um den doppelten Betrag von ß , also um 2 ß , erzeugt , oder es wird in Fig . 3 . der
Winkel S s (S ' ) = 2 ß , wie auch daselbst eingeschrieben ist , und damit wird s (S' )
parallel FA , was man haben will .

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 3
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II . Das Spiegelkreuz -Heliotrop von Gauss .

Dieses ist das Instrument ,
-welches von Gauss im Jahr 1821 erfunden wurde .

Eine Beschreibung desselben wurde von Gauss im 5 . Bande der astr . Nachrichten ,
S . 329 —334 (Februar 1827) nebst Zeichnungen gegeben .

In Fig . 4 . haben wir den Grund¬
satz und in Fig . 5 . die äussere Ansicht
des Gauss sehen Heliotrops . Wir haben
zwei ebene , rechtwinklig gekreuzte
Spiegel B B ’ und CG '

, welche vor
einem Fernrohr F so angebracht sind ,
dass die gemeinsame Spiegelaxe A A ’

rechtwinklig zur Fernrohraxe ist , und
sich in Fig . 4 . als ein Punkt A zeigt .
Ein von der Sonne S herkommender
Lichtstrahl S A wird nun von dem
einen grösseren Spiegel B B ' vorwärts
nach T reflektiert , und von dem
zweiten kleineren Spiegel G G ' rück¬
wärts nach F in das Fernrohr ; und
wegen der rechtwinkligen Kreuzung
beider Spiegel ist T A F eine un¬
gebrochene Gerade .

Fig . 4.
Grundsatz des Gauss sehen Heliotrops .

7
F

Fig . 5.
Ansicht des Gauss sehen Heliotrops .

(Massstab etwa 1 : 3).

5 A

Die technische Ausführung des
Gauss sehen Heliotrops zeigt Fig . 5 .,
wobei im wesentlichen dieselben Buch¬
staben -Bezeichnungen wie in Fig . 4 .
angewendet sind . Der grosse Spiegel
BB ' erscheint in Fig . 6 . in 2 Teile
B und B ' zerlegt , deren Ebenen je-Ä

doch zusammen fallen . Der Spiegelapparat wird mit dem Fernrohr verbunden , und
das Fernrohr muss dann um seine Axe drehbar sein.

Die Anwendung besteht in Folgendem : Man richtet das Fernrohr für sich allein
nach dem entfernten Punkt T , welcher Licht erhalten soll , und zwar hat man hiebei
den kleinen Spiegel C parallel der Fernrohraxe zu stellen , so dass er zwar einen Teil
des Objektivs verdeckt , aber immer noch genügend Licht auf dasselbe fallen lässt .
Von da an bleibt das Fernrohr in seiner Richtung unverändert , und es wird vor das
Okular desselben eine Sonnenblendung vorgeschoben . Nun stellt man zuerst die Spie-
gelaxe A A ' rechtwinklig zu der Ebene SAT von Fig . 4 . , und zwar beurteilt man
dieses darnach , dass eine Scheibe E (Fig . 5 .) , welche auf der Axe A A ' rechtwinklig
aufgesteckt ist , keinen Flächenschatten wirft , sondern im Sonnenschatten als Linie
erscheint . Sobald nämlich eine zu A A' rechtwinklige Ebene keinen Schatten mehr
wirft , kann man durch Drehen der Spiegel um die Axe A A ' ein Sonnenbild im Fern¬
rohr zum Vorschein bringen , und das Heliotrop ist dann gerichtet .

Was die Prüfung und Berichtigung des Apparates betrifft , so hat Gauss selbst
im 5 . Band d . astr . Nachr . S . 329- 334 dieselbe sehr ausführlich behandelt und zwar
mit Unterscheidung von folgenden 8 Forderungen :
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1 . 2 . Die Absehlinie des Fernrohrs soll mit der Drehaxe des Fernrohrs Zusammen¬
fällen (oder •wenn das Fernrohr fest und der Spiegelapparat um das Fernrohr
drehbar ist , soll die Absehlinie des Fernrohrs mit der Drehaxe des Spiegel¬
apparats zusammenfallen ).

3 . Die Drehaxe A A’ (Fig . 5.) der Spiegel soll rechtwinklig zur Fernrohv -
axe sein.

4 . 5 . 6 . Die Ebenen der Spiegel sollen parallel dieser Drehaxe A A ' sein.
7 . Die beiden Bestandteile B und B ' (Fig . 5 .) des grossen Spiegels sollen

parallel sein .
8 . Die Ebene des grossen Spiegels und die Ebene des kleinen Spiegels sollen

rechtwinklig zu einander sein.
Die Ausführung wird so gemacht :

1 . 2 . Centrierung des Fernrohrs wie bei einem Nivellier -Instrument .
3 . A A! rechtwinklig zur Fernrohr -Axe , wird von Gauss mit Hilfe einer ange¬

hängten Libelle gemacht , worauf wir hier nicht weiter eingehen .
4 . 5. 6 . 7 . Kann nötigenfalls rein äusserlich , durch angelegte Lineale und rechte Winkel

untersucht werden .
8 . Die Hauptforderung , ob die beiden Spiegel gegenseitig rechtwinklig sind ,kann man dadurch erfüllen , dass man die beiden Spiegel zusammen wie ein

Spiegelkreuz oder Prismenkreuz beim Feldmessen behandelt (vgl . Band II .4 . Aufl. 1895, S . 35 und S . 38 ) .

Zu der Heliotrop -Prüfung schrieb Mechaniker Meyerstein im Januar 1876 im87 . Band , Nr . 2080 , der astr . Nachrichten folgendes :
„Die Methode , welche Gauss zur Berichtigung des für die Geodäsie so wichtigenInstrumentes im 5 . Bande der astr . Nachr . angegeben hat , lässt bekanntlich im Resul¬tate nichts zu wünschen übrig . Soll aber dieses Resultat erzielt werden , so ist es nurdurch eine so grosse Sorgfalt möglich , mit welcher Gauss diese Berichtigung vornahm ,welche aber einen sehr bedeutenden Zeitaufwand erfordert . Diese letzte Bemerkunghat der selige Gauss mir gegenüber , indem ich ihm bei der Berichtigung der Helio¬trope sehr häufig assistierte , oft gemacht . “ Meyerstein giebt dann eine andere Prüfungs -methode mit einem Hilfsfernrohr , das, mit beleuchtetem Fadenkreuz , auf das Heliotropen -Fernrohr eingerichtet wird .
Es ist hiezu auch über einige Bemerkungen zu berichten , welche von Helmertin dem Berichte über die wissenschaftlichen Apparate auf der Londoner internationalenAusstellung 1876, Berlin 1878 , S. 165 ff. zu dem Gauss sehen und zn anderen Helio¬tropen gemacht hat . Pur das Gauss sehe Heliotrop findet Helmert den Einstellfehler

Z/ = 2J//2LPÖ2 wenn f die Neigung der Spiegelaxe in der Ebene der Fernrohraxeund 8 der Fehler in der Rechtwinkligkeit der beiden Spiegel ist ; es wirkt also auchf als Grösse erster Ordnung .
Da das Gauss sehe Heliotrop nur noch historisches Interesse hat , und in derAnwendung namentlich durch das Bertram sehe Heliotrop ersetzt ist (s . u . S . 37 und 38)schliessen wir damit ab.

III . Das Heliotrop von Steinheil .
Auch dieses , zuerst in Schumachers astr . Jahrbuch 1844 , S . 13 beschriebene

Instrumentchen ist praktisch kaum von Bedeutung , doch lohnt die sinnreiche Einrichtungwohl eine kurze Beschreibung : '
Der Spiegel B B ' bat in der Mitte bei A eine unbelegte Stelle , so dass die

von S herkommenden Sonnenstrahlen durchgehen , und auf eine hinter dem Spiegel
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angebrachte Sammellinse L fallen können . Diese Linse L erzeugt ein Sonnenbild in C ,

welches durch eine matte Fläche aufgefangen wird . Das Sonnenbild in G sendet seiner¬

seits wieder Strahlen zurück nach der Linse L , welche von da wieder parallel aus¬

treten , auf die unbelegte Rückseite des Spiegels in A fallen , und nach 0 zurückge¬

worfen werden . Infolgedessen sieht das Auge 0 ein mattes Sonnenbild in der

Richtung A T . Die nach 0 gelangenden Sonnenstrahlen machen hiernach folgenden Weg :

S ALC , dann zurück C L A und reflektiert nach 0 .

Fig . 6. Fi S* ö

Grundsatz des Steinbeil sehen Heliotrops , Ansicht des Steinheil sehen Heliotrops .

S = Sonne , T = Zielpunkt . (Maasstab ungefähr 1 : 2.)

Andererseits werden die von S auf den belegten Teil der Spiegelfläche B B ’

fallenden Strahlen in der Richtung A T vorwärts reflektiert , und daraus giebt sich

folgende Anwendung :
Das Instrument wird unter Benützung eines Gelenkes bei G Fig . 7 . so gestellt , dass

die Linse L durch die unbelegte Stelle bei A Sonnenlicht erhält . Dann zielt das

Auge 0 hinter dem Spiegel durch die Öffnung A nach dem Zielpunkt T , welcher
Licht erhalten soll , und der Spiegel wird teils im Kugelgelenk 0 , teils um seine
durch A gehende Axe so gedreht , dass in der Richtung A T das oben erwähnte matte
Sonnenbild erscheint .

IV . Das Heliotrop von Bertram .

Diese einfache Vorrichtung , welche keine Prüfung und Berichtigung braucht ,
und ohne Fernrohr von jedem Gehilfen bedient werden kann , ist zur Zeit die am
meisten gebrauchte .

Das Instrument wird zuerst von Bessel in der „ Gradmessung in Ostpreussen “

S. 65 erwähnt mit den Worten : „Die benützten Heliotrope waren teils von der Ein¬

richtung , welche der Erfinder (Gauss) dieser unschätzbaren Methode ihnen gegeben hat ,
teils waren sie von einer sehr leicht ausführbaren Konstruktion , welche von Herrn
Ingenieur -Geographen Bertram herrührt .“ Die erste Beschreibung und Zeichnung dieses
Bertram sehen Heliotrops findet sich in General Baeyers „Küstenvermessung “ S . 52
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bis 53 und Tafel III . (Über den Urheber der Erfindung wurde eine Erörterung ge¬
führt von Nagel bzw. Baeyer , „ Zeitsehr . f. Verm . “ 1878, S . 34 und von Bertram selbst
S . 193 .)

Wir geben im Nachfolgenden zwei Zeichnungen des Bertram sehen Heliotrops .

Fig . 8.
Bertram sches Heliotrop , ältere Anordnung .

Massstab 1 : 5.

Die Konstruktion des Bertram sehen Heliotrops beruht auf dem einfachen Grund¬
gedanken , dass ein entfernter Punkt Z dann Lieht durch einen Spiegel H erhält ,
wenn ein Zwischenpunkt E , welcher sich auf der Ziellinie H Z befindet , von der Licht¬
linie getroffen wird .

In Fig . 8 . ist G G der Spiegel , welcher , wie immer , so gestellt wird , dass seine
Ebene rechtwinklig ist auf der Leuchtebene S H Z , wobei S die Sonne , H die Spiegel¬
mitte und Z der entfernte Punkt ist , welcher Licht erhalten soll , und dass die Strahlen
SB . und HZ gleiche Winkel mit der Spiegelebene machen .

Der Spiegel GG hat in der Mitte ein kleines Loch H , welches zwei Zwecken
dient , wie wir nachher sehen werden .

Der Holzrahmen A A , auf welchem rechts der beschriebene Spiegel drehbar an¬
gebracht ist , trägt auf der anderen Seite links , durch Vermittlung der Säule Z>, ein
kleines Rohr E in gleicher Höhe mit der Spiegelmitte B . Im Innern dieses Rohres
ist ein Fadenkreuz E angebracht , welches in Verbindung mit dem Okularloche B des
Spiegels als Diopter zum Anzielen eines entfernten Punktes Z dient .

Nachdem dieses geschehen ist , wird links am Ende der Röhre E eine Klappe
F , welche vorher geöffnet (in der Lage F ' ) war , vor die Öffnung gebracht , und nun
muss der Spiegel G so gestellt werden , dass sein Licht auf die Innenseite der ge¬
nannten Klappe F fällt , und genauer noch so , dass die Klappe im allgemeinen hell
ist , in der Mitte aber einen dunkeln Fleck zeigt , herrührend von dem nicht reflektie¬
renden Loche H in der Spiegelmitte .

Das Loch B in der Spiegelmitte dient also zwei verschiedenen Zwecken : erstens
ist es Okular beim Zielen längs der Geraden B E , und zweitens dient es zur Bezeich¬
nung der Liehttniffe . Die Bewegung des Spiegels wird in horizontalem und vertikalem
Sinn bei K , L , M , N gehandhabt .

Die zwei Schrauben C und B dienen zum Centrieren und zum Einstellen nach
der Höhe . (Altere Konstruktion Fig . 8 .)
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Hilfsspiegel (G Fig . 9 .) .

Wenn die Sonnenstrahlen sehr schief
auf einen Heliotropenspiegel auffallen , wel¬
cher nach dem entfernten Punkte Licht sen¬
den soll , so wird dieses Licht sehr schwach
(es ist überhaupt immer nur die Projektion
der Spiegelfläche auf eine Ebene rechtwinklig
zur Strahlenrichtung als wirksam zu betrach¬
ten ) . In diesem Palle hilft man sich dadurch ,
dass man das Sonnenlicht zuerst mittelst
eines günstig gestellten Hilfsspiegels (G Pig . 9 .)
auffängt und durch dessen Vermittlung dem
eigentlichen Heliotropenspiegel zuführt . Das¬
selbe ist notwendig , wenn der Heliotropen¬
spiegel im Schatten , z . B . im Innern eines
Turmes , steht .

Pig . 9 . giebt eine Darstellung des
Bertram sehen Heliotropes in neuerer An¬
ordnung , wie sie zur Zeit bei der trigonomet¬
rischen Abteilung der Landesaufnahme im
Gebrauch ist .

A Holzrahmen , 52™ lang , 10 ™ breit ,
B Leuchtspiegel , 8,2™ lang , 8,2™ breit ,
G Hilfsspiegel bei ungünstiger Son-

nenstellung u . s. w . , s . o.),
H Vorsteck -Rahmen für das grüne

Glas h" (selten gebraucht , vgl .
Gitterblenden S . 40 ) ,

C Objektivdiopter mit Fadenkreuz d
und Leuchtröhre e (in der Neben¬
figur rechts ist e aufgeschlagen ) ,

f Axenschraube zum unmittelbaren
Centrieren über Holz ,

b . Höhenstellschraube ,
D Leuchtaxe mit Schlüssel E zum

schärferen Centrieren statt f
(unterhalb D kommt die hier
nicht mehr dargestellte „Leucht¬
schraube “ ) .

V. Das Heliotrop von Reitz .
Dieses ist im wesentlichen auf dasselbe Prinzip gegründet wie das Bertram sehe ,

es wird aber im Gegensatz zu letzterem in Verbindung mit einem Pernrohr gebraucht .
Das Instrument besteht im wesentlichen in einer Verbindung von zwei Spiegeln

mit einem Fernrohre . Der grosse Spiegel A lässt sich in jede beliebige Lage bringen
und reflektiert das Sonnenlicht nach dem entfernten Zielpunkt . Bei a ist die Folie
des Spiegels A abgenommen , der kleine Spiegel B ist rechtwinklig zur Fernrohraxe ,
b und c sind die Richteschrauben zur Erzielung dieser rechtwinkligen Lage .

In Pig . 11 . (s . S . 39) sind die beiden Spiegel A und B gezeichnet nebst dem
Ring R , welcher durch Vermittlung von 3 Schrauben £) S.2 S3 zur Befestigung des
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Apparates an der Objektivfassung eines Fernrohrs dient . Der grosse Spiegel A ist
in Fig . 11 . parallel der Fernrohraxe gestellt (wie er beim Gebrauch nicht steht ) .

Fig . io .
Grundsatz des Reitz sehen Heliotrops .

-Q-V + -

Ein zu Anfang angezielter , also in der
Fernrohraxe liegender Punkt erhält Licht von
dem grossen Spiegel A , wenn im Fernrohr
(nach Vorschieben eines Blendglases ) ein Son¬
nenbild gesehen wird , das durch den kleinen
Spiegel B ins Fernrohr zurückgeworfen wird .
Die Sonnenstrahlen , welche nach dem ent¬
fernten Punkt gesendet werden , machen also
den Weg von der Sonne zum grossen Spiegel
A , und von da an dem kleinen Spiegel B
vorbei zu dem Zielpunkt ; ein Teil der Strah¬
len aber , welche von dem grossen Spiegel A
ausgehen , trifft den kleinen Spiegel B , und
bracht .

Fig . 11.
Ansicht des Reitz sehen Heliotrops .

von diesem zurück ins Fernrohr ge-

Wenn der Apparat richtig wirken soll, so muss die Ebene des kleinen Spiegels
B rechtwinklig , zur Fernrohraxe sein . Zur Prüfung und Berichtigung giebt Reitz
folgendes Verfahren an :

Man richtet das Fernrohr auf einen nahen (etwa 10 m entfernten ) Gegenstand ,
und dreht den grossen Spiegel A so , dass das Sonnenbild sichtbarlich auf denselben
Gegenstand fällt . Man stellt dann das Okular auf unendliche Entfernung ein . Sieht
man nun , nachdem ein Sonnenglas vorgeschoben , in das Fernrohr , so lässt sich durch
Drehung der Bichteschraüben b und c das Sonnenbild , welches von B reflektiert wird ,
in das Gesichtsfeld des Fernrohres bringen . Geschieht dies, so sieht man zugleich im
Gesichtsfelde auch das von B reflektierte Spiegelbild des Fadenkreuzes , welches
nun durch die Schrauben b und c zur Deckung mit dem Fadenkreuz selbst gebracht
wird .

Die Thatsache , dass man am Fadenkreuz des Fernrohrs ein Bild dieses Faden¬
kreuzes selbst wahrnimmt , erklärt sich dadurch , dass bei der Einstellung des Fernrohrs
auf Unendlich , die vom Fadenkreuz nach dem Objektiv gehenden Strahlen nach der
Brechung parallel austreten , und nach der Reflexion durch den kleinen Spiegel B auf
ihrem eigenen Wege wieder zurückkehren . Zugleich wird durch eben diesen kleinen
Spiegel B so viel Licht auf das Fadenkreuz geworfen , dass die beschriebene Bild¬
erzeugung überhaupt wahrnehmbar wird .

Ein ähnliches Instrument wurde von Reitz beschrieben in der „Zeitschr . f . Instrumenten¬
kunde “, 1881, S. 338—340. In derselben Zeitschrift 1883, S. 265 —268 giebt Reitz auch die Beschreibung
und . Zeichnung eines „Periheliotrops “, welches rings umher zeitweise jedem Punkte des Horizontes
einen Blitz reflektierten Sonnenlichtes zusendet .
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VI . Amerikanisches Heliotrop .

Fig . 12.
Amerikanisches Heliotrop .

Zum Schluss gehen wir
noch in Fig . 12 . die Zeichnung
eines amerikanischen Heliotrops
nach der Beschreibung und Zeich¬
nung des Werkes : »The final re -
sults of the triangulation of the
New-York State survey u . s . w .
Albany 1887 “ S . 127.

O
Wie Fig . 12 . zeigt , besteht

das Instrument aus einem Fern¬
rohr 0 F mit aufgesetztem Spie¬
gel S und 2 Ringen A und B . Der
Spiegel soll sein Licht in der
Axe der beiden Ringe fortsenden
und dabei muss der Schatten des
Ringes A den Ring B decken .

liill ™ "Hl '™ Ob das Ganze richtig wirkt ,
wird untersucht durch Leuchten nach einem nahen Zielpunkte , indem beobachtet wird ,
ob der Punkt richtig Licht erhält . Dieses Instrument wird namentlich zu Er¬
kundungszwecken angewendet .

Heliotropen -Telegraphie .

Durch Auf- und Zudecken des Spiegels und Verabredung der Aufeinanderfolge
der dadurch erzeugten Lichtblitze wird eine einfache Telegraphie erzielt , welche zur
Verständigung zwischen dem Winkelbeobachter und dem Heliotropisten sehr wich¬
tig ist .

Regulierung der Lichtstärke .

Da das Heliotropenlicht unter verschiedenen Umständen sehr verschieden stark
ist , muss man ein Mittel haben , nach Bedarf das Licht zu verstärken oder namentlich
zu schwächen . Die Verstärkung des Lichtes kann durch Anwendung eines grösseren
Spiegels oder durch günstigere Stellung eines Hilfsspiegels erzielt werden . Die Ver¬
kleinerung des Lichtes machte man früher auch am Heliotrope selbst durch teilweises
Decken des Spiegels , oder durch Vorsetzen farbiger Gläser u . s . w . Das hat aber
namentlich den Übelstand , dass die Lichtänderung vom Theodolite aus umständlich
durch Heliotropen -Telegraphie befohlen werden muss .

In neuerer Zeit ist ein viel einfacheres und besseres Mittel der Lichtschwächungim Gebrauch , welches am Theodolit selbst gehandhabt wird , nämlich das Vorsetzen
von Gitterblenden , bestehend aus mehreren Lagen eines losen Gewebes, wie Flortuch ,Musselin u . s . w . (farbige Gläser dürfen vor dem Theodolit nicht angewendet werden
wegen der Gefahr der Lichtablenkung ). Professor Bruns berichtet hierüber in der
»Zeitschr . f. Instrumentenkunde “ 1883 , S . 308 mit der Bemerkung , dass dieses Mittel
schon vor einem halben Jahrhundert in der astronomischen Praxis Anwendung ge¬funden hat .
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Dauer der Heliotrop -Lichter .
Die Winkelmessung nach Heliotrop -Lichtern ist nur während eines beschränkten

Teiles eines Tages möglich , etwa von 3 Uhr Nachmittags bis Sonnen-Untergang , aus¬
nahmsweise auch unmittelbar nach Sonnen-Aufgang . Vormittags und unmittelbar nach
Mittag ist die Messung auf weite Entfernung nicht möglich wegen des Schwirrens
und der Unruhe der Bilder .

Da auch in der günstigen Tageszeit noch viele Zeit verloren geht wegen
mangelnden Sonnenscheins , so ist die Winkelmessung nach Heliotrop -Licht eine lang¬
wierige Arbeit . Nach einer von der Landesaufnahme angestellten Vergleichung
( „ Zeitschr . f. Verm . “ 1879 , S . 111 ) ist die mittlere Leistung für 1 Tag und 1 In¬
strument nur etwa zwischen 12 und 17 Einstellungen (in je zwei Lagen ) .

Nacht -Beobachtungen .
Man ist in neuerer Zeit wieder teilweise von der Signalisierung durch Heliotrope zur An¬

wendung nächtlicher Lampensignale zurückgekommen . Im Generalbericht d . Eur . Gr . f. 1875,
S. 140—150 wird von Perrier eine „Etüde comparative des observations de jour et de nuit “ mit¬
geteilt , welche den Nacht -Beobachtungen den Vorzug giebt .

Die elektrische Nacht -Signalisierung zwischen Spanien und Algier haben wir bereits auf
Seite 22—23 erwähnt .

Eine Abhandlung : „Die Winkelmessungen bei Tage und bei Nacht “ von W. Werner ist in der
„Zeitschr . für Instrumentenkunde “ 1883, S. 225—237 erschienen .

§ . 5 . Anordnung der Winkelmessung.
Die Winkelmessung , das wichtigste Element der Triangulierung , ist in ihrer

Anordnung durch zwei wesentlich verschiedene Umstände bedingt , erstens durch die
mechanischen und optischen Verhältnisse des Messens selbst , und zweitens durch die
Ausgleichung .

In geschichtlicher Beziehung hat sich die Winkelmessung für Triangulierung
etwa so entwickelt :

Schon vor der Anwendung des Fernrohrs konnte man an geteilten Kreisen von
grossem Halbmesser Winkel auf etwa 1 ' genau messen (Snellius 1615 , vgl . unsere
Einleitung S . 5 ), bald stieg die Genauigkeit so , dass man einzelne Sekunden in Rech¬
nung nahm .

Das im vorigen Jahrhundert von Tobias Mayer in Göttingen erfundene und
von den Franzosen weiter entwickelte Verfahren der Repetitions -Messung mit Nonien¬
ablesung galt bis zur Mitte dieses Jahrhunderts im allgemeinen als das beste und die
Genauigkeit stieg auf 1 " .

Das Wesentlichste über Repetitions -Messung haben wir schon in unserem
II . Bande „Handb . d . Verm . “ 4 . Aufl . 1893 § 72 mitgeteilt , zugleich sei über die
hannoverschen Repetitions -Messungen von Gauss verwiesen auf Gäde , „ Zeitschr . f.
Verm . “ 1885 , S . 121 und 205 und „ Zeitschr . f. Verm . “ 1882 , S . 431 . Über den älteren
„cercle röpötiteur “

, vgl . Jordan , Grundzüge der astr . Zeit - und Ortsbestimmung , Berlin
1885 , S . 219 und S . 206 . Eine neuere gründliche Arbeit hiezu ist : Über das Mit¬
schleppen des Limbus und verwandte Fehler bei Repetitionstheodoliten , von Friebe ,
„ Zeitschr . f. Verm. “ 1894 , S . 333—348.

Struve und Bessel gingen etwa 1820 —1830 zur „Richtungs -Messung “ über ,
welche später mit Mikroskop -Ablesung (etwa seit 1840 , vgl . Küsten -Vermessung S . 51 )
weiteste Verbreitung fand . Man nahm möglichst viele Sichten in einen Satz zusammen
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und wiederholte die Sätze mit verstelltem Limbus . In neuester Zeit ist die reine

„Winkelmessung “ (mit nur zwei Sichten in einem Satze) mit Vorteil angewendet
worden.

Nach dieser allgemeinen Übersicht wollen wir einzelne Verhältnisse näher be¬
trachten :

Richtungs -Messungen .

Die Messung von möglichst vollen Sätzen , wie man sie im einzelnen Falle
bekommen kann , wurde von Bessel bei der Gradmessung in Ostpreussen angewendet
und seitdem Jahrzehnte lang fortgesetzt . Bessel schreibt (Gr . in Ostpr . S . 69 ) :

„Wenn man immer alle auf einem Dreieckspunkt zu beobachtende Bichtungen
hätte einstellen können , so würde das Besultat aller daselbst gemachten Beobachtungen
ganz einfach das Mittel aus allen Ablesungen jeder Bichtung gewesen sein . Dieses
war aber sehr selten möglich ; man musste sich auf die Beobachtung derjenigen Punkte
beschränken , welche gerade sichtbar waren und nicht zu unruhig erschienen “ .

Für die Messungen selbst scheint nun ein solches Anpassen an die Umstände
das beste , allein die Ausgleichungen werden dadurch ungemein verwickelt .

Wir können heute davon absehen , dass es mehrerer Jahrzehnte bedurft hat ,
bis die formelle Theorie der Ausgleichung von Triangulierungen mit solchen unvoll¬
ständigen Satzbeobachtungen fertig gestellt , und unbestritten anerkannt war (Bessel ,
Hansen , Andrä u . A . 1834— 1870 , man vgl . unseren I . Band „Handb . d . Verm . “
4 . Aufl . 1895, Kap . II , zusammenhängende Entwicklung aller hierher gehörenden
Theorien ) . Aber auch wenn diese Theorien nun vorliegen und die ganze Ziffernmenge
mit den Coefficienten [k «] , [a ß] u . s . w . berechnet ist , ist sie doch in sich kaum
konsequent zu nennen , weil die mittleren Fehler nach der Ausgleichung immer grösser
ausfallen , als vor der Ausgleichung , wozu noch andere Übelstände kommen .

Null -Marhe .
Um die vorerwähnten Kichtungs -Messungen etwas geschmeidiger und von zu¬

fälligen Umständen unabhängiger zu machen , hat man in jeden Satz einen naheliegenden
Zielpunkt , welcher gar nicht zu der Triangulierung selbst gehört , aufgenommen .

Über dieses Mittel wurde zuerst von Struve (astr . Nachr . 2 . Band , 1824 , S . 435)
berichtet . Die Nullpunktsmarke wurde von Struve in 500 bis 1000”" Entfernung
gesetzt ; sie bestand aus einem vertikalen Bechteck von 10 ” Breite und 20 ” Höhe
mit weisser Farbe auf schwarzem Grunde angelegt ; da der Vertikalfaden des Fernrohrs
6 ” deckte , so blieb links und rechts von dem Bechteck ein Streifen von 2 ” Breite übrig .

Die ausgedehnteste Anwendung fand dieses Mittel der Nullmarke bei den
Triangulierungen des geodätischen Instituts , etwa 1870—1880 , namentlich bei dem
„Bheinischen Dreiecksnetz “ ; es hat sich aber gefunden , „ dass die Beobachtungen der
Nullmarke auf den Stationen des Bheinischen Dreiecksnetzes erheblich schlechter sind,
als die der übrigen Objekte . ( „ Zeitschr . f. Verm . “ 1879 , S . 149 .)

Ein Teil dieser Nullmarkenfehler mag jedenfalls darin liegen , dass die Null¬
marken nicht immer in genügend gleicher Höhe mit dem Theodolit angebracht werden
konnten ; wenn indessen eine Nullmarke unter einem starken Neigungswinkel erscheint ,
so sollte man den Horizontal -Axenfehler (i tang h Band II , 4 . Aufl . 1893 , S . 203)
hiefür in Bechnung bringen .
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Winkelmessungen in allen Kombinationen .
Dieses Mittel , welches schon von Gauss und Gerling als Ideal gepriesen wurde ,

ist von General Schreiber etwa seit 1871 angewendet worden und bildet jetzt den
Grundton der Haupttriangulierungen der Landesaufnahme .

Die Theorie hiezu haben wir bereits in unserem I . Bande , „Handb . d . Verm . “

4 . Aufl . 1895, § 77 behandelt , auch alle Citate hiezu gegeben .
Hiernach sind die Vorteile der Winkelmessung in allen Kombinationen doppelt :

Erstens werden die Messungen selbst so genau als möglich , durch Beschränkung auf
kürzeste Dauer (nur zwei Zielpunkte ) des einzelnen Satzes ; zweitens aber werden
dadurch alle Gewichts -Coefficienten [a «] , [a jS] u . s . w . gleich Null , und die Netz¬
ausgleichung , welche bei unvollständigen zerstreuten Sätzen eine unerfreuliche starre
Masse bildet , wird nun , bei Wahrung aller formellen Strenge , so übersichtlich und

geschmeidig , wie wenn man es mit unabhängigen Bichtungs -Messnngen zu thun hätte .

§ 6 . Schraubenfehler und Teilungsfehler .
Das Wichtigste über das Schrauben -Mikroskop haben wir schon in unserem

II . Bande , 4 . Aufl . 1893, § 63 . mitgeteilt , d . h . alles das , was man unbedingt wissen
muss , um mit einem Mikroskop -Theodolit messen zu können . Auch ist da noch an die
weiteren Ausführungen zu erinnern , welche im II . Band , 3 . Aufl . 1888 , S . 150— 151
und S . 213—214 gegeben waren .

Nach diesem wollen wir noch die Fehleruntersuchung der Schrauben behandeln .
Man hat zu fragen , ob die Schrauben der Mikroskope durchaus gleichförmige

Verschiebungen der Fäden erzeugen , oder im einzelnen :
1 ) ob die verschiedenen Schraubengänge alle gleich sind (fortschreitende Fehler ) ,
2 ) ob in der einzelnen Umdrehung die Drehungswinkel den Fadenverschiebungen

proportional sind (periodische Fehler ).

Die erste Frage , fortschreitende Fehler betreffend , kann man dadurch beant¬
worten , dass man ein und denselben Teilwert des Kreises an verschiedenen Stellen
der Schraube misst . Die Untersuchung wird bei den wenigen Umdrehungen , welche
bei Theodolit -Mikroskopen gewöhnlich nur gebraucht werden , selten merkliche Fehler
ergeben , und ist jedenfalls nicht schwierig . (Eine sehr feine Untersuchung dieser Art
findet man in „Travauz et mömoires du bureau international des poids et mesures ,
Tome V , Paris 1886 , S . 47— 60 , erreurs progressives d ’une vis micromütrique . “)

Dagegen sind die periodischen Fehler , welche von unsicherer Führung der
Schrauben u . s . w. herrühren , oft bedeutend und müssen stets untersucht werden.

Man braucht dazu ein Intervall , welches nicht einer ganzen Umdrehung oder
einem Vielfachen einer Umdrehung entspricht , sondern am besten einen runden Bruchteil ,
z . B . ein Viertel , ein Fünftel oder dergl . einer Umdrehung giebt .

Die Theodolitkreise haben meist keine Teilstriche für solche Zwecke, und es
wäre zu wünschen , dass die Mechaniker bei Herstellung der Teilungen darauf Bücksicht
nähmen , indem an irgend welcher Stelle einige Hilfsstriche in Abständen von 1 '

, 2 ' ,
3 '

, 4 ' u . s . w . angebracht würden .
Statt eines Hilfs Striches auf der Teilung kann man auch einen Hilfs/odcw (bzw.

Doppelfaden ) im Gesichtsfelde des Mikroskopes anwenden , indem dann der Haupt -



44 Schraubenfehler und Teilungsfehler .

Faden und der Hilfs -Faden (bzw. die beiden Faden -Mitten ) nacheinander auf denselben
Strich der Teilung eingestellt werden .

Manchmal kann man auch irgend ein nicht zur Teilung selbst gehöriges Zeichen
auf dem Teilkreise als Hilfsstrich benützen ; z . B . giebt Keinhertz in der „ Zeitschr .
f. Vermessungswesen “

, 1887 , S . 549 , an , dass er den Mittelstrich der Ziffer 1 als
Hilfsstrich genommen habe . Ähnlich haben wir bei dem nachfolgenden Beispiel die
Ziffer 2 benützt , welche im Gesichtsfeld erschien , indem auf das rechts unten an 2
befindliche vertikale Abstossstrichchen eingestellt wurde .

Der Abstand dieses Hilfsstriches von dem nächsten Teilstriche war rund i = 1 ' ,
und die Mikroskop -Trommel hat 5 ’ auf einer Umdrehung . Nun wurde das Hilfs¬
intervall i auf der Schraube 5mal gemessen , indem nach jeder Messung die Alhidade
wieder um i zurückgedreht wurde . Das Ganze wurde mehrfach hin und zurück
wiederholt , doch geben wir hier nur die Aföfefzahlen s mit ihren Differenzen i , wrnran
sich auch die leichtverständliche Berechnung anschliesst .

Schrauben - Differenzen Verbesserungen Schrauben -
ablesungen

$ i0 — i = v d s
ablesung rund

S
0 ' 0,00 " 0,00 ” 0 '

1 ' 6,15”
1 ' 6,15” — 1,06”

— 1,06” r

2 ' 14,90”
1’ 8,75" — 3,66"

— 4 .72 " 2 '

3 ' 18,85”
1' 3,95" 1,14 '

— 3,58" 3 '
1 ' 3,75" + 1,34 "

4' 22,60” — 2 .24” 4 '

5 ' 25,45"
Mittel *0

V 2,85" + 2,24"

0 00 " 5 ’
= 1 ' 5,09” 0,00 "

Die Trommelteilung geht von 10” zu 10”
, einzelne Sekunden werden geschätzt ,

(Doppelsekunden sind nicht angewendet ) , die Dezimalen bis auf 0,05" bei den Ab¬
lesungen s sind nur durch Wiederholungen und Mittelbildung entstanden . Das Mittel
»o nehmen wir nun als richtig an (obgleich s = 5 ' 25" statt 5 ' 0” am Schlüsse ab¬
gelesen ist ) , berechnen die Differenzen i0 — i = v , deren Summe = 0 sein muss , und
dann die Verbesserungen d s als Summen der v , indem das erste s = 0,00” gesetzt
wird , dann 0,00 — 1,06 = 1,06 , 1,06 —- 8,36 = 4,72 u . s . w .

Nach dem Ergebnis dieser Untersuchung ist also jede Schrauben -Ablesung in
der Gegend von 2 ' um 4,7" zu vermindern u . s . w .

Wenn die Verbesserungen / I s so gross werden , wie in diesem Beispiel , so ist
es bedenklich , sie zu vernachlässigen ; eine Korrektions -Tabelle anzulegen und alle Ab¬
lesungen darnach zu verbessern , wäre sehr mühsam , vielleicht kann man den Grund
der Ungleichheit in der mechanischen Lagerung der Schraube u . s . w . finden und
verbessern , oder man muss schlechte Schrauben entfernen und durch bessere ersetzen
lassen .

Es ist hier zu citieren :
Westphal , Übersicht über die Ergebnisse der bisherigen Untersuchungen von

Mikrometer -Schrauben , „ Zeitschr . f. Instrumentenkunde “
, 1881 , S . 149, 229 , 250 , 397.
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Einige Beispiele hiefür gieht auch die erwähnte Abhandlung von Reinhertz in
der „Zeitschr . f. Verm. “ 1887 , S . 545— 553, mit der Anordnung , die periodischen
Schraubenfehler durch planmässige Anwendung verschiedener Trommelstellungen zu
eliminieren , was gleichzeitig mit der Verteilung der Richtungen auf verschiedene
Kreistagen geschehen kann .

Wir wollen beispielshalber annehmen , man wolle mit unserem Instrumente ,
dessen Trommel 5 ' = 300" Umdrehung hat , eine Richtungs -Messung in 8 Kreistagen
machen ; dann muss man nach jedem Satze die Trommelstellung um 300” : 8 = 37,5"

ändern , oder man bekommt für die 8 Kreistagen folgende Anfangs -Ablesungen :
tr nno cv oa "1 . 0 ° 0 ' 0"

2 . 22 ° 30' 38"
3 . 45 ° 1 ' 15"
4 . 67 ° 31 ' 52"

6 . 112° 33' 8 '
7 . 135 ° 3 ' 45"
8 . 157 ° 34' 22"

Stellt man diese Anfangs -Ablesungen ein , so werden auch alle anderen Ab¬
lesungen je um 37,5" verschoben , und damit die periodischen Schraubenfehler mit
derselben Wahrscheinlichkeit eliminiert , wie man das bei den Kreisteilungs -Pehlern
durch die planmässigen Kreisverstellungen erwartet .

Ausgleichung der periodischen Schraubenfehler .
Bei unserem vorstehenden Beispiele ist die ganze Berechnung in der kleinen

Tabelle (1 ) enthalten , und man kann nötigenfalls die erhaltenen A s auch noch gra¬
phisch ausgleichen .

Jedenfalls bietet aber auch die rechnerische Ausgleichung (welche in dieser
Form von Bessel eingeführt wurde ) viele Vorteile ; wir wollen eine solche als Beispiel
hier vornehmen . Dieses Beispiel bezieht sich nicht auf einen Theodolit , sondern auf
den Repsoldschen Komparator der K . Normal -Aichungs -Kommission , und wurde von
uns im April 1881 erhalten .

Dieses Beispiel kann indessen auch die Schraubenfehler -Ausgleichung für Theo¬
dolit -Messungen veranschaulichen .

In Fig . 1 . soll t das Intervall einer Teilung bedeuten , l -
welche durch ein Schrauben -Mikroskop gemessen wird. K sei Sohrallt|en-MlkroskoP-
der optische Mittelpunkt des Mikroskop -Objektives , und s sei der * s ”

Schraubenwert , den man durch Einstellen auf den linken und
rechten Strich des Intervalls t findet .

Hat die Schraube keine Fehler , so wird man immer den¬
selben Wert s erhalten , welche Teile der Schraube auch benützt

Wir bezeichnen allgemein eine Schrauben -Ablesung mit S
und wir nehmen an , die zu S gehörige Schrauben -Verbesserung
lasse sich durch folgende Gleichung darstellen :

werden (abgesehen von den unregelmässigen Einstellfehlern ) , wenn
dagegen die Schraube selbst Fehler enthält , so werden die Werte
s verschieden ausfallen .

■t

A S = <f (S ) — r sin (A -+- S ) — r sin A cos S -1- r cos A sin S (3)
Setzt man hier r sin A = a und r cos A — ß

sm A cos A
so kann man (3) auch in diese Form schreiben :

A S = <p (S) = a cos S + ß sin S (5 )
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Zur Bestimmung der Konstanten a und ß wird nun die Messung von t , ent¬

sprechend Fig . 1 . , an verschiedenen Stellen der Schraube vorgenommen , so dass ver¬
schiedene Werte s entstehen .

Wenn 8 die Anfangsstellung einer solchen Messung , folglich S + s die End¬

stellung ist , so hat man für die Anfangsstellung die Gleichung (5) und für die End¬

stellung die zugehörige Gleichung :
cp {S -{- s) = a cos (S -+- s) -+- ß sin (S + s) (6 )

Wenn man aus (5 ) und (6) die Differenz bildet , so erhält man :

cp (S + s) — cp (S) ■ - 2a sin S

Wir setzen : — 2 a sin — =z oe

und S -+-

t -
jj

- + 2 ß cos

£- 2 ß sin — y (7 )

(8)

folglich ist die Verbesserung für den Schraubenwert s :
<jC(S -+• s) — qp (iS) = x sin er + y cos a (9)

Es sollen 4 symmetrisch gelegene Beobachtungen von s gemacht werden mit
den Ergebnissen Sj , s2, «3, s4 und wir setzen :

.S'| 4 - - f- S3 - f - 64 — »o (10 )

Dieses ist auch , wie wir nachher sehen werden , der wahrscheinlichste Wert
von s überhaupt , indessen wollen wir vorläufig (um die Zahl der Unbekannten sicher
zu stellen ) den wahrscheinlichsten Wert = s0 -t- § setzen , und haben daher durch
Vergleichung mit (9 ) , nun die Fehlergleichung :

v = (s -+- x sin a + y cos o) — (s0 -f- f )
Wir setzen wie gewöhnlich s0 — s = l und haben dann in 4facher Anwendung :

— = £ — xsina 4 — y cos oy + ?j
— = § — X sin (72 — y COS(72 + 2̂
— ®3 = | — xsino s — ycoso s -hl s j
— v4 — £ — xsincr 4 — y cos o4 + l4 |

Wenn nun aber die 4 Beobachtungen symmetrisch liegen , d . h . wenn die 4 Werte
oy , ff2, <73, (74 nach (8 ) je um 90 ° gegen einander verschoben sind , so wird die Aus¬
gleichung dieser 4 Fehlergleichungen sehr einfach , wie wir schon an einem ähnlichen
Beispiel in Band II . 4 . Aufl. § 70 . gesehen haben , die Ausgleichung des Systems (11 )
giebt nämlich in diesem Falle :

1 = 0 [l sin ct]
‘

2 y ~
2

und die Quadratsumme der übrig bleibenden Fehler wird :

r [ l sin er]2 [l cos crl2
[® ®] = [M ] ~ —

^
~~ "—

2
— ~

Rechnet man ausserdem die einzelnen v und ®2 aus ,
Summe eine Rechenprobe .

Der mittlere Fehler einer Bestimmung von s wird , weil 3 Unbekannte g , * , y
vorhanden sind :

[Zcos er]
( 12 )

( 13 )

so erhält man in ihrer

( 14 )
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Aus x und y kann man nach (12) und (7 ) auch a und ß hersteilen , nämlich :

[1sin ff]

4sm -
ß = + [,Icosa ]

4sin -
( 15)

2 2

und nach (4) kann man auch die ursprünglichen Unbekannten A und r wieder herstellen :
— [ I sin er] _ _ — [1 sin ff] _ + [2 cos ff]

tang A ■■
[2 cos ff]

(16 )
4 siw -

g
- sin A 4 sin -fr- cos A

u

Bei unseren Messungen am Bepsold sehen Komparator (Mikroskop I . rechts , mit
25facher Vergrösserung ) war ungefähr s = 4,6239 Umdrehungen , (und zwar herrührend
von der Beobachtung eines Intervalls = 0,2 Pariser Linien = 0,4511658“” , also 1 Um¬
drehung = 97,57;* oder rund 1 Umdrehung = 0,1 “ “ = 100.“) .

Da jedoch hier die ganzen Umdrehungen nicht in Betracht kommen , rechnen
wir mit dem Wert s = 0,6239 Umdrehungen oder :

s = 0,6239 Umdrehungen = 0,6239 X 360 ° = 224 ° 36'
(17 )

Es wurde immer mit 0,00 angefangen , folglich sind nun die Werte ff :

ff! = -h- = 112° 18 ' 90 ° = 202 ° 18 '

O3 — ~
2

" + 180° : 292 ° 18 ' =
T

- ■270 ° = 22 ° 18 '

Ein Messungsversuch am Mikroskop I . (rechts ) gab folgendes :

1 )

Mittel

s , = 0,6254 »1 = - 15 Z12 = 225
s2 ~ 0,6311 h — — 72 Z22 = 5184
$3 = 0,6232 \ 7 V = 49
s4 = 0,6158 h = + 81 = 6561

So = 0,6239 pj = + 1 [ll] --= 12019
soll = : 0

(18)

Da s = 1 rund = 100;*, also Sj nahezu = 62,541 * ist , sind die l hier rund in
Einheiten von 100f* oder 0,1 ”“ gezählt , oder rund 2j = 0,15.“.

Nun rechnet man :
x = + 18,85 y = + 74,955

[v v\ = 12 019 — 710,6 — 11236,5 = 71,9
a = — 10,187 ß = + 40,507

A = 345 ° 53 ' r = 41,768

nach (12 )
nach (13)
nach (15 )
nach (16)

Man hat also nun nach (3) die Korrektionsformel :
/SS = 41,768 sin (345° 53 ' + S)

(12 *)
(13 *)
( 14*)
(16 *)

(19 )
Wenn man hier für S die 4 Anfangswerte 0 °

, 90 °
, 180°

, 270 ° und dann die
4 Endwerte s = 224 ° 36'

, 90° + s , 180° s, 270 ° - j- s einsetzt , so bekommt man :

(20 )für die Anfangswerte — 10,2 + 40,5 + 10,2 - 40,5
„ „ Endwerte — 21,2 — 36,0 + 21,2 + 36,0

Differenzen A S : — 11,0 — 76,5 + 11,0 + 76,5
Beobachtungen ( 18) , l \ — 15 — 72 + 7 + 81
übrig bleibende Fehler v : + 4,0 — 4,5 + 4,0 — 4,5
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Die Quadratsumme dieser 4 Werte ist [v »] = 72,5 , was mit (13 *) hinreichend
stimmt . Nach dieser Bestätigung rechnen wir den mittleren Fehler einer Messung
nach (14 ) :

m = l/72,5 = + 8,5 (nahezu = 0,085^ ) (21 )
Nach der Formel (19 ) kann man nun eine Korrektionstafel für das betreffende

Mikroskop berechnen , deren 4 Hauptwerte schon in (20) enthalten sind . Indessen
reduziert man nun alles auf den Anfang , da es sich doch immer nur um Schrauben -

Differenzen handelt . So bekommt man (Mikroskop I , rechts ) :

Schrauben - Verbesserung
Ablesungen nach (20) reduziert

0,0000 -0 — 10 -2 0 -0
0,2500 -0 + 40-5 + 50 -7
0,5000 -0 + 10 -2 + 20 -4
0,7500 -0 — 40 -5 - 30 -3
1,0000 -0 — 19 -2 o -o

In gleicher Weise wurde auch das andere Mikroskop behandelt und dann für
beide Mikroskope ausführliche Korrektionstafeln berechnet . Die später in § 9 . mit¬
zuteilenden Mikroskop -Ablesungen sind nach diesen Reduktions -Tabellen reduziert .

Ein sehr feines Beispiel solcher Bestimmung und Ausgleichung periodischer Schraubenfehler
ist mitgeteilt in dem Werke : „travaux . et memoires du bureau international des poids et mesures ,
tome II , Paris 1883, Seite C 104—C 118“ . Es wurden drei Hilfsstriche I , II , III in Abständen von
20/u. und zwei Fäden 1 und 2 im Abstande von 30M angewendet . Damit wurde gemessen :

1) Faden -Abstand 1—2 = ZOß an einem beliebigen Strich ,
2) Strich -Abstand I—II = 20£i mit demselben Faden ,
3) „ „ II —ui = 20ß „
4) „ I - III — 40/U „ „ „

Alles dieses wurde in den verschiedensten Trommelstellungen sehr oft wiederholt .

Ein weiteres Citat hiezu ist :
Müller . Untersuchungen über Mikrometerschrauben mit besonderer Anwendung auf das

Fadenmikrometer des neunzölligen Äquatoreals der Berliner Sternwarte . Berlin , Dümmler .

Kreisteilungsfehler .
Zu den kurzen Angaben über Teilungsfehler diametraler Striche und Bestimm¬

ung von Teilungsfehlern durch Repetition , die schon in unserem II . Bande 4 . Aufl. 1893,
S . 217—218 enthalten sind , können wir hier noch einiges weiteres , was hierüber ver¬
öffentlicht worden ist , berichten :

General Schreiber hat in der Abhandlung . Richtungs -Beobachtungen und Winkel¬
beobachtungen “ ( „ Zeitschr . f. Verm . “ 1879 , S . 118 u . ff. ) Teilungs -Untersuchungen
mitgeteilt . Er sagt :

Nach den Erfahrungen , die sich auf die Untersuchung verschiedener aus unseren
ersten Werkstätten hervorgegangener Teilungen stützen , ist der unregelmässige Teil¬
ungsfehler ein sehr bedeutender Teil des Gesamtfehlers einer unter günstigen Beob¬
achtungen gemachten Beobachtung . Es fand sich im Mittel aus 16 Instrumenten der
Firmen Pistor und Martins , Repsold u . Söhne , J . Wanschaff , G . Bamberg folgendes ;

Mittlerer Gesamtfehler einer beobachteten Richtung . t = + 0,78"
Mittlerer unregelmässiger Teilungsfehler einer beobachteten Richtung t ' = ± 0,50"
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Diese Werte sind aus wirklichen trigonometrischen Gebrauchsmessungen berechnet ,
und der regelmässige Teil des Teilungsfehlers ist durch einen 8 gliedrigen periodischen
Ausdruck von t ' abgesondert worden ( „ Zeitschr . f. Verm . “ 1879, S . 120 ) .

Ferner ist von General Schreiber hier zu citieren : „Untersuchung von Kreis¬
teilungen mit zwei und vier Mikroskopen “ ( „Zeitschrift für Instruinentenkunde “, 1886,
S . 1—5 , S . 46 - 55 , S . 93 — 104.)

Die Untersuchungen sind angestellt mit einem Instrument , welches 1879 be¬
sonders zu diesem Zwecke von J . Wanschaff konstruiert wurde , dasselbe ist beschrieben
und abgebildet in dem „ Berichte über die wissenschaftlichen Instrumente auf der Ber¬
liner Gewerbe -Ausstellung im Jahre 1879 “ , herausgegeben von Löwenherz , 1880, S . 74
bis 76 , und in der „ Zeitschr . f. Instrumentenkunde “ 1881 , S . 67 , womach unsere Fig . 2 .
als Kopie gemacht wurde .

Fig . 2.
Kreisteilungs -Untersucher

nach . Angabe von General Schreiber konstruiert von Mechaniker Wanschaff '.
(Massstab etwa 1 : 7,5, Kreisdurchmesser = 42 cm )

Fi F %F $ Fi Lampenbeleucht¬
ungen für die Mikroskope .

S S fester Rahmen mit den M i-
kroskopen Afj und M2.

T T drehbarer Rahmen mit den
Mikroskopen Afg und Jf 4 .

D Fühlhebel .
E E Unterlagsschrauben .

B beweglicher Kreis .
A fester Kreis .

Jordan , Handb . d . Vermessungskunde . 4. Aufl , III . Bd .
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Das Instrument hat unten einen unbeweglichen Kreis A und damit fest ver¬

bunden eine Schiene S S mit zwei Mikroskopen Mi und M%.
Eine zweite Schiene T T mit zwei Mikroskopen Ma und M4 ist drehbar gegen

den Unterlagskreis A , so dass die Schienen S S und T T unter jedem Winkel gegen
einander gestellt werden können.

Auf den beweglichen Kreis B kann ein zu untersuchender Teilkreis mit den

Unterlagsschrauben F F aufgeschraubt werden , und ob der Kreis sich dann beim Um¬
drehen von B richtig in einer Ebene dreht , kann mit dem Pühlhebel T) untersucht
werden .

Die 4 Mikroskope Mj M2 Ma M4 werden nicht mit Tageslicht , sondern mit
künstlicher Lampenbeleuchtung F x F %F s F 4 abgelesen.

Noch eine Eigentümlichkeit ist zu erwähnen : Man kann zwar die zwei Schienen
S S und T T , und damit auch die Mikroskop-Ebenen Mj Ma und Ms M4 beliebig
gegen einander drehen , doch wäre es nicht möglich , den Winkel zwischen Mx M2 und
Ma IH4 auch = Null zu machen , wegen der Dicke der Mikroskope, wenn nicht be¬
sondere Vorsorge getroffen wäre , darin bestehend , dass zwar die Mikroskope Mi und
M%rechtwinklig zur Kreisebene B gerichtet sind, die beiden anderen Mikroskope Ma
und M4 aber ein wenig schief gestellt werden können, so dass man z . B . mit Mi und
Ma denselben Strich einer Kreisteilung einstellen kann .

Eine ähnliche Anordnung mit Messungsreihen seit 1872 , hat Nagel in Dresden mitgeteilt in
der Zeitschrift „Civilingenieur “, 33. Band , 1887, 8. Heft . Es ist an einem Repsold sehen Theodolit
mit gewöhnlichen Mikroskopen , noch ein beweglicher Hilfs -Arm mit zwei diametralen Mikroskopen
angebracht , der in 4 Stellungen gegen den Haupt -Arm zur Teilungs -Untersuchung benutzt wurde .

Hiezu gehört auch :
Schmidt . Bestimmung der Teilungsfehler am Pistor sehen Meridiankreise der Berliner Stern¬

warte . Berlin , Dümmler .
Broch . Über die Etalonnierung der Unterabteilungen eines Stabes , die Bestimmung der

progressiven Fehler einer Mikrometerschraube . Trav . et mein , du bureau intern , des poids et
mesures . 5. 1886, S. 1. Bespr . in d . Beibl . zu d. Annalen d . Physik u . Chemie 1887, S. 487.

Änderung von Teilstrichen. Bei dieser Gelegenheit mag auch erwähnt werden ,
dass man hei den feinsten metronomischen Untersuchungen an Strichmassen Andeut¬
ungen gefunden hat, dass die Teilstriche sich mit der Zeit ändern . Diese zunächst
unglaublich klingende Behauptung kann aber begründet sein, denn die Striche , welche
in poliertes Metall gerissen werden , erzeugen in der gleichförmigen .molekularen Struktur
des Metalls gewissennassen Wunden , welche kleine molekulare Änderungen als Nach¬
wirkung hervorbringen können. Es kommt dabei auch darauf an , ob und wie weit
die Risse geglättet ( ,ebarbiert “) werden. Die optische Strichmitte , auf welche man
die Fäden einstellt , ist nun jedenfalls abhängig von der Beschaffenheit der Strich¬
ränder , und wenn Mer kleine Änderungen durch allmähliche Ausgleichung molekularer
Spannungen eintreten, so kann die Strichmitte für mikroskopisches Ablesen sich ändern .

§ 7. Normal -Masse.
Ein Mcissstäb ist ein Werkzeug zur Ausführung von Längenmessungen . Ein

Massstab, welcher diesem Zwecke nicht unmittelbar dient, sondern mittelbar dadurch ,
dass andere Massstäbe nach ihm reguliert werden, heisst ein jVorwaZ-Massstab.

Ein Massstab an und für sich genügt noch nicht zur Festsetzung eines Masses,
weil der Stab bei verschiedenen Temperaturen verschiedene Länge hat , es muss des¬
wegen noch angegeben werden , bei welcher Temperatur der Massstab die normale
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Länge hat , und damit der Massstah auch bei anderen Temperaturen brauchbar ist ,
muss die Ausdehnung bekannt sein.

Die Normal -Temperatur ist bei verschiedenen Massen verschieden ; insbesondere
haben wir :

beim Metermass Normal -Temperatur = 0 ° C = 0 ° K ,
beim alten Pariser Mass „ = 13 ° R = 16,25 ° C ,
beim englischen Mass „ = 62 ° F = 16,67 ° C = 13,33 ° R.

Der Ausdehnungs -Coefficient.

Wenn ein metrischer Stab bei der Temperatur 0 ° die Länge L 0 hat und bei
der Temperatur t ° die Länge L, , so setzt man eine Gleichung fest von der Form :

Lt — Lq (1 + cc t) (1)
und man nennt a den Ausdehnungs -Coäfflcienten des Stabes .

Dieses ist die gewöhnliche Annahme , und wenn für alle Gebrauchs -Temperaturen
t , der Coefficient « denselben Wert hat , so ist hiezu nichts weiteres zu bemerken .
Für die feineren Untersuchungen ist aber die Annahme eines konstanten a nicht mehr
genügend , und man nimmt dann statt (1) eine quadratische Funktion :

Tut — ( 1 -{- (x t -4- 2 ß oder Lt — Lq (1 1- (o: -4- 2 ß t) t) (2)
Um in solchen Fällen eine unzweideutige Definition zu haben , citieren wir nach

dem Werke : „ Travaux et mdmoires du bureau international des poids et mesures “ ,
Tome II , Seite C . 30 und Tome III , Seite C. 19 folgendes :

Man nennt in Bezug auf die vorstehende Gleichung (2) :
« -l- 2 ß t wahrer Ausdehnungs -Coefficient bei t °

a + ßt mittlerer Ausdehnungs -Coefficient von 0 ° bis t ° .
Als Beispiel nehmen wir aus : „ travaux et mömoires “ III , Seite C . 19 für einen

Platin -Iridium -Stab , der an und für sich mit I2 bezeichnet wurde :
a - 0,000 008 594 6 ß = 0,000 000 001 26

± 13 5 ± 56
es ist also der mittlere Ausdehnungs -Coefficient von 0 ° bis t,° :

Stab I2 : a m = 10 - 9 (8 594,6 + 1,26 1) (3)
und der wahre Ausdehnungs -Coöfficient bei t ° :

Stab I2 : « , = 10 - 9 (8 594,6 + 2,52 t) (4)
Bei weniger scharfen Messungen lässt man das zweite Glied (mit ß) fort , und

redet dann von dem Ausdehnungs -Coefficienten a schlechthin , doch muss man den¬
selben für jeden Stab besonders bestimmen , weil verschiedene Stäbe aus demselben
Metall oder derselben Legierung doch nicht genau gleiche Ausdehnungen haben , z . B.
hat ein anderer in „ travaux et mömoires “ III . Seite C. 43 erwähnter Platin -Iridium -
Stab , der mit I bezeichnet ist , statt des obigen (3 ) den Wert :

« (0 = 10 - 9 (8 602,9 4 - 2,09 t) .

Da man aber durchaus nicht immer in der Lage ist , Ausdehnungs -Coefficienten
zu bestimmen , nimmt man für viele Zwecke die Mittelwerte , welche bereits bestimmt
worden sind . Namentlich ist es wichtig , Ausdehnungs -Coefficienten, die einmal an-
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(5 )

genommen sind , in demselben Palle unverändert beizubehalten , damit wenigstens die

Differenzen von Ausdehnungen in der Kechnung richtig bleiben .
Die Kaiserl . Normal -Aiehungs -Kommission hat in den metronomischen Beiträgen

1, herausgegeben von Foerster , Berlin 1870 , Seite 17 , folgende Werte angenommen :

Kupfer Ausdehnungs -Coefficient a = 0,000 017 17

Messing „ „ 0,000 018 86
Zinn „ , 0,000 024 83
Eisen „ „ 0,000 011 26

Aus den „travaux et memoires “
, III . Seite C . 43— C . 44 entnehmen wir folgende

Mittelwerte :

(6)

Platin -Iridium Ausdehnungs -Coöfficient « = 0,000 008 573
Platin „ » 0,000 008 898
Silber „ n 0,000 018 340
Eisen „ 0,000 011063
Stahl „ 0,000 010 420
Glas „ TI 0,000 008 392

Einige andere zuweilen in Frage kommende Mittelwerte sind :

Blei Ausdehnungs -Coefficient « = 0,000 028
Bronce , , 0,000 018
Gold „ „ 0,000 014
Guss-Eisen „ „ 0,000 011
Zink „ „ 0,000 033
Tannenholz _ . „ 0,000 004

(7 )

Endmasse und Strichmasse .

Die Längenmasse werden in zwei wesentlich verschiedene Gattungen eingeteilt ,
die man Endmasse und Strichmasse nennt .

Ein Endmass bestimmt eine Länge als äussersten Abstand seiner Teile in der

Axrichtung .
Ein Strichmass bestimmt eine Länge als Querabstand zweier auf seiner Ober¬

fläche eingerissener Parallelstriche .

Verschiedene Mass -Systeme .

Jedes Einheitsmass ist ursprünglich willkürlich , und deshalb ist die grosse
Mannigfaltigkeit der Masse erklärlich . Die älteren Masse sind meist vom mensch¬
lichen Körper hergenommen , z. B . der Fuss , die Elle u . s . w. und insofern willkürlich .

Auch das Meter , welches die früheren Masse jetzt fast verdrängt hat , ist ur¬
sprünglich willkürlich , und der Umstand , dass 1 Meter nahezu der zehnmillionste Teil
des Erdquadranten ist , ist metronomisch gleichgültig .

Wir geben in Folgendem einen Abriss der Geschichte der französischen Masse,
aus welchen das heutige internationale Metersystem hervorgegangen ist . (Zunächst
nach Nr . 5 der metronomischen Beiträge , zur Geschichte und Kritik der Toisenmass -
stäbe , von C . F . W . Peters , herausgegeben von der K . Normal -Aiehungs -Kommission ,
Berlin 1885.)
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Am Anfang des 18 . Jahrhunderts befand sich in Paris am Fuss der Treppe
des Grand Chatelet als Normalmass für öffentlichen Gebrauch eine eiserne Schiene mit
zwei Vorsprüngen , zwischen welche ein Massstal ) von der Länge einer Toise hindurch¬
geschoben werden konnte .

Etwa um 1735 , vor dem Abgang der Gradmessungs -Expedition nach Peru ,
wurden nach dem rohen Chatelet -Normal zwei feinere Toisen angefertigt in der Form
der nachstehenden Fig . 1 .

Fig . 1.
Die Peru -Toise (Toise du Perou ).

I
o

Die beiden Toisen bestanden aus eisernen Stangen , an den Enden b d und a e
hälftig eingeschnitten , so dass ab = cd die Toisenlänge vorstellt . Die eine dieser
Stangen , später unter dem Namen „ Toise du Pörou “ bekannt , hatte auch noch zwei
Punkte m und l , deren Abstand als Toise in Wirklichkeit in Peru gedient hat . Die
andere Toise, später „ Toise du Nord “ genannt , sollte ursprünglich als Iiontroll -Normal
in Paris Zurückbleiben , während die erste nach Peru abging , indessen nach dem Ab¬
gang der Peru -Expedition entschloss man sich rasch auch zu der Polar -Expedition ,
welcher man 1736 die zweite Toise mitgab .

Diese kam schon 1737 wieder nach Paris zurück , während die Peru -Toise erst
1748 wieder ankam .

Die Vergleichung ergab im Jahr 1752, dass die Peru -Toise um 0,04 Linien
länger war , als die nordische ; man erklärte das durch Rosten der letzteren bei einer
Havarie im bottnischen Meerbusen .

Im Jahre 1766 erschien eine Verfügung des Königs Ludwig XV, nach welcher
die Toise du Pörou an Stelle der Toise du Chatelet als Normalmass in Frankreich
eingeführt wurde . ( 1 Toise = 6 Pariser Fuss = 72 Pariser Zoll = 864 Pariser
Linien .) Von 1813— 1831 wurden verschiedene Kopieen der Toise genommen .

Die Toise kam später in Vergessenheit , und ob die im Jahre 1854 neu gereinigte ,
jetzt als „ Toise du Pörou “ betrachtete Stange wirklich die Stange von 1735 oder nur
eine Kopie derselben ist , blieb eine Zeit lang zweifelhaft , ist aber jetzt durch die Er¬
mittelungen von Wolf in Paris als erwiesen anzusehen . Jedenfalls sind die vor¬
handenen Kopieen der ursprünglichen Peru -Toise von Wichtigkeit . C . F . W . Peters
hat 14 solcher Kopieen in Betracht gezogen und durch Zusammenstellung dessen,
was über die Vergleichung dieser Stäbe mit der alten Peru -Toise oder der Kopieen
unter sich bekannt ist , Endergebnisse gefunden , z . B . diese :

Ursprüngliche Peru -Toise
Dänische Toise , Fortin = D
Besselsche Toise = B
Dänische Toise Gambey = G
Englische Ordnance -Toise = I '2

= 864,00000 Pariser Linien
= 864,00238
= 863,99920 „
= 863,99493
= 864,06228 '

„ „
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Die Normal -Temperatur des Toisen -Masses ist 13 ° B . — 16,25 ° C. ; dieses stammt

von der Gradmessung in Peru 1735 her , wo die Mittel -Temperatur = 13 ° R . an¬

genommen wurde .

Die Besselsche Toise , welche hier mit genannt ist , wurde von Bessel dazu

benützt , um ein preussisches Normalmass in einem Stabe von 3 preussischen Fuss

herzustellen . Unsere Fig . 2 zeigt die Einzelheiten desselben nach Tafel II des Werkes :

„Darstellung der Untersuchungen und Massregeln , welche in den Jahren 1835—1838

durch die Einheit des preussischen Längenmasses veranlasst worden sind , von F . W.

Bessel , Berlin 1839 “ .
Fig . 2.

Besselsche Normal -Stange (natürl . Grösse ).
Längensetmitt . Querschnitt .

9

I
*

Erklärungen zu Fig . 2 . :

Hauptkörper b , c, a von Guss¬
stahl ,

e d eingedrehte Eisenschraube ,
i Sapphir -Kegel ,
h Goldbettung ,
g k Pressschraube .

Bessel hielt ein Endmass für sicherer als ein Strichmass , indem er die mass¬
gebenden Enden möglichst hart machte , nämlich von Sapphir (i Fig . 2 .) , und die

Verbindung durch Gold vor Rost schützte .
Der Stahlstab hat die Aufschrift :

„Urmass der preussischen Längeneinheit 1837 . Dieser Stab , in der Wärme von
16,25° des hundertteiligen Thermometers , in seiner Axe gemessen , ist 0,00063 Linien
kürzer als drei Fusse . “ );

Dieser Stab wurde durch das Gesetz vom 10 . März 1839 als preussisches Ur¬
mass bestimmt .

Die Temperatur -Ausdehnung des Normalmasses fand Bessel = 0,004375 preuss .
Linien für 1 ° C . , oder da der Stab 432 preuss . Linien lang ist , Ausdehnung =
0,000010127 der Länge für 1 ° C.

Der preussische Fuss selbst ist dadurch = 139,13 Pariser Linien bestimmt .

Ausser der schon oben genannten „Darstellung “ u . s. w. sind hier noch weitere Besselsche
Schriften zu citieren : „Untersuchungen über die Länge des einfachen Sekundenpendels “, Berlin 1828,
S . 126. „Gradmessung in Ostpreussen “, S. 22. „Populäre Vorlesungen über wissenschaftliche Gegen¬
stände “, Hamburg 1848, S. 307 —325.

Nach dieser Abschweifung , betreffend das preussische Normalmass von 1837,
kehren wir zur Geschichte des Toisen - und Metermasses zurück :

Das neue französische Masssystem vom Jahr 1791 bestimmte als Einheit das
Meter , welches möglichst genau der zehnmillionste Teil des Erdmeridian -Quadranten
sein sollte . Das Dekret , welches den von der Akademie vorgeschlagenen Plan an¬
nahm , ist vom 26 . März 1791 und die Genehmigung erfolgte 4 Tage nachher ( „Delambre ,
Base du Systeme metrique “ I . S . 19 ) .

Nach vorübergehender Anwendung eines provisorischen Meters von 443,44 Par .
Linien wurde auf Grund der Delambreschen Gradmessung das „wahre und definitive “

Meter (metre vrai et definitiv ) = 443,296 Pariser Linien festgesetzt . Die Normal-
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temperatur für das Metermass wurde anders gewählt als bei dem alten Pariser Mass.

Während nämlich letzteres die Normaltemperatur 13 ° R . = 16,25 ° C. hat , ist die

Normaltemperatur des Metermasses = 0 ° R . = 0 ° G., d . h . gleich der Temperatur des

schmelzenden Eises .
443,296

Demzufolge wurde ein Platinstab hergestellt , dessen Länge bei 0 ° ist =
864

des arehives “ in natür¬
licher Grösse .

derjenigen Länge , welche die Peru -Toise bei 13 ° B . hat . (Base du Systeme metrique
Band III . S . 622 . ) Der genannte Platinstab , dessen Querschnitt (Fig . 3 .) ein Rechteck

von 25 ”,m Breite und 4””‘ Höhe ist , befindet sich noch in Paris , Fig. 3.

er heisst gewöhnlich „metre des arehives “ .
Querschnitt des »metre

Obgleich hiernach das Metermass längst sicher gestellt
zu sein scheint , so sind doch erst in neuerer Zeit die nötigen
Vorkehrungen zu einer befriedigenden Sicherstellung desselben

in Angriff genommen worden . Das französische Urplatinmeter (metre des arehives )

entspricht nämlich in mehrfacher Beziehung nicht den heutigen wissenschaftlichen

Anforderungen .
Um die damit verbundenen Übelstände zu heben , versammelte sich im Sommer

1870 eine internationale Kommission ,
-welche jedoch wegen des Krieges zu keinen

Resultaten kam . Die Kommission ist zum zweitenmale im Herbst 1872 in Paris

zusammen getreten , jedoch erst im Jahr 1875 kamen die Verhandlungen zum Abschluss .
Dieselben haben eine internationale Meter -Konvention ergeben , woran sich allmählich

fast alle Kulturstaaten der Erde angeschlossen haben .
Der Wortlaut der Konvention ist mitgeteilt in dem Deutschen Reichsgesetzblatt

Nr . 19 vom 5 . Sept . 1876 , S . 191 —212 , derselbe ist abgedruckt in der „ Zeitschr . f.

Verm . “ 1877 , S . 280—290 . Die neuesten Bestimmungen für das metrische Mass-

system in Deutschland sind enthalten in dem Gesetze vom 11 . Juli 1884 (Reichs¬

gesetzblatt 1884, Nr . 20 ).
Die Verhandlungen der internationalen Kommission , welche vom 24 . Sept . bis

12 . Okt . 1872 in Paris stattfanden , sind mitgeteilt in den „Annales da conservatoire

des arts et metiers “ , Nr . 37 , Tome X , 1er fascicule . Paris 1873 . Wir entnehmen

hieraus folgendes :
Es sollen 30 Meterstäbe hergestellt werden , welche möglichst gleich dem Pariser

Archiv -Meter zu machen und unter sich zu vergleichen sind , worauf sie unter die be¬

teiligten Staaten verteilt werden , und künftig die Grundlage aller Massvergleichungen
bilden werden .

Als Material für diese Normalmeter ist eine Legierung von 90 % Platin mit

10 % Iridium gewählt . Das aus reinem Platin bestehende mötre des arehives hat eine

sehr poröse Struktur , dagegen hat die erwähnte Legierung von Platin und Iridium

folgende Vorzüge : 1) Diese beiden Metalle krystallisieren in demselben System , näm¬

lich dem regulären , und haben die gleiche Dichte 21,15 . 2) Die Legierung hat noch

nahezu dieselbe Dichte wie die einzelnen Metalle , wodurch eine innige Verbindung ge¬
sichert ist . 3) Von allen Metallen (mit Ausnahme des hier nicht in Betracht kom¬

menden Arsen und Osmium) haben Platin und Iridium die geringste Ausdehnung durch

die Wärme , nämlich etwa 0,000009 für 1 ° C .
Die Stäbe werden prismatisch hergestellt mit einem in Fig . 4 . (S . 56 ) in natürlicher

Grösse gezeichneten Querschnittsprofil . Die Wahl dieses Profils ist das Ergebnis vieler

Erwägungen , es fand sich nämlich für dasselbe das günstigste Verhältnis des Träg -
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Fig . 4. heitsmomentes zur Profilfläche , oder es hat der so konstruierte
Querschnitt der inter - Stab die grösste Tragfähigkeit bei kleinstem Volumen . (Das

nationalen Platin -Indium - f ra gii cp e Verhältnis ist 26 mal günstiger als bei dem mütreMeterstäbe ,
natürliche Grösse . des archiyes , Fig . 3 .) . Das gewählte Profil (Fig . 4 .) hat noch

einen Vorzug , es liegt nämlich die obere Fläche der Querver¬
bindung (in Fig . 4 . durch eine punktierte horizontale Linie
hervorgehoben ) in der neutralen Axe des Körpers , so dass bei
eintretender Biegung keine Verlängerung oder Verkürzung in
dieser Fläche stattfindet , insoweit es sich dabei um die mit
den Biegungen verbundenen Drehungen des Querschnitts handelt .
Die genannte Oberfläche ist zur Aufnahme der Striche bestimmt ,
welche zur Massbezeichnung dienen .

Die Unterlage der neuen Normalmeter soll nicht eine kontinuierliche sein , sondern
aus zwei Rollen bestehen , damit der Temperatur -Ausdehnung keinerlei Hindernis be-

j .ig_ 6. reitet wird . Allerdings findet bei
Rollen -Unterlage der internationalen Blassstäbe . dem Auflager auf zwei Rollen ein

• Einschlagen durch das Eigengewicht
des Stabes statt , doch ist dasselbe

->' sehr klein . DieVerteilungderStützen;<— Z.- —y-- /,-
ist am günstigsten , wenn (entsprechend
Fig . 5 .) die Beziehung stattfindet :

V = 0,394 l oder l = 0,559 L
Wenn diese Verhältnisse eingehalten werden , so beträgt für das in Fig . 4 . ge¬

zeichnete Profil die Einschlagtiefe nur 0,008 63”*” und die entsprechende Verkürzung
des Stabes nur 0,000 000 4 ”””.

Über den neuesten Stand dieser Sache wird Auskunft gegeben in folgenden
Schriften :

Mitteilungen der Kaiserl . Normal -Aichungskommission , 1. Reibe , Berlin 10. Dezember 1890
Nr . 10. Die Beziehungen der metrischen , der altfranzösiscben und der englischen Längeneinheit
zu einander , abgedruckt in „Zeitschr . f. Vermessungsw .“ 1890, S. 265—269.

Die internationale Organisation des Maas - und Gewichtswesens und die neuen Prototype .
Mitt . d . K. Norm .*Aich .-Komm . 1890, Nr , 11, S. 139. Bespr . in d . „Zeitsclir . f. Instrumentenkunde “ 1890,S. 296 —298 ; d . „Zeitschr . f. Vermessungsw .“ 1890, S. 506—508.

Weitere Litteraturangaben s. „Zeitschr . f. Yerm, “ 1892, S. 473, Normal -Aichungs -Kommission ,und „Zeitschr . f. Vertu .“ 1895, S. 433, Bureau international des poids et mesures .

§ 8 . Komparatoren.
Ein Komparator ist ein Apparat zur Vergleichung zweier Längenmasse . Ent¬

sprechend der Einteilung der Längenmasse in Endmasse und Strichmasse hat man
verschiedene Komparatoren .

Ein Komparator für Strichmasse , welcher aber zugleich auch zur Vergleichungvon Endmassen eingerichtet werden kann , ist in Fig . 1 . und Fig . 2 . S . 57 , gezeichnet .Derselbe ist von Mechaniker Reichel in Berlin konstruiert , und gehört dem Gr . bad .
Oberaichungsamt Karlsruhe . (Mit ähnlichen Komparatoren sind alle deutschen Ober -
aichungsämter ausgerüstet .)

Fig . 1 . zeigt den eigentlichen Komparator in Längs - und Queransicht .
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Auf der hölzernen Unterlage A A B B erheben sich zwei eiserne Säulen C G,
welche eine gut gehobelte eiserne Schiene von _L förmigem Querschnitt tragen . Auf
dieser Schiene gleiten vermittelst zweier Schlitten die zwei Mikroskope E E . Das
Fadennetz des einen (rechtseitigen ) Mikroskops ist nicht fest , sondern vermittelst einer
Mikrometerschraube F beweglich . Dieses Mikroskop hat im wesentlichen dieselbe

Einrichtung wie die bekannten Theodolit -Mikroskope .
Auf dem hölzernen Dntergestell sind ferner zwei tischartige eiserne Platten

G G aufgesetzt , und zwar mit Zwischenlage je zweier horizontaler Cylinder K K , welche
um excentrische Axen drehbar sind , und dadurch die Tischplatten G G innerhalb eines

Spielraums von 1 — 2™ zu heben oder senken gestatten . Dieses Heben oder Senken
ist notwendig , damit die Oberflächen der Massstäbe J J '

, welche verglichen werden
sollen , immer in die deutliche Sehweite der Mikroskope gebracht werden können .
Zwischen J J ' und G G sind noch Unterlagsplatten H H angebracht .

Vergleichung zweier Strich -Masse .

Wenn es sich um Vergleichung zweier Strich -Masse JJ ' handelt , so werden
dieselben in der beschriebenen Weise neben einander aufgelegt , so dass ihre Ober¬
flächen in eine Ebene zusammenfallen , und zusammen mittelst der Mikroskope beob¬
achtet werden können . Da die Unterlagsplatten H H mittelst besonderer Schrauben
der Länge nach etwas Spielraum haben , kann man es dahin bringen , dass man mit
dem einen (etwa dem linkseitigen ) Mikroskop die zusammenfallenden Nullstriche beider
Strichmasse zwischen den Mikroskopfäden sieht . Dann hat man zum Zweck der Ver¬
gleichung nur noch das andere (rechtseitige ) Mikroskop auf die Endstriche der beiden
Strichmasse einzustellen , und dabei den Abstand dieser beiden Endstriche mit der
Mikrometerschraube zu messen .

Hiebei ist also vorausgesetzt , dass die einander entsprechenden Striche der zu
vergleichenden Massstäbe gleichzeitig in das Gesichtsfeld der Mikroskope gebracht
werden können , und dieses ist deswegen gewöhnlich thunlich , weil die Striche auf die
eine Kante ausmündend gezogen sind .

Vergleichung eines Strich -Masses mit einem Endmass .

Mit Hilfe der besonderen Einrichtung , welche in Pig . 2. in 4mal grösserem
Massstab als Fig . 1 . gezeichnet ist , kann man auch Strichmasse und Endmasse ver¬
gleichen .

Das zu vergleichende Endmass wird hiebei ganz in der vorher beschriebenen
Weise behandelt , es ist J oder und liegt auf einer der beiden Platten H . Die
andere Platte H wird weggenommen , und statt derselben werden nun die in Fig . 2 .
links und rechts gezeichneten Anschlag -Cylinder aufgeschraubt .

Diese Cylinder a ' und a" stecken in Hülsen a und haben infolge von einge¬
legten Federn das Bestreben , in der Richtung gegen einander aus den Hülsen heraus¬
zutreten , d . h . sie drücken beiderseits gegen das Endmass 6 6, welches in Fig . 2 . da¬
zwischen gelegt ist .

Wenn b in horizontale Schneiden endigt , so wird man a " in eine vertikale
Schneide oder a ' in eine Rundung endigen lassen u . s . w . ; für die Betrachtung der
Wirkungsweise des Apparates ist diese Unterscheidung unwesentlich .
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Fig . S.
Latten -Komparator .

Querschnitt , Massstab 1 :6.

Auf den Cylindern a' und a" sind Platten c aufgesetzt , welche nach vorn

vorgebogen und mit feinen Strichen d und dl versehen sind . (Die auf der anderen
Seite befindlichen Schrauben e dienen zur Höhenregulierung für die Striche d .)

Man denke sich nun die Cylinder a ' und a" auf der einen Tischplatte G be¬

festigt , und ein Endmass 66 zwischen die Cylinder -Enden a ' und a ” eingelegt . Auf
der anderen Tischplatte G (bzw. auf der Zwischenplatte H ) liegt ein Strich -Massstab / ,
und man bringt es nun dahin , dass die Indexstriche d und dl der Cylinder an der
Kante des Strichmasses anliegen und gleichzeitig mit den benachbarten Strichen des

Strichmasses in den Mikroskopen erscheinen . Man behandelt dann die Striche d und

dl wie die Anfangs - und Endstriche eines Strichmasses und macht die Strichmass -

Vergleichung in der früher angegebenen Weise.
Es handelt sich noch darum , die Länge d d! auf die Länge a a ' zwischen den

Enden der Anschlag -Cylinder zu reduzieren , und dieses geschieht dadurch , dass man
nach Entfernung des Massstabes b 6 den einen Cylinder abnimmt und ihn unmittelbar
an den anderen Cylinder anstossend wieder befestigt . Es stossen dann die Cylinder -
Enden a und a ' zusammen , während die Indexstriche ä und d' einen kleinen Zwischen¬
raum zwischen sich lassen , den man misst
und an der vorhergehenden Vergleichung
in Rechnung bringt .

Einige andere , zum Teil sehr sinnreiche
und doch einfache Verfahren zur gegenseitigen
Vergleichung von Endmassen und Strichmassen
berichtet „Zacliariae , Die geodätischen Haupt¬
punkte “, deutsch von Lamp , Berlin 1878, S. 96—98.

Komparator für hölzerne Latten .

Im wesentlichen nach demselben
Grundgedanken wie der vorher beschrie¬
bene aichamtliche Meter -Komparator , je¬
doch länger und stärker , ist der Kompa¬
rator für Nivellierlatten und ähnliche
Massstäbe , dessen Querschnitt in Fig . 3 .
gezeichnet ist .

Der Hauptteii ist eine Eisenschiene
A A'

(aus einer Eisenbahnschiene herge¬
stellt ) , 3,5 m lang und mit einer durch¬
laufenden Millimeterteilung versehen . D D '

und EE ' sind zwei Träger , welche durch
die auf der anderen Seite angebrachten
Schrauben J und J ' durch Hebel H G
und E ' G ' der Höhe nach gestellt wer¬
den können .

N ist ein aufgelegter Massstab , der
durch das Mikroskop M verglichen wird .

Weiteres hierüber haben wir früher
in der . Zeitschrift für Instrumentenkunde “ ,
1881 , S . 41 — 47 mitgeteilt .

(Karlsr . u . Hannov . Sammlung ,
Mechaniker Sichler .)
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Normalstellung der Mikroskop -Axen .

Wenn man bei einem Längen -Komparator der bisher beschriebenen Art die
Laufschiene der Mikroskope und die Unterlagsplatten mit Libellen gut horizontal stellt ,
so ist nur noch die Frage zu beantworten , ob die Mikroskop -Axen vertikal sind . Wenn
letzteres nur wenigstens genähert der Fall ist , so kann man bereits Vergleichungen
machen , weil kleine Neigungen der Mikroskop -Axen bei den immer nahezu gleichen
Höhen -Einstellungen wenig ausmachen .

Um jedoch die Mikroskop -Axen genau vertikal zu stellen , hat man das Mittel
des Quecksilber -Horizontes ; man stellt nämlich unter ein Mikroskop ein Gefäss mit
Quecksilber und beobachtet darin das Spiegelbild der Fäden , welches sich mit den
Fäden selbst decken soll . Jedoch muss man dazu die Fäden beleuchten ; das geschieht
durch einen kleinen seitwärts angebrachten Spiegel , den wir aus anderer Veranlassung
beschrieben haben in „ Grundzüge der astr . Zeit - und Ortsbestimmung “ , Berlin 1885,
S . 225.

Eine andere Untersuchung über Mikroskop -Axen-Neigung u . s . w . gab die frühere ,
8 . Auflage dieses Bandes , 1890 , § 9 . Auch ist hier zu citieren : „ Weinstein , Handbuch
der physikalischen Massbestimmung “, II . Band , Berlin 1888 , S . 72 — 89 .

Fühlspiegel -Komparator von Steinheil .
Ein anderes Prinzip der Massvergleichung , für Endmasse geeignet , ist das des

Fühlspiegels , von dem wir in Fig . 4 . wenigstens den Grundgedanken darstellen (nach
einem Berichte von Steinheil in dem „ Gen .-Ber . d . Europ . Gradm . für 1869 “ , S . 76
bis 80 und „Tinter , Zeitschr . d . österr . Ing .- u . Arch .-Vereins “ , 1871 , S . 40 , und „ Publ .
des geod . Instituts . Massvergleichungen “

, II . 1876) .

Fig . 4.
Fühlspiegel -Komparator von Steinbeil .

Cr
'

In Fig . 4 sind M und M ' zwei Endmasse , welche verglichen werden sollen .
Dieselben befinden sich in paralleler Lage im Abstand a , und stossen links mit ihren
Enden gegen eine ebene Glasplatte GG an . Wenn diese Masse M und M ' gleich
lang sind , so wird eine zweite Glasplatte G ' G '

, welche gegen die anderen Enden
(rechts ) gedrückt wird , mit der ersten Platte GG parallel sein ; andernfalls machen
die Platten GG und G' G ' einen kleinen Winkel a , entsprechen der Gleichung :

M ' — Msm k = -
a

Nun hat man ein Fernrohr F 0 , rechtwinklig zur Glasplatte G G gerichtet ;und wenn G' G ' parallel G G ist , so wird F 0 A mit F 0 gemeinsam nach F reflektiert .
Wenn dagegen der erwähnte kleine Winkel a vorhanden ist . so bekommt man zwei
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Reflexionspunkte F und F '
, deren Abstand ® = 2 fsina ist , also in Verbindung mit

der ersten Gleichung :

Insofern a erheblich kleiner ist als f , giebt ein Fehler an v einen entsprechend
kleinen Einfluss auf die Massvergleichung M ' — M.

Man hat die Fühlspiegel -Vergleichung von Endmassen früher namentlich des¬
wegen gewählt , weil man dabei die Stäbe in einer Flüssigkeit vergleichen kann , was
das beste Mittel zur sicheren und gleichmässigen Temperatur -Bestimmung ist ; indessen
in neuer Zeit macht man auch mikroskopische Strich -Vergleichungen in der Flüssigkeit ,
wie aus dem Nachfolgenden zu ersehen ist .

Mass - Vergleichungen des internationalen Mass - und Gewichts -Bureaus .
Zum Abschluss unserer Betrachtungen über Massvergleichung wollen wir noch

einen Auszug vorführen aus dem Werke : „ Travaux et mdmoires du bureau international
des poids et mesures “ , Tome II , Paris 1883, Seite C 3 — C 147, und Tome III , 1884,
Seite C 3 u . ff. mesures de dilatation et comparaisons des regles mötriques .

1. Verfahren im Allgemeinen . Die Messungen der Ausdehnungen der metrischen
Strichmasse wurden nach dem von dem schwedischen General Wrede , Mitglied des
internationalen Mass- und Gewichts -Bureaus angegebenen Verfahren ausgefübrt , welches
im wesentlichen in der aufeinander folgenden Vergleichung zweier Stäbe besteht , welche
nach einander unter die Objektive zweier vertikaler im Abstand von 1” befestigter
Mikrometer -Mikroskope gebracht werden . Die Messungen werden wie bei gewöhnlichen
Vergleichungen zweier Meter gemacht , mit dem einzigen Unterschied , dass jeder der
Stäbe in einen besonderen Trog mit Flüssigkeit eingeschlossen ist , und dass die Stäbe
hierin im allgemeinen verschiedene Temperaturen haben , welche nach Umständen reguliert
werden können . Auch kann die Temperatur des einen Stabes während der Dauer der
Vergleichungen konstant erhalten werden , und man erhält dadurch die Ausdehnung
des anderen Stabes unmittelbar . Der Vorteil der Methode besteht darin , dass ihre
Ergebnisse unabhängig von dem absoluten Abstand ^der Mikroskop -Axen sind , dieser
Abstand braucht nur während der kurzen Zeit des Übergangs von einem Stab zum
anderen als konstant oder während abwechselnden Übergangs als gleichförmig ver¬
änderlich angenommen zu werden .

Der Vergleich -Apparat besteht hiernach im wesentlichen aus zwei fest aufgestellten
Mikroskopen und einer zwischen beiden befindlichen Schienen -Wagen -Einrichtung , mittelst
welcher die in Tröge eingeschlossenen Meterstäbe rasch unter die Mikroskope geschoben
werden können .

2 . (C. 4 .) Der Komparator besteht aus zwei Mikroskopen , welche auf Stein¬
pfeilern im Abstand von 1™gut fundiert sind ; dazwischen bewegt sich ein Wagen auf
Schienen , welcher die Vergleichs -Stäbe mit ihren Trögen unter die Mikroskope bringt .

3 . (C . 12 .) Richtigstellung aller Teile .
4 . (0 . 13 .) Die Mikroskope . Objektiv von 36 ™“ Brennweite , Ganghöhe der

Schraube = 0,75™“ , 1 Umdrehung giebt 0,1 ”*™, die Trommel ist in 100 Teile geteilt ,
giebt also sehr nahe 0,001™™ = 1.“ , Gesichtsfeld = 1,1™“ , Okular Ramsden , Ver -
grösserung 90- bis 95fach.

5 . (C. 14 .) Neben - Apparate zur Regulierung der Temperatur in den Trögen mit
Hilfe von Wasser -Zirkulation .

6 . (C . 16 und Tome III C. 11 .) Als Flüssigkeit wurde zuerst Glycerin genommen ,
aber wieder aufgegeben , weil die Klebrigkeit sich als Hindernis gleichförmiger Temperatur -
Verteilung zeigte ; ähnlich verhält es sich mit vegetabilischen Öfen. Petroleum stört
durch die gesundheitschädlichen Dämpfe . Reines Wasser wurde schliesslich ausreichend
gefunden für Platin , Messing und Bronce , dagegen für Eisenstäbe wurde als nicht an¬
greifende Flüssigkeit nach verschiedenen Versuchen , gesättigte Borax -Lösung genommen .
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Die Stäbe sind in der Begel 25 ’”"* tief in die Flüssigkeit eingetaucht , und die
mikrometrische Messung durch eine 25™“ tiefe Flüssigkeits -Schichte geschieht nahezu
mit derselben Genauigkeit wie durch Luft .

7 . (C. 20 und Tome III . C . 6 .) ^Künstliche Beleuchtung in der Axe der Mikro¬
skope , durch einen Spiegel unter 45 ° .

8 . (C. 26 .) Einstellen auf deutliche Sehweite , nach Foersters Theorie „ l’influence
de la mise au foyer sur les mesures mikromdtriques “ .

9. (C . 30 .) Ausdehnungs -Coöfficienten (vgl . unseren früheren § 7 . S . 53—54) .
10 . u . ff. (C. 30) Thermometer und (C . 62 ) Barometer .
30 . (C . 104 und Tome III . C. 7 .) Periodische Schraubenfehler (vgl . unseren

früheren § 6 . S . 48 — 50) .
31 . (C. 118 und Tome V . Seite 47 ) Fortschreitende Schraubenfehler .

§ . 9 . Ältere Basis- Messungen .
Die ersten Basis -Messungen waren nichts anderes als Linien -Messungen im

wesentlichen von ähnlicher Art , wie sie der Landmesser mit Messlatten heute noch
macht , jedoch mit besonderer Sorgfalt ausgeführt .

So begann Snellius 1615 (vgl . unseren Band I . 4 . Aufl . 1895 , S . 478) ; und auch
die Franzosen massen im 17 . und auch noch im 18 . Jahrhundert mit hölzernen Latten .

Ähnliche Messungen kamen in Deutschland auch noch in diesem Jahrhundert
vor ; so berichtet z. B . Benzenberg aus dem Jahre 1805 in dem Buche „Über das
Cataster “

, Bonn 1818 , S . 20— 21 : „Die Standlinien wurden mit hölzernen Messstangen
gemessen , die 12 Fuss lang waren , mit Ölfarbe angestrichen und an beiden Seiten mit

Kupfer beschlagen . Diese wurden über kleine Brücken gelegt , die in eine Länge von
1000 Fuss durchs Feld gebaut wurden , und auf denen sich eine viermalige Messung
fortsetzte , während dass hinten die Brücken abgebrochen und vome wieder angebaut
wurden . 22 Feldmesser wurden bei der Messung der Standlinien gebraucht .“

Folgendes sind Benzenbergs Angaben für die 4malige Messung bei Mündelheim ,
wobei wir sogleich die Reduktion in Metermass und eine Genauigkeits -Berechnung
zufügen :

Fuss Zoll Linien Meter V «2
1 . 24062 1 8,1 = 7551,9867 + 14,9””* 222
2 . 24062 1 5,0 = 7551,9799 + 21,7 471
3 . 24062 3 3,6 = 7552,0292 — 27,6 762
4 . 24062 2 7,1 = 7552,0107 - 9,1 83

Mittel 24062 2 3 = 7552,0016 1538
Man berechnet hieraus :
Mittlerer Fehler einer Messung :

= / :1538
3

“ = + 22 ,6”

Mittlerer Fehler des Mittels aus allen 4 Messungen :

M = = + 11 .3““
V 4

Mittlerer Fehler einer Messung von Länge :

Toi = — - — = 4 - 8,2”m
y ?M2 — (1)
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Diese Genauigkeits -Angaben beziehen sieh nur auf die unregelmässigen , durch
die Handhabung der Stangen und etwaige Änderungen derselben während der Mess¬

ungen erzeugten Fehler ; einseitig wirkende Fehler und namentlich die Unsicherheiten
der Latten selbst sind hier nicht mitgerechnet .

Trotzdem schien es nicht unzweckmässig , an diesem, wie es scheint , zuverlässigen
Beispiele zu zeigen , wie genau man mit den einfachsten Mitteln im Felde messen
kann , wenn man gute Messungs -Unterlagen hat .

Die Schweizer Basis bei Aarberg von 1880 ist von Koppe auch mit gewöhn¬
lichen 5Meter -Latten längs gespannter Schnüre gemessen worden , wobei sich für 1”

der mittlere unregelmässige Fehler + 0,28”” fand , also für eine Messung von l im der
mittlere Fehler :

ml = 0,28 ]/l000 = + 8,9"”" (2)

(vgl . Koppe : „Der Basis -Apparat des General Ibanez und die Aarberger Basis¬

messung “ , Zürich 1881 , S . 7—8) .
In jüngster Zeit ist eine wertvolle Untersuchung dieser Art gemacht worden,

indem Reinhertz die Bonner Basis mit gewöhnlichen Messlatten und Stahlbändern
nachgemessen hat . Die Vergleichungen der so erhaltenen Ergebnisse unter sich und
mit den feinen geodätischen Messungen des geodätischen Institutes und der Landes¬
aufnahme (welche bereits in unserem I . Band , 4. Aufl . 1895, S . 514 kurz erwähnt
sind ) gaben sehr überraschende Resultate betreffs der verhältnismässig grossen Ge¬
nauigkeit der gewöhnlichen Latten - und Band -Messung , und betreffs der im wesent¬
lichen proportional den Längen auftretenden Fehler -Fortpflanzung . Reinhertz hat über
seine Messungen berichtet auf der 19 . Hauptversammlung des deutschen Geometer¬
vereins in Bonn 1895 ( „Zeitschr . f. Verm . “ 1895, S . 508) und der ausführliche Bericht
wird in der „Zeitschr . f. Verm . “ Anfang 1896 gegeben .

Nach diesen Bemerkungen über das Messen mit gewöhnlichen Messlatten , geben
wir eine kurze Darlegung der Entwicklung der Basismessungs -Verfahren zunächst von
den französischen Messungen im 17 . und 18 . Jahrhundert bis zum Anfang dieses
Jahrhunderts .

Picard wandte 1669 4 hölzerne je 2 Toisen lange Massstäbe an , die er mit Hilfe
von Schrauben zu 2 je 4 Toisen langen Messlatten verband . Diese legte er unmittelbar
eine vor die andere auf den (horizontalen ) Boden . Da sie im Querschnitt rund , und
leicht von Gewicht waren , so war eine Verschiebung auf dem Boden kaum zu ver¬
meiden . (La Condamine, Mesure des trois premiers degrös u . s . w . S . 249 ) .

Bei den Gradmessungen in Peru und Lappland ( 1736) wurden ebenfalls hölzerne
Latten , und zwar deren drei zusammen angewendet . Dieselben waren 15 oder 20 Fuss
lang , 2 Zoll breit , 11/2 Zoll dick und mit Eisen beschlagen ; sie wurden auf je zwei
Stützen , jede einzeln horizontal , gelegt . (La Condamine S . 250.)

Bei der im Jahre 1739 vorgenommenen Nachmessung der Picardschen Basis von
Juvisy bediente sich Cassini zum erstenmal metallener Massstäbe , nämlich 4 eiserner
Stäbe , deren Temperatur -Ausdehnung er aus Quecksilber -Thermometerangaben ermittelte .
(La Condamine S . 251 .)
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Der englische General Roy mass im Jahre 1784 eine Grundlinie bei Houns -
low-Heath , zwischen London und Greenwich , 7 530“ lang , mehrmals mit verschiedenen
Hilfsmitteln :

erste Messung mit einer - Kette . . . 27 408,22 Fuss
zweite „ „ Holz-Massstäben . . 27 406,60 „
dritte „ „ Glasröhren . . . 27 404,72 „

Ferner im Jahre 1787 eine Basis bei Romney -Marsh wieder mit der Kette ,
28 532,92 Puss , und 1794 bei Salisbury 36 574,4 Puss .

Doppelmetall -Stange von Borda .

Den Übergang von der unvollkommenen Temperatur -Bestimmung Cassinis ( „le
thermometre ä la main “ ) zu der heute noch in Gebrauch befindlichen Verbindung
zweier verschiedener Metalle zu einer Messstange fand Borda , dessen aus Platin und
Kupfer zusammengesetzte Stäbe bei der grossen französischen Gradmessung von 1792
u . ff. von Delambre und Möchain angewendet wurden .

Fig . l .
Platin -Kupfer -Stange von Borda .

(Platinatab 12 Fuss lang , 6 Linien breit , 1 Linie dick .)

Platin B s .
Wir geben in Pig . 1 . die Zeichnung der Bordaschen Stangen nach „Puissant ,

traitd de geodösie “
, 2” ' Edition, Paris 1819 , I . S . 203 —207 . Die eigentliche Mess¬

stange ist von Platin , 2 Toisen = 12 Puss = 3,898m lang , 6 Linien = 13,5“” breit
und 1 Linie = 2,3”” dick . Auf dieser Platinstange befindet sich eine Kupferstange ,und zwar am linken Ende mit der Platinstange fest verbunden , während das rechte
Kupfer -Ende sich frei ausdehnen kann , und etwa 0 .16“ vom rechten Ende entfernt ,mit einer Teilung ah und Nonius n in seiner Stellung gegen das Platin abgelesen
wird . Die so gemachten Ablesungen geben nun das Mass für die Ausdehnung , denn
da Platin den Ausdehnungs -Coefficient a = 0,000 0089 und Kupfer « ' = 0,000 0172
(für 1 ° C .) hat , also a ' etwa das Doppelte von a ist , lässt sich aus der Ausdehnungs -
Differenz die Ausdehnung des Platins selbst berechnen . (Wir werden dieses bei den
Bessel sehen Stangen mit Eisen und Zink in § 11 .—12 . ausführlicher behandeln .)

Ausser dem Temperatur -Massstab a b zeigt Pig . 1. noch einen Massstab an dem
Schieber cd , welcher dazu dient , den Zwischenraum je zweier aufeinander folgender
Stangen ohne Stoss zu messen .

Solcher Stangen wie die hier beschriebene wurden je 4 zusammen auf Stativen
mit Mikrometer -Schrauben eingerichtet ; die Stangen -Neigungen wurden durch Libellen
und Gradbogen bestimmt , und in Rechnung gebracht .
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Mit diesen Bordaschen Stangen sind (nach den Verh . d . 5 . allg . Konf . d . Eur .
Gr . , Gen .-Ber . für 1877, S. 40) 7 Grundlinien gemessen worden , nämlich :

1798 Grundlinie bei Melun 11 812'

» n 1i Perpignan 11 706
1804 n n Ensisheim 19 044
1818 n n Brest 10 627
1826 n Bordeaux 14119
1827 D Gourbera 12 220
1828 n Aix 8 067

Golbys Kompensations -Stangen .
Eine sinnreiche Anwendung des Grundgedankens der aus zwei verschiedenen

Metallen zusammengesetzten Basismessstangen hat der englische General Golby , etwa
um 1827 , gemacht , indem er zwei Ausdehnungen von Eisen und Zink einander gegen¬
seitig aufheben Hess , so dass der Apparat selbstthätig kompensierend wird .

Fig . 2.
Colbys Kompensations -Stange .

(Länge = 10 Fass = 3,048 m.)
a 0 Messina Cl'_ 111 1Eisen ■ " SC

Nach Andeutung von Pig . 2 . hat man eine Messing -Stange und eine Eisen -
Stange in der Mitte bei G fest verbunden , so dass sich die Enden links a und b,rechts a! und b ' frei ausdehnen können . Nun sind Hebel ab c und a! b ' d angebrachtin den Verhältnissen :

ac _ a! d m
b c V d e

wo m und e die Ausdehnungs -Coefficienten für Messing und Eisen sind (etwa m =
0,000 019 und e = 0,000 011 für 1 ° C .) . Nun ist leicht einzusehen , dass der zwischen
c und d gemessene Abstand L unabhängig von den Ausdehnungen ist .

Solcher Stangen in Holzkästen wurden 6 zusammen angewendet , und die
Zwischenräume der Stangen wurden mikroskopisch gemessen .

Mit diesem Apparat wurden 2 Linien in England gemessen : Longh Foyle ,nördl . Irland , 1827 , 41 641 Friss , und Salisbury , westl . von London , 1849 , 34 841 Puss ;ferner 10 Linien in Indien .
Näheres hierüber giebt „ Ordnance trig . survey “ (vgl . S . 10 ) S . 200 u . ff. mit

Plate II , sowie im Auszug Clarke , Geodesy (vgl . S . 14) S . 163 u . ff.
Für die Bayerische Landesvermessung lieferte das mechanische Institut von TJtz-

schneider und Reichenbach im Anfang dieses Jahrhunderts einen Apparat , welcher aus
fünf in hölzernen Kästen eingelegten je 4 Meter langen in polierte Stahlkanten aus¬
laufenden eisernen Stangen bestand . Die Zwischenräume der bei der Messung sich
nicht berührenden Stäbe wurden durch stählerne Keile (12 ™ lang , hinten 6,5 ”"", vorn
0,5mm dick) , die Neigungswinkel durch Libellen , und die Temperatur durch auf den
Stangen ruhende Thermometer bestimmt (Generalbericht der Europ . Gradmessung 1867,S . 25) . Hie genaue Beschreibung und Zeichnung dieses Reichenbach sehen Apparates

Jordan , Handb . d . Vermessungskunde . 4. Aufi . III . Bd . 5
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findet sich in dem Werke : „Die Bayerische Landesvermessung in ihrer wissenschaft¬

lichen Grundlage “
, München 1873 , S . 3—65 .

Ähnlich diesem Beichenbach sehen Apparat , in einzelnen Teilen noch sinnreicher

ausgedacht , war Schwerds Apparat , den er beschrieben hat in dem Werke : „ Die kleine

Speyerer Basis “ u . s . w . Speyer 1822 .

Der Württembergische Basis -Apparat von Bohnenberger .

Auch dieser Apparat ist grösstenteils nach dem Beichenbach sehen Muster unter

Bohnenbergers Leitung im Jahr 1818 gearbeitet (s . „Die Landesvermessung des König¬
reichs Württemberg “ , herausgegeben von Köhler . Stuttgart 1858 , S . 45 ) .

Die schon 1792 von Borda erfundene Verbindung zweier Metalle zur Bestim¬

mung der Temperatur -Ausdehnung kam bei dem Beichenbach sehen und Bohnenberger -

schen Apparat nicht zur Verwendung , sondern es wurden nur gewöhnliche Thermo¬

meter benützt .
Die Messstangen sind je 2 Toisen lang , 32 Pfund schwer und „ genau nach der

Peru -Toise auf 13 ° B. reguliert “ (hierüber haben sich später Bedenken erhoben ) .

Fig. 3.
Eiserne Messstange in einem Holzkasten .

Therm :

2 Toisen

Fig . 4. Der Querschnitt der Stangen
Eiserne Stange mit Thermometer im Holzkasten . igt ejn Quadrat von 2 ,3™ Seite .

Jede Stange endigt einerseits in
eiue horizontale , andererseits in eine
vertikale Schneide . Die Stangen
sind in hölzerne Gehäuse einge¬
schlossen , wobei jedoch die Schnei¬
den beiderseits hervorragen . Die

Gehäuse haben unten Verstärkungsrippen F und oben Handhaben A B (Fig . 3 .) . In

jede Stange ist ein Thermometer eingelassen (Fig . 4 .) , welches mittelst einer durch
Glas verschlossenen und beim Nichtgebrauch bedeckten Öffnung in dem Holzgehäuse
beobachtet werden kann . Bei L ist eine Libelle mit Gradbogen angebracht .

Der Messkeil ist von gehärtetem Stahl , abgesehen von der Handhabe ist er
12 '”* lang , 5™”* breit , vorn 0,5”“ und hinten 6,2"”“ dick .

Die Messungsbi 'ücke bestand aus einfachen hölzernen Böcken.

Fig. 5.
Messungs-Brücke .
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Die Basis Solitude -Ludwigsburg von 6687 Toisen oder rund 13 Kilometer Länge
wurde in der Zeit vom 18 . September bis 12 . Oktober 1820 in 19 Arbeitstagen ein¬

mal gemessen .

Weiteres und Ausführlicheres über die älteren Basismess -Apparate giebt West -

phal , Basisapparate und Basismessungen “ , Zeitschrift für Instrumentenkunde , 1885,
S . 257 — 274 , S . 333 — 345 , S . 373 - 385 , S . 420 — 432 . Ferner 1888 , S . 189 — 203 ,
S . 225 — 236 , S . 337 — 346 .

Reduktion einer Basislänge auf den Meereshorizont .

Ausser den Reduktionen für Temperatur , Stangenneigung , Zwischenräume u . s . w . ,
welche bisher erwähnt worden sind , hat man bei Basismessungen , um sie unter sich

trigonometrisch vergleichbar zu machen , auch noch die Reduktion auf dem Meeres¬
horizont (bzw . auf N . N .) anzubringen .

Wenn h das arithmetische Mittel der Höhen der einzelnen Stangenlagen über
dem Vergleichs -Horizont ist , und r der Brdkrümmungs -Halbmesser , wenn ferner B die
Summe der horizontalen Stangenlagen und B 0 deren centrale Projektion auf den Horizont
ist , so besteht die Beziehung :

B
So

r -+- h
r

oder auch hinreichend genähert :

B — Bq = B - --

Zur Übersicht geben wir hiezu einige Zahlenwerte :

h log ^ + Ä
j

0”* o .ooooooo -o
100 68 -1
200 136 -1
500 340 -3

h tog + AJ
500 "* 0 .0000340 -3
600 408 -4
800 544 -5

1000 680 -6

Differenz
68T

für 100 ***

Für die Basislänge B = 1000 “ und die Höhe h = 100 ”* beträgt die Reduktion
— 0,0157 “*.

§ 10 . Der Bessel sehe Basis -Mess-Apparat.
Als Bessel im Jahre 1834 zu seiner „ Gradmessung in Ostpreussen “ einen Basis -

Mess -Apparat bauen liess , standen ihm die Erfahrungen von Borda , Reichenbach , Rep¬
sold , Schwerd u . A . zu Gebote (Platin und Kupfer , Messkeil u . s . w .) .

Bessel hat zu diesen Erfahrungen sein eigenes Verständnis hinzugefügt , er hat
alle Einrichtungen und Berechnungen so scharfsinnig erdacht und so folgerichtig
durchgeführt , dass der Apparat immer als klassisches Beispiel gelten wird , obgleich er
natürlich jetzt nach 60 Jahren nicht mehr der beste sein kann .

Mit dem Bessel sehen Apparat sind bis jetzt 14 Grundlinien gemessen worden ,
nämlich 1) bei Königsberg 1834 , 2) Kopenhagen 1838 , 3) Upsala 1840 , 4) Berlin 1846 ,5 ) Bonn 1847 , 6) Lommel in Belgien 1851 , 7 ) Ostende 1853 , 8) Strehlen in Schlesien
1854 , 9 ) Braak in Holstein 1871 , 10 ) Grossenhain in Sachsen 1872 , 11 ) Ensisheim
im Eisass 1877 , 12 ) Göttingen 1880 , 13 ) Meppen 1883 , 14 ) Bonn , Neumessung 1892 .
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Obgleich der Apparat bei allen diesen Messungen in seinen Hauptteilen der¬
selbe geblieben ist , und obgleich damit die Art der Basismessung einen gewissen kon¬
servativen Charakter angenommen hat , ist doch auch hier die Wissenschaft nicht stehen

geblieben ; seit der Braaker Basis ist die Art der Massvergleichung und die Ausführung
der Messung (z . B . die Ablotung ) gegen früher stetig vervollkommnet worden , und vor
der Göttinger Messung hat der Chef der trigonometrischen Abteilung , Schreiber , den

(1880 mit den rohesten technischen Hilfsmitteln hergestellten ) Apparat und alle Ein¬
zelheiten seiner Anwendung eingehender Kritik unterworfen , woraus die drei letzten

Messungen bei Göttingen , Meppen und Bonn hervorgegangen sind , welche zur Zeit als
die beste Ausnützung des Bessel sehen Gedankens zu betrachten sind .

Wir geben im Folgenden die Beschreibung und die wichtigsten Zeichnungen
des Apparates , teils nach der ersten Mitteilung von Bessel selbst ( „ Gradmessung in
Ostpreussen “

, S . 1 — 51 und Tafel I — V) , teils nach den vor Göttingen angebrachten
Verbesserungen .

Der Bessel sehe Basis -Mess-Apparat .

(Darstellung in natürlicher Grösse .)

Fig . l .
Ansicht der Stangen -Enden (Anordnung von 1834).

E = EiseD , Z = Zink , St = Stahl , T — Tragstange , R = Rollen .

ijpiimimranniimiii^uiii

Fig . 2.
Querschnitt der Stangen

mit Massen in Pariser Linien
(l Par . Linie = 2,26 mm).
(Anordnung von 1834.)

Fig . 3.
Einweis -Scheibo E E

mittelst des Rahmens R auf das vordere
Stangenende aufgeschraubt .

(Anordnung von 1880.)

Zink

Eisen

Trr/jjstanrjc

*■— a — »
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I ' ig. 4.
Vorderes und hinteres Stangen -Ende (Anordnung von 1880)

im Längsschnitt und im Grundriss (natürl . Grösse ).

Hinteres Stangen-
\ /v Ende

Vorderes Stangen Ende

fcE isen

Fig . 5.
Der gläserne Messkeil (natürl . Grösse ).

(20 = 2 Par . Linien — 4,5 »Mt 8 = 0,8 Par . Linien = 1,8 mm)

(Ordinaten -Differenz , zwischen 2 Strichen , = 0,01 Par . Linien = 0,0226 mm .)

I . Die Messstangen .
Es werden 4 Messstangen zusammen gebraucht , jede Messstange ist 3,898 "*

( = 2 Toisen ) lang , 27 ”‘“ breit und l mm dick . Dieses bezieht sich auf die eigentliche
eiserne Messstange , auf welcher aber eine zweite , halb so breite Zink -Stange auf liegt ,
wie aus dem Querschnitt Pig . 2 . zu ersehen ist .

Die Zinkstange ist an dem einen Ende mit der Eisenstange fest verbunden ,
im übrigen liegt sie frei auf und kann sich gegen die Eisenstange ausdehnen . Die
horizontale Fuge zwischen Eisen und Zink gab aber zu Beibungen Veranlassung , und
deswegen wurde diese Fuge später auf etwa 1”™ erweitert , und durch kleine Rollen
ausgefüllt , welche in Fig . 4 . links durch B angedeutet sind .

Da die flachen Eisen - und Zinkstangen sich auf eine Länge von nahe 4m nicht
freitragen könnten , ist ihnen eine Tragstange hochkantig unterlegt , jedoch durch
Vermittlung von mehreren Rollenpaaren , nach Andeutung von Fig . 1 . Die Bewegung
auf den Rollen ist aber nur eine geringe , und wird durch die Mikrometer -Schraube S
(wie an der Alhidade eines Theodolits ) geregelt .
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Die Holzkästen , in welche die Stangen eingelegt werden , sind in unseren Figuren
S . 68 und 69 nicht gezeichnet , sie sind etwa 23“ * breit und ebenso hoch .

Libellen sind auf den 4 Stangen zur Neigungs -Bestimmung angebracht . Ge¬
wöhnliche Quecksilber -Thermometer wurden mit in die Kästen gelegt , obgleich sie
neben der Zink - und Eisen -Verbindung nicht unbedingt nötig sind , und nur ausnahms¬
weise abgelesen wurden .

Aus den erwähnten Holzkästen ragen nun die Stangen nur mit ihren Enden
hervor . Fig . 1 . zeigt zwei Stangen -Enden und man erkennt daraus die Art des An¬
einan derlegens der Stangen . Es endigt nämlich die linke Stange in eine vertikale
Stahlschneide , und die rechte Stange in eine horizontale Stalilschneide , und diese
beiden Schneiden werden einander so nahe gebracht , dass der übrig bleibende Zwischen¬
raum durch einen Messkeil gemessen werden kann .

Fig . 4 . zeigt die neuere Anordnung der Stahlschneiden und deren Verbindung
mit den Eisen - und Zinkstangen . Dabei wurden auch die horizontalen Schneiden der
4 Stangen mit gelenkartig niederzuklappenden Schutzdeckeln versehen , wodurch dem
früher nicht seltenen Falle von Beschädigung dieser Schneiden vorgebeugt wird , wäh¬
rend die vertikalen Schneiden durch die vorspringenden Enden 0 der darunter befind¬
lichen Eisenstangen schon genügend geschützt sind . (Der Schutzdeckel ist in dem
Grundriss von Fig . 4 . nur teilweise gezeichnet , indem dessen linker Teil nur punktiert
angedeutet ist , damit die darunter liegende horizontale Schneide nicht dem Anblick
entzogen wird .)

Die auf jeder Eisenstange aufliegende Zinkstange ist am einen (linkseitigen )
Ende durch Schrauben und Lötung mit der Eisenstange verbunden , von diesem Ende
bis zum andern Ende ist sie ohne Verbindung mit der Eisenstange . Auf der ent¬
gegengesetzten (rechten ) Seite endigt die Zinkstange in eine horizontale Stahlschneide ,
deren jeweiliger Abstand von einer vertikalen , auf der Eisenstange befestigten Stahl¬
schneide durch einen horizontal eingeschobenen Keil gemessen wird .

Hier ist auch noch die kleine Einweis -Scheibe E E Fig . 8 . S . 68 , zu erwähnen ,
welche mittelst eines umgreifenden Rahmens B an dem rechtseitigen Ende D jeder
Stange befestigt ist . Von dieser Scheibe mit ihren drei schwarzen und weissen Feldern
wird bei der Geradrichtung der Basis weiter die Rede sein .

II . Die Messkeile.

Die bei der Göttinger Messung 1880 gebrauchten Glaskeile sind in Fig . 5 .
S . 69 in natürlicher Grösse gezeichnet .

Die Zunahme der Keildicke von einem Strich zum folgenden ist = 0,01 Pariser
Linien , und da man noch 0,1 des Intervalls schätzen kann , so hat man Ablesungen
von 0,001 Linien für die Keildicken (0,001 Par . Linien = 2,256 .“ ) .

Die Bestimmung der Keildicken geschah durch eine Einrichtung , welche durch
die schematische Fig . 6 . S. 71 angedeutet ist .

Auf einer festen Unterlage A A ' befindet sich ein Cylinder B mit horizontaler
Schneide befestigt , und ein zweiter Cylinder G, welcher der horizontalen Schneide des
Cylinders B eine vertikale Schneide gegenüberstellt , ist auf dieselbe Unterlage A A'
beweglich aufgelegt . Dieser bewegliche Cylinder G trägt auf seiner oberen Fläche
eine Teilung , welche durch ein lotrecht darüber angebrachtes Mikroskop M abgelesen
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werden kann . Man schiebt den Cylinder C mit seiner Schneide gegen den Cylinder
B berührend an und liest die Teilung auf G am Faden des Mikroskopes ab ; zieht

man dann den Cylinder G ein wenig zurück , und füllt den Zwischenraum k zwischen

den beiden Schneiden durch den zu untersuchenden Messkeil aus , wobei eine zweite

Ablesung auf C gemacht wird , so ist die Differenz der Ablesungen auf G gleich der

betreffenden Keildicke k.
Fig . 6.

Bestimmung der Keil dicken h.

Auf diese Weise wurde jeder Keil an mehreren Stellen in Bezug auf seine Dicke
untersucht , es zeigte sich , dass die Keildicken auf 0,01 Linien genau proportional den

Keillängen waren , dass also die Keilflächen bis zu dieser Genauigkeit eben geschliffen
waren . Nach diesen Bestimmungen , welche in Fig . 6 . angedeutet sind , wurden
Tabellen angelegt , aus denen für jede Keilablesung die zugehörige Keildicke entnommen
werden kann .

Die Messkeile dienen zwei verschiedenen Zwecken : erstens werden damit die
Zwischenräume zwischen je zwei Stangen -Enden gemessen (Keil J Fig . 4 . S . 69 ) und
zweitens werden damit die Verschiebungen der Zinkstangen gemessen (Keil k Fig . 4.
S . 69 .)

Die ganze Einrichtung von Zink und Eisen mit Keilmessung ihrer Differenz
nennt man auch „Metall -Thermometer . “

III . Die Messungs -Brücke .

Als Auflager für die Stangenkästen benützte Bessel kleine hölzerne Böcke ,
rvelche jedoch nicht geradezu auf den Boden gestellt wurden , sondern es wurden zuerst
je drei 20 em lange eiserne Nägel in den Boden geschlagen , darauf ein Brett gelegt
und darauf ein Bock gestellt , der ausserdem mit etwa 50 *" belastet wurde , um seine
Standesfestigkeit zu erhöhen .

Auf je zwei Böcke wurden dann die einzelnen Stangenkästen aufgelegt und
sowohl nach der Höhe , als der Quere nach , eingerichtet . Dieses Einrichten geschah
von der Königsberger Messung 1834 bis zur Braaker Messung 1871 von freier Hand ,
und war daher sehr mühsam . Nach den Erfahrungen von Braak wurden die hölzernen
Böcke mit Kurbelschrauben versehen , zum raschen mikrometrischen Regulieren der
Höhen sowohl als auch der Geradrichtung . Diese verbesserten Böcke sind seitdem bei
Grossenhain in Sachsen und bei Oberhergheim im Eisass mit Vorteil gebraucht , zur
Basismessung bei Göttingen und Meppen aber durch neue , aus Schmiedeeisen kon -
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struierte Böcke ersetzt worden . Die hölzernen Unterlagsbretter und die eisernen
20°“ tief in den Boden einzuschlagenden Nägel , auf welchen diese Bretter ruhen ,
blieben dieselben wie bei Bessel . („ Gradm . i . Ostpr . “ Tafel IV .)

Wegen der Standfestigkeit ist die Auflegung der Stangen so nieder als möglich
gehalten . Die Böcke sind nur 0,63” hoch , so dass mit Zurechnung der Unterlags¬
brettdicke und der halben Kastenhöhe die Stangenschneiden nur 0,77“ über dem Erd¬
boden zu liegen kommen , was gerade noch Handhabung und Ablesung der Keile ohne
zu unbequeme Körperlage gestattet .

§ 11. Massbestfmmungen des Besselschen Apparates.

Fig . 1.
Metall -Thermometer .

- L -

I . Das Metall - Thermometer .
Wir betrachten zunächst das Metall -Thermometer in seiner einfachsten Gestalt

(Fig . 1 .) . Eine Eisenstange von der Länge l und eine Zinkstange von der Länge V
werden so aufeinander gelegt , dass die linkseitigen Enden
Zusammentreffen , dann ist der Abstand k der beiden

lc rechten Enden die Angabe des Metall -Thermometers .
Bei irgend welcher Temperatur wird l = V wer-

* - - den , und die gemeinsame Länge beider Stäbe sei in
diesem Falle = L . Zählt man nun die Temperatur t/

von jenem Stand rückwärts , nennt e und z die Ausdehnungs -Coäfficienten von Eisen
und Zink , so ist :

l = L (1 — et ') i = L ( \ — zt ') (1)
Die Differenz ist :

l — V ~ Titz -—• e) V — k (2)
Durch Elimination von t ' erhält man :

l = L — ~ k
g — e (3)

Den relativen Ausdehnungs -Coefficienten,
bezeichnen wir mit m , d . h . :

welcher hier Coefficient von k ist ,

(4)g — e
und damit haben wir :

l = L — mk (5)
Eine Gleichung von der Form (5) gilt für jede der 4 Stangen .
Dürfte man auf die Oieichheit der Ausdehnungen bei allen 4 Stangen (die aus

einem Stück geschnitten sind ) rechnen , so wären die Ausdehnungs -Coefficienten e und
z , für Eisen und Zink als konstant zu betrachten . Bessel nimmt jedoch für jede
Stange besondere Werte e und g, also auch einen besonderen Wert m an , und dem¬
nach bestehen entsprechend (5) für die 4 Stangen folgende 4 Gleichungen :

l ] — Lj k j

h = — k3 ms
I4 — L4 — m i

wo fej, k%, fc3, k4 die Keilmasse der Metall -Thermometer der 4 Stangen bedeuten .

(6)
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(7)

Bür die Längen L x, Lz, L3, L4 werden andere Formen eingeführt
Lx — L -f- xx
L 2 = L -{- x2
Ls = L + x3
L 4 — L X4

dabei sind x 1 , x %, xs , x4 die Korrektionen, welche an einem gemeinsamen Wert L
noch anzubringen sind . Dieser Wert L ist willkürlich ; man kann deswegen z. B . L
als arithmetisches Mittel der 4 Werte L x, £ a, L s , L4 annehmen, also :

L \ + + L 3 -+- L 4L =
4

und damit wird für die Korrektionen x die Bedingung erhalten :
"b X8 -h U?3 -f - X4 = 0

damit gehen die Gleichungen (6) über in die folgenden :
lx _Zj —j—X4 kXmx
l3 — L + X3 — m2
h L -
Ia = L -

- x8 -
• ®4 -

■* 3 »« 8
- fc4 » i4

(8 )

(9)

(10 )

Mittel : Z ■km

Hier hat L für das Mittel aus allen 4 Stangen dieselbe Bedeutung, wie Lx,
i 8, L4 nach (6 ) für die einzelnen Stangen.

II . Gegenseitige Vergleichung der 4 Stangen . Bestimmung der x und m .
Fig. 2.

Stangen -Vergleichung .

In Pig . 2 . bedeuten Kx und W2 zwei möglichst unveränderliche, auf gemein¬
samer Unterlage befestigte Stahlkeile , welche zum Zweck des scharfen Anstossens in
Schneiden endigen. Der Abstand M der Schneiden ist etwas grösser als die Stangen¬
lange l, so dass zum Ausfüllen ausser der Stange l noch zwei Cylinder N ' und N "
und die Keilmasse n' und «” nötig sind. (Die Ausfüll -Cylinder N ' und N " sind
nur aus Gründen der Bequemlichkeit angebracht und für das Prinzip des Apparates
unwesentlich .) Denkt man sich nun die Stange Nr. 1 in den Vergleich -Apparat Pig . 2 .
eingelegt , so erhält man eine Gleichung :

M = h -+- (N ' + N " ) + K + n{ '
(11)

Es ist aber nach ( 10) :
lx = L -1- — kx mx (12)



74 Mass-Bestimmungen des Bessel sehen Apparates . § 11 .

Nun wird , um alles Gleichartige zusammenzufassen , gesetzt :

M — (N ’ + N "
) - L = G I

(13 )
n{ 4- n{ ' = nx )

Damit erhält man aus den zwei vorhergehenden Gleichungen (11 ) und (12 ) die

folgende :
nx = G — X\ + kl nii (14 )

Wenn man nach einander die 4 Stangen einlegt , so erhält man entsprechend
(14 ) folgende 4 Gleichungen :

0 = — n 4 4- G — %i 4- k4 1
0 — — n 3 G — -4- k% I
0 = — U3 4~ G — X3 4- k3 fll 3 j
0 = — n4 + G — xA + k4 m4 )

(15)

Z . B. gaben die 4 ersten solchen Vergleichungen folgende erste Gruppe von

Gleichungen dieser Art , mit eingesetzten Beobachtungswerten :

Gruppe I.

0 = — 3,9693 + C, — xi 4 - 1,8960 mt
0 = — 3,8600 + C, — x, H 1,9967 i»,
0 = — 3,4875 + Ct — x „ + 1,3387 »>3
0 —3,4506 -j- 1,3377

(16)

Alle Keilmasse , z . B . 3,9693 und 1,8960 , sind hier in Pariser Linien ( = 2,2558“ ’")
gezählt .

Ähnlich wie (16 ) wurden noch 8 andere Gruppen von Vergleichungen unter

möglichst verschiedenen Umständen gewonnen , und die 36 Gleichungen nach der M.
d . kl . Q . aufgelöst . Dabei sind folgende Unbekannte zu bestimmen :

1) Cj C2 . . . C9 . für jede Gruppe ein besonderes C (nach 13 ) , damit den
Änderungen des Apparates von Gruppe zu Gruppe Rechnung getragen wird ,

2 ) Xi 3i2 x3 x4 mit x 4 4- » 2 4- xs + x4 = 0 , also nur drei unabhängige x ,
3) » j ot 2 m3 m4.
Man hat also in den 36 Gleichungen die Anzahl von 9 -4- 3 - t- 4 = 16 Unbe¬

kannten . Die Auflösung nach der M . d . kl . Q . gab die verschiedenen G und ferner :

Xi = — 0,3015 Par. Linien mt = 0,54033 \
tr3 = -f- 0,3986 „ m2 = 0,55976 1
% = — 0,0713 ms = 0,57575 > (17)

= — 0,0258 w%= 0,58103
Summe = 0,0000 Mittel m = 0,56422 1

und den mittleren Fehler einer Vergleichung :
m = + 0,00353 Par . Linien = + 0,0080 ““ ( 18)

oder relativ :
m 0,00353 „ „ „ „ _

1 _ 1728 ~ 0,000 002 = 2 Milliontel (18a)

Diese mittleren Fehler sind hier zunächst reine Rechnungsgrössen , welche nicht
alle Fehlerquellen zum Ausdruck bringen .

III . Vergleichung der Stangen mit dem Normalmass .
Da durch die x4 x2 xs x4 die 4 Stangen bereits unter sich verglichen sind,

genügt es , eine der 4 Stangen mit dem Normalmass zu vergleichen . Das Normalmass
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war eine von Arago und Zahrtmcmn in Paris mit der Peru -Toise verglichene Toise ,
deren Gleichung ist :
T — 863,835384 (1 + 0,000014588 R ) = 863,999205 ( 1 + 0,000014588 (£ — 13 )) (19)

wo die Länge in Pariser Linien und die Temperatur R in Röaumur -Graden gemessen ist .

Hiezu nimmt man die Stange Nr . 1 , welche nach (10 ) und (17) die Gleichung hat :

\ = L — 0,3015 — 0,54033 fcx (20)

Legt man diese Stange Nr . 1 . und die Toise Tnach einander in den Vergleich -

Apparat Pig . 2 . , so erhält man durch die verschiedenen Keilmasse n eine Vergleichung ,
und eine Beziehung zwischen den Gleichungen (19 ) und (20) , aus welcher eine Be¬

stimmung von L hervorgeht .

Es wurden 12 solcher Bestimmungen gemacht , und im Mittel erhalten :

L = 1729,1167 + 0,000 984 Pariser Linien (21 )

und der mittlere Fehler einer solchen Vergleichung

(Uj = + 0,003 407 Par . Linien = + 0,0077™”* (22 )
oder relativ :

4 ?- = 0,000 0020 = 2 Milliontel (23)

0,000984 = 0,000 000 6 = 0 .6 Milliontel

Nun kann man für jede der 4 Stangen ihre Gleichung bilden , nämlich nach

(10) , (17 ) und (21 ) :
?i — 1728,8152 — 0,54033 kt
?3 = 1729,5153 — 0,55976 k2
13 = 1729,0454 — 0,57575 k3 t ^ 4 )
7jj= 1729,0909 — 0,58103 *4 f

1 J

Mittel T = 1729,1167 — 0,56422 &
Allgemein 1 = L — m Tc

IV . Vergleichung der Metall - Thermometer and der Quecksilber-Thermometer .

Obgleich die Kenntnis der Temperatur der Messstangen und der Einzel -Aus¬

dehnungen des Eisens und des Zinks , aus welchen sie zusammengesetzt sind , nicht
durchaus nötig ist , da ja jede Stangenlange l nach einer Gleichung von der Form (24)
sich als Punktion des inneren Keilmasses k ergiebt , war es doch erwünscht , auch eine

Beziehung zwischen den Metall -Thermometer -Keilmassen Je und den gewöhnliehen in
die Kästen mit eingelegten Quecksilber -Thermometern zu erhalten . Es wurden hiezu
bei möglichster Temperatur -Ruhe 160 Vergleichungen angestellt , welche im Mittel für
die 4 Stangen gaben :

k = 2,1249 — 0,045489 R (25)
oder R = 46,712 ° — 21,983 k (25a)

Dabei ist k das Keilmass , welches für die 4 Stangen einzeln mit k%, Ära , \
bezeichnet wurde , und R die Angabe des Quecksilber -Thermometers in Reaumur -Graden .

Diesem entspricht folgendes :
R = 0 ° 5 ° 10 ° 15 ° 20 ° 25 °

k = 2,125 1,897 1,670 1,443 1,215 0,988
30 ° 46,71 °

0,760 0,000 Par . L . (25b)
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V. Bestimmung der Einzel -Ausdehnungen von Eisen und Zink .

Wenn man eine Beziehung zwischen dem Keilmass k nnd der Temperatur t
(z . B . in ü ° oder G ° ) gefunden hat , von der Form (25) oder allgemeiner geschrieben

k = k0 — pt (26)
so kann man auch den relativen Ausdehnungs -CoBfficienten m in seine Bestandteile
e und a zerlegen . Wir haben nämlich nach (4) , (5) und (24) :

z — e
l = L — ink

also wegen (26) :

l = L — m fc0 + mp t = (L — m fc0) ^
1 + - mp

r i u i (26 a)L -— mk0
'

Daraus giebt sich zu erkennen , dass der Ausdehnungs -Coefflcient e der Eisen¬
stange l ist :

e = J n P
(27 )L — m % ?0

und da z — e = e : m ist , hat man nun auch :

p p
k

“ “ L — mk o
7 ^

Hiebei ist L — m &0 = Z0 diejenige Stangenlange l , welche für t = 0 stattfindet .
Für die Mittelwerte der Besselschen Stangen haben wir = 2,1249 (für t

in B °), m = 0,56422 , womit berechnet wird ?0 = 1727,9178 und insbesondere :
e = 0,000 014 854 und z = 0,000 041 180

Die letzten Stellen dieser Zahlen sind nur genähert richtig , wegen des Einflusses der in
Fig . 1 . S. 72 vernachlässigten Zwischenstücke D in Fig . 4. S. 69 u . s. w. vgl . unsere 2. Auflage 1878,
S. 89—90 Gleichungen (1)—(6).

Nun hat man für die Messstangen zwei Arten von Längen -Bestimmungen , erstens
mit den Metall -Thermometern nach der Gleichung (24) und zweitens mit den ein¬
gelegten Quecksilber -Thermometern nach (26a ) .

Bessel hat die Königsberger Basis nach beiden Arten berechnet , und gefunden ,
dass die Quecksilber -Thermometer mehr gaben , nämlich :

für die erste Messung : -f- 16,346 1 = 20"”" für V,m \
für die zweite Messung : -i- 7,406 1 = 9“" fürl lm J (29)

Mittel :
"
+ 11,876 ' = 15””” für P ” )

Der Grund dieser erheblichen Unterschiede wurde darin gefunden , dass die ein¬
gelegten Quecksilber -Thermometer den Temperatur - Änderungen Morgens und Abends
viel rascher folgen , als die massiven und trägen Eisen - und Zinkstangen . Insofern
nun diese Stangen ihr eigenes Thermometer sind , wurde ihren Angaben der Vorzug
gegeben und die Quecksilber -Thermometer nicht weiter berücksichtigt .

Die Basis wurde in zwei Abschnitten je zweifach hin und her gemessen , und
die Berechnung nach den Metall -Thermometern gab folgendes :

Abschnitt Messung I . Messung II . Differenz A = I — II 1
sx 441,1852 “ 441,1839 ”* + 1,3”"» I
s2 1381,1571“ 1381,1632"

_ — 6,1 ””»
j

(dU)
Summe 1822,3423“ 1822,3471“ V. 4)g«>m }
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VI . Fortgesetzte Mass -Bestimmungen für den Bessel sehen Apparat .

In ähnlicher Weise , wie wir im Vorstehenden von der Königsberger Messung
beschrieben haben , wurden auch später Mass-Bestimmungen zu den in § 10 . S . 67
erwähnten Basis -Messungen gemacht , z. B . :

1834 Königsberg l = 1729,1167 ' — 0,56422fc 1
1846 Berlin Z = 1729,0999 ’ — 0,55228 fc J

Die nicht unerheblichen Änderungen in diesen Zahlen haben zu der Anschau¬
ung geführt , dass die Stangen im Laufe der Jahre ihre molekulare Struktur geändert
hätten . ( „Publik , d . geod . Inst . Massvergleichungen “ I , 1872 , S . 38 — 46, Bericht von
General Baeyer ) . Doch hat sich das bei näherer Untersuchung nicht bestätigt .

Um das Wesentliche der hierauf bezüglichen Kragen anzuführen , reduzieren wir
die verschiedenen Formeln (31 ) auf den Mittel wert k = 1,4 , d . h . wir formen so um :

1834 Königsberg 1 = 1728,3268 ' — 0,56422 ( k — 1,4) )
1846 Berlin l = 1728,3267 ' — 0,55228 (k — 1,4) (

(d ’

entsprechend der Formel l = L ' — m (k — 1,4)
Nun sind die Absolutglieder fast gleich geworden , während sie vorher bei (31 )

um 0,0168 Par . Linien = 0,038"‘“ verschieden waren .
Die Absolutglieder in (31 ) gelten für k = 0 , was einer Temperatur von etwa

47 ° R . entspricht , welche beim Gebrauche nie vorkommt , und deswegen ist die Form
(32 ) mit dem Mittelwert k = 1,4 , entsprechend einer Temperatur von etwa 16 ° R .,
zur sachlichen Vergleichung viel mehr geeignet .

Auch die Änderung der Ausdehnungs -Coefficienten m , e , z , welche sich z . B .
zwischen den Jahren 1834 und 1846 als Verkleinerung von e und z zeigt , kann ohne
die Annahme molekularer Änderungen erklärt werden .

Eine Eigentümlichkeit des Apparates besteht auch darin , dass die Abnützung
der äusseren Schneiden die Stangen verkürzt , wie immer bei Abnützung von End¬
massen , dass aber eine Abnützung der inneren Schneiden , zwischen welchen der Tem¬
peraturkeil k (Fig . 4 . S . 69 ) eingelegt wird , die Stangen scheinbar verlängert . Wenn
nämlich dieselbe Stangenlange l nach der Formel (32 ) zweifach dargestellt ist

l = I ! — m (k — 1,4 ) oder = L " — m (k ' — 1,4)
und wenn , durch Abnützung der inneren Schneiden , V grösser als k ist , so muss auch
L " grösser als IJ sein . Wenn also z. B . in (32 ) die beiden Werte L ' = 1728,3268
und 1728,3267 nach Verlauf von 12 Jahren fast gleich sind , so kann doch die wirk¬
liche Länge l bei einer bestimmten Temperatur durch Abnützung der äusseren Schnei¬
den kürzer geworden sein , wenn gleichzeitig eine noch stärkere Abnützung oder Aus-
einandertreibung der inneren Schneiden stattgefunden hat .

Man vgl . hierüber „VierteJjahrsschrift der astronom . Gesellschaft “ 1877 , S. 150 - 152 , und
eine Abhandlung von A. Börscb , „astr . Nachr .“ 99. Band (1881), Nr 2364. Hierauf bezieht sich auch
eine Publikation des königl . preuss . geodätischen Instituts , „die Ausdehnungs -Coefficienten der
Küsten -Vermessung “ von Dr . Alfred "Westphal , Berlin 1881.

§ 12 . Die Göttinger Basismessung.
Wie schon früher in § 10 . S . 68 berichtet wurde , zeichnet sich die Göttinger

Basismessung vom Jahre 1880 vor den früheren mit dem Bessel sehen Apparat ge-
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machten Messungen dadurch aus , dass hier zum erstenmal die von General Schreiber

vorgenommenen Verbesserungen des Apparates und des Messungs -Verfahrens zur An¬

wendung kamen .
Verfasser hat damals aktiv an der Basismessung teilgenommen (als Keilleger

und Abloter ) und hat dadurch umsomehr Veranlassung , diese Messung hier genau zu
beschreiben , entsprechend einem bereits in der „ Zeitschr . f. Verm . “ 1880 , S . 377—403
veröffentlichten Berichte .

Der amtliche Bericht über die Göttinger Basismessung ist enthalten in dem
Werke : Die königliche Landestriangulation , Hauptdreiecke VI . Teil , gemessen und
bearbeitet von der trigonometrischen Abteilung der Landesaufnahme , Berlin 1894

(Hofbuchhandlung Mittler u . Sohn , Kochstr . 68/70) S . 179 u . ff.

Fig . l .
Endpunkts -Pyramide mit Hänge -Pfeiler .

(Massstab 1 : 100-)

I . Gesamt -Anordnung der Basis .

Das Leinethal , in der Gegend von Göttingen , bildet südlich von dieser Stadt

genügend festen und horizontalen Boden östlich der Landstrasse . Nach mehrfachen

Erkundungen , welche sich namentlich auf ein günstig zu gestaltendes Basisnetz

bezogen , wurde diese Gegend gewählt mit einer 5 '"“ langen Linie . Weitere südliche
Erstreckung der Basis wäre
wohl wünschenswert gewesen ,
wurde aber durch die Boden -
Verhältnisse verhindert .

Das Längenprofil der
Basis hat in den ersten zwei
Dritteln ziemlich horizontale
Erstreckung , während im
letzten südlichen Drittel eine
Ansteigung bis 31 " über dem
Anfang stattfindet . Dort be¬
trugen die Steigungen mehr¬
fach bis zu 3 ° .

Der nördliche und der
südliche Endpunkt werden hin¬
sichtlich ihrer Festlegung und
trigonometrischen Bezeich¬
nung durch Fig . 1 . veran¬
schaulicht . Die Ablotungen
des Instrumenten - Standpunk¬
tes T auf den Basispunkt F ,
beziehungsweise die betreffen¬
den Centrierungen , wurden
durch seitlich aufgestellte
Theodolite bewirkt , wodurch
auch 4 äussere Fundament -

Versicherungen beigezogen
wurden . Die Länge der Basis
wurde vorläufig zu 5193" be¬
stimmt , und dann in 33 meist

T \“
—T *“ ^ "1 \

L - i
\\

l

I
T_

T" \ iW iii

ij
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gleiche Teile geteilt durch Anlage von 32 Zwischen -Festlegungen . Hiezu dienten

kupferne Bolzen, mit einzusetzenden stählernen in Nadeln endenden Pinnen mit Fundierung
in Cement , wie in Fig . 1 . unten bei F angedeutet ist . Hieraus ergiebt sich der

mittlere Wert einer Teilstrecke = 156” = 10 Stangenlagen , während die erste und

letzte Strecke etwas länger waren.

II . Gerad - Richtung .

Um die 32 Zwischen -Festlegungen in die

Basisrichtung zu bringen , überhaupt um die Basis
für die Messung gerade zu stecken , hatte man
nach erster vorläufiger Absteckung eine ebenso

grosse Zahl von „ Galgen “ aufgestellt , je 15,6”*

= 1 Lage , nach Süden von den Festlegungen
entfernt . Die technische Rüstung dieser Galgen ,
mit 1,5™ tief eingebohrten und eingerammten
Pfählen von 20 '“ Dicke , zeigt Fig . 2 . Die 35 ™

breiten und 9 '” dicken Deckbohlen dieser Galgen
dienten bei der durchlaufenden Geradrichtung
zum Aufstellen der Theodolite , beziehungsweise
der Signalscheiben , beide centrisch über einge¬
schlagenen Messingpinnen . Zur Auffindung der Lagen für diese Pinnen , d . h . für die

eigentliche Geradrichtung wurde im wesentlichen das Verfahren angewendet , Zwischen¬

punkte durch Messung von 180 “-Winkeln einzuschalten , wie wir schon in Band II ,
4 . Aufl. 1893, S . 693 , gezeigt haben .

Es wurde zuerst die Mitte gegen die beiden Endpunkte eingerichtet , dann der
erste Viertelspunkt gegen den Anfang und die Mitte u . s . w.

Nach dieser Einrichtung aller Galgenpinnen wurde nochmals zur unabhängigen
Versicherung eine durchlaufende Winkelmessung über alle Galgen hinweg , je mit

Sichtung auf den vorhergehenden und den nachfolgenden Galgen , vorgenommen , woraus
sich durch Rechnung ein Polygon von 32 Brechungspunkten zwischen dem 0,e“ und
•dem 33‘e“ Punkte ergab , welches eine grösste (westliche ) Abweichung von 25”” ergab ,
was auf 5193” Länge ausser Betracht bleibt .

Zwischen je 2 Galgen wurden noch 4 Pflöcke (in Abständen von 33,2” ) ge¬
schlagen , zum Spannen einer Schnur , längs welcher die Stangen -Unterlagen vorläufig
eingerichtet werden konnten , während die endgiltige Einweisung der Stangen selbst

von den Galgen aus , beziehungsweise von Zwischenstationen aus , durch Theodolite be¬

sorgt wurde . Dabei dienten Zelte von der Form Fig . 3 . zum Schutz gegen die Sonne.
Zum Einweisen der einzelnen Stangen dienten die

schon früher in § 10 . S . 70 erwähnten , in Fig . 3 . Seite 68
rechts gezeichneten Aufsatz -Scheibchen . Wir denken uns ,
der Einweise -Theodolit sei auf einem Galgen (Fig . 2 . ) oder
einer Zwischenstation aufgestellt , und das vordere Ende einer

Stange sei bereits durch Fahnenwinken so genau eingewiesen ,
dass der Faden des Fernrohrs in das mittlere weisse , 1™

grosse Feld der Scheibe fällt . Genauer wird nicht einge¬
wiesen , sondern der noch übrige Rest dek Einweisungs -Fehlers
wird geschätzt , aufgeschrieben und später in Rechnung ge¬

rn - 3-
Schutz -Zelt.

(Massstab 1 : 100.)

Fig . 2.
Greradrichtungs -G-algen.

(Massstab 1 : 100.)
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bracht . Wenn zwei aufeinander folgende Stangen -Enden die Ablesungen ä und d '

geben , so ist die zugehörige Geradstreckungs -Beduktion bekanntlich = -—^ ^
wenn

l die Stangenlange selbst ist (l = 3,95”'),
Diese Beträge sind immer sehr klein , sie dürfen aber nicht vernachlässigt

werden , weil sie sich niemals gegenseitig aufheben , sondern alle in demselben Sinne ,
nämlich vergrössernd wirken . Die ganze Basis hat etwa 1315 Stangen , folglich , wenn
man den Wert + 2™“ als mittlere Stangen -Ausweichung und 0,0005” ”* als mittlere
Reduktion annimmt , eine Gesamtreduktion etwa = 1315 X 0,0005 = 0,66”” oder etwa
0,13 Milliontel der Länge , ein Betrag , der sich aber sofort auf das Vierfache erhöht ,
wenn die obige kleine Annahme + 2”” für 1 Stange auf den doppelten Wert kommt .

III . Ablotungen .
Die Anordnung der zahlreichen Ablotungen , welche an den Endpunkten der

Basis , an den Zwischen-Eestlegungen und an den Unterbrechungen über Nacht und
über Mittag nötig werden , ist von wesentlichem Einfluss auf den Gesamtverlauf der
Messung und die Zuverlässigkeit ihrer Kesultate . Das unmittelbare mechanische Ab¬
loten mittelst Fadenlotes ist wegen der Pendelschwingungen unbequem und ungenau .
Viel sicherer vollzieht sich das optische Abloten mit Hilfe eines seitlich aufgestellten
Theodolits . Dieses wurde schon bei der Braaker Basis angewendet und ist für die
Göttinger Basis in die Form gebracht worden , welche wir nun im Anschluss an
Fig . 4 . beschreiben ,

Fig . 4.
Abloten .

Man hat zu unterscheiden , ob ein Stangenewde oder ein Zwischenpxmkt einer
Stange auf eine Boden -Festlegung abgelotet werden soll ; der letztere Fall ist durch
Fig . 4 . angedeutet .

Es stellt I , II , (III ), IV eine Stangenlage vor , es ist aber in diesem Falle (III )
keine gewöhnliche Stange , sondern die besondere , mit einer oberen Teilung versehene
Festlegungs -Stange , welche hier zur Ablotung auf den Punkt F dient .

Nachdem die gewöhnliche Messung bereits über F hinweggegangen ist , während
jedoch die benachbarten Stangen II und IV noch unverrüclct liegen , wird III vorsichtig
herausgenommen und durch (III ) ersetzt . Durch Ausziehen von Schlitten -Schiebern
hinten und vorn kann man mit dieser Stange (III ) die ganze Länge zwischen II und
IV (nämlich die Länge der Stange III samt den 2 Keilmassen ) ausfüllen , und folglich
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den Punkt F als Projektion N auf der Teilung von (III ) angeben . Das hiezu nötige
Herauf -Loten von F geschieht durch 2 seitlich aufgestellte Theodolite T und T ' .
Es empfiehlt sich jedoch , nicht direkt den Auflote -Punkt N auf der Stange (III ) zu
bestimmen , sondern durch vorläufiges Herauf -Projizieren einen anderen genäherten
Punkt N ' zu ermitteln und dann noch den kleinen Horizontalwinkel zwischen F und
N genau zu messen und das ihm entsprechende lineare Mass in Rechnung zu bringen .

(Einige dabei zu beachtende Einzelheiten s . „ Zeitsehr . f. Verm . “ 1880 , S . 385
bis 386 .)

Da alle diese Ablotungen doppelt , nämlich durch zwei symmetrisch seitwärts
gestellte Theodolite ausgeführt wurden , ergab sich eine Versicherung unmittelbar .
Die 34 Ablotungen der ersten Basismessung gaben eine mittlere Differenz von nur 1,51" ,
also für das Mittel aus beiden Messungen nur einen mittleren Fehler von 0,76"

, was
auf 3,90” Theodolit -Abstand einen mittleren linearen Fehler von nur 0,014”“ giebt .
Die Instrumente waren 21 c” -Mikroskop -Theodolite , sonst zu Triangulationen zweiten
Rangs gebraucht .

Zwar sind nicht alle bei den fraglichen Ablotungen mitwirkenden Verrichtungen ,
Ablesungen an der Stange (III ) u . s . w. ebenso genau , doch sind die Ablotungen im
Ganzen auf 0,1 ”” sicher , wobei noch zu beachten ist , dass diese Fehler der Zwischen¬
punkte sich nicht fortpflanzen und in das Gesamtbasis -Resultat überhaupt nicht ein-
gehen .

In ähnlicher Weise wie diese Ablotungen an den regelmässigen Festlegungen
wurden auch die Unterbrechungs -Ablotungen Mittags und Abends gemacht .

IV . Die Keilmessung .

Das Einlegen eines gläsernen Messkeiles (vgl . Fig . 4 . und Fig . 5 . § 10 . S . 69 )
zwischen die Schneiden , und das Ablesen der Teilung ist nicht so einfach , als dieses
auf den ersten Blick scheinen könnte ; es ist eine gewisse Übung dazu erforderlich .
Vor allem muss man sich hüten , den Keil zu stark „ einzu-schieben“

, er soll nur „ ein-
gelegt “ werden , wobei die erste Berührung mehr wie eine Art Kleben als wie ein
Druck gefühlt werden soll . Wird zu stark eingedrückt , so entstehen erhebliche kon¬
stante Fehler , deren Existenz schon die Brüsseler Kommission 1854 fand .

In der Landesaufnahme hat sich eine feine Art der Keillegung seit Bessel und
Baeyer durch Tradition erhalten , und die besonderen bei Göttingen angestellten Ver¬
suche, über welche wir nachher berichten werden , haben ergeben , dass bei Befolgung
dieser vorsichtigen Keillegung die konstanten Fehler äusserst kleine Beträge haben . (S . 82 .)

Was zunächst den mittleren unregelmässigen Keillege - und Ablesefehler betrifft ,
so fand man denselben aus Wiederholungen der Metall -Thermometer -Messungen
= + l,8 ‘ und aus Wiederholungen der Intervallen -Messungen = + 2,3 '. Hiebei soll
mit t der Wert 0,001 Par . Linie bezeichnet werden ; es ist nämlich 1 ‘ die letzte noch
wahrzunehmende Grösse, welche dem geschätzten Zehntel der Keilteilung entspricht .
Diese Genauigkeit von etwa + 2 ' = + 0,005™” , mit freier Hand und mit blossem
Auge erreicht , ist sehr überraschend .

Die Metall -Thermometer -Fehler gehen in die Basislänge nur etwa mit ihrem
halben Betrag ein , man hat also für eine Stangenlänge nur etwa f/ 0,92 2,3 2 = +
2,5 ' = + 0,0056”” in Rechnung zu nehmen , oder für P ” Länge mit rund 250 Stangen
den mittleren Messungsfehler = + 0,0056 ]/25Ö = + 0,09”” . Thatsächlich ist der

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 6
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mittlere unregelmässige Basismessungs -Fehler , aus Doppelmessungen berechnet , etwa

_ -p pmm fijr <j . h , lOmal so gross , als der soeben a priori gefolgerte . D . h . der

nackte mittlere unregelmässige Keilmessungs -Fehler bildet nur einen verschwindend

kleinen Teil der wirklichen Fehler . Erheblichere Beträge werden erzeugt durch Gleiten

der Stangen auf ihren Böcken, sowie durch Ungleichheit der Temperaturen in den

Eisen - und Zinkstangen .

Zur Bestimmung des Keildrucks wurde die in Fig . 5 angedeutete Einrichtung

getroffen , es ist nämlich auf dem rechten Ende der Stange II ein Schrauben -Mikroskop
befestigt , dessen Gesichtsfeld auf das
linke Ende der Stange III hinüber¬
reicht , und eine dort angebrachte feine
Teilung einzustellen gestattet . Jede
relative Bewegung der zwei Stangen

Fig . 5.

miii

II und III kann mit dieser Vorrichtung leicht auf + 0,1 * genau gemessen werden .

Es wurde dadurch gefunden , dass stärkere absichtliche Keildrücke zweierlei

Wirkung haben , erstens grösstenteils elastisches Zurückgehen , zweitens aber eine

dauernde Verschiebung von etwa 0,4 *.
Die schwachen Keildrücke , wie sie bei der eigentlichen Basismessung vorkamen ,

hatten eine dauernde Wirkung von nur im Mittel 0,29 * oder 0,17 Milliontel der Länge .

V. Temperatur - Verhältnisse .

Temperatur -Bestimmung mit dem Quecksilber - Thermometer findet bei der
Besselschen Messmethode unmittelbar nicht statt . Indessen besteht doch ein gewisses
Interesse , auch die eigentlichen Stangen -Temperaturen zu kennen , und zu diesem
Zweck zuerst eine Beziehung zwischen dem Keilmass k und dem Temperaturgrad B
eines Quecksilber -Thermometers herzustellen ; so hat Bessel in der „ Gradm . in Ost -

preussen “ S. 29 (vgl . unseren § 11 . Gleichung (25) S . 75) für das Mittel der vier

Stangen die Beziehung gegeben ;
k = 2,1249 — 0,045489 B , oder B = 46,712 ° — 21,983 k

wo k das Keilmass in Par . Linien und B die entsprechende Quecksilber -Thermometer -

Angabe in B ° bedeutet .
Bei Göttingen machte ich an den 2 Tagen der intensivsten Messung , 17 . und

18 . August , einige Versuche zur Vergleichung mit Quecksilber -Thermometern .
Es wurden etwa halbstündlich folgende 3 Aufzeichnungen gemacht :
1 . Temperatur der freien Luft durch Schleuder -Thermometer .
2 . Temperatur des Innenraums der Kästen , an den eingelegten Thermometern

durch die Glasverschlüsse abgelesen .
3 . Metall -Thermometer -Keilmasse für die 4 Stangen .
Die Verhältnisse waren auch insofern andere , als bei der ersten Königsberger

Vergleichung von 1834, als damals die mit heller Ölfarbe angestrichenen hölzernen
Stangenkästen unmittelbar den Sonnenstrahlen ausgesetzt wurden , während bei Göt¬
tingen die Kästen noch Überzüge von weissem Schirting hatten , welche durch die Er¬

fahrungen bei der Braakschen Messung , 1871 , als nützlich erkannt , in der That einen
erheblichen Schutz gegen strahlende Wärme gewähren .
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Fig . 6.
Gang der Temperaturen bei der Göttinger Basismessung :

(Mittel vom 17. und 18. August 1880.)

Nachmittag
3h 4 bVormittag

Kasten!

Die Ergebnisse dieser Vergleichungen sind in vorstehender Eig . 6 . dargestellt .
Die Original -Beobachtungen hiezu wurden in der „ Zeitschr . f . Verm . “ 1880 , S . 394
veröffentlicht , und zwar 17 . und 18 . August 1880 im allgemeinen halbstündlich . Die
Beobachtungen dieser zwei Tage wurden zuerst gemittelt und wenig ausgeglichen ,
wodurch folgende Zusammenstellung erhalten wurde :

Göttingen 17.—18. August 1880.
Tageszeit Luft Kasten Metall -Thermometer

Morgen 6^ 10,7° C 9,9° C ooo
7 10,8 10,8 10,6
8 11,6 11,6 11,2
9 13,1 12,6 12,2

10 15,8 14,8 14,2
11 17,4 17,8 16,6

Mittag 12 18,4 19,5 17,8
1 18,5 19,7 18,6
2 18,3 19,5 19,0
3 18,1 19,4 18,9
4 18,0 19,5 19,0
5 17,7 19,4 19,0
6 17,1 19,2 18,8

Abend 7 16,0 18,4 18,2

Diese Werte wurden nochmals i ein wenig graphisch ausgeglichen , und dann
wurde die obenstehende Fig . 6 . darnach aufgetragen .

Der Gang der Temperaturen ist im wesentlichen dieser : Unmittelbar vor dem
Erscheinen der Sonne haben die Luft , der Kasten und die Stangen infolge der nächt¬
lichen Ausgleichung nahezu gleiche Temperatur ; sobald die Sonne zu wirken beginnt ,
hebt sich die Lufttemperatur und nachfolgend auch allmählich die Temperatur des
Kastens und der Metallstangen ; dann beginnt der Kasten nach und nach als Wärme¬
behälter zu wirken und teilt auch den Stangen seinen Wärmevorrat mit , so dass Nach -
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mittags und Abends der Kasten und die Stangen wärmer als die Luft sind . Die Unter¬

schiede zwischen dem Quecksilber -Thermometer und dem Metall -Thermometer , welche

über 1 ° gehen , zeigen sich hier deutlich ; dagegen über den Temperatur -Unterschied

der Eisenstange und der Zinkstange giebt dieser Versuch keine Auskunft .

§ 13 . Neuere Basis- Apparate mit isolierten Mikroskopen.
Zur Geschichte unä zur Vorgeschichte dieser Apparate berichtet Wolf , Histoire de l’appareil

Ibanez -Brunner , Comptes rendus 112, 1891, S. 870—S71 und Hammer , Zur Geschichte der Basis¬

messung , »Zeitschr . f. Verm .“ 1891, S. 446—448 (Tralles , Hassler , Porro , d 'Aubuisson .)

I . Der ältere spanische Basis -Apparat .

General Ibanez liess im Jahre 1856 für seine spanische Landes -Aufnahme einen

Basis -Apparat durch Mechaniker Brunner in Paris konstruieren , mit dem er mehrere

Grundlinien , namentlich im Jahre 1858 die 14 663“ lange Grundlinie bei Madridejos mass .

Wir geben die Beschreibung des Basisstabes nach dem Werke : „Expöriences
faites avec l’appareil ä mesurer les bases appartenant ä la Commission de la carte

d’Espagne , par Laussedat , Paris 1860“ .

Fig . 1 a.
Feste Verbindung in der

Mitte .

Fig . 1.
Brunner s Basis -Messstange .

Querschnitte in natürlicher Grosse .

Fig . lb .
Allgemeiner freier

Querschnitt .

Fig . lc .
Ausdehnungsbestim¬
mung an den Enden .

b T
Platin

Kupjer

Die beiden Stäbe von Platin und Kupfer haben gleiche
Jj_ Dimensionen , nämlich wie in Fig . 1 b . angegeben ist , je 21““
^ Breite und 5““ Höhe , mit einem Zwischenraum von 6” “.

Fig . lb . zeigt den normalen Querschnitt , wie er überall der
Länge nach ist , wo keine Berührung der beiden Stäbe statt¬
findet .

In der Mitte sind beide Stäbe fest verbunden , wie
in Fig . la . angegeben ist ; zwei Bahmen a mit einem Mit¬
telstück c sind seitlich fest zusammengeschraubt und halten
damit die Platinstange P und die Kupferstange L fest zu¬
sammen . Fig . la . zeigt auch eine Tragstange , welche der
ganzen Länge nach durchgeht , mit einem Querschnitt von

umgekehrter T -Form , ebenso wie in der späteren Fig . 4 . S . 87.
Endlich zeigt noch Fig . 1 c. den Querschnitt an dem einen Ende , wo die gegen¬

seitige Ausdehnung zwischen Platin und Kupfer gemessen wird .
Hier ist der Platinstab in seinem mittleren Drittel durchbrochen und durch

ein besonderes Tförmiges Platinstück 6 ausgefüllt , das zwischen P und P lose gleitet ,
dagegen nach unten fest mit e und L verbunden ist .
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An der Fuge zwischen 6 und P befindet sich auf der horizontalen Oberfläche
von 6 und von P eine Teilung T , an welcher man die relative Ausdehnung der Stäbe
L und P mikroskopisch ablesen kann .

II . Basis -Apparat des geodätischen Instituts .

Etwa im Jahre 1876 hat das geodätische Institut einen Basis -Apparat von Me¬
chaniker Brunner in Paris bestellt und 1878 geliefert erhalten . Dieser Apparat hat
im wesentlichen dieselbe Konstruktion , wie der soeben beschriebene spanische Apparat
von General Ibanez . Der Apparat des geodätischen Instituts hat einen Stab , der aus
Platin -Iridium und Messing zusammengesetzt ist . Die erste Mitteilung hierüber giebt
der Generalbericht der Europ . Gradm . für 1878 , S . 99 , mit einem Anhänge „ Sur la
construction de la rtgle gdodesique internationale , par M . M. H . Sainte -Claire Deville
et E . Mascart “ und Fortsetzung in dem Gen .-Ber . d . Europ . Gr . für 1879 , Anhang .

Mit diesem Apparate wurden vom geodätischen Institute bis jetzt 3 Grund -
linien -Messungen ausgeführt , nämlich 1879 Nachmessung der 2763 Meter langen Basis
von Strehlen in Schlesien , welche früher 1854 mit dem Bessel sehen Apparate gemessen
worden war , ferner 1880 Nachmessung der 2336 Meter langen , früher 1846 für die
Küstenvermessung angelegte Grundlinie bei Berlin und 1892 Nachmessung der Bonner
Basis . Im Anschluss an diese letztere Messung sind auch weitergehende Untersuchungen
auf der Yersuchsstrecke des geodätischen Institutes auf dem Telegraphenberge bei
Potsdam ausgeführt worden . (Probemessungen mit dem Bepsold ’schen Ablotungs -
Apparat von Schumann , Mitteilung des Geodätischen Instituts , s . „ Zeitschr . f. Instru -
mentenkunde “

, 1894, S . 18—20 .)

III . Der neue , vereinfachte spanische Basis -Apparat .

Während die Genauigkeit der Messungen mit dem Brunner sehen Apparat ge¬
nügend war , fand man in Spanien die Geschwindigkeit , nämlich etwa 70 Meter für
1 Stunde nicht befriedigend .

Es wurde deswegen nach Angabe von General Ibanez im Jahre 1864 ein neuer
einfacherer Apparat , jedoch im wesentlichen nach dem ersten Grundgedanken kon¬
struiert , mit dem nicht nur von 1865— 1879 acht weitere spanische Grundlinien , sondern
dann auch von 1880— 1881 drei Linien in der Schweiz gemessen wurden , 2,4tm bei
Aarberg , 2,541'“ bei Weinfelden und 3,2 *»* bei Bellinzona .

Wir beschreiben zuerst im Anschluss an Fig . 2 . und Fig . 3 . S . 86 die Anord¬
nung des Apparates und den Gang der Messung im allgemeinen , und benützen dabei
zunächst die Brochüre von Dr . Koppe : „Der Basis -Apparat des Generals Ibanez und
die Aarberger Basismessung , Zürich 1881“

, nebst einigen dankenswerten Privatmitteil¬
ungen von Koppe .

Es wird ein Massstab von 4™ Länge angewendet , welcher in Fig . 3 . durch a 6
angedeutet ist und auf 2 Stativen S\ und aufliegt .

Unabhängig von dem Massstab und seinen Stativen Sj Sä sind zwei Mikroskope
Mi und M % auf besonderen Stativen T , und T 2 an den Enden des Massstabes auf¬
gestellt . Die Mikroskope IHj und M2 werden auf die Endstriche a und 6 (oder nahe
den Endstrichen ) eingestellt , dann wird der Massstab um seine eigene Länge von
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rechts nach links vorgerückt , so dass a nach 6 kommt und die Stative S3 und 1S4 in

Anwendung kommen ; Mg bleibt stehen , und M\ rückt um die zweifache Massstab¬

länge vor , so dass es nun vorderes Mikroskop wird u . s . w .
Der Massstab a b bewegt sich hiebei nicht in der abgesteckten und festgelegten

Geraden A B selbst , sondern in einer Parallelen ab zu AB , was offenbar gleich¬
gültig ist .

Die Messstange a b besteht aus Eisen , und ist der freien Luft ausgesetzt , ohne
Schutz durch einen hölzernen Kasten . Dagegen wird der Apparat im Ganzen durch
Zelte geschützt , welche mit Leinwand bespannt gegen direkte Sonnenstrahlen und auch

gegen leichten Regen Schutz gewähren . Die Zelte sind tragbar , und werden dem Fort¬
schritte der Messung entsprechend stets hinten abgenommen und vorne wieder angesetzt .

Die Anordnung im Ganzen zeigt Fig . 2 . S . 86.
"
Übergehend zu den Einzelheiten betrachten wir in Fig . 4 . zuerst den Quer¬

schnitt der Stange ; derselbe hat umgekehrte “f -Form , so dass ein breites Auflager
entsteht . Der Stab ist 4“ lang und 50*» schwer .

Zur Temperatur - Bestimmung dienen gewöhnliche Quecksilber - Thermometer ,
welche in Fig . 4 . rechts oben durch T veranschaulicht sind und auch in Fig . 3 . S . 86
der Länge nach an 4 Stellen durch T , T , T , T angedeutet wurden .

Die mit Quecksilber gefüllten Glaskugeln dieser Thermometer sind mit dem
Eisen der Stange in unmittelbarer inniger Berührung und sind ganz in Eisenfeilspähne
eingebettet . Die Glasröhren der Thermometer werden durch übergedeckte Glasplatten
von Aussen abgelesen .

Zur Neigungs -Bestimmung der ein¬
zelnen Stangenlagen dient eine in der
Mitte angebrachte Libelle L (Fig . 3 .
S . 86) .

Die Messstange ist auf ihrer oberen
schmalen Fläche mit einer Teilung ver¬
sehen , früher der ganzen Länge nach in
Centimeter , bei der neueren vereinfachten
Anordnung nur noch von 0,5 zu 0,5 Meter ,
und zwar durch feine Striche auf einge¬
legten Platin -Plättchen .

Nun haben wir das in Fig . 5 . S . 88
abgebildete Instrument , , Mikroskop -Theo¬
dolit “ genannt , zu betrachten , welches
dreien Zwecken gemeinsam dient , nämlich :

1) Ablotung auf die Festlegungs -Bolzen
im Erdboden ,

2 ) Einrichtung in die abgesteckte Basis -
Gerade,

3) Mikroskopische Einstellung oder Ab¬
lesung auf den Stangen -Enden .

Zu diesen drei Zwecken , denen der
Einzelnen zu bemerken :

zu 1) Wenn der Mikroskop -Theodolit als Abloter dienen soll , so wird statt des
horizontalen Fernrohrs F Fig . 5 . ein vertikales Fernrohr eingelegt , welches

Fig . 4.
Querschnitt des Maasstabes

in halber natürlicher Grösse .

!<- 9 ,6
™ -

Mikroskop -Theodolit zu dienen hat , ist im
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durch das Loch 0 im Stative nach der Vertikalen M N eingerichtet werden
kann , mit Schlittenführungen s und Schraubenbewegungen nt, nach zwei zu
einander rechtwinkligen Bichtungen .

zu 2) Wenn es sich um Einrichtung in die Gerade in horizontalem Sinne handelt ,
so wird das horizontale Fernrohr F Fig . 5 . vor- oder rückwärts nach A oder
B eingerichtet . Soll die Mitte M selbst Zielpunkt werden , so wird das
Fernrohr F ausgehoben und eine Zielmarke in die Axenlager eingelegt ,

zu 3) Die mikroskopische vertikale Einstellung auf die Messstange ist in Fig . 5 .
bei V und b angedeutet . V ist ein vertikales Mikroskop , welches auf die
schmale Oberfläche 6 des eisernen Massstabes E eingestellt werden kann .
Den Massstab E haben wir mit seinem Querschnitt b ec ' in Fig . 5 . ohne
Stative angedeutet .

Fig . 5 .
Mikroskop -Theodolit (Massstab etwa 1 : 5).

N

Olts

Der Gang der Messung lässt sich nun vollends leicht beschreiben :
Die Aarberger Basis von 2400m Länge war durch drei grosse dreieckige Scheiben -

Backen (s . Fig . 2 . S. 86 links ) über der Erde bezeichnet , und wurde durch Messing¬
bolzen in Quadern unterhalb festgelegt . Die Linie befand sich auf gerader und ebener
Landstrasse , die Stative wurden auf den Strassenboden gestellt . Der Strassenverkehr
wurde während der Dauer der Messung gesperrt .
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Zu gleichzeitiger Verwendung kamen :
4 Mikroskop -Theodolite ,
4 Auflagdreifüsse für die Messstange ,
6 grosse Holzstative (T Fi g . 3. S . 86) für die Mikroskop -Theodolite ,

10 kleine Holzstative (S Fig . 3 . S . 86) für die Messstange ,
2 hölzerne je 4 Meter lange Latten zum Vor-Messen.

Das Personal war :
2 Beobachter mit Gehilfen zum Vorwärtstragen und vorläufigen Stellen der

Holzstative ,
2 Beobachter mit Gehilfen zum endgiltigen Stellen der Holzstative ,
4 Beobachter an der Messstange zum Einstellen der Null - und Endstriche

unter die Mikroskope , zum Ablesen der 4 Thermometer und der Libelle ,
2 Gehilfen zum Vorwärtstragen der Stange (die Fig . 2 . S . 86 zeigt 15 Mann ) .

Uber die Messungs -Geschwindigkeit ist folgendes mitgeteilt :
Am 22 . August 1880 begann die Messung 5 Uhr 48 Minuten und wurde bis

800” durchgeführt . Nach drei Tagen war die erste Messung der Basis beendigt ;
gleichzeitig wurden in Entfernungen von 400“ zu 400” feste Punkte errichtet .

Am Nachmittage des 24 . August wurden die Instrumente und sämtliche Gerät¬
schaften nach dem Basisanfange zurücktransportiert ; alle Apparate einer sorgfältigen
Prüfung unterworfen . Am 25 . , 26 . und 27 . .August wurde , wie an den drei vorher¬
gehenden Tagen , in der Zurückmessung um je 800” vorgerückt , alle Fixpunkte ein¬

gemessen und so auch die zweite Messung in drei Tagen beendigt . Die Zeiten , welche
auf die Messung der einzelnen Sektionen verwandt wurden , sind :

Sektion I . Messung II . Messung
1. = 400 Meter 2 Stunden 47 Min . 2 Stunden 6 Min .

ooII 2 « 44 „ 1 „ 59 „
3. = 400 „ 1 „ 27 „ 2 „ 24 „
4. = 400 « 2 - 26 „ 2 » 8 ..
5. = 400 „ 2 21 „ 2 „ 31 „
6. = 400 „ 2 49 „ 2 « 49 n

Mittel : 400 Meter 2 Stunden 36 Min . 2 Stunden 20 Min .

Die zweite Messung ging etwas rascher vor sich als die erste , weil das Setzen

der Fixpunkte bei der ersten Messung einige Zeit in Anspruch nimmt .
Die grösste Neigung der Messstange während dieser Messungen betrug 1,5 ° ,

die Korrektion für die Neigung im Mittel nahe l ™1 für 1 Sektion . Ausgesprochen

ungünstig für die Messung war der erste Beobachtungstag , namentlich während der

Messung der zweiten Sektion , indem der Hegen die Zelte durchweichte . Die Differenz
ist bei dieser Sektion die grösste .

General Ibanez selbst hat über seine Basis -Apparate folgendes als Gesamturteil

ausgesprochen :
„Die einfache Einrichtung meines Apparates und die Art seiner Anwendung ist

das Ergebnis der Erfahrungen , welche ich bei neun in Spanien ausgeführten Basis -

Messungen zu machen Gelegenheit hatte . Bei meinem ersten Apparate waren alle
denkbaren Korrektions -Vorrichtungen angebracht . Die Messstange bestand aus zwei

Metallen , deren Längen -Unterschied infolge verschiedener Ausdehnung durch die Wärme
mit einer Mikrometer -Schraube gemessen wurde . In gleichen Intervallen eingelassene
Quecksilber -Thermometer liefern eine zweite , von der ersten unabhängige Bestimmung
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der Temperatur . Es geigte sich schliesslich , dass die Quecksilber -Thermometer die
Temperatur der Messstange leichter und besser bestimmen lassen , als das Metall -
Thermometer und deshalb habe ich erstere allein beibehalten . Die Sucht , jedes Mass
und jede Korrektion gesondert mit der Mikrometer -Schraube messen zu wollen, wie
wir es erstmals thaten , führt zu grossem Zeit - und Arbeits -Aufwande ohne reellen
Gewinn an Genauigkeit ; und grössere erreichbare Vorteile gehen durch die komplizierte
Art und längere Dauer der Messung verloren . Das beste Mittel , dem Anhäufen der
Beobachtungs -Fehler in ausgedehnten Dreiecksnetzen entgegen zu arbeiten , ist die
Messung einer ausreichenden Zahl von Grundlinien . Dieses Mittel kann aber um so
eher in Anwendung gebracht werden , je mehr der Messapparat mit einfacher Einricht¬
ung und Handhabung ausreichende Genauigkeit der Resultate verbindet . “

IV . Der amerikanische Basis -Apparat von Repsold .
Die nord -amerikanischen Vermessungen im neueren Sinne begannen etwa 1841 ;

von da bis 1874 wurden 9 Grundlinien gemessen und im Jahre 1876 wurde ein neuer
Basis -Apparat von Repsold in Hamburg angeschafft , mit welchem unter Leitung von
Comstock dann drei Grundlinien , bei Chicago 1877 , Sandusky 1878 , und Onley 1879
gemessen wurden .

Nachricht hierüber giebt das grosse amtliche Werk : „Professional papers of the
corps of engineers , U . S . Army , Nr . 24 . Report upon the primary triangulation of
the United States Lake Survey , by Lieut . Col. C . B . Comstock , Corps of Engineers ,

Brevet Brigadier -General , U. S . A . , aidet by the Assi -
Flg‘ 6- stents on the survey . Washington : Governement prin -

Querschnitt in natürlicher tln S offlce - 1882 - auch »Zeitschr . f . Verm . 1884 “ ,
Grösse . S . 533 — 547 und 1888 , S . 385 — 395 .)

Der Grundgedanke des Repsold -Comstock sehen
Apparates ist derselbe wie beim Brunner sehen (S . 84) ,
nämlich eine Messstange , deren Enden zwischen festen
Mikroskopen abgelesen werden .

Die Messstange besteht aus der Verbindung von
Zink und Stahl , wie in Fig . 6 . angegeben ist . Die
aus Zink und Stahl zusammengesetzte Messstange ist
in eine Röhre von 12,5™ Durchmesser eingeschlossen
und ragt an den Enden derselben hervor , wie durch
die nachfolgenden Fig . 7 . bis 12 . S . 91 —93 darge¬
stellt ist .

Die zwei Platinplättchen e e in Fig . 9 . S . 93 sind mit feinen Teilungen ver¬
sehen , welche durch die isoliert aufgestellten Mikroskope abgelesen werden .

Fig . 12 . (S . 93) zeigt den Röhren -Querschnitt und zugleich die Queransicht
eines mit der Röhre parallelen Richte -Fernrohrs 6 , welches in der grossen Fig . 7 .
(S. 91) rechts oben in Seiten -An sicht dargestellt ist . Dieses Richte -Fernrohr lässt
sich durchschlagen , also auf eine vordere oder eine hintere Richte -Bake der Geraden
einstellen .

Im übrigen ist durch die zahlreichen Figuren alles wesentliche erklärt . Die
photographische Aufnahme des Gesamt -Apparates mit den Schutz -Zelten , welche wir
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‘AÎ S-(i03l80J5[II\[
•do ^ soaiiipc

•Aiij'Big-najqoy ;

•Aiiy'Bqg-neiqoa
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auf S. 92 nachgebildet haben , zeigt auch rechts die Mikroskope , welche von ihren
Stativen übergeneigt , einen etwas unstabilen Eindruck machen .

Fig . 9. (Massstab 1 : 4.) Fig . 10.
Hinteres Ende der Messstange aus der Röhre hervorragend . Querschnitt der Röhre mit den

e c Platinplättchen . Stäben Z und S.
Röhren -Durchmesser = 12,5 cm.

Fig . 11.
Stativ für die Röhre mit der

Messstange .

Fig . 12.
Querschnitt der Röhre und des

Richte -Fernrohrs b.
(Massstab 1 : 4.)

V. Der niederländisch -ostindische Basis -Apparat von Repsold .

Schon vor dem soeben beschriebenen amerikanischen Apparat (welcher 1876
hergestellt wurde ), haben Repsold und Söhne einen auf ähnlichen Prinzipien beruhen¬
den Apparat konstruiert , welcher teilweise nach Angaben von Oudemanns schon von
1865 , zur Triangulierung von Java , 1873, gedient hat .

Eine erste Beschreibung wurde im September 1876 von Repsold selbst gegeben in Nr . 1661
der „astr . Nachr .“ 70. Band , S. 65—80, die Hauptbeschreibung mit Zeichnungen ist enthalten in dem
"Werke : „Die Triangulation von Java , erste Abteilung , von Oudemans , Batavia 1875“.

Das Prinzip ist das bimetallische , ein Zinkstab und ein Stablstab , 11,5“ ’“ und
13,5““ breit und beide 22““ hoch , liegen neben einander und sind in eine Röhre ein¬
geschlossen , aus welcher nur die Stab -Enden hervorragen , wie bei Repsold -Comstock
Fig . 10 . s . o . Im übrigen aber ist die Anordnung eine andere ; es sind 4 Stäbe von
4“ und 1” Länge vorhanden nach Andeutung folgenden Schemas :
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4 »l 4m

i “ i “

Die kurzen 1" langen Stäbe tragen an ihren Enden Mikroskope , welche auf
die 4“ langen Stäbe hinüberreichen und so die Messung ermöglichen .

§ 14 . Massbestimmungen für bimetallische Stäbe.
Die Verbindung zweier verschiedener Metalle , z . B . Zink und Eisen , Kupfer

und Platin , zu einem Massstabe , welche bei der ersten Betrachtung so grosse Vorteile
zu haben scheint , leidet doch an dem Ubelstande , dass die beiden Metalle sehr oft
nicht gleiche Temperaturen haben , und damit wird der Vorteil der ganzen Einrichtung
fraglich .

Allerdings wenn die Temperatur im allgemeinen längere Zeit konstant bleibt ,
so werden wohl auch beide Metalle gleiche Temperatur annehmen , wenn aber die
Temperatur der umgebenden Luft sich ziemlich rasch ändert , oder wenn strahlende
Wärme einwirkt , so werden zwei verschiedene Metallstangen , je nach ihrer Masse,
ihrer spezifischen Wärme u . s . w ., den äusseren Wärme -Einflüssen mehr oder weniger
rasch folgen , und deswegen zu gleichen Zeiten verschiedene Temperaturen haben .

Eine hierauf bezügliche Rechnung hat Oudemans angestellt in dem Werke :
„Die Triangulation von Java “

, erste Abteilung Vergleichung der Massstäbe , Batavia
1875, S . 7 —8 . Oudemans nimmt nach dem „Lehrbuch der Experimental -Physik von
Wüllner “ die nachfolgenden Zahlen für Zink und Stahl an , welchen wir zugleich die
Zahlenwerte für Platin und Messing beifügen (letztere ebenfalls nach Wüllner an¬
genommen von Fischer , astr . Nachr ., 103 . Band ( 1882) Nr . 2451 ) :

Zink Stahl , Eisen Platin Messing
Spezifische Wärme w 0,089 0,109 0,034 0,094
Absorptions -Vermögen a 0,19 0,175 0,17 0,07
Wärmeleitungs -Fähigkeit X 363 374 84 281
Dichte A 6,86 7,82 21,51 8,00

Ferner sei die freie der Luft ausgesetzte Oberfläche eines Stabes = F
Das Volumen eines Stabes . = V
Damit ist die Wärmemenge , welche einem Stab von seiner freien Oberfläche

ins Innere zugeführt wird , proportional dem Produkt :
FaX

Andererseits ist die Temperatur -Zunahme des Stabes umgekehrt proportional
dem Produkt :

VAw
Im Ganzen ist also die Temperatur -Zunahme eines Stabes proportional zu setzen

der Grösse :

(At ) = F aX
V Aw (1)

Der erste Quotient F : V ist rein geometrischer Natur ; jedenfalls wird die
Länge beider in Frage kommender Stangen gleich sein, etwa = l \ dann seien ferner
die Breiten und Höhen beider Stangen = b und h , bzw . = V und h ' . Wenn die
Stangen von allen Seiten der Luft (bzw. der Wärme -Einwirkung ) ausgesetzt sind , so ist :



Massbestimmungen für bimetallische Stäbe . 95

F = 2 (b -hh ) l V = bhl

2 (6 -t- h) a A

Die Oudemans scben Stangen lagen scharf webeweinander, hatten gleiche Höhen
h = 22™" und die Breiten 6 = 13,5”*" für Stahl und b ' = 11,5"" für Zink , es ist also
zu setzen : F = (2 b + h) l oder = (2 b ' -+- h) l, folglich :

Die Ausrechnung giebt 12,7 und 20,1 oder das Verhältnis 0,63 : 1 , d . h . die
Stangen entsprechen nicht genügend den Wärme -Verhältnissen .

Auch bei Bessels Stangen (vgl . Fig . 2. S . 68) sind diese Verhältnisse nicht
eingehalten , die Stangen liegen aw/einander und geben , wenn man die Tragstange als
nicht vorhanden annimmt :

alles rund in Millimetern :
Eisen : F = 55 l F = 189i Zink : F ' = 27 l F ' = 91 1

a = 0,175 A = 374
A = 7,82 w = 0,11

a = 0,19 A = 363
A = 6,86 w = 0,089

Die Ausrechnung giebt hiefür nach der Formel (1) :

(At )e : {At ), = 22 : 34

Hier ist die Zinkstange offenbar zu schwach , und das Verhältnis ist deswegen
nicht richtig .

Dagegen berichtet Fischer für den Platin -Messing -Basismessstab des geodä¬
tischen Instituts , wobei beide Teile je 21" ™breit und 5 ™" dick , durch einen Zwischen¬
raum von 7" " von einander getrennt sind , dass das thermische Verhältnis nach der
Formel (1) sich = 1,00 : 1,08 ergab . ( „Astr . Nacbr . “ 103 . Band , 1882 , Nr . 2451 , S . 43 .)

Zugleich teilt Fischer eine Bestimmung des Temperatur -Unterschiedes beider
Stäbe durch Thermo -Elemente mit , welche am 25 . Mai 1882 in dem Beobachtungs¬
raum zu Steglitz bei Berlin eine mittlere Differenz von nur = 0,05 ° ergab , von 0,01 °
bis 0,12 ° anwachsend und bis 0,02 ° wieder abnehmend , mit Schlusswert 0,04 °.

In Bezug auf die vorerwähnte thermische Theorie der Formel (1) besteht natür¬
lich eine grosse Unsicherheit , wie auch Oudemans selbst hervorhebt . Trotzdem handelt
es sich hier um Überlegungen , welche nicht zu umgehen sind .

Neue Massbestimmungen für den Bessel sehen Apparat , von General Schreiber .
Die Massbestimmungen , welche zuerst 1834 von Bessel mit den Zink - und

Eisenstangen vorgenommen wurden , haben wir bereits in § 11 S . 74—76 beschrieben .
Vor der Braaker Basismessung (welche 1871 stattfand ) wurde jedoch der Ver¬

gleichs -Apparat neu und besser eingerichtet , statt der früheren Holzgerüste in Königs¬
berg wurden in dem Untergeschoss des Generalstabs -Gebäudes in Berlin Zementpfeiler
aufgebaut , und die Keilmessung für die Konstanten -Bestimmung durch Mikroskop-
Ablesung ersetzt . Zur Temperatur -Regulierung wurden Holzkästen mit Doppelwänden
zur Aufnahme von Wasser konstruiert .
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Dieses ist mitgeteilt in dem Werke : „Die kömglich prensslsche Landes -Triangulation , Haupt -
Dreiecke , II . Teil , erste Abteilung “, Berlin 1873, S. 1—37 mit Tafel II . und III , und die Ergebnisse
der Vergleichungen in dem Werke : „Die königlich preussische Landes -Triangulation , Hauptdreiecke ,
VI. Teil “, Berlin 1894, S. 181- 213.

Auch in anderer Hinsicht wurden die Vergleichungen gegen früher abgeändert ,
so dass nicht mehr bloss eine, der 4 Stangen , nämlich die erste llt mit dem Normal¬
mass verglichen wurde , sondern alle 4 Stangen ?j , Z2, h < h jede für sich.

Dabei wurde zuerst die Formel zu Grunde gelegt nach (32) § 11 S . 77 (wobei
wir jedoch wieder L statt U schreiben ) :

l = L — (k — 1,4) m (2)

Dabei ist l die Stangenlange , k das innere Keilmass , m der relative Ausdehnungs -
Coöfficient und L das Absolutglied , d . h . die Länge l, welche zu k = 1,4 gehört .

Als erste Verbesserung der Formel (2) ivurde von General Schreiber ein qua¬
dratisches Glied hinzugefügt , und gesetzt :

l = L — (k — 1,4) m — (k — 1,4)2 Q (3)

Eine wichtigere Neuerung wurde ferner gemacht durch Zufügung eines Gliedes
a h , welches die Temperatur -Jlndenmiji berücksichtigt . Um dieses begreiflich zu machen ,
erinnern wir zuerst an das , was schon vorher bei (1) S . 94 über die Wärme -Verhältnisse
in bimetallischen Stäben gesagt wurde . Die Eisen - und Zinkstangen folgen der all¬
gemeinen Temperatur -Änderung nur langsam nach , und noch mehr : Die Eisenstange
und die Zinkstange folgen den Temperatur -Änderungen nicht gleich , sondern die
schwächere Zinkstange eilt bei dem Besselschen Apparat der Eisenstange immer voraus .
Diese Erscheinung findet ihren Ausdruck in dem Glied a h der dritten Schreiberschen
Formel :

l = L — (k — 1,4) m — (k — 1,4 )2 q + ah (4)

Dabei bedeutet a die etnstündige Änderung des Temperatur -Keilmasses k , und
h ist ein durch Versuche bestimmter Coefficient, in runder Zahl h — 0,05 . Um die
Wirkung des letzten Gliedes (Folge -Korrektion ) beurteilen zu können , berechnen wir
eine kleine Übersichts -Tabelle :

Zeit | Keilmasse Temperaturen Folge -Korrektion
i & a in R ° ha = 0,05 «

0* i 1,30 18,13 °
l * 1 + 0,10 — 2,19 ° + 0,005 ' = + 0,011 ”"”

V 1,40 15,94
P ; + 0,10 — 2,20 ° + 0,005* = + 0,011”"»

2h
1 1,50 13,74

Wenn also die Temperatur im allgemeinen um rund 2 ° in 1 Stunde abnimmt ,
so zeigt das Keilmass k die Stange um rund 0,01”"» zu klein , weshalb die Korrektion
<xh = 0,01mm zugesetzt werden muss . Nimmt die Temperatur im allgemeinen zu ,
so erscheint die Stange vermöge des Keilmasses k zu lang . Alles dieses lässt sich
vollständig durch das schon erwähnte Voraneilen des Zinks (oder Zurückbleiben des
Eisens ) erklären , denn dieses giebt bei Temperatur - Zunahme eine Verkleinerung von k .
also in l = L — (k — 1,4) m eine Vergrösserung von l.
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Endlich ist noch eine vierte Formel durch Zufügung eines quadratischen Folge -
Gliedes gebildet worden :

l = L — (k — 1,4) m — {k — 1,4)2 q ah + c& k (6)
Durch diese neuen Formeln , namentlich (4) , sind nicht bloss die auf dem

Komparator gemachten Stangen -Vergleichungen in bessere Übereinstimmung gebracht ,
sondern auch die bei den Basismessungen selbst auftretenden Differenzen der metro -
nomischen Rechnung zugänglich gemacht .

Trotzdem haben die Stangen -Vergleichungen noch erhebliche Schwankungen und
Unsicherheiten gezeigt ; während in den einzelnen Gruppen bessere Übereinstimmung
war , zeigten die Gruppen -Mittel bis zu 0,01 Par . Linien = 0,026 ”’“ gehende Ab¬
weichungen .

Diese Erscheinung , welche auch in anderen Fällen beobachtet ist , giebt die
Warnung , dass mittlere Fehler , welche aus einzelnen Gruppen von Messungen im
wesentlichen unter gleichen Umständen erlangt wurden , nicht ohne weiteres als reelle
Genauigkeits -Masse anzusehen sind , und es scheint , dass die sehr kleinen mittleren
Fehler der Besselschen Vergleichungen von 1834 , welche wir auf S . 74 erwähnt haben ,
aus solchen Gründen zu klein ausgefallen sind.

General Schreiber hat die vorstehenden Angaben in der „Zeitschr . f. Verm .“ 1882, 8 . 1—17
veröffentlicht , und dazu noch folgendes bemerkt : „Es ist nicht gelungen , die Ursachen der enormen
Schwankungen (bei den verschiedenen Vergleichungen ) dergestalt festzustellen , dass sie in Zukunft
vermieden werden können . Man wird vielmehr Unsicherheiten bis zu etwa einer hundertel Linie
oder 0,02 Millimeter , auch bei ferneren mit den Besselschen Messstangen auszuführenden Ver¬
gleichungen und Basismessungen gewärtigen müssen .

Massvergleichungen für den Repsold sehen Stahl -Zink -Apparat von Comstock.
Ähnliche Verhältnisse wie General Schreiber mit den Besselschen Zink -Eisen -

Stangen fand auch General Comstock in Washington mit Zink -Stahl -Stangen . Aus
dem „Report upon the primary triangulation of the United States Lake Survey by
Comstock etc . Washington 1882“, S . 223 — 230, entnehmen wir hierüber folgendes :

Die Zink -Stahl -Stange , deren mechanische Einrichtung wir schon in § 13 . S . 90
bis 93 beschrieben haben , wurde in gleichen Umständen wie bei der Basismessung
selbst , d . h . in einer Röhre eingeschlossen , im freien Felde , unter Zelt -Schutz , in
folgender Weise besonders untersucht :

Eine Messing -Stange diente in einer Verpackung von schmelzendem Eis zur
Vergleichung , indem diese durch Eis auf 0° erhaltene Stange und die Zink -Stahl -
Stange in ihrer jeweiligen Temperatur , abwechselnd unter dasselbe Mikroskopen -Paar
zur Ablesung gebracht wurden . Dabei wurde an der Zink -Stahl -Stange die jeweilige
Differenz Z — S mikroskopisch beobachtet , ausserdem konnte aber auch ein Wert Z — S
berechnet werden aus der gleichzeitigen Vergleichung mit der in Eis verpackten Messing¬
stange und aus der früher vielfach und genau bestimmten Differenz g — s der ein¬
zelnen Ausdehnungs -Coefficienten für Zink und Stahl .

Die Differenzen zwischen berechneten Z — S und beobachteten Z — S zeigten
einen regelmässigen Tagesverlauf , dessen Hauptwerte nachstehende Tabelle zeigt .
Dabei ist gesetzt :

(Z — S) Rechnung — (Z — S) Beobachtung = A
e - A = 0,6522 A - 8

Z — e
Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd .
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Folgendes ist eine Reihe von Mittelwerten solcher Beobachtungen :

8 Tage zwischen 23 . August und 3 . September 1881 (Report S . 228 —230)

Tageszeit Temperatur A h
Morgen 8ä 20,6 ° C — 5,9/* — 3,8/*

10 22,8 — 2,4 — 1,6

Mittag 12 25,4 + 4,7 + 3,1
2 26,6 + 14,5 + 9,4
4 26,3 -f 14,6 + 9,5

Abend 6 25,2 + 6,5 -f 4,2
8 23,9 — 1.6 — 1,0

10 22,5 - 10,0 — 6,5
Nacht 12 21,4 — 16,7 - 10,9

2 20,7 — 15,1 - 9,8
4 20,3 — 12,1 — 7,9

Morgen 6 19,9 — 15,1 — 9,8

Die hier mit 8 bezeichneten Werte entsprechen dem Schreiber sehen Gliede ha

(s . o . (4 ) und (6) S . 96) , jedoch mit anderen Vorzeichen , was darin seinen Grund hat ,
dass die Massen-Verhältnisse von Zink und Eisen bei Repsold (Eig . 6 . S . 90) ganz
andere sind als hei Bessel (Eig . 2 . S . 68). Auf Grund von solchen Versuchen wurden
für die amerikanischen Basismessungen von Chicago kleine Korrektionen 8 in Rechnung
gebracht , in ähnlicher Weise wie durch a h und a 2 k in den Schreiber sehen Formeln
für die Göttinger und Meppener Messungen . (Formeln (4) und (6) S . 96 und 97) .

Hiezu ist noch im Anschluss an S . 84 zu citieren Hammer : Von der neuen französischen

Basismessung , „Zeitschr . f. Verm .“ 1892, S. 26—29.

§ 15. Yerschiedene Projekte zur Basismessung.
Die Konstruktion von Basismess -Apparaten bietet dem Erfindungsgeist ein

weites Feld , und obgleich nicht anzunehmen ist , dass wirklich leistungsfähige Apparate
anders als im engsten Anschluss an die Berufs -Praxis entstehen werden , können wir
doch einige solche Projekte betrachten .

Das Messrad .

Einen kühnen Gedanken hat in der Anfangszeit der „Europäischen Gradmess¬
ung “ 1868, Steinheil in München ausgesprochen , nämlich , mit einem Messrad gewöhn¬
liche geradlinige Eisenbahn -Linien zu befahren , und dadurch Basismessungen in grosser
Menge ohne viele Mühe oder Kosten zu erlangen . Nach Steinheils Vorschlägen wurden
von Voit in München einige Versuche im kleinen angestellt , über welche Steinheil in
den astr . Nachr . 72 . Band (1868) Nr . 1728 , S . 369 — 378 berichtet . Es wurde ein
Doppelgeleise von 20 ™ Länge von gewöhnlichen Eisenbahn -Schienen wie bei der
bayerischen Staatshahn (mit Laschenverhindungen und kleinen Zwischenräumen zwischen
je 2 Schienen ) angelegt . Das Messrad war von Holz mit einem kupfernen Reif von
0,922” Durchmesser , und wurde aus freier Hand geleitet ; die Wiederholungen stimmten
unter einander auf etwa 0,01 % . Später wurde für das Rad ein Gestelle konstruiert ,
welches die Rad -Ebene genau in der Vertikal -Ebene der Schienen erhalten soll . Damit
wurden 50 Befahrungen einer Strecke von 17,383” (6 Radumfänge ) gemacht , wobei
sich der mittlere unregelmässige Fehler der einmaligen Befahrung = + 0,30" ” ergab
oder + 2,3”” für \ km.
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Der Basis -Mess - Wagen .

In dem Werke von Zaehariae „Die geodätischen Hauptpunkte “
, deutsch von

Lamp , Berlin 1878 , S . 94, wird folgendes Projekt von Bruhns in Leipzig berichtet :
In der Basislinie werden , mit Zwischenräumen von ungefähr 4”*, eiserne Pflöcke

eingerammt , deren Oberfläche mit einem Punkt oder einem Kreuz versehen ist . Der
Messapparat besteht aus einem 4m langen Massstab und zwei an den Enden ange¬
brachten vertikalen Mikroskopen , mit denen man die Massstablänge auf die Pfahlköpfe
übertragen kann . Dieser Apparat liegt auf einem Wagen , wird durch ein Dach und
Seitenwände gegen Sonnenschein u . s . w . geschützt , und fahrt somit in Absätzen von 4”
über die ganze Basis hin .

Messungen mit Metalldrähten (Zeitschr . f. Instrumentenkunde 1885 , S . 362—365 ) .

In Stockholm hat Jäderin , 1885 , Längenmessungen mit Stahlbändern und mit
Drähten aus Stahl und Messing gemacht . Die Drähte werden über Stative ausgestreckt ,
dabei durch Gewichte in konstanter Spannung gehalten . Die Längenbestimmung
geschieht mittelbar durch Vergleichung der Drahtmessung mit einer anderweitigen
Stangenmessung . Die Geschwindigkeit ist bedeutend , die grösste Leistung war 550”
in 1 Stunde und 2368” in einem 9stündigen Arbeitstage .

Auf der Erdmessungs -Konferenz in Berlin 1895 wird berichtet , dass in Russ¬
land eine Basismessung mit dem ausserordentlich schnell messenden Jäderinschen
Apparate stattgefunden hat .

Das Schatz -Mikroskop .

Während Nonien und Schrauben -Mikroskope längst zur Basismessung angewen¬
det wurden , ist ein Hilfsmittel , welches in mehrfacher Hinsicht nach unserer Ansicht
sich Mer vortrefflich eignet , noch nicht benützt worden , nämlich das Schatz -Mikroskop ,
das wir früher in Band II , 4 . Aufl. 1893 , S . 191 —192 beschrieben haben .

Wir machen zunächst eine allgemeine Überlegung : Um einen mittleren un¬
regelmässigen Messungsfehler von rund ± 1”” auf 1 Kilometer , d . h . den thatsächlich
bei guten Messungen vorkommenden Betrag zu erklären , braucht man keine sehr feinen
optischen und mechanischen Hilfsmittel anzunehmen , denn bei der üblichen Stangen¬
länge von 4“ kommen 250 Lagen auf 1 Kilometer , und wenn p der mittlere Fehler
einer Lage ist , so hat man p j/250 = 1”” , woraus folgt p — 0,063”” ; dieses ist ein
Betrag , den man sogar durch Schätzung von freiem Auge an einer Millimeter -Teilung
erzielen könnte , (etwa entsprechend einem Winkel von 2 ' an einer Kreisteilung von
100”” Halbmesser ) .

Da man aber natürlich die Genauigkeit im einzelnen weiter treibt , wurde man
bald zu Nonien , Mikroskopen u . s . w. geführt . Ein weiteres Hilfsmittel zur Bestimm¬
ung des Zwischenraums oder des Übergreifens an der Grenze zweier Messstangen , das
Schätz -Mikroskop , ist sehr bequem und hat die für solche Zwecke nötige Genauigkeit ,
giebt eine Ablesung auf einen Blick , was zur Zeitsparung bei Basismessungen sehr
wichtig ist .

Die Anwendung eines Schätz -Mikroskops zur Messung des Anschlusses zwischen
zwei aufeinander folgenden Stangen I und II ist in Fig . 1 . (S . 100) angedeutet : Die
Stange I endigt gabelförmig und umfasst mit zwei Teilungen a und h die Teilung c,
welche sich auf einem zungenartigen Fortsatze der Stange II befindet . Ein Schätz -
Mikroskop wird mit drei Fussspitzen auf die Punkte A , B und O gestellt , von denen
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§ 16 .

V

Kg . X.

A und B fest sind (etwa konische Löcher ) , während C dem Spielraum des Anschlusses

entsprechend veränderlich ist . Man kann vielleicht auch das Schatz -Mikroskop mit
einer Kipp -Axe AB aufstellen . Das
Schätz - Mikroskop , welches somit
auf den drei Punkten A , B und
C aufsitzt , hat eine horizontale Axe
in der Bichtung I II und Kippbe¬
wegung in der Querrichtung N N ' ,
so dass die 3 Teilungen a , 6 und c
rasch nach einander abgelesen werden
können .

X

iN
'

Trennung der Längenmessung von den Hilfs -Operationen .

Die Einrichtungen , welche zu einem Basis -Apparate gehören , und die Operationen
mit denselben , sind wesentlich zweierlei Art , erstens solche , welche zur Temperatur -

Ausdehnung und Intervall -Bestimmung , d . h . zur eigentlichen Längenmessung dienen,
und zweitens die verschiedenen mechanischen Hilfsmittel für das Auflegen der Stangen ,

Geradrichtung und Neigungsmessung u . s . w .
Die eigentliche Längenmessung muss ihrer Natur nach eine kontinuierliche

Operation sein, sogar mit einer nahezu gleichförmigen Geschwindigkeit , w'ährend das

bei den Hilfs -Operationen nicht nötig ist . Wir glauben deshalb , dass die eigentliche

Längenmessung , d . h . das Legen der Messstangen und das Bestimmen der Zwischen¬

räume , oder Übergreifungen ihrer Enden , zeitlich und räumlich getrennt werden sollte

von den vorbereitenden Hilfs -Verrichtungen der Gerad -Bichtung , Neigungs -Bestimmung
u . s . w . ; das könnte z . B . dadurch geschehen , dass man stets etwa 1 Kilometer voraus
die Basis durch eingerammte Pfähle (etwa von 4 zu 4 Meter ) absteckt , geradrichtet
und nivelliert . Die Pfähle wären zum Einrammen unten mit eisernen Schuhen und

oben zum Auflegen der Messstangen mit scharfgeformten Metall -Kappen zu versehen ,
welche zum Geradrichten Spielraum und Bichte -Schrauben haben .

Es mag hier auch nochmal daran erinnert werden , wie wir schon in § 9 . S . 62

mitgeteilt haben , dass Benzenberg zu seinen Basismessungen eine Messungsbrücke von
1000 Fuss = 314 Meter Länge legte , so dass die Längenmessung stets auf genügende
Länge von den Hilfs -Operationen unabhängig war .

Auch Schwerd liess bei seiner kleinen Speyerer Basis (Sp . B . S . 23 ) Pfähle ,
welche 0,58“ lang , 0,1 “ dick und oben mit einem Brettchen zur Aufnahme der Stangen
versehen waren , 0,3m tief , den ganzen Vorrat der Messung voraus , in den Boden

schlagen .

§ 16 . Länge und Einteilung der Grundlinien.
Die Basis eines Dreiecksnetzes ist eine genau gemessene Seite des Netzes .
Will man beim Übergang von der Basis zu andern Dreiecksseiten spitze Winkel

oder ähnliche Fehlerquellen vermeiden , so bleibt nichts übrig , als der Basis nahezu
die Länge einer Haupt -Dreiecksseite zu geben , und deswegen finden wir bald nach dem
ersten Aufschwung der Triangulierungen , das Bestreben , die Grundlinien so lang als

möglich zu machen .
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Allerdings der Begründer Snellius hatte nur ganz kleine Grundlinien von zuerst

328” , 348™, später etwa 2000™, dagegen die französischen Messungen im 18 . Jahr¬

hundert hatten fast nie unter 10 im lange Grundlinien , nämlich :

1736 Gradmessung in Peru (La Condamine )
Basis von Yarouqui . 12 226 m

Basis yon Tarqui . 10 250 m

1736 Gradmessung in Lappland (Maupertuis )
Basis von Tornea . 14 436 m

1792 Gradmessung von Delambre und Mechain
Basis von Melun . 11 842 m

Basis von Perpignan . 11 706 m

Auch in Deutschland niass man am Anfang dieses Jahrhunderts sehr lange Linien , z . B. :

1801 Bayerische Basis München -Aufkirchen . 21 654m

1820 Württembergische Basis Solitude -Ludwigsburg . 13 032 m
1819 Kheinbayerische Basis Speyer -Oggersheim . 15 460 m

Die letztgenannte Basis war mittelbare Veranlassung zum Verlassen der langen
Grundlinien :

Professor Schwerd am Lyceum in Speyer war mit der vor seinen Augen vor¬

genommenen amtlichen Messung von Steuerrat Lämmle nicht einverstanden , und be¬

hauptete , eine 20 mal kleinere Basis leiste denselben Dienst . Zum Beweis mass er
mit seinen Lyceums -Schülern im Jahr 1820 eine kleine nur 860™ lange Grundlinie ,
und leitete die grosse Speyerer Linie mit guter Übereinstimmung daraus ab .

Schwerd veröffentlichte seine Arbeit in dem Werk : „Die kleine Speyerer Basis , oder Beweis ,
dass man mit einem geringen Aufwand an Zeit , Mühe und Kosten durch eine kleine genau gemessene
Linie die Grundlage einer grossen Triangulation bestimmen kann . Speyer 1822.“ Netzausgleichung
in unserem I . Bande , 4. Aufl . 1895 , § 65.)

Von da an kamen kurze Grundlinien ziemlich allgemein in Gebrauch , nament¬
lich Bessel nahm zu seiner berühmten Gradmessung in Ostpreussen 1834 nur eine
1822™ lange Basis ; doch ist das die untere Grenze , später ging man wieder weiter ,
und die neuesten deutschen Grundlinien sind 5 —7 Kilometer lang .

Die Längen und Einteilungen der 14 Grundlinien , welche mit dem Bessel sehen

Apparate gemessen sind , sind im Folgenden übersichtlich zusammengestellt :

Längen und Einteilungen der 14 Grundlinien , welche his jetzt mit dem Sesselschen
Apparat gemessen sind .

1. Königsberg , 1834.

1 . Basismessung bei Königsberg , 1834 , von Bessel und Trenk a Mednicken
Baeyer . 2 Strecken .

'
44? 138l 's = °

- 1822 —

2 . Basismessung bei Kopenhagen , 1838. 2701™ lang , im ganzen nur einmal ge¬
messen , nur drei kleine Teilstrecken von zusammen 692™ Länge sind zweifach

gemessen .
3 . Basismessung hei Upsala in Schweden.

4 . Basismessung hei Berlin , 1846 , von Baeyer , 4 ungleiche
Strecken .

4. Berlin , 1846.

ABC
- 2336 -

5. Bonn , 1847.

A D B- =0=01= 0=0- =
- 2134 -—

5 . Basismessung hei Bonn , 1847 , von Baeyer , 6 ungleiche
Strecken .

C
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Knieschwitz 2 1

6 . Basismessung bei Lommel in Belgien , 1852 , 2301” lang , 5 Strecken je zweifach

gemessen.
7 . Basismessung bei Ostende , 1854 , 2489 '“ lang , 4 Strecken 622” , je zweifach

gemessen . 8- Schlesien , 1854.

8 . Basismessung bei Strehlen in Schlesien ,
1854, von Baeyer , 3 ungleiche Strecken ,

9 . Basismessung bei Braak
in Holstein . 1871, von Nordpunktl7 ' er-—— ~q-—- - u- - -
v . Morozowicz, trigono - —5875—

metrische Abteilung der preussischen Landes -Aufnahme , 7 ungleiche Strecken .
10 . Basismessung bei Grossenhain im Königreich Sachsen , 1872 , von Nagel und

Bruhns . Sächsische Triangulierung , 12 Strecken .
10. Grossenhain in Sachsen , 1872.

— 2763 -

9. Braak in Holland , 1871.

TE IL TU X

Herinsdorf

Al Siidpwikl

Raschütz Grossenhain Quersa

- 8909"

11 . Basismessung bei Oberhergheim im Eisass , 1877 , von v . Morozowicz, trig . Ab¬

teilung der preuss . Landes -Aufnahme ; in der Gegend der früheren französischen

Basis von Ensisheim , 22 Strecken : 376” + 20mal 312” + 364™ = 6980“ .
12. Oberhergheim im Eisass , 1877.

Nordpunkt Südpunkt

12. Basismessung bei Göttingen ,
1880 , von Schreiber , trig . Abt .
der preuss . Landes -Aufnahme ,
33 Strecken von je 156” .

13 . Basismessung von
Meppen, 1883, von Weslpunkt

12. Göttingen , 1880.

Nordpunkt 33Strecken Südpunkt
r \ orwvvKyiniiriTTBQggDooooo ooaoouu0UUg ~O
0 11 22 33

- 5193-

Schreiber , trig . Ab¬
teilung der preuss .

13. Meppen , 1883.

45 Strecken
OoOCiQAnncrCifViOOor füöoo uououuoouof ipouaa

15 30

Ostpiinkt
45

—7033—
Landes -Aufnahme , 45 Strecken von je 156” .

14 . Basismessung bei Bonn 1892 , 2513 Meter eingeteilt in 15 Strecken , 4mal von
der Landes -Aufnahme mit dem Bessel sehen Apparat und 2mal vom Geodä¬
tischen Institut mit dem Brunner sehen Apparate gemessen .
Die vorstehende Zusammenstellung bezieht sich (mit unwesentlichen Ausnahmen )

auf Doppel-Messungen , d . h . jede Strecke wurde hin und her gemessen .
Auch die älteren französischen Basismessungen des 17 . und 18 . Jahrhunderts

sind meist doppelt gemacht , eine derselben , die Nachmessung der Picard sehen Basis
von Juvisy durch Cassini sogar 5mal . Dagegen die französischen Messungen mit den
Bordaschen Platin -Kupfer -Stangen von 1798—1828 sind nur einmal gemessen .

Auch die langen süddeutschen Grundlinien am Anfang dieses Jahrhunderts in
Bayern und Württemberg sind unbegreiflicherweise nur einmal gemessen , so dass über
die unregelmässigen Messungsfehler jeder Nachweis fehlt .

Die Schwerdsche und alle nachfolgenden Grundlinien sind wieder in der Regel
doppelt gemessen ; als Ausnahme ist zu erwähnen , dass die badische Basis von Heitere -
heim , 2125” lang , im Jahr 1846 sogar 8mal gemessen wurde .
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Wie man aus Doppelmessungen oder allgemeiner aus Messungs -Wiederholungen
im ganzen oder in Strecken den mittleren unregelmässigen Messungsfehler bestimmen
kann , werden wir später in § 23 behandeln .

Gesamt - Übersicht der Basismessungen .

Eine Zusammenstellung aller zu der internationalen Erdmessung angemeldeten
Basismessungen ist von Perrier gemacht worden . Dieselbe findet sich veröffentlicht
in den Generalberichten der internationalen Erdmessung und zwar für 1877 , S . 40
bis 55 ; für 1880 , Annexe YI ; für 1883 , Annexe III ; für 1887 , Beilage IV ,

Wir haben hieraus folgenden Auszug gebildet , wo n die Anzahl der Grund -
FB \

linien , und [B ] deren Gesamtlänge für das einzelne Land , also ^ die mittlere Länge

einer Grundlinie ist .

7um . Land
Anzahl

n
Summe

m

Mittel
m
n

1. Bayern . 3 51,0*» 17,0t *»
2. Belgien . 2 4,8 2,4
3. Dänemark . 1 2,7 2,7
4. Frankreich mit Algerien . 10 117,1 11,7
5. Italien . 9 42,8 4,7
6. Holland . 1 6,0 6,0
7. Hessen -Darmstadt . . . 1 7,7 7,7
8. Schweden und Norwegen 7 27,1 3,9
9. Österreich -Ungarn . . . 19 80,5 4,2

10. Freussen . 11 45,1 4,1
11. Portugal . 1 10,5 10,5
12. Bussland . 19 113,3 6,0
13. Spanien . 9 32,8 3,6
14. Schweiz . 6 27,0 4,5
15. Nord -Amerika . 5 49,0 9,8

Summe 104 617,4

Gesamt -Mittel 617,4’
104

= 5,9*"*

Diese Tabelle ist nicht vollständig ; es fehlen von den deutschen Linien die
Württembergische und die Badische , namentlich aber fehlen die Britischen Messungen
in England selbst und in den Kolonien . Andererseits sind zwei preussische Linien
(Strehlen und Berlin ) infolge von Nachmessung doppelt aufgeführt .

In England sind nach S . 422 des Werkes : „ Ordnance trigonometrical survey
u . s . w . “ von 1791—1849 , 7 Grundlinien von zusammen 219 579 engl . Fuss oder rund
66,9*”1 Länge gemessen worden (Mittel = 9,6im) ; fügt man dieses zu der vorstehenden
Zusammenstellung , und rechnet für die britischen Kolonien noch einen runden Betrag ,
so kann man die gesamten Basislängen der Erde zu rund 700 Kilometer schätzen ,
oder 7 °/0 des Erdquadranten .

Wir entnehmen aus dieser Statistik , dass die mittlere Länge einer Grundlinie
rund = 6 Kilometer ist .

Neuere Berichte über Basismessung geben die Verhandlungen der internationalen Erdmessung
z . B. Verhandlungen über die Versammlung 1892 in Brüssel , 1893, Annexe A. ID S. 157—164. Wir
haben diese neueren Berichte zunächst nicht mehr nachgetragen , weil als summarische Übersicht
unsere vorstehende Tabelle genügt .



104 Basisnetze . 17 .

§ 17 . Basisnetze .
Die Basis einer Triangulierung ist meist erheblich Heiner als die Dreiecksseiten

im allgemeinen , und es entsteht daher die Aufgabe , eine grosse Seite aus einer Meinen
trigonometrisch abzuleiten . Ungünstige Dreiecks -Verbindungen sind Mer nicht zu ver¬
meiden ; denn entweder macht man den Übergang von der kleinen Basis zu einer
grossen Hauptdreiecksseite durch wenige Dreiecke , und man muss dabei spitze Schnitte
anwenden ; oder man nimmt eine grosse Zahl von Dreiecken , man hat dann aber eine
grosse Zahl von Fehlerquellen .

Wir werden nun zuerst mehrere Basisnetze bekannter Triangulierungen be¬
trachten , und sehen, wie zu verschiedenen Zeiten verschiedene Landmesser sich bemüht
haben , teils durch zweckmässige Anordnung der Dreiecke , teils durch lange Grund¬
linien selbst , die in der Natur der Sache liegenden Schwierigkeiten zu überwinden .

Fig . 1. Snellius , 1615.
Massstab 1 : 100 000.

t c = 828 m, LS = 4U4

1) Das Basisnetz von Snellius (Fig . 1 .)
Wie wir schon in unserem I . Bande , 4. Aufl .

1895 , S . 478 , mitgeteilt haben , verdanken wir dem
Niederländer Willebrord Snellius in Leiden 1615 die
erste Triangulierung in dem heutigen Sinne ; und in

“ überraschender Weise hat das erste Snellius sehe
Basisnetz (Fig . 1 .) diejenige Form , welche heute
noch als die beste gilt . Allerdings die Genauigkeit
absolut genommen war bei Snellius noch gering , die

Basis tc wurde mit hölzernen Messlatten , und die Winkel mit einem geteilten Qua¬
dranten von 2,2 rhein . Fuss ohne Fernrohr auf etwa 1' gemessen .

In Fig . 1 . sind L und S die Türme von Leiden und dem südlich von Leiden
gelegenen Dorfe Soeterwoute , die wirklich gemessene Grundlinie ist nur t c = 87,05
rheinl . Kuten = 327,85™ lang , daran schliessen sich zwei hochgestellte Dreiecke tce
und t c « , und an die abgeleitete Linie e a = 1229” schliessen sich wieder zwei hoch-
gestellte Dreiecke eaL und eaS , woraus LS = 4114 ”* berechnet wird .

Für jedes der vier eigentlichen Messungs -Dreiecke teilt Snellius nur je zwei
Winkel als gemessen mit , und zwar jeweils die Winkel an der Basis , was nach der
ganzen Art seiner Darstellung in solchen Fällen , in welchen er die Probestimmungen
nicht mitteilen will , nicht ausschliesst , dass auch die dritten Winkel gemessen und
ausgeglichen wurden . Ob Snellius das Hauptgesetz , dass die spitzen Winkel (z . B.
der Winkel a in dem Dreieck tac ) wesentlich die Genauigkeit bestimmen , gekannt
hat , ist daraus nicht zu ersehen .

2) Basisnetze von Schiverd , 1820 .
Der Vater der neueren Basisnetz -Theorie ist Professor Schwerd in Speyer (vgl .

S . 100 und 101 ) . Dieser hat im Jahre 1820 das richtige getroffen ; er fand nämlich
durch theoretische Betrachtungen und Vergleichungen :

erstens , dass das rhombische Netz ABND Fig . 2a . (S . 105) das günstigste
ist (was schon Snellius hatte ) und

zweitens , dass die spitzen Winkel bei N und D , welche der Basis gegenüber
liegen , hauptsächlich bestimmend für die Genauigkeit sind , und deswegen mit beson¬
derer Schärfe gemessen werden müssen .
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Die eigentlichen kleinen Basisnetze , welche Schwerd gemessen und berechnet
hat , sind in den folgenden Figuren dargestellt . Schwerd hat ausser seinem „Hauptnetz “

Fig . 2 a . noch zwei „Prüfungsnetze “ Fig . 2 b und Fig . 2 c . angewendet . Die eigent¬
liche Basis AB selbst ist nur 860” lang . Die Entfernung HD leitete Schwerd hieraus
dreifach trigonometrisch ab mit den Ergebnissen 4959,084 ” , 4959,068 ” , 4959,098 ” .

Fig . 2.
Basisnetze von Schwerd , 1820.

Massstab 1 : 100 000, A B = 860 m, JJZ ) = 4959>n.
Fig . 2 a .

Hauptnetz .

2T B

Fig . 2 b. Erstes Prüfungsnetz . Fig . 2 c. Zweites Prüfungsnetz .

Die weitere Verbindung der Linie HD mit der amtlichen bayerischen Basis
Speyer -Oggersheim haben wir schon in unserem I . Bande , 4 . Aufl . 1895 , S . 208 be¬
handelt , wobei mit D Sp der Punkt Dom in Speyer bezeichnet ist , welcher abgesehen
von einer Excentricität auf dem Turme , dem Punkte D in Fig . 2 a . , 2 b . und 2 c.
entspricht .

3) Basisnetz der Gradmessung in Ostpreussen , 1834.
Fig . 3. Massstab 1 : 400 000.

Basis Trenk -Mednicken = 1822 m
Galtgarben -Condeimen — 29 563 m

SoooTöisen ,o
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Die vorerwähnten Überlegungen von Schwerd haben auch auf die Anordnung
der Besselschen Basismessung bei Königsberg Einfluss gehabt ; Bessel erwähnt auf
S . 38 der Gradmessung in Ostpreussen das „sehr lesenswerte Buch von Schwerd “

, und
machte seine Königsberger Grundlinie nur 1822”* lang , wie aus vorstehender Zeichnung
(Pig . 3 . S . 105) zu ersehen ist . Die zwei Rhomben Wargelitten -Fuchsberg und
Galtgarben -Königsberg entsprechen dem Schwerd sehen Gedanken , allein die Verstärkung
der Messungs -Genauigkeit in den spitzen Winkeln hat Bessel , wie es scheint im Ver¬
trauen auf die Gesamt -Ausgleichung , nicht durchgeführt (vgl . hiezu auch unsern
I . Band , 4 . Aufl . 1895, S . 499— 500) .

4) Badische Basis bei Heitersheim , 1846 .

Auch bei der kurzen badischen Basis , welche
1846 bei Heitersheim (zwischen Preiburg und Basel )
gegenüber der französischen Basis von Ensisheim (Ober-
hergheim ) von Klose und Rheiner gemessen wurde ,
zeigt sich Schwerds Grundgedanke . Die Winkelmess¬
ungen hiezu haben wir früher in Band II , 3 . Aufl . 1888,
S. 183 als Repetitions -Messungsbeispiele mitgeteilt . Die
spitzen Winkel sind verstärkt gemessen . Die Basis selbst
ist NS = 2125m, und Neuenburg -Bihgen = 17027” .

Pig . 4.
Massstab 1 : 600 000.

Bingen

Griesheim ,

Castelberg

leuenburg

5) Spanische Basismessung von Ibanez , 1858 .
General Ibanez liess 1858 für seine spanische Triangulierung eine lange Linie

messen , bei Madridejos (etwa 100 Kilometer südlich von Madrid ). Die Gesamtlänge
von 14 663” wurde in 5 Teile geteilt , welche alle unter sich trigonometrisch ver¬
bunden wurden .

Mg . 5.
Massstab 1 : 200 000, Carbonera —Bolos = 14 663 m.

Bolos
Die Anschauungen , von welchen General Ibanez hiebei geleitet wurde , sind

durch folgenden Auszug einer Mitteilung in der Madrider Akademie -Sitzung vom
80. Nov. 1863 charakterisiert (astr . Nachr . 61 . Band , 1864 , Nr . 1462 , S . 339 - 346) :
Die zwischen einigen französischen und deutschen Geodäten streitige Frage , ob kleine
Grundlinien genügen , wurde dadurch zu beantworten gesucht , dass die lange Grund¬
linie in 5 Teile geteilt wurde , welche unter sich durch ein Netz von 10 Punkten mit
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120 Dreiecken und 45 Verbindungs -Linien trigonometrisch verbunden wurden . Die

trigonometrische Rechnung , welche sich auf das Mittelstück stützte , gab für die vier

äusseren Stücke Werte , welche von den unmittelbar gemessenen Längen nur sehr

wenig , d . h . um 2—3m“ Abweichung zeigten .
Weiteres über diese spanische Vermessung giebt der General -Bericht der „Europ . Grad -

messung für 1869, S. 62—65 und für 1876, S. 125—128 ", sowie das grosse Werk : »Memorias del in -

stituto geografico y estadistico “, ferner (nach einem Citat des Gen .-Ber . für 1869, S. 63) : „Base

centrale de la triangulation geodösique de TEspagne par les Colonels Ibanez et Saavedra , 1865.a

6) Sächsische Basis bei Orossenhain , 1872 .

Fig . 6.
Massstab 1 : 600 000. Basis Raschütz -Quersa = 8909'«?.

Strauch

mkqin-

Im Königreiche Sachsen wurde im Jahre 1872 eine lange Grundlinie mit dem
Besselschen Apparat unter Leitung von Nagel und Bruhns gemessen , deren Basisnetz
in Fig . 6 . gezeichnet ist .

Näheres hierüber giebt das amtliche Werk : „Astr . geodät . Arbeiten für die Europ . Gradm .
im Königreich Sachsen , I . Abteil , die Grossenhainer Grundlinie , von Bruhns und Nagel , Berlin 1832“,
und Auszug hieraus im „Civilingenieur XXVIII , 1882, Heft 1“, und Bericht von Helmert in der

„Zeitsohr . f . Verm . 1883", S. 596—604. Aus diesem Helmertschen Bericht ist auch unsere Fig . 6.
entlehnt .

7) Göttinger Basis , 1880.

Die Göttinger Basis ist die zwölfte der mit dem Besselschen Apparat gemes¬
senen Grundlinien ; die Messung geschah 1880 unter Leitung von General Schreiber ,
welcher den Mess-Apparat und dessen Anwendung zu diesem Zwecke verbessert hatte ,
und auch in der trigonometrischen Anlage des Basisnetzes von früherem abwich.

Das Göttinger Basisnetz Fig . 7 . (S . 108) zeichnet sich durch klassische Einfach¬
heit ans , es entspricht dem von General Schreiber dabei ausgesprochenen Grundsätze ,
„dass die Güte der Messungen nicht in einer systemlosen Häufung von Kontrollen ,
sondern in einer scharfen Messung solcher Elemente zu suchen ist , welche die Ge-
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nanigkeit der Schluss -Ergebnisse in erster Linie bestimmen “ ( „ Zeitschr . f. Verm . 1880 “,
S . 897). In diesem Sinne wurde das Göttinger Basisnetz Veranlassung für General
Schreiber,fdie Anordnung der Winkel -Beobachtungen nach dem Grundsätze günstigster
Gewichts -Verteilung allgemeiner zu untersuchen ( s . Schreiber : Die Anordnung der
Winkel -Beobachtungen im Göttinger Basisnetz , „ Zeitschr . f. Verm . 1882 “

, S . 129— 161).
Auch gehört hiezu der Schreiber sehe Satz über günstigste Gewichtsverteilung , den wir
bereits in unserem I . Bande , 4 . Aufl. 1895 , S . 138—144 behandelt haben .

Fig . 7.
Massstab 1 : 670 000.

Basis N S = m, Ablsburg -Meissner = 57 507 m.

Ahhburg

>Gleichen

Meissner

Fig . 8.
Massstab 1 : 600 000.

Windberg

Berssen

8) Basis bei Meppen , 1883 .

Die Meppener Basis , 1883 unter
Leitung von General Schreiber gemessen ,
entspricht ihrer Vorgängerin von Göt¬
tingern Das Basisnetz besteht nur aus 4
Übertragungs -Dreiecken .

Amtliches ist hierüber noch nicht
veröffentlicht , eine vorläufige Mitteilung
giebt die „ Zeitschr . f. Verm . “ 1883 , S . 577
bis 584 . In Fig . 8 . ist die Basis WO =
7039“ und Hesepe -Windberg = 34561“ .

9) Basis am Rap der guten Hoffnung , 1886.
Fig . 9.

Massstab 1 : 86 000. A B = 1097m, fr S = 3291 m.
Das in Fig . 9 . dargestellte

Basisnetz hat eine von allen unseren
vorhergehenden Fig . 1 — 8 . ab¬
weichende Form . Die 3 Abschnitte
sind für sich gemessen und durch
ein Gitternetz von 5 Dreiecken unter
sich trigonometrisch verbunden .
Denkt man sich das Mittelstück

m S
^ Meile engl. = 1,60933 *»
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A B allein gemessen , so lässt sich die Gesamtlänge N 8 trigonometrisch berechnen
und zwar stimmte dieses im vorliegenden Falle auf + 0,0002 — 0,0027 = — 0,0025
engl . Fuss = 0,8"*” .

Die Frage der theoretischen Fehler -Fortpflanzung in einem solchen Netze werden
wir später besonders behandeln (§ 19 ) ; wir werden finden , dass das Gitternetz Fig . 9 .
theoretisch ungünstiger ist als das Rhombennetz , allein das Gitternetz mit nur kurzen
Seiten hat praktische Vorzüge . (Unsere Fig . 9 . S . 108 ist aus einem Berichte in der

„ Zeitschr . f. Verm . 1887“ , S . 59 entnommen .)
Noch einige weitere Beispiele von Basisnetzen , mit Genauigkeitstheorien , enthält die Ver¬

öffentlichung des geodätischen Instituts : „Die Europäische Längengradmessung in 52° Breite , von
Greenwich bis Warschau , I . Heft Hauptdreiecke und Grundlinienanschlüsse von F . K. Helmert , Ber¬
lin 1893,“ S. 231—252, mit Tafel II , 10 Basisnetze in 1 : 50000 .

§ 18 . Mittlere Fehler von Dreiecksseiten .

Wenn in Fig . 1 . die Grundlinie b und die drei Winkel (1) , (2) , (3) gemessen
sind , so kann man , nach Ausgleichung der drei Winkel auf 180 °

, die Seite B be¬
rechnen :

und wir wollen für diese Funktion den mittleren Fehler bestimmen
unter der Annahme , dass die Basis b fehlerfrei sei.

Die Bedingungs -Gleichung ist :
-+- (1 ) + (2) + (3) — 180 ° = 0

also die Coiffficienten der Bedingungs -Gleichung :
(Zj ^ —f- 1 £J2 =zz —(—1 ßg — —{—1

b
(2)

Versteht man unter /) , f2, fa die partiellen Differentialquotienten der Funktion
B nach Gleichung (1) , so hat man (nach Band I . 4 . Aufl. 1895, §. 42 .) :

b sin (2) b sin (2) cotg ( 1) B cotg (1)sin? (1)
Wir wollen zur Abkürzung schreiben :

cotg (1) = cx cotg (2) = c2 cotg (3) = c3
Dann wird :

fi = — B Ci f% = + B c2 / s = 0

Die Gewichte der drei gemessenen Winkel seien :

P \ Pi Ps

(S)

(4)

(5)
Dann ist das Gewicht P der Dreiecksseite B nach der Ausgleichung , indem

hier die Basis b als fehlerfrei betrachtet wird , zunächst in allgemeiner Formel gegeben
(nach Band I . 4 . Aufl. 1895 , S . 125) :
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Die Einsetzung der einzelnen Teile ans (2), (4 ) und (5 ) giebt :

=
«ll
Pl Pi

m

[ yl

Cg
Pi

Dieses kann auch auf folgende Form gebracht werden:

(7)

1 _ Jß Pl e22 + Pi cl 2 + Ps (Ci + c2)2
^P PxPi + PiPz + PiPz

Setzt man den mittleren Gewiehtseinheits -Fehler = + ju, so hat man auch den
•mittleren Fehler der Seite B , den wir mit m (B ) bezeichnen wollen :

m (B ) = P -ß 7/ Pl ci 2 + c^ 4- (ct 4- Cg)2

9 r PiPi + PiPz + PiPs
(9) *)

Wir wollen auch noch den mittleren Fehler der Längen-Einheit von B ein¬
führen, und hiefür das Zeichen fi (B ) setzen, also :

w _(
B ) _ _ j«

_
-. / P\ C22 + Pi Ci2 ■+ ■Pz (ci -+- cg)^ ( io ) *)B q r PiPz + PiPz + PzPz

Nach diesen verschiedenen Formen kann die Genauigkeit der trigonometrischen
Übertragung von 6 auf B beurteilt werden.

Aus der Formel (7 ) ist zu ersehen, dass mit cx = c2, oder mit Winkel (1) =
Winkel (2 ), der zweite Teil ganz fortfällt , und dass dann p s gar nicht mehr in der
Formel vorkommt; wenn also das Dreieck mit ( 1) = (2 ) gleichschenklig ist , also B = b,
so ist der Winkel (3 ) hei der Messung gleichgiltig . Dieses Ergebnis ist zuerst eigen¬
tümlich klingend, aber hei näherer Betrachtung ganz sachgemäss , denn wenn man nur
die Seite B von Fig . 1 . (S . 109) bestimmen wollte und B nahezu = b ist , dann
brauchte man in der That den Winkel (3) gar nicht oder nur oberflächlich zu messen ;
da man aber gewöhnlich auch die andere Seite , welche (3) gegenüber liegt , haben
will , so darf auch der Winkel (3) nicht vernachlässigt werden.

Wenn das Dreieck bei (3) rechtwinklig ist , so wird c3 = 0 , B ist dann Kathete,
deren mittlerer Fehler nach (10) zu berechnen ist , wobei nun e2 = 1 : CJ ist .

Gleiche Gewichte.
Aus (8) oder (10 ) wollen wir auch noch den besonderen Fall herleiten , dass

alle Gewichte einander gleich, also = p %= £>3 = 1 gesetzt werden; dann wird :

P (B ) = JLt/1
q r : (Cj2 4 - C22 4 - d C2) (ID

und für das gleichseitige Dreieck mit c1 = e2 = c3 = cotg 60 ° = giebt dieses :
_ y 3

P (B ) = V 2 — cotg 60 ° oder = — = 0,000 003 96 fi ( l 2)
P Q r o

* ) Es soll für diese und die folgenden Betrachtungen das Zeichen m wie ein
Funktionszeichen gebraucht werden , allgemein m (a:) = mittlerer Fehler von x , und

fi (x) soll einen mittleren sogenannten relativen Fehler bedeuten , nämlich ft (x) =
während fi an und für sich den mittleren Gewichtseinheits -Fehler , d . h. den mittleren
Winkelfehler in Sekunden bezeichnet.



Mittlere Fehler von Dreiecksseiten. 111§ 18 .

Nimmt man p = 1 "
, so hat man rund p (B ) = 0,000 004 , oder der Über¬

tragungs -Fehler beträgt in diesem Falle 4 Milliontel der Länge , oder 4 Millimeter
auf 1 Kilometer.

Sehr ungleiche Gewichte.
Wir betrachten den Fall , dass man die Gewichte p 1 oder p s verstärkt oder

vermindert, je nachdem die zugehörigen Winkel (1) und (2 ) mehr oder weniger spitz
werden . Namentlich ein spitzer Winkel (1) gegenüber der Basis h in Fig . 1 . (S . 109 )
wirkt bekanntlich sehr schädlich , und das zeigt sich in den Formeln dadurch, dass
cotg (1) = Ci sehr gross wird , wenn (1) klein ist . Nun zeigt aber die Formel (7 ), dass
man dem grossen Werte c, dadurch entgegen wirken kann , dass man auch das Gewichtp l
gross macht, d . h . den Winkel (1) verstärkt misst . Ebenso ist es mit c2 und p %.

Wir haben damit bereits den Hauptsatz über Gewichts-Verteilung , dass man
einen spitzen Winkel , der einer Basis gegenüber liegt , besonders genau messen soll .

Wir wollen auch noch den Fall vornehmen, dass abwechselnd je einer der drei
Winkel des Dreiecks gar nicht gemessen sei, d . h . das Gewicht = Null habe, während
die beiden anderen Winkel mit dem Gewichte = 1 gemessen sind. Dann hat man aus (10 ) :

B (-B12 ) (c22 + Cr2) mit p3

B (®13) c-22 -f (C! + c2)2 mit p2

ci2 + (<h + c2)2 mit p l

Dazu wenn alle drei Winkel gleich gemessen sind :

B (Bim)
Diese 4 Formeln geben die Beziehung :

( / • w ) — TT (^ l2)) + [b + ^ (B28)j
'

J
Ähnliche Beziehungen gelten auch für die mittleren Coor -

dinatenfehler und für die mittleren Punktfehler , wie in unserem
I . Band , 3. Aufl . 1888, § 110—113 gezeigt wurde .

Fig . 2.

b
Kette von Dreiecken.

In der Dreieckskette Fig . 2 . ist b die Basis ; daraus
wird zuerst durch das erste Dreieck Bi abgeleitet , dann
B z durch das zweite Dreieck u . s . w ., wir wollen annehmen
bis B n durch ein ntes Dreieck . Jedenfalls entsteht jede
Seite B aus der vorhergehenden durch Multiplikation mit
einer Sinusfunktion, welche immer die Form hat wie in der
Gleichung (11 ) . Wenn die letzte Seite B „ ist , so bekommt
man durch wiederholte Anwendung der Gleichung (11 ) :

2] + [c2]2 + [<! C2]) (18)

wobei
l>l2] = cotg%(1) ! + cotg* (1)2 + . . . . cotg%( 1)„ u. s . w .

Die Messungsgewichte der Dreieckswinkel sind dabei alle = 1 angenommen.
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Wenn alle Dreiecke , um die es sich handelt , einander ähnlich sind , so wird (13) :

fQ

/ 2 n
cl 2 + <-22 + C1 eZ (14 )

1und nimmt man alle Dreiecke gleichseitig , also cx = c2 = c8 = cotg 60 ° = - = =, so
V 8

wird (14) :
m = fi (B n) =

J j/j - = ° ’000 004 /“ V *

Dieses ist der relative mittlere Seitenfehler der letzten Seite einer Kette von
n gleichseitigen Dreiecken ; [i ist der mittlere Winkelfehler .

( 15 )

Eg . 3.

Höhe eines Dreiecks .
Wir bestimmen den mittleren Kehler der Höhe h eines

Dreiecks nach Fig . 3 . mit der Punktion :
bh = - t- - sin (2) sin (3)SIW(D — (16>

Diese Funktion wird ebenso behandelt wie früher (1) S . 109.
Die verschiedenen Coefficienten sind , mit der Abkürzung cotg (1)
= Ci u . s . w . :

1 Oß == —|—1 Oig - }—1
fl — — ci f% = + c3 h fs = -{- ca h

Die Formel (6) § 18 . S . 109 giebt damit :
1

= h2 . °sL
Pz

. CJ ?
Ps

h2 A
Pi\ Pi Pz Ps J

Dieses kann man auch auf folgende Form bringen :

A
Pz PS !

_
1 _
P h2Pl (°Z — c3)2 -t~ PZ (C1 + c3)3 + p a (Cj C2)2

PiPz + PiPs + PzPs
Der mittlere Übertragungs -Fehler ist hiernach :

m W _ ^ _ _i£ 7/ Pl (c2 — c3)2 ~*- Pz (cl + c3)2 ~t~p a (Cx -
h Q ' P~\ Pa Vi Vs -4- Pa PS

■c2)2

( 17 )

(18)

(19)Qr PiPz ^ - PiPs + PzPs
Wenn man hier die Bedeutungen Ci = cotg (1) u . s . w. wieder einführt , so nimmt

der Zähler von (18 ) und (19 ) folgende Form an :
sin2 ( (2) — (3) ) , __ sin2 (2)Pl sin2 (2 ) sin2 (3)

■Pz :
sin2 (3)Ps bvs>7T\ bi, (20 )J sin2 (1 ) sin 2 (3)

1 rs sin 2 ( 1) sin 2 (2)
Wenn man hier den Winkel (2) = (3) setzt , also das Dreieck gleichschenkligannimmt , so fällt das erste Glied in (20) fort , die Gleichschenkligkeit wirkt also

günstig . Wir wollen diese Annahme in (19) einführen , also c3 = c2 setzen , zugleichauch soll p 3 = p2 gesetzt werden , dieses giebt aus (19) und (20) :
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Setzt man noch die Gewichte p 1 und p z = p s = 1, so giebt dieses (zu Fig . 3 .gehörig ) :

p stn (l ) (22)

Von der Formel (21) kann man auch unmittelbar auf den Bhombus Fig . 5 .S . 114 übergehen , doch wollen wir vorher noch eine allgemeinere Aufgabe einschalten .

Diagonale eines Vierecks.
Fig . 4.In ähnlicher Weise wie für eine Dreiecksseite kann manauch das Gewicht für eine Diagonale B in Fig . 4 . bestimmen ,wenn auf einer Basis & nach zwei Seiten hin Dreiecke ( 1) (2 ) (3)und (1'

) (2 '
) (3') aufgebaut sind.

In jedem dieser beiden Dreiecke hat man eine Bedingungs -
Gleichung , also zusammen :

a) -f- (1) + (2) -f- (3 ) — 180 ° = 0
b) + ( l ') + (2 ') -t- (3 ') — 180 ° = 0

Die Diagonale B wird als Funktion gemessener Winkel
dargestellt durch die Gleichung :

2}2 = ai _{. a' 2 — 2 a a' cos (3 + 3 '
) (23)

'2 — 2 aa ’ cos (3 + 3 '
) (23)

wobei

Wenn man die Funktion B nach (1), (2) und (3) differentiiert , und wenn mandie geometrischen Beziehungen beachtet :
a — a ' cos (3 + 3 ' ) = B cos a , und a ' sin (3 + 3 ') = B sin a

so findet man :

fl = — a cos a cotg ( 1), — -V a cos a cotg (2), fs — -t- asina
fl = — a! cos « ' cotg (1'

) , = •+- a ' cos a ' cotg (2 '
), fs ' = - f- a ' sin a

Wenn man damit ebenso verfährt , wie bei der vorigen Aufgabe (18 ) — (20), sofindet man zuerst , dass sich die Gewichtsreciproke von P in zwei Teile zerlegt , ent¬sprechend den zwei Dreiecken , nämlich :

I + II (24)
Wir beschäftigen uns zunächst nur mit dem ersten Teil I , die Ausrechnungist nicht schwierig , jedoch etwas langwierig , das Ergebnis ist :

I — fl«Pi n a — cos a c°tg (ty )2 + p %(sin a -hcosa cotg {l ) )2 + ps cos2 a (cotg ( 1) + cotg (2))2
P 1P 2 + P 1PS + P 2PS

Den Zähler hievon kann man auf diese Form bringen :
’a coä (« + (2) ) W ’acos ( ( 1) — a ) 2 {a cos a sin ( (1) + (2) ) )2

sin (1) sin (2)

oder cos ( (3) — (2) -f- ß) ) + p % cosy -hp s
Jordan , Handb . d . Vermessungskunde . 4 . Aufl . III . Bd . 8

2
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Dieses geht in den entsprechenden Teil von (21 ) und (22) über , wenn man

ß = 90 0 setzt , denn dann wird cos ((3) —(2) -+~ß ) = sin ((3)— (2) ) und h = . sin (2 ) sin (3)~ Slrl I II

oder h = a sin (3) = c sin (2) . Dieser Übergang , der in sich richtig sein muss , dient

als Entwicklungs -Probe .
Um nun zusammen zu fassen , bilden wir das mittlere Fehlerquadrat der Dia¬

gonale B von Fig . 4 . S . 123 :
2

(Pl cos2 ( (3 )—(2) + ff)+ p2 «2 COS2 r + Ps c2 eos^a p { 6' 2 ■• • )
1 ^ ’ \ q ) \ «*’*2 (1) (PiP2 + PiP3 + P2Ps) sin (̂ V ) (p {p 2

' ■■■>

Dabei soll der zweite teilweise nur angedeutete Teil in der Klammer dasselbe für

das untere Dreieck von Fig . 4 . S . 113 bedeuten , was der erste Teil für das obere Dreieck .

Will man nicht den mittleren Fehler m (B) selbst haben , sondern das Fehler -

Verhältnis m [B ) \ B , welches wir sonst mit fi {B ) bezeichnet haben , so braucht man

nur in (25 ) alle Masse b, a u . s . w . in Teilen von B auszudrücken , dann liefert die

Formel (25) das gewünschte p, (B ) .
Man kann nach der Formel (25) für jedes Basis -

Khomboid die Fehler -Übertragung von der kurzen Diagonale
zur langen Diagonale beurteilen , wenn man ausser der Form
des Vierecks auch den mittleren Winkelfehler p und die
sämtlichen Gewichte p kennt .

Man bemerkt sofort , dass diese Gewichte sehr un¬

gleiche Einflüsse auf das Schluss -Ergebnis ausüben , am

wichtigsten ist das Gewicht pi bzw . p { , denn in der
Formel (25) trägt eine Verstärkung des Gewichtes pi
wesentlich zur Vergrösserung des Nenners bei und im
Zähler kommt pi nur in Verbindung mit cos ( (3) — (2) + ß)
vor, was mit ß = 90 ° und (2) = (3), also in dem wichtigsten
Falle , verschwindet .

Wir wollen diesen Fall , ß = 90° und p % = p 2, nun
behandeln und zugleich annehmen , dass das untere Dreieck
in Fig . 4 . S . 113 dem oberen Dreieck symmetrisch sei , dass
man also den Rhombus Fig . 5 . habe . Damit giebt (25) :

(m (B ) )2 sin 1* (1 ) (2 p t + p 2)

Y\m (B ) m (B ) fi 1 / 1
9 7» T? — [l {B ) — ;

(26)
2 b B ^

q sin (l ) r (2fq -+- .P2)
Diese Formel kann man auch einfacher aus (22 ) S . 113 herleiten , denn es ist

m (h) y 2 und p (B )

Günstigste Gewichts - Verteilung .

Nun wollen wir die frühere Frage wieder aufnehmen , welche Verteilung der
Gewichte pi und p 2 am günstigsten ist ? Es handelt sich dabei darum , den Ausdruck

(26 ) möglichst klein zu machen bei konstanter Summe p 1 + p 2 + p 3 = p ^ + 2p 2 = [p ] ,
(indem die Messungs -Arbeit für jeden Winkel dem Gewicht proportional gesetzt wird) .
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Da die Gewichte in (26 ) nur im Nenner Vorkommen , muss man darnach trachten , die
Funktion f = 2p x -+- p 2 möglichst gross zu machen , hei konstantem p x -+- 2p 2 = [p ] .
Eliminiert man zu diesem Zwecke p j , indem man p x = \p ] — 2 p 2 in f einsetzt
so wird :

f = 2 [p] — ip z = 2 [p] — 3p 2
und dieses wird am grössten , wenn p 2 = 0 gesetzt wird , dadurch muss aber p 1 = [75]
werden , und man hat aus (26) :

fi (B ) min = ^ - J - r, ]/ (27)K
g sm (1) 7 2 [p]

Dieses Ergebnis , dass nur der eine Winkel (1) an dev Spitze , die beiden Basis¬
winkel (2) und (3) aber gar nicht zu messen sind , mag zuerst sonderbar erscheinen ;
man muss es aber richtig auffassen : dasselbe gilt , wenn das Dreieck gleichschenklig
ist ; man muss also doch mindestens so viel von den Basiswinkeln messen , dass man
weiss , ob die Gleichschenkligkeit vorhanden ist . Man kann also sagen : Wenn man
durch vorläufige Messungen gefunden hat , dass ein Dreieck von der Form Fig . 3 . S . 112
sehr nahe gleichschenklig ist , dann kann man , wenn man nur auf die Höhe ausgeht ,
alle weitere Winkelmess -Arbeit auf den spitzen Winkel (1) konzentrieren .

Wir wollen nun in (26 ) statt des Winkels (1) das Vergrösserungs -Yerhältnis
B : b = v einführen, oder auch, indem wir nach Fig . 5. die Hälften nehmen, h : c = v
setzen , wobei sin (1 ) = 2 sin cp cos cp, und :

smcp = .- cos cp — .-

Wenn man damit sin (1) in v ausdrückt und in (26 ) einsetzt , so bekommt man
für den Rhombus Fig . 5 . S . 114 :

1 _
sin (1)

1 ;+ • v*
2v

ix (B) — JL 1 + v'1
7 / _ L~

g 2v r 2p , -fq 2v r 2p1 + 7>2
und das Minimum , wie bei (27) :

. T,. . p 1 -h /
fl , Ii : mm

2 /
' 1

2 bl
(30 )

Das rhombische Multiplikations -Netz .
Nach Andeutung von Fig . 6 . kann

man die rhombische Vergrösserung wieder¬
holt anwenden . Wenn die Rhomben alle
ähnlich und ähnlich gemessen sind , so hat
man nach (26 ) :

7* C®i) : 7/
in (1) r \

(^ 2) —

A
q sm (l )

— _ 7/
sw ( 1) r 1

2pi -t P2

1JL
q sin ( 1) ¥ 2 px + p *,

Kg - 6.

\

\
\

h / _ A Bi
/ 1 _ " "

\ -Rn /
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Dieses giebt eine ähnliche Fehler -Fortpflanzung , wie wir schon bei Fig . 2 .

S . 111 untersucht haben , und man hat daher für rmalige Rhomben -Wiederholung :

m (B r)
‘U ( Br ) ~

o sin (1) y ip x 4- p / r (31 )
B r

— r - y— i -
p sin (1) f 2 P \ + Pi

Bleiben wir zunächst bei zweimaliger Wiederholung stehen , so haben wir

mit r = 2 :

p (Br) = J * _
p sin (1)Gl ) y 2

1_
sire (l )

1 4 - u
2 ]/u

’

2
2^ i + Pi

Wenn nun wieder B %-. b — v werden soll, so muss B %: Bi = B x b = Y v sein,

und eine ähnliche Rechnung wie bei (28) giebt :

folglich _
p (B 2) = l/ _ 1 _

e 2 y v r 2pi 4- p 2
Dieses gilt für beliebige p : und p 3 = p 2 ; dagegen im günstigsten Falle mit

Pi — pi 4- p %+ p 3 = [p ] hat man :

p 1 4- v

(32)

p (B ) min — - C // 1
2 V [V1

(33)
«• 4 / 2 F [p]

Nun kann man die Ausdrücke (30 ) und (32 ) zweckmässig vergleichen , es sei

kurz (p )
' der Fehler -Ausdruck nach (30) für einen Rhombus , und (p )" für zwei

Rhomben , und das Vergrösserungs -Verhältnis v sei in beiden Fällen dasselbe . Dann

hat man das Verhältnis (p”
) : (p '

) oder p (B 2) \ p (B ) = q wie folgt :

1 + « l + « a 1 4 - 0 ,_- y2u2
i/2ir

' 2 »
’ ä i + '

Dieses Verhältnis ist immer grösser als 1 und giebt z. B.

wenn v = 5 , q = 0,730 , wenn v = 10 , q = 0,487 .

Der Doppelrhombus ist also immer günstiger als der einfache Rhombus .

Günstigster Spitzen - Winkel (1) .

Im einzelnen Rhombus giebt es kein Mass für den Vorteil oder Nachteil eines

mehr oder weniger spitzen Winkels (1) , weil dem Vorteil in der Genauigkeit einer¬

seits , der Nachteil in der geringeren Vergrösserung B : b andererseits gegenübersteht ,
was sich hier nicht abwägen lässt ; dagegen kann man bei mehrfacher Anwendung
ähnlicher Rhomben überlegen , ob es günstiger ist , den Winkel (1) sehr spitz zu machen
und wenige Rhomben zu haben , oder umgekehrt .

Helmert hat diese Frage in seinen „Studien über rationelle Vermessungen “, III , 45. (Schlö -

milchs „Zeitschr . f. Math . u . Ph .“ 1808) aufgestellt , und dahin beantwortet , dass hei konstanter

Summe [p ] der günstigste Winkel (1) = 2 (p = 33° 32' ist .

§ 19. Fehler -Fortpflanzung in Dreiecksketten .
Wir haben schon in § 18 . S . 112 Fehlerverhältnisse in Dreiecksketten behandelt ,

nämlich die Genauigkeit einer Schlussdreiecksseite . Wir gehen nun über zu der Frage
nach der Genauigkeit der Gesamtausdehnung einer Kette .
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In der gitterförmigen Kette gleichseitigerDreiecke , Kg-
welche inFig . 1 . angedeutet ist , soll es sich um die Summe
mehrerer Dreiecksseiten , z . B . Sj + + ®3 handeln , wobei
die einzelnen Seiten «i , s2, Sg aus derselben Basis 6 , teil¬
weise durch dieselben Winkel abgeleitet sind . s i s2 s.,

In jedem einzelnen Dreiecke seien alle drei Winkel gleich genau gemessen, und
ausgeglichen , also z . B . :

a) (1) -+ • (2 ) + (3) — 180 ° = 0
b ) . (4) + (5) + (6) — 180 0 = 0 .
c) . (7) + (8) + (9 ) - 180 ° = o
d) .

Alle diese Bedingungs -Gleichungen stehen ganz unabhängig von einander ; wenn
man sie aber trotzdem als ein System zur Ausgleichung der Dreieckskette als Ganzes
auffassen will , so geben sie sehr einfache Normalgleichungs -Coöfficienten, nämlich ;
[ad \ + l 2 + l 2 - )- l 2 = 3 und im ganzen ;

[a «] = 3 [a 6] = 0 [o c] = 0 [a d\ — 0
[66] = 3 [6 c] = 0 [6d ] = 0

[cc ] = 3 [ed ] = 0

Wenn man nach der Ausgleichung den mittleren Fehler oder das Gewicht der
Summe «i 4- s2 + $3 berechnen will , so hat man die Gewichtsformel für bedingte
Beobachtungen anzuwenden (vgl . Band I , 4 . Aufl . 1895, S . 124, Gleichung (12 ) ) , nämlich :

L ty -q [a/T [&f - i ]2 [cf . v?
P un

[m ] [6 6 . 1] [ec . 2] (3)

Diese Formel vereinfacht sich aber in unserem Fall sehr bedeutend ; zunächst
wird wegen [a 6] = 0 , der Wert [6 6 . 1] = [6 6] und [6 f . 1] = [6 f ] u . s . w . , und des¬
wegen wird (3) zuerst so :

1 . rffi [afV [5 ff [Cff
P L J [aa ] [6 6] [c c]

Nun muss man die Funktion F näher betrachten :

(4)

F — + s2 + S3
F = 6

sin (1)
sin ( 2) +

6 sm (3) sm (5) .- 7—7^ - ■ ) , (—^0 — sm (8)sm (1) sm (4) sm (7 ) ’

5 sin (3) sin (5) sm (9 ) rzji (11 ) .
sin (1 ) sin (4) sin (7) sin (10 ) sin (13)

Sm

Die Differential -Quotienten sind :

fi =

h =

fs —

h =

8 F
80 )
8 F
m
8 F
8 (8)
dj?
8 (4)

— cotg (1) — s2 cotg (1) — s3 cotg ( 1)

- t- Si cotg (2)

(5)

4- s2 cotg (3) 4 - S3 cotg (3)

— s2 cotg (4) — ss cotg (4)

(6)
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In dieser Weise bekommt man 15 Werte f , welche wir nun , mit Einführung
von ( 1) = (2) = (8) = . . . = 60 ° und cotg 60 ° = c , sowie Sj = s2 = s3 = . . . = s so
zusammenstellen :

fi = — 3 s c /V = — 2 sc fls = — lsc
f2 = + 1 sc fs = -bis c fu = -bl sc
fs = + 2 s c f9 = -bl sc fxi = 0

(?)
fi = — 2 sc f10 = — lse
^5 = + 2 8 C / ji = + lsc

fc = 9 fi2 = 0
Nun sieht man zuerst aus der Verbindung mit ( 1) , dass

\a f ] = fi + f%-b fB = 0 , [&f ] = fi + fs ~b fe = 0 , [c f ] = 0 u . s . w.
Damit wird die Gewichts -Formel (3) sehr einfach , nämlich :

1
~
jT = Iff } = /i 2 ' ' / 22 + /s2 + fi 2 + • • •

Setzt man hier die Werte f nach (7) ein , so findet man :

(9 + 1 + 4 + 4 + 4 + 0 . . .) s2 c2 = 32 s2 c2 = 32 s2 cotg^ 60 °
P

(8>

(9 >

Indessen gilt das zunächst nur für den Fall dreier Seiten Si + s2 -+- sB.

Wichtiger wird es sein , das allgemeine Gesetz der Gewichts -Formel (9) für

irgend welche Seitenzahl zu bestimmen , etwa für n Seiten nach der Formel :

F n = Sj + S2 -4- Sg ~b S4 + . . . Sn (19 )

Denkt man sich hiezu die Reihe (5) fortgesetzt , so sieht man leicht , dass die
Winkel (2 ) , (8) und (14 ) nur in jedem Gliede einmal Vorkommen , der Winkel (1)
kommt in allen « Gliedern vor , und ähnliche Gesetze zeigen sich auch im übrigen ,
so dass man folgendes findet :
Winkel (1) giebt (— sc — sc — sc . . .)2 . . . . = (n s c)2 — n2 (s cf

„ (2 ), (8) , (14 ) . . . geben (sc )2 + (sc )2 + (sc )2 + . = w (se )2

. = 4 {n — l )2 (s e)2

. = 4 (« — 2 )2 (s cf

Die nächste Gruppe giebt . . . = 4 (n — 3 )2 (s cf

Die Gruppegiebt

Die Gruppe giebt

Die letzte derartige Gruppe giebt
Im ganzen hat man :

4 ( (re

4 (l 2) (s cf

, . - , v - l )2 + (« — 2)2 + . . . 22 + 12) | (s e)2

= — 3 «2 + n + 4 («2 + (n — l )2 + (« — 2 )2 + . . . 22 + l 2) ) (s cf
Nun ist aber die Summe der « ersten Quadrate bekanntlich :

2 «3 -b 3 «2 -i- nn* -b (« — i )z -b . . . 5ä2 + l 2 = ■
und damit wird :

5 n1 ( o o , 2 )1*= 1— 3 «2 + « + 4 3 »2 + « \ 4 «3 — 3 «2-
) s2 c2 =6
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Dabei ist c = cotg 60 ° = 0,577 , e2 = -i - , und wenn man nun den mittleren
6

Fehler eines gemessenen Winkels mit fi einführt , so ist der mittlere Fehler der Seiten¬

summe «i 4 - »2 + ss • • • 6'”> Anwendung der Bezeichnungsart der Anmerkung S . 110 :

, , jU , CAO 7 / d « a — 5w nl ,
m (ns ) = s cotg 60°

^
-

g
- UD

Meist will man nicht den Fehler selbst haben , sondern das Verhältnis des

Fehlers zu Sj + s2 + . . . s» oder den sogenannten relativen Fehler , dieser ist :

^ = , * (. , ) = ü cotg 60° ( 12)
ns v g a r 3 n

Nachdem wir so den Fall der Drei - Fig . 2-
eckskette Fig . 1 . S . 117 in aller Ausführ¬
lichkeit behandelt haben , wollen wir noch

einige andere ähnliche Fälle betrachten ,
jedoch nur die Schluss -Ergebnisse hier s , s a s i
mitteilen , da die Entwicklung nach dem vorstehenden keine Schwierigkeit bieten kann .

In Fig . 2 . soll es sich um die Summe äj + s2 -+- s3 ■

mittlere Fehler dieser Summe wird gefunden :

■. . . su handeln ; der

m (n s) = — s cotg 60 0 n-~ 3 n2 ■
3

■5 n
( 13)

Nun kann man die zwei Fälle von Fig . 1 . S . 117 und Fig . 2 . zusammen nehmen .

Wenn man hiernach in 3_
Fig . 3 . die Summe der auf
beiden Seiten der Fette liegen - .
den Seiten betrachtet : ' ' ' ^

«l '

- s{ - H -
■s3 -
■s 3 '

so findet man dafür den mittleren Fehler durch Zusammensetzung von (11 ) und (13 ),
nämlich :

m (n s -t- n ' s) — — s cotg 60 °
J/

/ (4 nß — 3 re2 + 5 n ) -+- (4 re' 8 + 3 re' 2 5 n ' )
Q

' r 3
Nimmt man hier re' = re und » + « ' = » , so wird :

(14

m (v s ) = s cotg 60 ' 8 «3 + 10 re
oder : — s cotg 60 / *3 -+- 5 V

( 15)

Eine andere Zusammenfass¬

ung von Fig . 1 . und Fig . 2 . zeigt
Fig . 4 ., wobei es sich um die Dia -

gonale S S ' handelt , welche näher¬
ungsweise etwa = S B + B ' S ' ge¬
setzt werden kann . Hiefür ist mit
zweifacher Anwendung von (11) , mit 2 n — v :

Fig . 4.

3

m (vs ) = — s cotg 60 °
j/

'-8 re8 — 6 re2 ■+ 10 re fi= JL s cotg 60 ° « s -
^

+ lOr (16)
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Einen weiteren Fall nehmen wir mit Fig . 5 . vor . Die Basis b liegt in der
Kettenrichtung selbst . Für die Summe nach der einen Seite Si -+- sz ■+- s3 -+- . . . s„
findet man :

Fig . 5.

Sj Sg J) $1 'S 2 ^ 3

4 «3 + 9n ä + 5 «coig 60 (17)

Für die Gesamtsumme «r + s2 + ss + . . . —(- H- s2
' + «s

' + . . . genügt es
nicht , diese Formel (17) zweifach anzuwenden, denn der Winkel , welcher der Basis b
gegenüber liegt , hat auf beide Seiten Einfluss . Die selbständige Entwicklung für die
Summe sj + s2 -+- ss -+- ■. . sn -h sx

’ + s2
' + ss

' -1- . . . s,, ' gieht :

4wS + 6n 2 + 5w 4n '3 -h6n '2 -hSn '■in (6 + ns + n' s)

Setzt man hier n’ = n, so wird :

8 n3 -+- 24 ffi + 1 Ön» ( (2 » + l ) s) =
yS cotg 60 °

(19 )
Die ganze abgeleitete Länge ist hier = (2 n + 1) s , weil das Mittelstfick s als

fehlerfreie Basis mitgerechnet wird ; wir wollen deswegen nun setzen 2 « -h 1 = v , und
damit kann man das Vorstehende auf folgende Form bringen :

+ 3 r2
s cotg 60

Vergleichen wir die Fehlerformeln (15 ) , (16 ) und (20 ) für die drei Hauptfälle,so ergiebt sich , dass der dritte Fall (20) mit Fig . 5 . etwas ungünstiger ist , als die
beiden ersten Fälle , und daraus folgt , dass es besser ist , die Basis b quer zur Kette
zu legen , wie in Fig . 3 . und 4 ., als nach der Längsrichtung , Fig . 5 .Wenn aber die Kette sehr lang ist , d . h . n oder v sehr gross, so kann manalle Formeln näherungsweise als gleich betrachten, indem man n und rfi gegen n3
vernachlässigt. Man sieht dann auch , dass die Formeln mit v allgemein die Hälfteder entsprechenden Formeln für n geben, dass es also jedenfalls günstiger ist , dieBasis in die Mitte als an das Ende der Kette _zu legen , indem z . B . die Verdoppelungder Kettenlänge von der Mitte aus nur das )/ 2fache des Fehlers , dagegen von einemEnde aus das ]/ 23 = 2]/ 2fache giebt .

Mit der angegebenen Näherung haben wir aus (11 ) :

(21 )
Oft will man nicht den Fehler m selbst haben , sondern das Verhältnis desFehlers zu der fraglichen Länge + . . . s„ oder den sogenannten relativen Fehler.Derselbe ist für (21) :

cotg 60ns (22 )
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Oder da cota 60 ° = - ist , haben wir :
V3

fi (ns ) =
^ y Yn

ist , haben wir :

Setzt man rund fi = + 1 ”
, so giebt dieses :

fi (ns ) = 0,000 003 23 Y n

Dieses ist der relative Fehler für n fache Ketten -Ausdehnung von der Basis an
einem Ende der Kette . Ist dagegen die Basis in der Mitte , und dehnt sich die Kette

nach beiden Seiten je um das —fache der Basis , also im ganzen wieder um das

v fache aus , so bekommt man :

H (v s) = — jrV v oder = 0,000 001 62 ]/ v
p 3

Vergleichung der Rhomben -Diagonale mit der Gitterlinie .

Von allen Vergleichungen , welche zwischen den Formeln dieses § unter sich
und mit denen des vorhergehenden § 18 . angestellt werden können , wollen wir hier
nur die wichtigste herausheben , entsprechend Fig . 6 ., wo eine Rhomben -Diagonale B
und eine Gitterlinie B , beide = 5 6, dargestellt sind.

Für die mittleren Fehler haben wir nach (29 ) § 18 . , S . 115, und nach (20 )
§ 19 . , S . 120 :

fl 1 + v '
Rhombus

2Pi + P -2
rfi -+- 3 vGitter :

Nimmt man im ersten Falle pi = p %= 1 , also 2 p \ = 3 und in beiden
Fällen fi = rund + 1" und v = 5 , so erhält man :

Rhombus fi (B ) = 0,000 007 27 rund = 7 Milliontel
Gitter fi (B ) = 0,000 004 34 „ = 4 Milliontel

Die Gitterlinie hat also einen kleineren
Fehler als die Rhomben -Diagonale ; dieses Ver¬
hältnis gestaltet sich aber ungünstiger , wenn
man die Zahl der Winkel -Messungen überlegt .

Fig . 6.

Der Rhombus hat nur 6 Winkel , und von - B=5b - > 1
diesen brauchen sogar die 4 Basiswinkel nur ! _ !
genähert bekannt zu sein , man kann im | / 2\ * */2 \ * */C\ * I
Rhombus fast die ganze Arbeit auf die zwei ' / \ / \ / \ / \ / \ 1
spitzen Winkel konzentrieren , dagegen hat das y * '
Gitter 9 Dreiecke mit 27 Winkeln , oder wenn man die unwichtigen Winkel aus¬
scheidet , immer noch 21 Winkel .

Trotz dieses starken theoretischen Missverhältnisses könnte doch auch das
Gitternetz , wegen der kurzen Seiten , unter Umständen praktische Verwendung als
Basisnetz finden. (Vgl . S . 108 .)
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Azimut - Übertragung .

Die Azimut -Übertragung längs einer Dreieckskette besteht einfach in der
Summierung aller längs eines Polygons auftretender Dreieckswinkel , z . B . in Fig . 1 .
(S . 117) besteht die Azimut -Übertragung längs sx + s2 + «s in der Summierung
(3) + ( l ) + (6) + (9) + (7) + . . .

Wenn jedoch die Azimut -Übertragung längs der Haupterstreckung einer Drei¬
eckskette besonders wichtig ist , so soll man schon die Anordnung der Messungen
darnach einrichten , also nicht bloss die einzelnen je 60 ° betragenden Winkel in den
Ketten von Fig . 1 . bis 5 . S . 117—120 messen , sondern die je nahezu 180 ° betragenden
Winkel der in der Haupterstreckung liegenden Seiten .

Besser noch ist es , für die Zwecke der Azimut -Übertragung die Dreiecksseiten
besonders anzuordnen , wie z . B . Bessel bei der Gradmessung in Ostpreussen gethan
hat . Dieses ist aus dem Netzbilde der Gradmessung in Ostpreussen in unserem
I . Bande , 4 . Aufl . 1895 , S . 499 zu ersehen , indem auf der nordwestlichen Gesamt¬
erstreckung Tunz -Galtgarben -Nidden -Memel nur zwei Zwischenpunkte Galtgarben und
Nidden sind , während auf der südöstlichen Grenze 7 Zwischenpunkte zur Azimut -
Übertragung nötig wären.

§ 20 . Yerschiedene Fehler -Betrachtungen zur Anlage von
Dreiecks -Netzen .

J . Grösse der Dreiecke .
Eine erste wichtige Frage betrifft die Grösse der

Dreiecksseiten . Soll man , wenn man die Wahl hat , grosse
oder kleine Dreiecke nehmen ?

Diese Frage ist sehr unbestimmt , wir wollen ihr mit
Fig . 1 . folgende bestimmtere Fassung geben :

Auf einer Geraden sind drei feste Punkte A , G, B
gegeben , und zwar , wie wir meist bei Grundlinien annehmen ,
fehlerfrei gegeben , ein Punkt D kann entweder durch 4
Dreiecke I , II , III , IV mit Benützung des Zwischenpunktes
G, oder durch ein Dreieck AB D ohne Benützung des

Zwischenpunktes O trianguliert werden ; welches ist das günstigere ?
Nimmt man alle 4 Dreiecke , so hat man zunächst 4 Summen -Gleichungen :

(1) + (2) + (3) — 180 ° = 0 , (4 ) + (5) + (6) - (180) = 0 , (7) + (8) + (9) — 180 ° = 0 ,
(10 ) + (11) + (12 ) — 180 ° = 0 (1)

und dazu eine Seiten -Gleichung , welche die Beziehung zwischen V und b ausdrückt , d . h . :

^ sin (1) sin (5) sin (8)
sin (2) sin (6) sin (9)

—

oder mit der Abkürzung cotg (1) = Cj u . s . w . giebt dieses :
cl ®l — C2^2 + 65 ^5 — c6 u6 + c8 u8 — C9 «9 + . . . = 0

Die Seite A D = S wird in V ausgedrückt durch die Funktion :

S = s + S' = v 4n A + v sin (1) sin (4) sin (12 )
sin (2) sin (2) sin (6) sin (11)

Fig . l .

(2 )
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Das Weitere wollen wir nur noch mit der Vereinfachung machen , dass alle
Dreiecke gleichseitig seien , also 6 = V = s = s ' und C; = c2 . . . = cotg 60 ° = c . Damit
giebt die Weiterrechnung für das Gewicht Pder Seite S :

_
1 _
P

10 C2 — - 0
__ _

0
3 3

0
¥

16 c4
'

Tcä
" 62 = 7,333 c2 62

also der mittlere Fehler von S :

m (S) = cotg 60 ° 6 j/7,333
oder, da 2b = S ist , der relative Fehler (vgl . Anmerkung S . 110 ) :

fl (S) = ^ cott w - rm = 1,354 cotg 60 ° = 0,000 003 79 ft (3)

Wenn man dagegen die Seite S aus dem einen grossen Dreieck A B D bestimmt ,
so bekommt man nach (12 ) § 18 . S . 110 :

1

fi (S) = 1,4142 cotg 60 ° = 0,000 003 96 ft (4)

Die Bestimmung (4) der Seite S aus dem einen grossen Dreiecke ist also hier
fast gleich günstig wie die Bestimmung (3) aus den 4 kleinen Dreiecken , trotzdem ,
dass mit den 4 kleinen Dreiecken der günstige Zwischenpunkt O mit benützt wurde ,
der in dem einen grossen Dreieck gar nicht vorkommt .

Bedenkt man noch , dass in den 4 Einzeldreiecken zusammen 4 mal so viel
Winkel zu messen sind , als in dem einen Gesamtdreieck , oder dass man bei gleicher
Winkelmessungs - Summe (Arbeit ) die Seite S aus einem grossen Dreiecke nahezu
doppelt so genau bekommt , als aus den vier kleinen Dreiecken , so erscheint das eine
grosse Dreieck im Vorteil .

Hg. 2.
10

[ sä %// \
12

/ 7
yc

,1 2 /

II . Diagonalen -Kontrolle .

In Fig . 2 . haben wir ein Quadrat mit zwei Diagonalen
gezeichnet , wobei die Seite 6 als Grundlinie gilt , aus welcher
die anderen Seiten s'

, s und s" trigonometrisch abgeleitet
werden sollen .

Die ganze Figur ist bestimmt , auch wenn nur eine ^
Diagonale eingemessen ist , und wir wollen untersuchen , welche
Genauigkeits -Änderung stattfindet , je nachdem eine oder beide
Diagonalen d und d ' gemessen sind .

Die Messungen seien nach Richtungen gemacht , so dass
für das volle Netz mit beiden Diagonalen 12 Richtungen gleichgewichtig vorliegen ;
wenn dagegen die Diagonale d’ nicht vorhanden ist , fallen die beiden Richtungen (5)
und (11 ) fort .

Im ganzen hat das Netz vier Bedingungs -Gleichungen , nämlich eine Seiten -
Gleichung und drei Winkelsummen -Gleichungen , diese vier Gleichungen sind :

sin (2 , 3) sin (4, 5 ) sin (7 , 9) sin (10 , 12 ) _
sin (1 , 3) sin (4 , 6) sin (8, 9 ) sin (10,11 )

b) (10,12 ) + (1 , 2) + (8 , 9 ) = 189°

c) (1,3 ) + (4,5 ) + (11,12 ) = 180°
d) (2,3 ) + (4,6 ) + (7,8 ) = 180°

a) (5 )

(6)
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Wenn es sich um die Bestimmung des Gewichtes der Seite s handelt , so
kommt hiezu noch :

s _ sin (2 , 8 ) sin (10,12 )
b sin (4, 6 ) sin (8,9 )

Um die Gleichungen a) und f ) linear zu machen , braucht man bekanntlich die
Cotangenten der Winkel als Cogfflcienten, und da in unserem Falle nur Winkel von
45° oder 90 ° Vorkommen, für welche man z. B. hat :

cotg (2 , 3) = cotg 45 ° = 1 , cotg (7 , 9) = cotg 90 ° = 0 ,
so werden die linearen Gleichungen sehr einfach .

Auf diese Weise bekommt man aus a) eine Gleichung von folgender Form :
— * 2 + * 3 — * 4 + * 5 + * 8 — * 9 + * io — * 11 + • • ■ = 0 (? )

Die Gleichung b) wird geben :
— Vi + — *8 + *9 — *10 + *12 + ■• • = 0 (8)

Das ganze so zu bildende Coeffieienten -System ist in folgender Tabelle enthalten :
*l *3 *4 *5 *e *7 *8 *9 *10 *11 *12

a . — 1 + 1 - 1 + 1 -hl — 1 -hl — 1 .
b - 1 + 1 — 1 + 1 - 1 . + 1
c - 1 . -+- 1 — 1 + 1 — 1 + 1
d . — 1 + 1 — 1 + i — 1 -+- 1
f . — 1 + 1 + 1 — 1

( 9)

Dieses giebt [a o] = (— l )2 + (+ 1)2 + . . , = + 8
[a 6] = (— 1) (+ 1) + . . . = — 4

Das ganze derartige CoSfficienten-System ist :
+ 8 — 4 + 4 + 4 + 4

1- 6 + 2 — 2 — 3
+ 6 + 2 + 1

+ 6 + 3
-+ 4

Durch allmähliche Elimination erhält man :
-4- 4 + 4

+ 4

(10 )

0 — 1 i
0 — 1 1

-+- 4 + 1
+ 2 J

0 0 1
+ 4 + 1 1

-h 1 .75 J
+ 1,50 =

( 10 «)

(10 *)

für die Seite s, mit zwei Diagonalen .
Wenn nun g der mittlere Fehler einer gemessenen Richtung ist , so ist der

mittlere Fehler des Verhältnisses s : b , oder der sogenannte relative Fehler der trigono¬metrischen Übertragung von 6 nach s folgendes :

g (S) = ^ 50
Q ( 11 )
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Nach diesem nehmen wir an, dass die Diagonale d ' nicht gemessen sei , dann
fällt die Seiten-Gleichung a) und die zweite Dreiecks-Gleichung c) fort, im übrigen
bleibt die Rechnung wie vorhin und giebt :

1 2 3 4 6 7 8 9 10 12

a — 1 + - 1 . — 1 + 1 — 1 + 1
b . — 1 + 1 - 1 4 - 1 - 1 + 1
f . — 1 + 1 • + 1 — 1 .

— 2

±6

■5,333
±i
- t- 2,000
+ 2,500

1- j- 1,750 = — für s, mit einer Diagonale d.

Nachdem wir diesen Fall in aller Ausführlichkeit vorgerechnet haben, mag es
genügen, für die beiden anderen Fälle s ' und s" die Ergebnisse mitzuteilen , wie in
folgender Zusammenstellung geschieht :

Berechnete
Seite

mit einer
Diagonale

d

mit zwei
Diagonalen

d und d'

s p
= 1.75 ~ ~ = 1,50 / m = 1 '“°

sf II oo y -r = 3,75

s" ^ 77 = 3,75 ~ = 3,75

Wie man hieraus sieht , ist der Genauigkeits-Gewinn durch Hinzunehmen der
zweiten Diagonale nicht bedeutend. Bei s" ändert die zweite Diagonale d ' überhaupt
nichts , wie auch aus Fig . 2 . S . 128 unmittelbar zu ersehen ist .

In der letzten Spalte vorstehender Zusammenstellung sind die Fehler-Verhältnisse
1,080 und 1,033 für beide Fälle angegeben , es ist also der Genauigkeits -Gewinn durch
die zweite Diagonale nur bzw. 8 «/0 und 3 o/0.

Fig . 3.III . Ein weiterer Fragefall ist in Fig . 3. dargestellt .
Wenn die Grundlinie b fest gegeben ist , so kann man

die Seiten s und s ' s" = S entweder aus einem Dreieck
mit den Winkeln (1 ) , (2 + 5 ), (6) oder aus zwei Dreiecken
(1) (2) (3) und (4 ) (5) (6) bestimmen ; es fragt sich, was das
günstigere ist .

Da wir die Behandlung solcher Aufgaben nun genügend
erläutert haben, schreiben wir sofort die Ergebnisse mit der '<- S—
Abkürzung eotg (1) = Ci u . s . w . (mit den Fehler -Bezeichnungen nach der Anmerkung
zu S . 110). Die Gewichte der Winkel seien alle = 1 .
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Für die Seite s hat man aus einem Dreieck nach (11 ) § 18 . S . 110 :

Ml =
j ]/ -l (<h2 + C62 + Ci Cg) ( 12)

Dagegen aus beiden Dreiecken :

- CS2 + Cj C3 -+- C42 + Cg2 + C4 Cg) (13 )

Für die andere Seite S hat man aus einem Dreieck :

V ($) = ~
f/ '

g
- (c252 + c62 + c25 cö) (14)

und aus beiden Dreiecken (wobei aber die Bedingung , dass sr -4- s" eine Gerade sei,
nicht mit enthalten ist ) :

m (s ' -f- s"
) =

V -,
e )
1
j / J -

^
' 2c22 + s” 2(ci2 + c52 + c62 + e5c6) + S2c32 — sV 'cjea ■+- s' Sc2c3 + «" ScjCg) j (15 )

Macht man das grosse Dreieck gleichseitig und die Querlinie rechtwinklig , also

Cj = cg = ~ r~ ,c2 = c5 = y 3 und c3 = c4 = 0 , so erhält man folgende Vergleichung :
1/3 ’

aus einem Dreieck aus zwei Dreiecken

V (s)j :

(16)

( 17

i/i
fi (s ) j : fi (s)2 = 1 : 0,8165

aus einem Dreieck aus zwei Dreiecken

er 3 /r (s ' + s" ) = | j/ \ (| j
fi (S) : fi (s’ - l- s"

) = 1 : 1,291
Es wird also zwar die Seite s günstiger aus zwei Dreiecken , dagegen S günstiger

aus einem Dreieck bestimmt .
Hiernach kann man zu Fig . 3. sagen :
Die Einschaltung des Punktes hei 3 . 4 in die Reihe der gleichseitigen Dreiecke

wirkt ungünstig auf die Bestimmung der Längen -Erstreckung S der Kette , aber günstig
auf die Basis -Übertragung von b nach s.

IV . In Fig . 4 . zeigt ide Fehler -Berechnung , dass aus der
Basis AB = b die Seite B E = S günstiger durch drei gleich¬
seitige Dreiecke bestimmt wird , als durch ein Dreieck ABE >
denn die Fehler -Berechnung giebt :

1 ) aus drei Dreiecken
S = B G -j- CE

S = b

b B

sin (2) sin (3) sin (5) sin (8)
sin (1 ) sin (1) sin (4) sin (7 )

hiefür wird , wenn alle Winkel = 60 ° sind :

fi (S) = 0,913 i ~ ( 18)
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2 ) S = B E als Hypotenuse des einen rechtwinkligen Dreiecks B AE mit
B = 60 °

, A = 90° und E — 30 ° berechnet , giebt :

ß (S ) = 1,414 (19)

Dieser Fehler ist also nahe das l,5fache des zuerst berechneten Fehlers der
Bestimmung aus drei Dreiecken .

V. Wir wollen hier noch eine andere kleine Genauigkeits -Untersuchung an-
schliessen , wie auch schon in Band I , 4 . Aufi. 1895, S . 470 . Es soll der mittlere
Fehler einer Richtung bestimmt werden , nur mit Rücksicht auf die Summen -Proben
in dem Viereck , also ohne die Seiten -Gleichung . Man hat dann nach Fig . 2 . S . 123
die schon unter (6), (8) und (9 ) enthaltenen Bedingungs -Gleichungen :

— » 1 + * 2 . — * 8 + * 9 — * 10 • + * 12 + 2*1 = 0
— *1 • + *3 — *4 + *5 . — *11 + *12 + 2*2 = 0

— * 2 + * 8 — * 4 + * 6 — ®7 -+- ®8 • • ■ . + 2*g = 0

Hiezu gehören die Normalgleichungen (deren Coöfficienten in (10) schon mit
enthalten sind ) :

-i- 6 k ] -f- 2 frg — 2 k3 -f- 2*4 — 0
-f- 2 k4 -f- 6 &2 -P 2 ^3 -f~ 2*g “ ^
— 2 k4 —j—2 kg 0 kg -{- 2*3 — 0

Die Auflösung giebt :

— 2 w . -}- — Wn ?* , — 9 -t- 2*„ — -j- 2*2 — 2 2*g

Nun ist [tr ] = — [i* k] und die Ausrechnung hiernach giebt :
— ■8 [2* k ] = 2 2*J 2 - f- 2 2*22 - f - 2 2*32 — 2 2*4 2*2 + 2 2*j 2*3 — 2 2*g 2*3 ( 20 )

Das kann man aber noch übersichtlicher gestalten durch Einführung eines
werten Summen -Widerspruches 2ü4, nämlich :

2*1 — 2*2 -\- 2*3 = 2*4
Damit kann man (20) auf die Form bringen :

— 8 [2* k ] = 2*x2 + 2*22 - f- 1*32 + l*42

und den mittleren Gewichtseinheits -Fehler m' erhält man , da drei unabhängige
Bedingungs -Gleichungen benützt wurden :

„ / 2 _ IfLü ] - _ 1 l> 2]
3 3 3 8 (21 )

wo nun unter [t*2] die Summe aller vier in dem Vierecke möglicher Dreiecks -Summen¬
proben bedeutet . Der Wert m' nach (21 ) ist ein mittlerer Richtungs -Fehler , der
entsprechende mittlere Winkelfehler ist :

(22 )

Hieran schliesst sich an der Schreiber sehe Satz über günstigste Gewichtsverteilung , welcher
bereits in unserem I. Bande , 4. Auflage 1895, § 48. behandelt worden ist .



128 Triangulierungs -Ketten und Netze der preussischen Landes -Aufnahme . § 21 .

§ 21 . Triangulierungs -Ketten und Netze der preussischen
Landes-Aufnahme.

Nachdem wir schon früher in § 2. S . 15 u . ff. die Aufsuchung und Auswahl
der Triangulierungs -Punkte in dem Sinne behandelt haben , welche Punkte man vermöge
der gegenseitigen Sichten u . s . w . benützen kann , wollen wir nun die mehr theoretische
Frage aufwerfen , welche Punkte und welche Verbindungs -Sichten man nehmen will .

Nach der ersten Einführung der Methode der kleinsten Quadrate in die Trian¬
gulierungen ist bald die Anschauung entstanden , dass man nun darauf ausgehen müsse ,
äusserst viele Messungen und Kontrollen in eine Ausgleichung zusammen zu bringen ,
und es gab eine Zeit , in welcher es als höchste Triangulierungs -Leistung gepriesen
wurde , 100 und mehr Bedingungs -Gleichungen zusammen zu fassen und ebenso viele
Normalgleichungen numerisch aufzulösen . In dieser Beziehung haben sich die An¬
schauungen wieder teilweise geändert .

Folgendes sind die Grundsätze , welche bei den neuesten Triangulierungen der
preussischen Landes -Aufnahme unter General Schreiber zur Anwendung kommen ; wir
benützen dazu das sehr anschauliche und charakteristische Beispiel der Ketten und
des Netzes in der Provinz Hannover , welche in unserer Fig . 1 . S . 129 . dargestellt sind .

Wir haben auf dem hier dargestellten Gebiete drei Grundlinien :
1 ) Grundlinie bei Braak in Holstein im Jahre 1871 gemessen , 5875m lang
2 ) „ „ Göttingen „ „ 1880 „ 5193” „
3) „ „ Meppen „ „ 1883 „ 7039” „
Hie geradlinigen Entfernungen dieser Grundlinien von einander sind rund im

Mittel 230*'” und zu der trigonometrischen Verbindung sind drei zusammenschliessende
Ketten angeordnet , nämlich die „Hannoversche Kette “ im Westen , sowie Teile der
„Elbkette “ und der „Hannoverisch -Sächsischen Kette “ im Osten .

Hiese Ketten wurden zuerst in sich ausgeglichen , und liefern dann den festen
Rahmen für das dazwischenliegende „ Netz “ , welches den Namen „Weser -Netz “ führt .

Ehe wir mit der Beschreibung dieser besonderen Verhältnisse fortfahren , müssen
wir hier über die Anlage der preussischen Ketten und Netze im allgemeinen das
Nötige berichten .

Es geschieht dieses am besten durch Vorführung der geschichtlichen Entwick¬
lung , welche diese Anlage und die zugehörigen Ausgleichungen genommen haben ,
nach einer Mitteilung von Major Haupt in den „ Astronom . Nachrichten “ 107 . Band ,
Nr . 2549 - 2550 , (Sept . 1883) .

Als in den 60er Jahren dieses Jahrhunderts bei der preussischen Landes -
Triangulierung Ketten , welche einen von Dreiecken freien Landesteil umspannten ,
wieder in sich zusammen schlossen , stellte sich der Übelstand heraus , dass trotz der
Aufstellung aller vorhandenen und notwendigen Winkel - und Seiten - Gleichungen
identische Punkte , von verschiedenen Seiten her berechnet , nicht dieselbe Länge und
Breite erhielten , und dass der von Dreiecken freie innere Raum , das Polygon , nicht
die seinem Inhalt entsprechende Winkelsumme erhielt , denn es fehlten die drei nötigen
Polygon -Gleichungen . (Was diese Gleichungen betrifft , so haben wir bereits in unserem
I . Bande , 4 . Auflage 1895, S . 177 darüber gehandelt .)
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Kg . 1.
Triangulierung der trigonometrischen Abteilung der Landes -Aufnahme in der Provinz Hannover .

(Massstab 1 : 3 130 000.)

lauheberg
li/indorf

\Esenz
■ic/wacde

/Hohen-BattslanE

Yfinibet

^ entheim

Afcotoerg'

itHihagen

Die Methode , welche hiefür von der preussischen Landes -Triangulation eingeführt
wurde , ist von dem früheren Hauptmann Schreiber (späteren Chef der Landes -Auf¬
nahme ) angegeben , dasselbe liefert zwei Gleichungen durch die Projektion der inneren
Polygonkranz -Begrenzung auf ein beliebig angenommenes rechtwinkliges , sphäroidisches
Coordinaten -System .

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 9
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Diese Schreibersche Methode des Polygonkranz -Anschlusses durch rechtwinklige
Coordinaten ist mitgeteilt in dem Werke : „Die königlich preussische Landes -Trian -

gulation . Hauptdreiecke . I . Teil , Berlin 1870 , S . 421 und Hauptdreiecke II . Teil ,
Berlin 1874 , S . 605 “

, wozu ein Bericht mit einem Beispiele gegeben ist in „ Jordan -

Steppes , deutsches Yermessungswesen “
, 1885 , S . 81 —85 und S . 103 . Es wurde da¬

mals für jedes Polygon ein besonderes Coordinatensystem , mit einer irgendwie schief¬

liegenden Axe angenommen , während später , nach Einführung des konformen Coor-

dinatensystems für die ganze Landesaufnahme , dieses System auch für die Aufstellung
der Polygongleichungen benützt wurde , wie an dem Schlesisch -Posensehen Dreiecks¬
netz zu sehen ist , welches als Beispiel in unserem I . Band , 1895 , 4 . Aufl. S . 415 auf¬

genommen ist .
Das mathematische Problem war gelöst , es blieb aber der Übelstand , dass

immer die jüngste Kette alle diejenigen Missstimmigkeiten , welche sich in den vorher¬

gehenden , zwanglos in freies Feld verlaufenden und oft von verschiedenen Grundlinien
ausgehenden Ketten angehäuft hatten , einzig und allein durch ihre Winkel -Korrektionen
ausgleiehen musste , und dass der innere zunächst frei gebliebene Baum bei seiner

späteren Überspannung mit sekundären Dreiecken sämtliche Fehler dieses nicht stim¬
menden Schlusses mit übernehmen musste .

Dieses rührt davon her , dass man wegen des nötigen Fortschrittes der Messungen
niederen Banges , zum Anschluss der Kataster -Aufnahmen und der topographischen Auf¬
nahmen , nicht warten kann , bis das Ganze fertig ist , sondern alle 2 bis 3 Jahre das
Gemessene berechnen und dem bereits fest stehenden anpassen muss .

Weitere Einzelheiten über die Methoden der preuss . Landes -Aufnahme giebt ein
Bericht der trigonometrischen Abteilung der königlich preussischen Landes -Aufnahme
von General Schreiber , aus den „Verhandlungen der 1887er Konferenz d . perm . Kom¬
mission der internat . Erdmessung , Berlin 1888 , Annex Xs , S . 6 — 10 “

, aus welchem
folgendes entnommen ist .

Das Wesernetz (Fig . 1 . S . 129) enthält 66 , in drei verschiedene Bangklassen
sich scheidende Punkte , nämlich :

1) 18 Anschlusspunkte , die zugleich den das Netz rings umschliessenden Haupt¬
dreiecksketten angehören und durch deren Ausgleichung endgiltig bestimmt sind ;

2 ) 15 Netzpunkte :
3 ) 33 Zwischenpunkte erster Ordnung .
Die bei 1) und 2 ) genannten Punkte und deren Verbindungen mit einander

bilden das eigentliche Netz , welches als Ganzes für sich , jedoch unter Festhaltung der
schon vorher endgiltig bestimmten Punkte bei 1), ausgeglichen ist .

Erst darnach hat die Ausgleichung der bei 3) genannten Zwischenpunkte statt¬
gefunden , und zwar unter Festhaltung aller vorher ausgeglichenen Punkte .

Wie die Punkte , zerfallen auch die Beobachtungen in 3 Bangklassen , und zwar
in Ketten -Beöbachtungen , Netz -Beobachtungen und Zwischenpunkts -Beobachtungen , je
nachdem sie zur Bestimmung von Kettenpunkten , Netzpunkten oder Zwischenpunkten
dienen . Auf jeder Station werden diese drei Bangklassen , selbst bei gleichzeitiger
Ausführung , dergestalt getrennt von einander gehalten , dass jede für sich auf der
Station ausgeglichen werden kann . Demgemäss sind z . B . die Beobachtungen auf der
sowohl der Kette als auch dem Netz angehörigen Station Silberberg wie folgt ange¬
ordnet und ausgeführt worden (vgl . Fig . 2 . S . 131 ) .
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Kg . 2.
Station Silberberg . Von Kg . 1. S. 129 in grösserem Massstab , mit Zwischenpunkten .

Friedrichskoog

Neuwefk
Cuxhaven

Silberberg
Sievern

Brillit

a) Ketten -Beöbachtungen : jeder der 15 Winkel zwischen den 6 Ketten -Richt -
ungen Sievern , Neuwerk , Friedrichskoog , Nindorf —Meldorf, Kaiserberg und Stade ist
8mal gemessen ;

Dieses entspricht der allgemeinen Vorschrift für Winkelmessung in allen Kombinationen ,welche wir schon in unserem I . Bande , 4. Aufl . 1895, S. 259—272 mitgeteilt haben .

b ) Netz -Beöbaehtungen : zur Bestimmung der Richtung nach dem Netzpunkt
Brillit sind die beiden Winkel Stade —Brillit und Brillit —Sievern , und zwar jeder
12mal , gemessen ;

c) Zwischenpunkts -Beubaehtungen : zur Bestimmung der Richtung nach dem
Zwischenpunkt Dolosenherg sind die beiden Winkel Stade -Dolosenberg und Dolosen-
herg — Sievern , und zwar jeder 6 mal , gemessen . In gleicher Weise ist die Richtung
nach dem Zwischenpunkt Wüstenwohlde an zwei Netzrichtungen angeschlossen worden.

Jede der Rangklassen a, b , c ist für sich auf der Station ausgeglichen .
Eine derartige Anordnung gewährt gegenüber dem Streben , alle auf einer Station

vorhandenen Richtungen möglichst zusammenhängend zu beobachten , den Vorteil , dass
die Beobachtungen niederen Ranges in den Zwischenzeiten , wo die Luft -Beschaffenheit
Beobachtungen höheren Ranges zu machen ohnehin verbietet , ausgeführt werden können,
indem sie wegen der kleineren Entfernungen nicht nur leichter gelingen , sondern auch
hei etwas weniger günstigen Umständen angestellt werden dürfen ; denn es liegt auf
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der Hand , dass Netz -Beobachtungen , deren Fehler auf das Gebiet des Netzes beschränkt

bleiben , nicht so genau zu sein brauchen , wie Ketten -Beobachtungen , deren Fehler sich

über das ganze Dreiecks -System , soweit es noch nicht endgiltig feststeht , fortpflanzen ,
und dass ein ähnliches Verhältnis zwischen den Netz - und Zwischen -Beobachtungen

besteht .
Bei dieser Anordnung hängt daher die zur Erledigung einer Station erforder¬

liche Zeit allein von der daselbst vorhandenen höchsten Bangklasse ab , dergestalt , dass

die Beobachtungen niederen Banges dabei überhaupt nicht mitsprechen . Wollte man

dagegen alle Bichtungen zusammenhängend beobachten , so würde man genötigt sein,

alle Beobachtungen mit der für die höchste Bangklasse erforderlichen Genauigkeit aus¬

zuführen .
Während somit eine zweckmässige Gliederung der Beobachtungen Arbeits -Er¬

sparung bedeutet , nötigt der Mangel einer solchen zur Arbeits -Vergeudung .

Noch wichtiger für die Ökonomie der Arbeit ist die Auswahl der zu beob¬

achtenden Bichtungen in einem Netz unter allen vorhandenen . Abgesehen davon , dass

diagonale und transversale Bichtungen gegenüber denjenigen , welche den besten Eech -

nungsweg von Dreieck zu Dreieck vermitteln , einen geringen Einfluss auf die Punkt -

Bestimmung , und oft sogar nur den Wert einer rohen Kontrolle haben , kommt in Be¬

tracht , dass ihre Beobachtung schwerer gelingt , weil sie die längeren sind . Der Be¬

obachter wird also , falls sie nicht ausgeschlossen oder für sich beobachtet werden ,

genötigt , gerade auf diejenigen Beobachtungen , auf die es am wenigsten ankommt , die

meiste Zeit — und oft eine kaum erschwingliche — zu verwenden , oder sich bei ihnen

mit einer geringeren Genauigkeit zu begnügen ; in letzterem Falle muss er sich aber

gefallen lassen , dass sie die übrigen Beobachtungen verderben , da in der Ausgleichung
die einen von den anderen sich nicht trennen lassen und die Zuteilung verschiedener

Gewichte erhebliche Bedenken hat .
Uber Zeitaufwand , Genauigkeit sind zu dem Wesernetz (vgl . S . 129) Angaben

gemacht :
Zur Bestimmung der 15 Netzpunkte des Wesernetzes sind 4760 Einstellungen

(sämtlich nach Heliotropen ) , und zur Bestimmung der 33 Zwischenpunkte , 3536 Ein¬

stellungen (davon 3247 nach Heliotropen ) gemacht worden.

Hiermit sind beschäftigt gewesen :
im Jahre 1886 : eine Sektion 162 Tage ,

„ „ 1887 : drei Sektionen bezw. 141 , 136 und 74 Tage .

Jede Sektion bestand aus 1 Beobachter , 1 bis 2 Assistenten und 10 bis 15

kommandierten Soldaten .

Gleichzeitig sind von diesem Personal alle einstellbaren Türme je 6 mal ange¬
schnitten und alle Centrier - und Festlegungs -Arbeiten ausgeführt worden .

Wie aus der Karte (S . 129) zu ersehen , enthält das eigentliche Netz 60 Be¬

dingungs -Gleichungen , abgesehen von 16 örtlichen Winkel -Gleichungen auf den An¬

schluss -Stationen . Es kommen somit durchschnittlich 4 Netz -Bedingungen auf den

Punkt . Die Ausgleichung ist übrigens nicht nach Bedingungs -Gleichungen (Correlaten ) ,
sondern nach Elementen , und zwar nach ebenen rechtwinkligen Coordinaten , ausgeführt
worden , so dass anstatt eines Systems von 60 nur ein solches von 30 Normal -Gleich¬

ungen (da 15 Punkte zu bestimmen waren ) gebildet und aufgelöst zu werden brauchte .
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Von den 121 durch die Netz -Ausgleichung bestimmten Richtungs -Verbesserungen
sind 6 grösser als 1"

, die grösste hat die Richtung Hüttenberg —Deister mit 1,43"
erhalten . Die Richtungs -Verbesserungen liefern übrigens kein zutreffendes Genauig -
keitsmass für die Winkel -Bestimmung im Wesernetz , da der ganze Anschluss -Zwang
in ihnen enthalten ist . Frei von letzterem sind dagegen die Schlussfehler der 38
Dreiecke und nicht in Dreiecke zerlegten Vier- und Fünfecke , in denen alle Winkel
gemessen worden sind . Von diesen Schlussfehlern (die der Vier- und Fünfecke , den

Gewichts -Verhältnissen entsprechend , bzw. mit f - - multipliziert ) liegen :

2 zwischen 2,5" und 2,0"
6 » 2,0"

„ 1 ,0"
30 „ 1,0 "

„ 0,0"

Die Summe ihrer Quadrate ist 27,22 , mithin der mittlere Dreiecks -Schlussfehler :

7/ llM 2 = 0,85 ",f 38
woraus sich der mittlere Fehler eines durch Stations -Ausgleichung bestimmten Winkel¬

wertes gleich 0,85"
j/

= 0,49” ergiebt .

Fig . S. Fig. 4.
Massstab 1 : 1 1 000 000. Massstab 1 : 500 000.

(Ergänzungen zu Fig . 1. S. 129.)

Falkenberg Breiingerberg

Weitmar

WasserlurmL -£0 e9idius
Hannover
/ .-Q .

_ Ao
1iihnde \

Deisteb '

LühndeDeisler

Sauberg
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Die Berechnung der Messungen geschieht durchweg , his zur niedrigsten Ord¬

nung herab , nach der Methode der kleinsten Quadrate , und zwar unter völligem An¬
schluss der neu hinzukommenden an die bereits feststehenden Teile , so dass schliesslich
ein über das ganze Land ausgedehntes widerspruchsfreies Netz von durchschnittlich
20 Punkten auf 100 Quadrat -Kilometer entsteht .

Die beste Übersicht der Ketten und Netze der preussisehen Landes -Aufnahme erhält man
aus den 2 Kartenbeilagen in 1 : 2000000 zu dem neuesten Band : «Die königlich preussische Landes -

Triangulation , Hauptdreiecke VII Teil , Berlin 1895“. Auch ist dazu nochmals an all das zu erin¬
nern , was dazu bereits in unserem I . Bande , 4. Auflage 1895 , in § 107—108. § 131. u . a. mitgeteilt ist .

Im Anschluss hieran geben wir mit Pig . 3 . und Big . 4 . S . 133 noch zwei weitere
Vervollständigungen des Gesamt -Netzes von Pig . 1 . S . 129 und zwar in der Gegend
der Stadt Hannover . Fig . 3 . zeigt die Einschaltung des Aegidienturmes in Hannover
in das Wesernetz , zusammen mit Brelingerberg und Lühnde .

Nachdem so für die Stadt -Vermessung von Hannover ein Punkt Aegidius fest¬
gelegt war , wurde noch ein zweiter Punkt Wasserturm dazu bestimmt , wie Pig . 4.
in doppeltem Massstab von Pig . 3 . andeutet .

Dabei ist Wasserturm als „Folgepunkt “ im Anschluss an Aegidius als „Leit¬
punkt “ gemessen und ausgeglichen , wie wir des näheren in der „ Zeitsohr . f . Verm . “

1889, S . 1 — 14 mitgeteilt haben (vgl . auch Band I , 4 . Aufl. 1895 , § 104 .) .

Dieses ist zugleich der Nachweis für die Basis der Hannoverschen Stadt -Trian¬
gulierung , welche in unserem I . Bande , 4. Aufl. 1895 , S . 185 . und in unserem II . Bande ,
4 . Aufl. 1893, S . 249 behandelt worden ist .

Zum Schlüsse von § 21 . wollen wir noch auf S . 136 und 137 das Netzbild von
einigen der neuesten Messungen I . Ordnung der preussisehen Landes -Aufnahme vor¬
führen , und zwar als Wiederabdruck aus einer Mitteilung von Oberstlieutenant von
Schmidt in der „ Zeitschr . f. Verm . 1894 “

, S . 1 —4 , 8—9 . Es sind 4 Teilen

I . Rheinisch -Hessische Dreiecks -Kette ,
II . Niederrheinisches Dreiecks -Netz ,

III . Belgischer Anschluss ,
IV . Südlicher Niederländischer Anschluss .

Hier ist auch (S . 136) die 2513 m lange Bonner Basis mit ihrem einfachen An¬
schluss -Netze zu sehen , welches zu vergleichen ist mit dem alten Bonner Basisnetze
von 1847, das wir schon im I . Bande , 4 . Aufl. 1895, S . 514 vorgeführt haben .

Wir wollen auch nochmals zusammenfassen , dass ein beträchtlicher Teil der
neueren Ketten und Netze der Landes -Aufnahme nun von uns vorgeführt ist in fol¬
genden Stellen :

Handb . d . Verm . I . Band , 4 . Aufl. 1895 , S . 280—281 , die Elbkette ,
n i> d » „ „ S . 400 —411 , Beispiel III . Ordnung ,
i) » » » „ „ S . 415 , das Schlesisch -Posensche Netz ,
» n » „ „ „ S . 504—505 , Übersichtskarte ,
;> » a „ „ „ S . 509 , Hann .-Sächs . Kette und Netz ,

Hiezu i . vorlgd . III . Band , 4 . Aufl . 1896 , S . 129 , Wesernetz mit Umfangsketten ,
>7 » o » „ S . 136 — 137 , Niederrhein . Netz mit Umfangs¬

ketten .
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Mit diesen Netzhildern kann man auch die Übersichtskarte der Haupttriangula -tionen des Deutschen Beiches in 1 : 2 000 000 , welche wir früher in dem Werke „Jordan -
Steppes , deutsches Vermessungswesen 1882 “ herausgegeben haben , ziemlich auf den
heutigen Stand ergänzen .

§ 22. Seiten -Refraktion.
Bei den Unregelmässigkeiten der Wärme -Verteilung in der Atmosphäre , ent¬

sprechend der ungleichen Wärme -Ausstrahlung der Erdoberfläche (Wasser und Land ,Wälder und Sand u . s . w .) , ist es an sich wahrscheinlich , dass die Lichtstrahlen in der
Atmosphäre nicht nur nach der Höhe abgelenkt werden , sondern auch seitlich kleine
Refraktionen erleiden .

Wenn z. B . ein Heliotropenlicht im Fernrohr nicht als ein Punkt , sondern alsein Lichtfleck von 60" Durchmesser erscheint , so haben jedenfalls die seitlichen Licht¬teile seitliche Brechungen von + 30 " erfahren , und ob das Intensitäts -Zentrum desLichtflecks , auf welches die Fadenmitte eingestellt wird , allein sich in einer vertikalenEbene fortgepflanzt hat , kann man nicht sicher wissen .
Wichtiger als solche Überlegungen sind Beobachtungen , zu denen wir nun

übergehen .

I . Struves Beobachtungen , 1829.
Struve hat schon im Jahre 1829 im 7 . Bande der „astronom . Nacbr . “ S . 391

bis 395 , Seiten -Refraktionen vermutet aus dem Umstand , dass der Widerspruch w der
Winkelsummen ce —j—jS —|—y gegen 180 ° + sphär . Excess , bei Dreiecken mit kurzen
Seiten im allgemeinen günstiger ausfiel , als bei langen Seiten . Struve ordnete die
31 Dreiecke seiner Gradmessung in den Ostsee-Provinzen Russlands nach der Grösse
des Umfangs S = a -f - b -\- c, wo a , b und c die drei Seiten sind , und fand folgendeWerte w = a -\ - ß -\- y — (180 ° -j- e) :

Nr . S w Nr . S w Nr . S IV
1. 20*« -f- 0,50” 11. 63*« 4 1,09” 21. 98*« — 0,16
2. 22 — 1,36 12. 66 - 0,55 22. 98 — 1,15
3. 33 — 0,50 13. 80 — 0,55 23. 100 + 1,82
4. 43 -f0,46 14. 80 4 “0,18 24. 100 - 0,13
5. 43 4 - 0,45 15. 84 — 0,19 25. 102 + 0,03
6. 49 -40,22 16. 88 — 0,26 26. 111 — 0,28
7. 51 — 0,33 17. 89 + 2,18 27. 113 — 1,43
8. 57 — 0,46 18. 94 — 0,51 28. 115 + 1,40
9. 58 — 0,15 19. 95 — 1,03 29. 122 - 0,14

10. 59 — 0,61 20. 97 — 1,15 30. 129 + 1,03
31. 129 + 2,81

Diese Zahlen w zeigen allerdings eine gewisse Zunahme bei wachsendem Um¬
fang S . Um diese Zunahme durch Seiten -Refraktion zu erklären , machte Struve zuerst
die Annahme , dass diese Refraktion proportional der Quadratwurzel der Sichtweite s
wirke . Wenn die seitliche Ablenkung stetig wie die Höhenablenkung wirkte , so
müsste man wie bei letzterer einen Ablenkungs -Winkel proportional s selbst annehmen ;da aber eine solche stetige Ablenkung längs der ganzen Sichtweite s jedenfalls nicht
besteht , sondern vielmehr zahlreiche kleinere sich teils häufende , teils auch wieder
aufbebende Ablenkungen -wahrscheinlich sind , so ist diese Struvesche Annahme , pro¬
portional mit Y s , an sich ganz am Platz . Aber ein Rechnungs -Versuch mit dieser
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Annahme gah einen inneren Widerspruch , weshalb ein Versuch in anderer Form
gemacht wurde , so dass der mittlere Fehler m eines Winkels mit den Schenkel -Längen
a und b von Struve so dargestellt wurde :

m 2 = e2 _j_ fc2 (a 2 - )_ 62) (2)
also : W2 = 3 e2 _|_ 2 £2 (a2 -f 62 -+ - c2) (3)

Aus den in dieser Form geführten Struve sehen Berechnungen haben wir die
Formel gebildet :

m = 1/0,1522 -4- (0,0128^0)3 = _f_ ff2 (4)
Dabei ist m der mittlere Fehler einer beobachteten Richtung , g. = 0,152” der

mittlere reine Theodolit -Messungsfehler und a = 0,0128 £ der Einfluss der Seiten -
Refraktion .

Zur Übersicht ist hiernach berechnet :

s 0 m
Qkm ±0,15 " ± 0,00" ± 0,15'

20 0,15 0,26 0,30
40 0,15 0,51 0,53
60 0,15 0,77 0,78
80 0,15 1,02 1,03

100 0,15 1,28 1,29

II . Pf affs Jahresreihe der Seiten -Refraktion .
Dr . Pfaff , Professor der Mineralogie in Erlangen , hat eine ganze durchlaufende

Jahresreihe von Beobachtungen horizontaler Winkel in Hinsicht auf seitliche Strahlen -
Brechung angestellt . Mitteilungen hierüber sind gemacht von Bauernfeind in den
Sitzungs -Berichten der „math . phys . Kl . d . k . bayer . Akademie d . Wiss . zu München “ ,
1872 , S . 147 — 162 und im Auszug in der Puhl . d . königl . preuss . geod . Instituts :
„Der Einfluss der Lateral -Refraktion u . s . w . “ von Fischer , Berlin 1882.

Die Lage des Beobachtungs -Punktes und der drei Ziel¬
punkte ist in Fig . 1 . angegeben . Raiffenberg und Kalchreuth
sind die Haupt -Zielpunkte in HP ’’* und 11*“ Entfernung , und
dazu ist noch eine nahe gelegene Marke in nur 283“ Ent¬
fernung genommen .

Für diese drei Zielpunkte sind in der Zeit von No¬
vember 1870 bis Oktober 1871 je 93 Messungen mit einem
20 C’"-Repetitions -Theodolit von Ertel gemacht ; allerdings sehr
ungleich verteilt , mit Lücken im Januar bis April , welche
aber doch eine jährliche Periode wahrnehmen lassen .

In unserer vorigen Auflage , III . Band , 3 . Aufl. 1890 , S . 153—154 hatten wir
einen Auszug der Pfaffschen Messungen mitgeteilt , wovon jetzt abgesehen wird , weil
die darauf zu gründenden Schlüsse über Seiten -Refraktion sehr unsicher sind .

Fig . 1.

Raiffenberg

MarkeErlangen

Kalchreuth

III . Bauernfeinds Beobachtungen über Seiten - Refraktion .
Aus dem Werke „Ergebnisse aus Beobachtungen der terrestrischen Refraktion

von Carl Max v . Bauernfeind , erste Mitteilung , München 1880 “
, S . 48—65 , entnehmen

wir mit Bezugnahme auf Fig . 2 . und 3 . (S . 139) folgendes :
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Auf dem Punkte Döbra befand sich ein Urtel scher Höhenkreis mit Fernrohr ,
fest aufgestellt , mit welchem 4 Zielpunkte N , II , III , IV (Fig . 8 .) in nahezu gerader
Linie beobachtet wurden . Diese 4 Zielpunkte erschienen gemeinsam im Gesichtsfeld
des Fernrohrs , so dass die Horizontal -Winkel , stets auf den Nullpunkt IV bezogen,
durch ein Okular -Mikrometer sehr genau gemessen werden konnten . Das Gesichtsfeld
des Fernrohrs mit den 4 Zielpunkten ist in Fig . 2 . angedeutet , ohne Umkehrung , so
dass der Punkt N , welcher der tiefste ist , unten erscheint .

l ’ig - 2.
Gesichtsfeld des Fernrohrs

in Döbra .

Fig . 3.
Lageplan (1 : 1 000 000.)

Döbra
X

M Kapellenberg

Oehsenkopf

Die Entfernungen und Höhen der Punkte waren :

Punkt
Döbra I

Entfernung
0» 795 »

Höhen
über N . N. 0™

N 9 921 "
II 16 766" 619 — 176™

III 28 701™ 604 — 191 ™

Kapellenberg IV 47 958™ 765 — 30"

In dieser Weise wurden die Horizontalwinkel in durchlaufenden Tagesrexhen

Tags mit Heliotropen , Nachts mit Lampenlicht , gemessen , im ganzen an 12 Tagen
zwischen Jniri und September 1877 , sowie zwischen August und September 1 7 .

Das Ergebnis war für Seiten -Befraktion ein negatives , indem (nach Elirmna lon

einer Mikrometer -Verdrehung ) keine ausserhalb der Messungs -Genauigkeit legen en

seitlichen Abweichungen sich fanden .

IV . Dreiecksschlüsse der sächsischen Triangulierung .

Bei der Triangulierung des Königreichs Sachsen, welche wir in unserem I . Bande,
4. Auflage 1895 , S . 140 beschrieben haben , hat sich ergeben (S . 550 unseres Berichtes

und S . 102 des amtlichen Werkes ), dass die grössten Dreiecke gute Schlüsse zeigten,

was durch den Umstand erklärt wird , dass lange Sichten stets hoch über den Boden

Weggehen und deswegen von Seiten -Befraktion weniger zu leiden haben als kurze und

niedere Sichten .

V. Fischers Vergleichung der preussischen Triangulierungen .

Sektions -Chef Fischer im geodätischen Institut hat im Jahre 1882 veröffentlicht :

»Publikation des königlich preussischen geodätischen Instituts . Der Einfluss der Lateral -

Befraktion auf das Messen von Horizontal winkeln . Berlin 1882“ (Bericht hierüber s.
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„Zeitsohr . f. Verm . 1884“
, S . 79—81 ) . Es wurden von den preussischen Triangulier¬

ungs -Ausgleichungen , Gradmessung in Ostpreussen , Küsten -Vermessung u . s . w. bis zum
rheinischen und hessischen Dreiecksnetz die sämtlichen Netz -Verbesserungen in der
Form von Eichtungs -Verhesserungen (mit Hilfe der Besselschen Nullpunkts -Korrek¬
tionen , vgl . Band I , § 74 ) dargestellt , und , in der Zahl 1434 , nach der Grösse der
Sichtweiten 8 geordnet , wie folgende Zusammenstellung zeigt , in welcher m den Mittel¬
wert der fraglichen Eichtungs -Verhesserungen in der Gruppe mit der durchschnittlichen
Sichtweite S , und p die jeweilige Zahl in einer Gruppe bedeutet .

s P m S P m S P m
t̂ km 102 0,243" 45km 196 0,278" 85Im 18 0,361"

15 198 0,238 55 100 0,281 95 12 0,522
25 328 0,234 65 86 0,308 105 6 0,347
35 330 0,254 75 54 0,322 115 4 0,238

958 436 40 M

Eine zusammenfassende Vergleichs -Berechnung ist von dem Urheber dieser
Sammlung nicht gegeben . Wir haben daher zunächst diese Zahlen m und S in Pig . 4 .
graphisch dargestellt ; man sieht daraus , da die Kurve jedenfalls nach oben konkav
verläuft , dass Leine Annahme , wie sie auch Struve zuerst versuchte , das Anwachsen
von m in Beziehung zu ]/ S zu setzen , nicht durchzufiihren ist .

Fig . 4.
Richtungsfehler als Funktion der Entfernung .

o,5 r— - 0,5-

- 04 -

S = 0 5 105 115
Kilometer

Wir haben daher drei andere Ausgleichungs -Versuche gemacht , wobei immer
die Gruppenzahlen p als Gewichte im gewöhnlichen Sinne genommen wurden :

1 ) m = 0,208" - (- 0,0016 8
2 ) m = 0,232" +- (0,0415 S)2
3) m = 1/0,2372 -f (0,00263 Sf = -j/ ^ 2 + Ifi

In Bezug auf die Quadratsumme der übrig bleibenden Fehler sind alle diese 3
Formen nahezu gleich ; im übrigen hat die dritte Form am meisten für sich ; dieselbe
giebt folgendes :
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s p t1 a m m' m—m' = '
beob -
achtet

5*« 102 0,287" 0,013" 0,237" 0,243" —0,006"

15 198 0,237 0,039 0,240 0,238 + 0,002
25 328 0,237 0,066 0,246 0,234 + 0,012
35 330 0,237 0,092 0,254 0,254 0,000
45 196 0,237 0,118 0,265 0,278 — 0,013
55 100 0,237 0,145 0,278 0,281 — 0,003

65 86 0,237 0,171 0,292 0,308 — 0,016
75 54 0,237 0,197 0,308 0,322 — 0,014
85 18 0,237 0,224 0,326 0,361 — 0,035
95 12 0,237 0,250 0,344 0,522 — 0,178

105 6 0,237 0,276 0,364 0,347 + 0,017
115 4 0,237 0,302 0,384 0,238 + 0,146

1434

Zu Fig . 4 . ist über die drei letzten Werte für 95 , 105 und 115 1"*, welche zu¬
sammen nur 22 mal (oder 1,5 o/0) Vorkommen, zu bemerken , dass dieses wohl nur Zu¬
falls-Werte sind , welche das bis 85 ''” schön verlaufende Gesetz nicht stören .

Im übrigen kann man nun sagen , dass nach den 50 jährigen Gesamt -Erfahrungen
der preussischen Triangulierungen , weite Sichten im allgemeinen ungenauer sind als
kurze . Ob der Grund hievon in eigentlicher sogen. Seiten -Refraktion liegt , oder nur
darin , dass weite Sichten selten und nur undeutlich zu beobachten sind , ist für die
darauf zu gründenden praktischen Folgerungen zunächst gleichgiltig .

Wenn man noch überlegt , ob die grössere Netz -Unsicherheit bei langen Sichten
daher rührt , dass diese Sichten selten zu erlangen waren , und deswegen mit geringeren
Anschnittszählen in die Ausgleichung eingingen , so müssten die älteren Richtungs -

Messungen, bei welchen ein fester Plan der Messungs -Anordnung nicht vorhanden war,
von den neueren Winkel -Messungen in allen Kombinationen , unterschieden werden ;
reduziert man aber auf gleichen Zeit - oder Arbeits -Aufwand , so kommen die langen
Sichten jedenfalls in den Nachteil .

In unserer vorigen Auflage , III . Band , 1895, 3. Aufl . S. 156—159 , haben wir auch eine physi¬

kalische Theorie der Seiten -Refraktion versucht , auf welche im Falle weiteren Beobachtungs -Materials

zurückzukommen wäre .

Grösse der Theodolite .

Indem mit diesem § 22 . über Seiten -Refraktionen alles, was auf Winkelmessung

Bezug hat , abgeschlossen wird , kann hier noch ein Nachtrag zu § 5 . und überhaupt
auch zu unserem II . Band , 4 . Aufl. 1893 , Kap . VI und Kap . VIII gebracht werden,
nämlich betreffend die Grösse der Theodolite , mit Kreisdurchmesser -Wahl zwischen

10™ und 40™ .
Die trigonometrische Abteilung der preussischen Landesaufnahme hat die in

unserem II . Bande , 4 . Aufl. 1893 , S . 182—183 abgebildeten Instrumente in folgenden

Grössenverhältnissen :
Für Triangulierung I . Ordnung Fig . 13 . S . 182 mit 35™ und 27 ™ Kreisdurchmesser ,

fl n II . „ „ „ „ „ „ ^ 1 v

» , HI - „ , 14 - , 183 „ 14™

Die Hannoversche Stadt -Triangulierung , welche in unserem I . Bande , 4. Aufl.

1895 , § 60 . mitgeteilt ist , mit einem mittleren Fehler einer Netzrichtung = + .1," 0 ,



^ ^ esi

142 Seiten -Kefraktion . § 22 ,

(I . Band , 1895 , S . 195 ) ist mit den kleinen 13 ™-, 14<”»-Theodoliten von Band II , 1893,
S . 183 und S . 184 ausgeführt , mit je 12 Sätzen im Hauptnetz (Band I , S . 185) und

je 4 Sätzen in den Punkteinschaltungen (Band I , S . 400 - 401 ) . Andere Stadtver -

messungen haben teilweise grössere Instrumente , z . B . Berlin ( „Zeitschr . f. Yerm . “ 1881 ,
S . 13 ) ein 27 '“ -Theodolit und 2 kleinere 14™-Instrumente , beide mit Nonien ,
Strassburg ( „Zeitschr . f. Verm. “ 1893 , S . 130) ein 21 cra-Mikroskop -Theodolit und ein
14,5c”*-Nonien-Theodolit , Leipzig ( „ Zeitschr . f. Yerm . “ 1895 , S . 104) ein 32°’”-Theo-
dolit und ein 16™-Theodolit , beide mit Mikroskopen .

Über die Grösse der Theodolite , bzw. ob man zu gewissen Zwecken mit kleinen
Instrumenten ausreichen kann , welche natürlich für Transport und Handhabung die
Bequemsten sind , hat auf der Versammlung des Deutschen Geometer -Vereins 1895 in
Bonn eine Erörterung stattgefunden , über welche in der „ Zeitschr . f. Yerm . “ 1895
S . 496 und ausführlicher in den Mitteilungen des Mecklenburgischen Geometer -Vereins
1895 S . 5 — 7 berichtet wird . An letztere Stelle giebt Kammeringenieur Vogeler noch
einige weitere Angaben hinzu . Wir drucken dieses im wesentlichen hier ab :

Prof . Koll trug vor : „Es hat sich bei den trigonometrischen Arbeiten der prenssischen
Katasterverwaltung ganz sicher ergeben , dass eine , allen Anforderungen vollauf genügende Trian¬
gulation I . und II . Ordnung mit kleinen 5 zölligen (13,5«”) Schraubenmikroskop -Theodoliten bei
nur 12 maliger Beobachtung der Richtungen in I. Ordnung und 8 maliger Beobachtungen II . Ordnung
ausgeführt werden kann .“—

Kammeringenieur Vogeler entgegnete hierauf : In Mecklenburg wird zur Zeit die Triangu¬
lierung des Netzes II , und III . Ordnung beschafft , wobei wir 8 zöllige (21,5«»») Mikroskop -Theodolite
verwenden . Wir haben seit 30 Jahren in Mecklenburg für die Zwecke der Kleintriangulierung die¬
selben kleinen Instrumente von nur 13,5cn» im Gebrauch , wie die vorher genannten , wir wissen auch
sehr wohl , dass man mit diesen Theodoliten sehr genau messen kann , aber trotzdem haben wir
uns entschlossen , neue grössere Instrumente anzuschaffen .

Wir hatten schon auf unserer Geometer -Versammlung 1891 in Berlin erfahren , wie günstige
Resultate mit den fünfzölligen Theodoliten in der Kataster -Verwaltung gemacht worden seien , und
weiter , dass diese Erfahrungen niedergelegt seien in dem Werke „Oie Verbindungs -Triangulation
zwischen dem Rheinischen Dreiecksnetze und der Triangulation des Dortmunder Kohlenreviers “,
welches von Herrn Professor Dr . Reinhertz herausgegeben ist . Wir haben dieses Werk eingehend
studiert und gefunden , dass die Erfahrungen sich nur auf wenige trigonometrische Punkte stützen ,
die man in den Jahren 1881 bis 1883 gemessen hat . Es sind dieses die Erfahrungen von zwei Tri -
gonometern mit einem Instrumente . Es mag sein , dass gerade dieses Instrument besonders leistungs¬
fähig gewesen ist ; denn nach S. 31 der Verbindungs -Triangulation betragt der mittlere Fehler einer
Richtung ± 2,01" (mit Messung in zwei Fernrohrlagen ). Nach unseren Erfahrungen und den Er¬
fahrungen anderer Trigonometer mit verschiedenen Instrumenten kann man die durchschnittliche
Leistungsfähigkeit fünfzölliger Mikroskop -Theodolite auf einen mittleren Richtungsfehler von 3"
bis 4" veranschlagen , während die achtzölligen Theodolite nur etwa einen Fehler von 1,5" bis 2"
erwarten lassen . Dies heisst aber mit andern Worten , dass man mit einem fünfzölligen Instrument
einen Winkel viermal so oft beobachten muss , wie mit einem achtzölligen Instrument , wenn man
dieselbe Genauigkeit erreichen will . Bei der Triangulierung eines Netzes II . und III . Ordnung hat
man mit Entfernungen von 3 bis 4 Kilometer zu thun ; hier gilt es , die günstigsten Beleuchtungs¬
verhältnisse auszunützen und durch wenige Beobachtungen schon gute Resultate zu erzielen . Es
ist hier also ein leistungsfähiges Instrument , und besonders ein Instrument mit starkem Fernrohr
am Platze . Auch durch den Transport des grösseren Instruments werden die Arbeiten nicht ver¬
teuert , denn bei einer Triangulierung II . und III . Ordnung hat man einen grossen Apparat an
Geräten mitzunehmen und Entfernungen von 3—4Jcmvon einem Punkt zum andern zurückzulegen ,
daher ist ein Wagen unbedingt erforderlich . Wir haben bei der Neuanschaffung von Instrumenten
uns nach den langjährigen Erfahrungen gerichtet , die man bei der preussischen Landes -Aufnahme
gemacht hat . Diese Behörde verwendet für die Triangulierung II . Ordnung einen achtzölligen
Theodolit (abgebildet in unserem II . Bande , 1895, 4. Aufl . S. 182) und zwei ebensolche Instrumente
sind in Mecklenburg jetzt im Gebrauch . Ein Sektions -Chef des geodätischen Instituts , welcher
grosse Erfahrung in Haupttriangulierungen besitzt , hat sich über diese Instrumentenfrage so aus -
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gesprochen : Bei allen Theodoliten steht die Grosse des Fernrohrs mit der Grösse des Kreises in
einem gewissen Verhältnisse . Wenn nun ein gutes Fernrohr für Triangulierungen von Netzen I und
II . Ordnung durchaus am Platze ist , so wird die ganze Konstruktion des Theodolits hierdurch schon
wesentlich bedingt , dann wird man aber dieses Instrument nicht mit einem ganz kleinen Kreise
ausrüsten lassen ; denn im allgemeinen wird ja auch der grössere Kreis der besser geteilte sein
und eine grössere Ablesungsgenauigkeit gestatten .

Soweit der Mecklenburgische Bericht über die Bonner Verhandlungen , den wir
im wesentlichen abgedruckt haben . Im übrigen kann noch aus unseren eigenen
Messungen mit 13' “ -Theodoliten aus „ Zeitschr . f. Verm . “ 1892, S . 26 ein mittlerer
Richtungsmessungsfehler von + 2,31 " berichtet werden (Messung in zwei Fernrohr¬
lagen mit zusammen vier Ablesungen , wie auch im Vorstehenden stets angenommen ist ) .

Es mag auch aus Reinhertz „Verbindungs -Triangulation “ S . 33 noch citiert
werden, dass abgesehen von Teilungsfehlern das zehnzöllige Instrument der Landes-
Aufnahme ein etwa zehnmal so grosses Gewicht liefert , wie das zur Verbindungs -
Triangulation benützte fünfzöllige .

Ans der „ Zeitschr . f. Instrumentenkunde “ 1892, S . 104— 105 entnehmen wir
„über die Leistung eines kleinen Instrumentes “ , dass bereits Struve darauf hingewiesen
hat , dass kleine Instrumente verhältnismässig genauere Resultate liefern als grosse,
und dass astronomische Messungen mit 17,5 '”vKreisen unerwartet günstige Ergebnisse
lieferten.

Fassen wir alles dieses zusammen , so kann man wohl sagen , dass manche
Praktiker mit teuren und grossen Instrumenten unnötig Vorgehen, z. B . Stadtpolygon¬
züge mit 25'” -Mikroskop -Theodolit ( „ Zeitschr . f. Verm. “ 1888, S . 78 ), dass aber die
auf der Bonner Versammlung aufgestellte Behauptung , für Triangulierung I . Ordnung
seien fünfzöllige Theodolite (13,5' “) ausreichend und zweckmässig , mit den dafür vor¬
gebrachten Messungsergebnissen noch nicht begründet ist .

§ 28. Genauigkeit und Geschwindigkeit der Basismessung.
Über die Leistungsfähigkeit der in den früheren § 9— 15 . behandelten Basismess -

Einrichtungen haben wir verschiedene Angaben gesammelt , welche im Folgenden zu¬
sammengestellt sind .

Die Fehler der Basismessungen sind wesentlich zweierlei Art , erstens unregel¬
mässige von der Handhabung der Apparate n . s . w . herrührende Fehler , von denen
man gewöhnlich annimmt , dass sie proportional der Quadratwurzel der Länge wachsen,
und zweitens regelmässige mit der gemessenen Länge selbst anwachsende Fehler , zu
welchen vor allem die Mass-Unsicherheiten der gebrauchten Massstäbe selbst gehören .

Man wird im allgemeinen annehmen können , dass die regelmässigen Fehler im
Gesamtergebnis überwiegen , indessen sind sie schwer zu bestimmen (und wahrscheinlich
sind, dieselben oft unterschätzt worden) .

Leichter und sicherer zu bestimmen sind die unregelmässigen Fehler , mit welchen
■ffir uns nun zuerst beschäftigen wollen. Man findet diese Fehler durch Messungs-
Wiederholungen .

Besonders wichtig ist hiebei die Doppelmessung einer Linie in verschiedenen
Teilstrecken .
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Man habe hiefür folgendes :
Strecke sx gehe die Differenz hin und her di

n s2 ” ” » ” ^ 2

„ Sn d r v n +
Daraus bildet man die mittlere Differenz nach Band I , 4 . Aufl. 1895 , § 11 .

D

oder den mittleren Fehler einer Messung der Längen -Einheit (P

- ° l/ 1 [dd 1~
Y 2 r 2m |_ sJ (1)

Damit hat man auch den mittleren Fehler des Mittels aus zwei Messungen der

Längen -Einheit : ,- ——

oder den mittleren Fehler des Mittels aus zwei Messungen einer Länge L :

M = m' yf = L [dd ]
(3)

Die Doppelmessungs -Ergebnisse der Basis der Gradmessung in Ostpreussen von
1834 haben wir bereits in (30) unten auf S . 76 mitgeteilt und die Anwendung der
vorstehenden Formeln (1) — (3) auf dieses schon mehrfach von uns benützte klassische

Beispiel der Gradmessung in Ostpreussen haben wir bereits in unserem I . Bande,
4. Aufl. 1895, S . 38 gezeigt .

Wenn alle Teilstrecken sj . . . nahezu gleich sind , so braucht man die Quo¬
tienten d : y s bzw. d2 : s nicht einzeln auszurechnen .

Als Beispiel für gleiche Strecken , jedoch für dreifache Messung aller Teilstrecken ,
nehmen wir die schweizerische Basismessung von Aarberg mit dem spanischen Apparat
(vgl . § 13 . S . 89 ) :

Strecke Messung I Messung II Messung III Mittel
Sl 400,0370« 400,0364« 400,0370« 400,0368«
si 400,0390 400,0383 400,0379 400,0384
s2 400,0383 400,0382 400,0388 400,0384
*4 400,0570 400,0580 400,0584 400,0578

400,0352 400,0356 400,0353 400,0354
s6 399,9045 399,9044 399,9043 399,9044

Summe 2400,1110 2400,1109 2400,1117 2400,1112

Nun bildet man die sämtlichen 18 Differenzen v zwischen den Streckenmitteln
und den Einzelmessungen , mit Quersummen [u] = 0 zur Probe , worauf die Quadrate

1 .
2 .
3 .
4.
5 .

ergeben :
V V2 V V 1)2 M

— 0,2"”” 0,04 + 0,4mm0,16 — 0,2mm0,04 0,0'
— 0,6 0,36 + 0,1 0,01 + 0,5 0,25 0,0
+ 0,1 0,01 + 0,2 0,04 — 0,4 0,16 . — 0,1
~+- 0,8 0,64 — 0,2 0,04 — 0,6 0,36 0,0
-b 0,2 0,04 — 0,2 0,04 + 0,1 0,01 -H 0,1
- 0,1 0,01 0,0 0,00 -4- 0,1 0,01 0,0

1,10 0,29 0,83 2,22 = [v2]
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Der mittlere Fehler einer Messung einer Strecke von rund 0,4*™ wird hiernach :

mi --- y[« i)]
n (er — 1)

± 0,430»”' (4)

Hiebei ist mit a die Wiederholungszahl der Strecken -Messung bezeichnet , also
in diesem Falle er = 3. Weiter berechnet man den mittleren Fehler einer Messungvon 1*™, da s = 0,4*™ ist :

: Ml Yh ■_0 ,68 » (5 )

Auch hat man den mittleren Fehler der 3 fach wiederholten Messung der Ge¬
samtlänge von 2,4*’" :

M = y m = -+- 0,613 — (6 )

Man wird hiernach das Gesamtergebnis schreiben :
L = 2400,1112 “ ± 0,0061»

Wenn hier die Strecken s nicht alle gleich wären , so müsste man nicht bloss
v und xfi, sondern auch alle Werte v : Y s bzw. v2 : s bilden , und dann rechnen :

” =
(?

-
! ) [

”
] <7>

Sind alle s gleich , so stimmt das mit (5) und (6) überein .
Nach diesen Formeln , welche zur Berechnung des mittleren unregelmässigen

Basismessungs -Fehlers aus Messungs -Wiederholungen dienen , geben wir im Folgendeneine Reihe von Beispielen biefür , wobei immer m den mittleren unregelmässigen (aus
Wiederholungen berechneten ) Fehler einer Messung von 1 Kilometer Länge , bedeutet .

1736 . Basis von Yarouqui in Peru , 2 Messungen mit hölzernen 15 oder 20
Fuss langen Latten (La Condamine Mesure des trois premiers degrös dans l’hemisphdreaustrale , Paris 1751 , S . 5 ) „nous nous accordämes ä moins de trois pouces prds sur
une longueur de 6273 toises . “ Dieses giebt 81,21»» auf 12,226*'» doppelt gemessenoder den mittleren Fehler für eine Messung von l im : . m — + _ 16,42»» .

1736 . Basis von Tornea in Lappland , 2 Messungen mit hölzernen Latten ,7407 Toisen , Differenz 4 Zoll. (Astr . Nachr . 6 . Band , 1828 , S. 20 .) Dieses giebt
20,152»” auf 14,436*™ oder . m = + 20,15”“ .

1739 . Nachmessung der Picardsdien Basis von Juvisy , durch Cassini (Base
du Systeme mdtrique , III , S . 505), Basis von 5747 Toisen mit Eisenstangen gemessen ,welche längs einer 50 Toisen langen Schnur unmittelbar aneinander gelegt wurden .Die Basis ist 5 mal gemessen :

Toisen Fuss Zoll Linien Meter
1 . 5747 2! 8” 6" ' = 11201,991
2 . •fl 4' 0" 9 '" = 11202,431
3 . fl 3' 4" 10”' = 11202,217
4. fl 4' 5" 10 '" = 11202,569
5 . fl 4' 0” 0 '” = 11202,411

Mittel 11202,324» ±0,100 » .
10Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd .
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Betrachtet man alle Abweichungen als unregelmässige Fehler , so erhält man
den mittleren Fehler einer Messung von l *m: . iw = + 67,0”' "’.

1805 . Benzenbergs Basismessung mit hölzernen Latten für das Rheinische
Kataster (vgl . § 9 . S . 62 ) . . = + 8,2”"" .

1819 . Schwerds Meine Basis . Zwei Messungen auf 20°R reduziert : 859,442734 m
und 859,440943 ” Differenz = 1,791 »"”. (Schwerd , „Die Meine Speyrer Basis “

, S . 33 .)
Dieses giebt . m — + 1,37”””.

1834— 1872 . Basismessungen mit dem Besselschen Apparate .
Die Längen - und die Strecken -Verteilung der zahlreichen seit 1834 mit dem

Besselschen Apparate gemachten Basismessungen haben wir schon in § 16 . S . 101— 102
mitgeteilt , und da auch die Messungs-Differenzen bereits anderwärts , nämlich in dem
Werke : „Deutsches Vermessungswesen von Jordan -Steppes 1882 “ , I , S . 133 von uns
zusammengestellt wurden , bilden wir hier die Tabelle der mittleren unregelmässigen

r m für je eine Messung von 1 El . :
Jahr Länge Basismessung mittlerer Fehle
1834 1,822 *” Königsberg (Gradm. in Ostpreussen ) . . -+- 2,77”"“
1838 2,701 Kopenhagen . . . 0,86
1846 2,336 Berlin (Küstenvermessung ) . . . . . 1,55
1847 2,134 Bonn . . . 0,73
1852 2,301 Lommel (Belgien) . . . 0,66
1853 2,489 Ostende . . . 0,54
1854 2,763 Strehlen (Schlesien) . . . 1,75
1871 5,875 Braak (Holstein ) . . . 1,59
1872 8,909 Grossenhain (Sachsen) . . . 1,46

(Die Angaben für Grossenhain sind von Nagel veröffentlicht im „ Civilingenieur “ ,
28 . Band, 1882 , 1 . Heft , vgl. auch Helmert , „ Zeitschr . f. Verm . 1883 “, S . 596 .)

Besonders zu erwähnen ist hier noch die Göttinger Basismessung , weil dieselbe
in metronomischer Beziehung neu behandelt wurde , wie wir bereits in § 14 . S . 95 —97
beschrieben haben. Die Genauigkeits -Berechnung , entsprechend 4 verschiedenen me¬
tronomischen Formeln , ist von General Schreiber in der „ Zeitschr . f. Verm . 1882 “,
S . 1— 17 mitgeteilt worden. Aus den 33 Strecken -Differenzen der 5193 m langen Linie
(eine Strecke = 157“) ergab sich der mittlere Fehler m einer Messung von 1 *”", unter
der Annahme unregelmässiger + gleichwahrscheinlicher Fehler so :

Formel (vgl . § 14. S . 96 — 97 ) mittl . Fehler m
I . I = L — (k — 1,4 ) m . -+- 0,80”""

II . I = L — (k — 1,4) m — (fc — 1,4)2 g . 0,70III . I = L — (k — 1,4) m — (k — 1,4 )2 g + ah . . . 0,55IV . l = L — (k — 1,4 ) m — (k — 1,4 )2 g + a h -\- <x* k . 0,57
Die Differenzen für die ganze Länge 5193“ (hin und her ) der Göttinger Basis

wurden nach diesen 4 Formeln :
1 II HI iv

— 14,10m” — 13,04mm _ 8;17mm _ 7,62mm
1879 1880. Basismessung des geodätischen Instituts ,
Im Jahre 1879 wurde die alte schlesische Basis bei Strehlen , 2763“ lang ,welche erstmals 1854 mit dem Besselschen Apparat gemessen worden war , von dem



Genauigkeit und Geschwindigkeit der Basismessung . 14723.

geodätischen Institute mit einem Brunner sehen Apparate (S . 85 ) nachgemessen . Die
Linie wurde in 10 gleichen Teilen von je 276™ hin und her gemessen . Die Messungs -
Differenzen sind in dem „ Generalbericht f. d. Europ . Gradm . für 1879 “ , S . 104 ver¬
öffentlicht ; man berechnet hieraus den mittleren unregelmässigen Fehler einer Messung
von l km: . m — + 0,76m™.

Einiges weitere hierüber giebt auch der „ Generalbericht über den Fortschritt
der Arbeiten für d . Europ . Gradm . im Jahre 1880 “

, S. 33 —35.
Über die Bonner Basismessung 1892 haben wir bereits einiges citiert in Band I ,

1895 , 4 . Aufl. S . 514 . (Brunner = 2512,995 “ , Bessel = 2512,984 ™, Differenz = 11“™) .

1858 . Spanische Basismessungen .

Spanische Basis von Madridejos , mit dem älteren Brunner sehen Apparate (S . 84)
gemessen . Das Mittelstück , 2767™ der 5teiligen Basis (s . o . S . 106,) wurde in 12 Ab¬
sätzen je zweimal gemessen (Astr . Nachr . 61 . Band , 1864 , S . 340) . Die 11 ersten
Abschnitte haben je 234“ Länge und die Differenzen der 11 Doppelmessungen sind :
-+- 0,23 — 0,20 + 0,49 + 0,00 — 0,02 — 0,23 — 0,32 + 0,39 — 0,09 — 0,28
+ 0,36“" , das letzte Stück hat nur 194 ™ Länge und gab bei der Doppelmessung die
Differenz — 0,14 . Aus diesen 12 Doppelmessungen berechnet man . »i = + 0,40m™.

Über zwei kleinere , im Jahre 1860 ebenfalls mit dem älteren Brunner sehen
Apparate gemessene Grundlinien giebt der „ Generalbericht d . Europ . Gradm . für 1869 “ ,
S. 65 die Einzelheiten der Doppelmessungen , woraus mau berechnet :

Basis von Mahon , 2359“ in 6 Absätzen , m = + 0,43 '“™

„ „ Ivice , 1665™
„ 4 „ w = + 0,32“™

Ausser diesen drei Linien sind bis 1879 noch 6 Grundlinien in Spanien ge¬
messen worden , worüber Einzelheiten mitgeteilt sind in dem amtlichen Werke : „Me-
morias del instituto geogräfico y estadistico . Tomo III . Madrid 1881 , und Tomo IV ,
Madrid 1883 . (Arcos de la Frontera III , S . 259 , Lugo III , S . 337 , Vieh III , S . 419,
Olite IV , S . 99 .)

Schweizerische Basismessungen .
In den Jahren 1880 —1881 wurden mit dem neuen spanischen Apparate (vgl.

S . 87 — 89 ) drei Grundlinien in der Schweiz gemessen , hei Aarberg 2400“ , bei Wein-
felden 2540“ und bei Bellinzona 3200“ . Die erste Linie 3 mal (s . o . S . 144) die
beiden anderen je 2 mal .

Aus den Messungs -Differenzen berechnet man den mittleren Fehler einer Mess¬

ung von P “ : . Aarberg m = + 0,68“™
Weinfelden m = + 1,27 ™“
Bellinzona m = + 0,89““

Weiteres hierüber giebt das amtliche Werk : „Le rbseau de triangulation suissse,
publiü par la Commission güodbsique suisse , troisieine volume , la mensuration des bases

par A . Hirsch et J . Dumur . Lausanne 1888.

Nordamerikanische Basismessungen mit dem Repsold -Comstocksehen Apparat
(§ 13 . S . 89- 93) .

Nach dem Werke : „Report upon the priinary triangulation of the United States
Lake Survey , by Gomstock etc . Washington 1882 , S . 262 , S . 290 , S . 303 berechnet

man aus den Messungs -Differenzen die mittleren unregelmässigen Fehler einer Mess¬

ung von l tm :
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1877 Chicago -Base 7509“ in 8 Strecken . m = + 1,12”™
1878 Sandusky -Base 6227” in 6 „ . 1,19
1879 Olney-Base 6589”* in 6 „ . 0,79

Dabei sind die auf S . 97 —98 erwähnten Korrektionen für die Ungleichheit der
Temperaturen beider Massstabteile berücksichtigt .

1881 . CKalifornien . Yolo -Counlry .
United States coast and geodetic survey , methods and results on the length

of the Yolo-Base-Line . Appendix Nr . 11 . Report for 1883 . Washington 1884 , be¬
rechnet von Charles A . Schott , Assistent . (Ygl . auch „Generalbericht d . Europ . Gradm .
für 1883 “

, Annexe III , S. 2—3 .)
Die 17,5 *™ lange Linie wurde teils zweifach, teils dreifach gemessen . Aus den

18 Differenzen-Vergleichungen zwischen der ersten und zweiten Messung berechnet
man den mittleren Kehler einer Messung von l lm . m = + 2,03”*”*

Österreichische Basismessungen .
1862 . Grundlinie bei Josephsstadt , zwei Messungen , 2772,174020 und 2772,180159

Wiener Klafter , Differenz = 0,006 139 W . Kl . ( „Generalbericht d . Europ . Gradm . 1863 “ ,
S . 15 ). Dieses giebt 11,64"*”* Differenz auf 5,257*™, oder . . . . w = + 3,59”*”*

1868 . Basis in Dalmatien , zwei Messungen 1305,33270 und 1305,33186 Wiener
Klafter , Differenz = 0,00084 W . Kl . („Generalbericht d . Europ . Gradm . 1870 “

, S. 28),
oder 1,6’*™ auf 2,475*“ . m — + 0,72*””*

1863. Schwedische Grundlinie auf Axevella , zwei Messungen 1357,03274 Toisen
und 1357,03360 Toisen , Differenz = 0,00086 Toisen („ Generalbericht d . Europ . Gradm .
1863 “

, S . 28) oder 1,68”*” auf 2,645**” . . m — + 0,73””

1865 . Italienische Basis von Catania . Eine Basis 3692“ wurde 6mal gemessen
( „ Generalbericht d . Europ . Gradm . 1865 “

, S . 64 und 65) .
Wenn man die 6 Messungen als gleichartig behandelt , so findet man

m = + 1,96“”
Die Messungen 1 . 2 . und 3 . sind in der einen , 4 . 5 . 6 . in der andern Richtung

gemacht . Die beiden Arten zeigen eine regelmässige Differenz . Behandelt man daher
die 3 ersten Messungen und die 3 letzten Messungen je für sich , so findet man die
mittleren unregelmässigen Fehler für 1*” bzw. für 1 . 2 . 3 . m = + 0,85”” und für

4 . 5 . 6 . m = ± 0,47””

1873. Basis von Simlak , gemessen von Oudemans bei der Triangulierung von
Java (s . o . § . 14 . S. 94) .

Eine Länge von 3909” wurde in 20 Strecken von je rund 200“ doppelt ge¬
messen , woraus sich ergiebt . . = + 1,69““

1890. Französische Basismessung bei Juvisy , in der Nähe von Paris . Ein
Bericht in Comptes rendes etc . 112 . Band , 1891 S . 770— 773 und Auszug in „ Zeitschr .
f. Verm . “ 1891 , S . 26—29 giebt hierüber : Die neue Grundlinie liegt an Stelle der
schon von Picard 1669 mit 4 hölzernen Stangen und 1739 von Cassini mit 4 eisernen
Stäben gemessenen Linie von 7,2**™ (s . o . § 9 . S . 63). Die Neumessung 1890 geschah
mit einer 4“ langen Platin -Kupfer -Stange von Brunner (vgl . S . 84), wobei eine Um¬
wicklung mit dickem Wollenstoff stattfand , innerhalb dessen Wasser zirkulierte zum
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Zweck der Temperatur -Ausgleichung . Die Messung erfolgte in 24 Abschnitten von
ungleichen , im Mittel 300“ betragenden Längen . Der mittlere unregelmässige Dehler
einer Messung von P ” ergab sich nach der Formel (1) S . 144 für den südlichen Teil
m = 1,02”*”*, für den nördlichen Teil m = 1,90“”*, im Ganzen . . m = + 1,52““ .

Geschwindigkeit der Basismessung .
Bei der Beurteilung der Leistungs -Fähigkeit eines Basis -Apparates kommt ausser

der Genauigkeit auch die Geschwindigkeit in Betracht , weshalb wir hiefür eine An¬
zahl von Angaben gesammelt haben , die im Folgenden zusammengestellt sind . Dabei¬
bedeutet immer v die gemessene Länge für 1 Stunde .

Schwerd mass im Jahre 1820 in 3 Tagen mit 30 Stunden eine SSO ”1 langeGrundlinie zweimal (Schwerd : „Die kleine Speyrer Basis “
, S . 23 — 32) . Dieses giebtfür 1 Stunde . v = 57“

Die Württembergische Grundlinie Solitude —Ludwigsburg von 13 032“ Längewurde in 19 Tagen einmal gemessen (Köhler : „ Die Landes -Vermessung des König¬reichs Württemberg “
, S . 57 ) . Bechnet man 1 Tag durchschnittlich zu 6 Stunden ,so ist . . — 114“

Struve fand 1840 das mittlere Fortschreiten in 1 Stunde 42 Toisen für denTennerschen Apparat und 36 Toisen für seinen Apparat ( „Vierteljahrsschrift der astr .Gesellschaft 1870 “
, S . 69 ) , dieses giebtfür den Apparat von Tenner . » = 82“

» « „ „ Struve . v = 70 “

Basismessungen der preussischen Landes -Aufnahme ^ mit dem Besselsehen Apparat .
Nach einer bereits früher in der „ Zeitschr . f. Verm . “ 1880 , S . 387 und 1883,S . 583 gemachten Zusammenstellung haben wir folgende Maximal -Leistungen in 1 Tag ,wobei 1 Lage = 4 Stangen = 15,6“ ursprünglich als Einheit zu gründe gelegt ist :1834 Königsberg 68,6 Lagen = 1070“

1871 Braak 67 „ = 1045
1877 Oberhergheim 113 „ = 1763
1880 Göttingen 131 „ = 2044
1883 Meppen 150 „ = 2340

Dieses sind Jfa .utmaTLeistungen für je 1 Tag ; was die mittlere Geschwindigkeitfür 1 Stunde betrifft , so war dieselbe in Königsberg nach S . 47 „der Gradm . in Ost -
preussen “ 8 Lagen = 125“ in 1 Stunde . Teils durch die Vervollkommnungen des
Apparates , teils durch die Übung steigerte sich die Geschwindigkeit so sehr , dass bei
Göttingen auf 1 Lage etwa 5 Minuten , bei Meppen nur noch etwa 3 Minuten auf 1 Lagekamen . Hiernach haben wir folgende Geschwindigkeiten in 1 Stunde :

Königsberg ' . v = 125“
Göttingen . v = 187“
Meppen . v = 300“

Sächsische Basismessung hei Grossenhain .
Diese Basis ist ebenfalls mit dem Bessel sehen Apparat gemacht . Nach der

Mitteilung „ Zeitschr . f. Verm . “ 1883, S . 600 erforderte die 8 909” lange Linie fol¬gende Zeiten :
Hinmessung 13 Tage = 118,5 Stunden , also 75 Meter in 1 Stunde
Bückmessung 12 „ = 88,0 „ » 101 „ „ 1 »Im Mittel hat man 206,5 Stunden für 17 818” oder die mittlere Geschwindigkeitin 1 Stunde : . . . . v — 86"
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Basismessungen des geodätischen Instituts .

Mit einem Brunner sehen Apparat , ähnlich dem ersten spanischen Apparate ,
wurden die zwei Grundlinien hei Strehlen (2763"*) und bei Berlin (2336“) in den
Jahren 1879— 1880 gemessen . Nach Mitteilung von Bischer wurden

,
zu Anfang

stündlich 5 Stangenlagen ( = 20” ) gemacht ; nachdem aber das Personal eingeübt war,
kamen bei der Strehlener Basis auf 1 Stunde durchschnittlich 7 — 8 Lagen , und

.
bei

der Rückmessung 10 Lagen . Bei der Berliner Basis wurden bei etwa dreistündiger
Arbeitszeit Vormittags und dreistündiger Nachmittags zusammen 60 Lagen = 240“

gemessen .
Hiernach ist die Geschwindigkeit für 1 Stunde anzunehmen : . . . v = 40“

Spanische Basismessungen mit dem Brunnerschen Apparat .

Der erste Brunner sehe Apparat , mit welchem die Basis von Madridejos gemessen
wurde , hatte eine sehr geringe Geschwindigkeit . Koppe schreibt hierüber in der Ab¬
handlung „ der Basisapparat des Generals Ibanez und die Aarberger Basismessung “ S . 2 :

Die erste spanische Basismessung , 14663 “ , dauerte vom 22 . Mai bis zum
7 . September 1858 . Sie erforderte 78 Arbeitstage , also 5,3 Tage für 1 Kilometer .
Rechnet man 1 Tag = 6 Stunden , so erhält man für 1 Stunde . . . . v = 31“

In dem Werke : „ Experiences faites avec l’appareil ä mesurer les bases u . s . w .
traduit par Laussedat , Paris 1860 “ , S . 210 ist angegeben , dass die Geschwindigkeit
2 Minuten für 1 Meter war , oder für 1 Stunde . v = 30“

Bei den zwei kleinen spanischen Grundlinien von Mahon und Ivice auf den
balearischen Inseln war nach dem „Generalbericht der Europ . Gradm . für 1869 “ ,
S . 65 die Messungs - Geschwindigkeit in 1 Stunde : . v — 120“

Schweizerische Basismessungen .

1880—1881 die Grundlinien bei Aarberg , Weinfelden und Bellinzona (vgl . § 13.
S . 85 bis 89 ) . Die Zeitverhältnisse sind sehr genau angegeben , man findet die Ge¬
schwindigkeit in 1 Stunde :

Aarberg . « = 142“
Weinfelden . v = 114“
Bellinzona . v = 144“

Ausserdem sind auch die Kosten angegeben (S . 86 der amtl . Veröffentlichung ),
nämlich für alle drei Linien 37 600 Fr . oder 4 600 Fr . für 1 Kilometer .

Nordamerikanische Basismessungen mit dem Repsold -Comstocksehen Apparat
(vgl . § 13 . S . 90— 93) .

„Report upon the primary triangulation “ etc . S . 262 , S . 290 , S 300 giebt :
1877 Chicago-Base . Die mittlere Messung in 1 Tag war 292“ , die grösste Leistung

in 1 Tag 500“ ,
1878 Sandusky Base . Der Durchschnitt für 1 Tag bei der Hinmessung war

88 Röhren = 352“ , bei der Rückmessung 100 Röhren = 400“ ,
1879 Olney -Base . Die mittlere Röhrenzahl in 1 Tag war 105 = 420™, die grösste

Zahl an 1 Tag war 168 Röhren = 672“ . Gemessen wurde an 32 Tagen .
Die Tagesleistung wächst mit den Übungsiahren . Nehmen wir zum Schlüsse

1 Tag = 6 Stunden = 420“ , so wird für 1 Stunde : . v = 70“

Neue französische Messung mit einer Brunnerschen 4 “ langen Platin -Kupfer -
Stange (s . o . S . 148 — 149) .

Nach dem Bericht in Comptes rendus etc . 112. Band 1891 S . 772 erforderte
die 7,2264“

. lange Linie zur Hinmessung 25 Tage , zur Rückmessung 18 Tage , also
43 Tage mit 14,51'“ . Rechnet man 1 Tag = 6 Stunden , so giebt dieses 14 500 : 258
= 56“ auf 1 Stunde . . — 56“



Genauigkeit und Geschwindigkeit der Basismessung . 151§ 23.

Schluss -Betrachtungen über Basismessung .
Die neueren Basismessungen sind technisch so fein behandelt , dass der mittlere

unregelmässige Messungs -Fehler nicht mehr als etwa 1 Millimeter für 1 Kilometer
beträgt . Dieses geht aus den auf S . 146— 148 gesammelten mittleren Fehlern deutlich
hervor , denn wir haben für den mittleren Fehler einer Messung von 1 Kilometer , in
runden Durchschnittszahlen :

S . 146 für Bessels Apparat . m = + 1,3””
S . 147 „ den neuen spanischen Apparat 0,9”“
S . 148 „ „ nordamerikanischen „ 1,0””

Durchschnitt m = + 1,1””

Für Doppelmessung vermindert sich dieses noch auf 1,1 : }/ 2 = 0,8”"” für P ” ,
indessen wollen wir den runden Wert m = + 1»”» für 1*™ als unregelmässigen von
der Messung selbst herrührenden Fehler einer neueren Basis nun annehmen .

Ganz anders , nämlich ungünstiger , steht es mit den regelmässigen , namentlich
den metronomischen Fehlern der Basismessungen .

Wir haben in § . 11 . S . 75 berichtet , dass bei der Besselschen Basismessung
bei Königsberg , 1834 , der Hauptfehler , nämlich die Vergleichung mit einem von
anderwärts gegebenen Normalmass , nur = 0,6 Milliontel der Länge gefunden wurde ,
und ähnliche kleine Werte wurden auch später mit dem Besselschen Apparate gefunden ;
indessen sind wahrscheinlich jene älteren Vergleichungen in Bezug auf Genauigkeit
überschätzt , indem später mit dem Besselschen Apparate Unsicherheiten bis zu 0,02“”
auf eine Stange von 4™, d . h . 5 Milliontel der Länge , gefunden wurden . (Vgl . dazu
oben S . 147 auch die Differenz Brunner -Bessel = 11 ”” auf 2,5 1'” .)

Die beiden betrachteten Fehlerteile , nämlich m = mittlerer unregelmässiger
Fehler und m' = mittlerer regelmässiger Fehler , setzen sich in bekannter Weise zum
Gesamtfehler M für die Länge L zusammen , nach der Gleichung :

M = j/ (m }/Lf + K W = /
/ L + m ' t Ifi ( 1)

Nehmen wir nach dem bisherigen m 1”” für L = P ” und als Minimum in'
ebenfalls = 1’“” für L = P " , so wird :

M = yjTT
'
L 'i

Zur Übersicht ist hernach folgendes berechnet :

Gemessene
Basis -
Länge

L

Mittlerer
unregelm .

Fehler

m~
\/L

Mittlerer
regelmäss .

Fehler
m' L

Mittlerer
Gesammt -

Fehler
M

Verhältnis

M
L

~ykm -+- 1,00 ” ” -+- 1,00 ” ” + 1,41 ”” Milliontel
1,41

2*” 1 41 mm 2,00 ” ” 2,24“” 1,12t̂ km 2,24”“ 5,00”” 5,10”” 1,02
10*” 3,16”” 10,00 ” ” 10,05”” 1,005

Hieraus ist zu sehen , dass bei grösseren Längen neben den systematischen
Fehlern m'

, die unregelmässigen Messungs -Fehler m fast verschwindend sind ; dieses
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ist noch viel mehr der Pall , als die vorstehende Tabelle zeigt , weil wir hier nur m!
= 1 Milliontel angenommen haben , während es in Wirklichkeit das 5 — 10 fache hievon
betragen kann .

Durch solche Überlegungen wird der Fingerzeig gegeben , dass die Technik auf
einem falschen Wege war , als sie Apparate , wie den älteren Brunnerschen und ähnliche
schuf . (Ygl . § 18. S . 84 .)

Die Messungs -Geschwindigkeiten sind nach der Zusammenstellung S . 149 — 150
sehr verschieden ; die äussersten Werte scheinen zu sein :

Älterer Brunner scher Apparat . v = 30 Meter in 1 Stunde
Bessel s Apparat , Landes -Aufnahme bei Meppen v = 300 „ „ „ „

Die Hauptsache der Basismessung , nämlich der metronomische Teil , liegt nun
in den Händen des internationalen Mass- und Gewichts -Bureaus (vgl . § 8 . S . 56 und
in dieser Beziehung werden ohne Zweifel die nächsten Basismessungen sich wesent¬
lich von den früheren unterscheiden .

§ 24. Basis -Anschlüsse.
Wenn man die mittleren Fehler zweier Grundlinien und den mittleren Winkel¬

fehler einer verbindenden Triangulierung kennt , so kann man auf theoretischem Wege
den Fehler berechnen , welcher beim Durchrechnen der Triangulierung von einer Grund¬
linie zur anderen sich wohl einstellen wird , oder man kann auch berechnen , um wie
viel eine Triangulierungskette in der Messung und Berechnung ihren wahren Endpunkt
verfehlen wird , im Sinne der Entfernung und im Sinne der Bichtung .

Theoretische Betrachtungen hiezu haben wir in den vorhergehenden §§ 17—20
gegeben , und es ist hiezu an alles zu erinnern , was bereits in unserem I . Bande ,
1895 , 4. Aufl., in Kap . V über Triangulierungs -Genauigkeit verhandelt worden ist .
Auch erfahrungsmässige Genauigkeitsangaben sind daselbst in grosser Zahl gesammelt
und wir wollen auch nochmals an die wertvollen auf mühsame Berechnungen ge¬
gründeten Angaben der preussischen Landes -Aufnahme über Entfernungs - und Azimutal¬
fehler langer Ketten erinnern , welche im I . Bande der Landestriangulation enthalten
und von uns (in „Jordan -Steppes , Deutsches Vermessungswesen I “ S . 138—139 ) dahin
zusammengefasst worden sind , dass eine Dreiecksseite in lOO*3“ Entfernung an der
Basis , mit 7 Milliontel ihrer Länge erhalten wird , oder dass eine Kette von 130ta
einen Entfernungsfehler von nur 3 Milliontel der Entfernung und einen Bichtungs -
fehler von kaum 1" bietet .

Wichtiger als die so zu berechnenden theoretischen Anschlussfehler sind die
thatsächlich in der Praxis aufgetretenen Anschlussfehler und wir haben daher schon
frühzeitig solche Anschlüsse aus der vorhandenen Litteratur gesammelt , wie aus
unseren früheren Auflagen und zugehörigen Veröffentlichungen zu ersehen ist ; es ist
aber schwer auf diesem Gebiete rein objektive Nachrichten zu erlangen , weil sehr
oft die Vermutung nicht zu unterdrücken ist , dass die Berechner früherer Zeiten die
Anschlüsse in der Triangulierungsausgleichung mehr oder weniger haben mitein -
spielen lassen . —

Das Wichtigste auf diesem Gebiete sind die neueren Untersuchungen des geo¬dätischen Institutes , von welchen wir im Folgenden einige Auszüge vorführen :
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Wir betrachten zuerst ein Werk von Helmert :
Veröffentlichung des Königlich preussischen Geodätischen Instituts und Centralbureaus der

internationalen Erdmessung . Die europäische Längengradmessung in 52 Grad Breite Ton Greenwichbis Warschau . I . Heft , Hauptdreiecke und Grundlinienanschlüsse von England bis Polen , heraus¬
gegeben von E . E . Helmert mit zwei lithographischen Tafeln . Berlin , Druck und Verlag Ton S t a n -
kiewicz , Buehüruckerei , 1893.

Wir haben von diesem Werke schon in unserem I . Bande , 4 . Aufl . 1895, S . 283—299
die neue Theorie der Triangulierungsausgleichung mit Richtungsgewichten mitgeteiltund können nun weiter aus dem 4 . Kapitel über die Grundlinien und ihre Anschlüsse fol¬
gendes berichten , wobei mit (H . S . . . .) die Citate aus dem Originalwerk beigegeben sind .

Alle mit dem Basisapparat von Bessel gemessenen Grundlinien beruhen auf der
Toise von Bessel , welche Bessel selbst 1823 setzte (H . S . 225 ) :

P = 863,9992 Par . Linien bei 16,25 ° oder bei 13 ° R.
Wir haben diese Toise bereits in § 7 . S . 53— 54 und in § 11 . S . 75 , Gleichung

(19) erwähnt , dieselbe kommt in Bessels „Gradmessung in Ostpreussen “ S. 22 vor
mit der Angabe , dass ihre wahre Länge = 863,9992 Par . Linien sei, mit der Gleichung :

P = 863,835384 + 0,0126014 R °
was man auch so schreiben kann

P = 863,99920 (1 + 0,0000145877 [E ° - 13 °])
= 863,99920 (1 + 0,00001167016 [C ° — 16,25 °] )

d . h . Bessel hat in der Gradmessung in Ostpreussen den Ausdehnungs -Coefficienten
0,00001167 für 1 ° C , und bei den Pendelversuchen nahm Bessel den von Borda für
Eisen bestimmten Wert a = 0,0000114 als Ausdehnungs -Coefficient (H . S . 226).

Die in neuester Zeit gemachte Vergleichung der Besselschen Toise im inter¬
nationalen Massbureau zu Breteuil gab (H . S . 226) :

P = 1949,061 ”*”' bei 16,25°
und den Ausdehnungs -Coefficienten a = 0,00001160 . Durch diese Neubestimmung
konnten die mit Bessels Apparat gemessenen Grundlinien auf internationales Meter-
mass reduziert werden . Das Endergebnis ist nach H . S . 230—231 , dass alle auf
Bessels Bestimmungen beruhenden geodätischen Linien bezw. Dreiecksseiten , nachdem
sie inzwischen formell mit 443,296 : 864 auf Metermass reduziert sind , nun noch mit
einer Korrektion von + 57,7 Einheiten der 7 . Logarithmenstelle versehen werden
müssen , um sie auf internationales Metermass zu reduzieren .

Diese Zahl ist für die Zukunft wichtig und wir wollen dazu sogleich auch aus
der Veröffentlichung der Landes -Aufnahme , Landes -Triangulation , Hauptdreieck V. Teil ,
Berlin 1893 Seite V eitleren :

Allen in Metern ausgedrüekten Ergebnissen der Landes -Aufnahme hat man , um
sie auf internationales Metermass zu bringen , eine Reduktion zuzufügen , welche beträgt :

logarithmisch + 0 .0000058 oder -+- 58 Einheiten der 7 . Stelle
oder in Teilen der Längen selbst :

KO
+ 4 .3129 + = 13 ’4 Milliontel

oder + 13,4”'”* auf l im.
So wurden behandelt die Grundlinien von Königsberg , Berlin , Bonn , Ostende

und Lommel , Strehlen , Grossenhain , Göttingen , woraus mit Rücksicht auf Nebenum¬
stände eine Reduktionstabelle (H . S . 241) entsteht . Nachdem hierbei auch die mitt -
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leren Fehler der Grundlinien geschätzt waren , nämlich + 10 -0 (d . h . 10 Einheiten des
Tstell . Logar . ) und entsprechend auch ± _ 18 -0 für englische und + 10 -0 für russische
Linien , kommen die Vergrösserungsnetze in Betracht , durch welche der trigonome¬
trische Weg von der Basis seihst bis zur ersten Hauptdreiecksseite hergestellt wird ,
mit Fehlerschätzung nach Näherungsformeln (H . S . 245 ) und endlich dazu die trigo¬
nometrische Verbindung längs der Hauptketten yon Basis zu Basis , wozu Fehler¬
schätzungen nach H . S . 83 möglich sind . Das sind nun alles Genauigkeitsbestimm¬
ungen a priori , und es entsteht die brennende Frage , wie die trigonometrische
Zusammenrechnung zwischen den Grundlinien thatsächlich stimmen wird , ob die fak¬
tischen Anschlussfehler den theoretisch berechneten Fehlern entsprechen werden ?

Die 9 Grundlinien mit ihren 8 Verbindungs -Triangulierungsnetzen wurden einer
Ausgleichung unterworfen (H . S . 243—244 ), wobei die Verbesserungen (jj a 2 . . . ff9 der
Grundlinien selbst als unabhängige Unbekannte und die Verbesserungen Uj . . . *8
der 8 Verbindungs -Triangulierungen als Beobachtungen auftreten , mit Gewichten ,
welche der Form und Ausdehnung der Netze a priori angepasst sind . Der mittlere
Gewichtseinheitsfehler ergab sich nach der Ausgleichung = + 33 und für das Durch¬
schnittsgewicht 4 — 5 der mittlere Fehler = + 16 Einheiten der 7 . logar . Dezimale
oder = 16 : 4 .34 = 3,8 ”“ auf l km, ein ungemein kleiner Betrag (giltig für ein v oder a ).

Die Hauptergebnisse der Basisgenauigkeiten und der Verbindungs -Triangulierungs¬
genauigkeiten sind in einer Tabelle auf H . S . 251 enthalten , welche wir hier in zwei
Teilen vorführen :

Mittlere Fehler a priori (H . S . 251 .) ( 1)

Verbindungs -Netz

± 100
± 50
± 32
± 37
± 28
± 38
± 22 zu (6,8;

Durchschnitt ±28 21 55 7. Log .-Stelle

± 6,4 ± 12,7»»™ auf
Der vorstehenden Tabelle für Fehler a priori entspricht nun folgende zweite

Tabelle der Fehler a posteriori :
Mittlere Fehler a posteriori (B . S . 251) . (2)

Grundlinie Basis , direkte
Messung

Vergrösserungs -
Netz

Englische Basis . -+- 18 ■+■40
Ostender „ . + 10 •+• 35
Lommeler „ . ± 10 + 30
Bonner „ . - 10 ■+■30
Göttinger „ . ± 10 + 9
Grossenhainer „ . + 10 + 7
Strehlener „ . . ± 10 -! 23
Berliner „ . o- 10 + 21
Königsberger . ± 10 ± 23

Nr . Grundlinie Verbindu
Verbesserung g

ngsausgleichung
Verbesserung v

Länge des Ver¬
bindungs -Netzes

1 Englische Basis . — 4-6 — 4-5
km

2 Ostender „ . . . . — 21-1 200
3 Lommeler „ . - 2-0 — 12-9 170
4 Bonner „ . + 22.2 — 13*8 140
5 Göttinger „ . + 7-4 — 2-8 220
6 Grossenhainer „ . — 1-0 + 4-6 250
7 Strehlener .. + 14*7 — 7-3 260
8 Berliner „ . — 7-2 + 10*8 zu (6,8) 130
9 Königsberger „ . . . . . . . + 12-0 + 18-2 540

Durchschnitt
210 km

±16 -0
= ±3,71

: 16-0 7. Log .-Stelle
3,7mm auf 1mk
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Die mittleren Fehler sind in dieser Tabelle in Einheiten der 7 . Log . -Dezimale

ist , muss man die 7 . Log .-Stelle mit 4,34 dividieren ,angesetzt , d . h . da d log x

um sie in Milliontel der Längen (oder in Millimeter für 1 Kilometer ) zu verwandeln .
Die unmittelbaren Basisfehler , im Durchschnitt + 2,5"'“ auf P “ , sind Schätz¬

ungen , nach Anbringung der Deduktionen auf das internationale Meter .
Was weiter die mittleren Fehler der Verbindungs -Triangulierungen zwischen

zwei Grundlinien betrifft , so hat man für Ketten erster Ordnung unsere früheren
Formeln von § 18 , insbesondere die Formel (13 ) S . 111 , welche mit anderen Bezeich¬

nungen , und logarithmisch ausgedrückt in H . S . 83 , Anmerkung , angegeben ist .
Da aber die Ketten erster Ordnung mit ihren 20— 50 l“ langen Seiten nicht

unmittelbar an die nur 5— 7im langen Grundlinien anschliessen können , sondern be¬
sondere Basisnetze , gewöhnlich rhombisch (vgl . S . 104— 108) zur Vermittlung haben ,
so mussten dafür die mittleren Übertragungsfehler besonders bestimmt werden . Den
mittleren Fehler der Höhe h eines einzelnen gleichschenkligen Dreiecks haben wir
bereits in § 18 . bestimmt , nämlich nach der Formel (22) auf S . 113 oben , welche mit
gleichen Gewichten p 1 = = Ps = 1, und Weglassung von g giebt :

Hat man zwei solche gleichschenklige Dreiecke auf beiden Seiten einer Grund¬
linie angesetzt , etwa wie in Fig . 4 . S . 114, jedoch mit ungleichen Höhen h und h\
so erhält man daraus

m (h -+- N) sin (1 ' )

m (h -+- h' ) sin2 (1) sin2(1 ' )

Dieses ist in anderer Form dasselbe wie die erste Formel in H . S . 245 , und ,
um auch die zweite dort angegebene Formel für zwei rechtwinklige Dreiecke nach¬
zuweisen , nehmen wir unsere allgemeine zu Fig . 4 . S . 113 gehörige Formel (25) S . 114
und setzen darin , um a und a' in eine zu 6 rechtwinklige Gerade zu verwandeln :

« = 0 , (1) = y (3) = 90 °
, (2) = 90 ° — y , ß = 90 °

« ' = 0 (! '
) = / (3 '

) = 90 ° (2 '
) = 90 ° — /

« = 0 , (1) = y
« ' = 0 (1 ') = Y

und dazu p ^ = p 2 = p s = 1 , dann wird (ohne g) :
’62 sin 2 y -h a2 cos2 y - t- c2 a! 2 cos2 y

' dh2 sin2 y
'

(«i (H) )2 = fi2 sin2 y
'

. 3sin2 y • 3

(a2 + ft2)2 + ja ' 2 + b2)2a4 + a'4M2
3 ^

2 62 -+-

o 4 a ' 4
+ (a 2 + fl '2)

Dieses ist die zweite Formel von H . S . 245 . Durch solche Formeln wurden
die Wirkungen der Basis -Netze geschätzt und in Verbindung mit der Kettenformel (13)
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S . 111 sind dann die mittleren Fehler a priori bestimmt worden , welche in den zwei
letzten Spalten der oben S . 154 gegebenen Tabelle (1) auftreten .

Betrachten wir nun diese Tabelle (1) S. 154 und die darauffolgende Tabelle (2)
S . 154, so fällt uns zuerst auf, wie klein die meisten auftretenden Beträge sind , mehr
aber noch , wie sehr klein die a posteriori erhaltenen Fehler sind im Vergleich mit
den a priori geschätzten , z . B . 12,7 : 3,7 bei den Verbindungsnetzen . Es wird ge¬
sagt (H . S . 252) , dass zu diesem befriedigenden Ergebnis der Zufall wohl viel bei¬
getragen habe . Unter allen Umständen bieten diese Fehlertabellen ein vortreffliches
und in mancher Hinsicht erstes aus weiten Gebieten genügend kritisch gesammeltes
Urteil über die Genauigkeit moderner Triangulierungen .

Eine zweite wichtige Untersuchung über Basis -Anschlüsse ist mitgeteilt in den
„Verhandlungen der X. allgemeinen Konferenz der Internationalen Erdmessung zu
Brüssel 1892“

, Seite 518—456 . „ Verbindung und Vergleichung geodätischer Grund¬
linien “ , zusammengestellt im Zentral -Bureau der Internationalen Erdmessung von
Dr . Kühnen , wovon ein Auszug auch in der „ Zeitschr . f. Verm . “ 1894 , S . 75—79
gegeben ist .

Es war verfügbar je ein Anschluss zwischen den Ländern : Algerien , Spanien ,
Frankreich , England , Belgien , Deutschland , Russland ; — Deutschland , Schweiz , Italien ,
Oesterreich ; — Deutschland , Dänemark . Zwar giebt es zwischen Deutschland und
Russland 4 und zwischen Deutschland und Dänemark 2 Anschlüsse , doch lagen die
Verhältnisse für nur je einen von diesen so einfach , dass sie für den Bericht 1892 berück¬
sichtigt werden konnten . Wären nun die Anschlüsse der verschiedenen Länder allein
zusammengestellt , so wäre die Arbeit wenig lehrreich gewesen . Dagegen gewinnt sie
ein grosses Interesse dadurch , dass eine Vergleichung fast aller europäischen Grund¬
linien (nebst den algerischen ) ausgeführt worden ist . Im Ganzen erstreckt sich die
Vergleichung von 71/2 ° westl . Länge (Lugo ) bis 581/2 ° östl . Länge (Orsk ), und von
35 ' /2° nördl . Breite (Oran ) bis 5572 ° nördl . Breite (Amager ).

Die Hauptschwierigkeiten der Arbeit bestanden darin , eine sichere Reduktion
der einzelnen Basislängen auf das internationale Meter festzustellen . Für die Hälfte
der Grundlinien war diese Schwierigkeit bereits durch die Europäische Längengrad¬
messung von Prof . Helmert gehoben , über welche im Vorstehenden S . 154 berichtet ist ,

Als allgemeine Bezugsbasis ist nach dem Vorgänge der Helmert sehen Längen -
gradmessnng die Basis von Lommel gewählt . Die Ergebnisse sind in einer Tabelle
zusammengestellt , welche ausser 9 deutschen Grundlinien weiter 2 belgische , 2 neue
und 3 alte französische , 6 spanische , 3 algerische , 2 englische , 3 schweizerische , 2 italie¬
nische , 2 österreichische , 1 dänische und 13 russische — zusammen 48 Grundlinien
enthält , die durch rund 1000 Dreiecke mit einander verbunden sind .

Diese grosse und wichtige Tabelle findet sich in den „ Verhandlungen der Kon¬
ferenz in Brüssel 1892 “ auf S . 540 —545 mit 46 Grundlinien und ein Auszug daraus in
der „Zeitschr . f . Verm . “ 1894 , S . 78 — 79 . Hier genügt es , daraus folgendes mitzuteilen :

Die Anschlüsse stimmen im allgemeinen über Erwarten günstig , es ergiebt sich
für je 2 Grundlinien eine mittlere Anschluss -Differenz von 15,6mm für Vm.

Ein Polygon , welches fast ganz Zentral -Europa umfasst , nämlich von der Grund¬
linie Berlin ausgehend , über Göttingen , Bonn , Oberhergheim , Aarberg , Weinfelden ,Bellinzona , Somma , Udine , Grossenhain bis zurück nach Berlin , schliesst mit einem
Widerspruch von nur 15,5 “ ’“ für l 1'"1. —
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Solcher Polygone , aber in viel geringerer Ausdehnung , konnten mehrere in
Spanien geschlossen werden ; auch dort sind die Resultate , bis auf eines , günstig . —Die Anschlussdiflerenzen gegen Lommel addieren sich nur bei der russischen Längen -
gradmessung systematisch und erreichen bei Orsk den bedeutenden Betrag von 570m“
für l 1'” . Im übrigen sind die drei grössten Abweichungen gegen Lommel : Lugo
( Spanien ) mit 81 mm, Taschbunar (russ . Breitengradmessung von Struve ) mit 54m”‘ undOran (Algerien ) mit 36 "1“ für P ”.

Die Anschlüsse zwischen Grundlinien benachbarter Länder , die mit verschie¬denen Apparaten gemessen worden sind , sind in der folgenden Tabelle enthalten . (InBelgien und Dänemark diente der preussische Besselsche Basisapparat .)

Anschluss
Ent¬

fernung
in km

Anzahl der
verbinden -

denDreiecke

Anschlussdifferenz
in 7. Stelle j in mm
des Log . | für 1*»»

1) Algerien . — Spanien (Oran — Cartagena ) . 450 18 — 105 — 24,22) Spanien — Frankreich (vioh — Perpignan ) . . . . 100 10 — 9 - 2,13) Frankreich — England (Paris - engl . Basen) . . . 300 27 + W + 3,24) Frankreich — Belgien (Paris — Ostende) . . . . 275 26 ± 46 -t- 10,65) England — Belgien (engl . Basen — Ostende) • - * 150 9 — 10 — 2,36) Deutschland — Schweiz (Oberhergheim —Aarberg) 100 15 — 40 — 9,27 ) Schweiz — Italien (Bellinzona — Somma) . . . . 75 3 — 29 - 6,78) Preussen — Russland (Strehlen — czenstoebau ) . 150 11 + 2 + 0,5

Summe 1600 119 ± 255 ±58,8

Durchschnitt 200 13 ± 32 ± 7 ,4
Der rohe Durchschnitt giebt also zwischen je zwei Grundlinien mit 13 Ver¬

bindungsdreiecken auf 200*’" Entfernung eine Anschluss -Differenz = 0 .000 0032 im
32

Logarithmus oder = 7,4 mm für l km.4,o4
Im Ganzen kommt der Verfasser zu folgenden Schlüssen :
I . Nach Reduktion auf internationale Meter zeigen die Grundlinien , welche in

benachbarten Ländern mit verschiedenen Apparaten gemessen sind , keinen Unterschied
gegen die Grundlinien , die mit demselben Apparat gemessen worden sind.

II . Die Vergleichung der Grundlinien vermittelst Dreiecksketten lässt deshalb
weitere Schlüsse über die Massvergleichung , über die Reduktionsfaktoren , oder über
die angewandte Messungsmethode nicht mehr zu (d . h . diese Feinheiten verschwinden
neben den Triangulierungsfehlern ) .

III . Um alle Grundlinien wirklich einheitlich auf einander beziehen zu können,ist es erforderlich , entweder sämtliche Grundlinien mit demselben Apparat zu messen,oder eine einzige Grundlinie mit allen Apparaten zu messen , und hiernach die einzelnen
Apparate gegen einander zu bestimmen .

§ 25 . Änderung der geographischen Breite .
Die seit etwa 10 Jahren konstatierte und nun in gründlicher Erforschung

befindliche Änderung der geographischen Breite eines Ortes ; allgemeiner die Schwank¬
ungen der Erdaxe , bis zu 0,3" Ausweichung von der Mittellage , bildet eine Haupt -



158 Änderung der geographischen Breite . 25 .

aufgabe der heutigen internationalen Erdmessung und muss wohl auch in unserem

der Geodäsie gewidmeten Bande summarisch behandelt werden , obgleich astronomische

Messungen sonst Mer ausgeschlossen sind .

Wir hatten schon in der „ Zeitschr . f . Verm . “ 1891 einiges hierüber aus den

Verhandlungen der permanenten Kommission der internationalen Erdmessung von

Freiburg 1890 berichtet , mit Mitteilungen von Herrn Professor Älbrecht am geodä¬

tischen Institut , welcher auch für die allgemeine Konferenz der Erdmessung in Berlin

1891 den amtlichen Bericht erstattet (vgl . „ Zeitschr . f. Verm . “ 1891 , S . 579— 580)

und den nachstehenden Auszug daraus unterstützt hat .

Nachdem schon früher 1842 —1843 an der Polllöhe von Pnlkowa kleine Än¬

derungen vermutet und rechnerisch erörtert waren (Helmert , Höhere Geodäsie , II . Band ,

1884 , S . 394 ) ist die Frage der Breiten -Änderung auf der Erdmessungs -Konferenz in

Born, 1883, bestimmter gestellt worden . Auf dieser Konferenz wurde diese Frage von

Fergola angeregt .
Es wurde vorgeschlagen , an mehreren passend gewählten Orten auf der Erd¬

oberfläche unter Anwendung gleicher Instrumente und einheitlicher Beobachtungs¬

methoden Breitenbestimmungen vorzunehmen , welche in hinreichend von einander

abstehenden Zeitepochen zu wiederholen seien .

Die Konferenz in Born beschäftigte sich eingehend mit dieser Frage , ohne dass

indes praktische Folgen hieraus hervorgingen .
Die Resultate einer mehr als einjährigen Beobachtungsreihe des Herrn Küstner

auf der Berliner Sternwarte nach der Methode Horrebow -Talcott brachten von Neuem

diese Frage in Fluss .
Durch die Ergebnisse dieser letzterwähnten Beobachtungsreihe war die Frage

einer Veränderlichkeit der Polhöhe in ein akuteres Stadium getreten , da Küstner zu

dem Resultat gelangt war , dass die Beobachtungen derselben Sternpaare im Frühjahr
1885 eine um 0,20" + 0,04” kleinere Polhöhe ergaben als diejenigen im Frühjahr
1884 . (Vgl . Küstner , Neue Methode zur Bestimmung der Aberrations -Konstante nebst

Untersuchungen über die Veränderlichkeit der Polhöhe , Berlin 1888 , S . 47 .)

Dadurch wurde die Frage nahe gerückt , ob nicht vielleicht neben den schon

mehrfach vermuteten säkularen Änderungen der Polhöhe auch Schwankungen inner¬

halb kürzerer Fristen nachzuweisen seien . Die Möglichkeit derartiger Veränderungen ,
als Folge der meteorologischen Vorgänge an der Erdoberfläche ist unbestritten ; nur

erschien es zweifelhaft , oh dieselben die Grenzen der Messbarkeit erreichen .

Auf der Konferenz der Permanenten Kommission in Salzburg 1888 wurde der

Beschluss gefasst , mit eigenen Mitteln und Kräften zur Aufklärung der Frage der

Veränderlichkeit der Lage der Erdaxe im Erdkörper beizutragen , und zur Vorbereitung
weiterer umfassenderer Untersuchungen dieser Art Vorversuche anzustellen , welche
dem Zentralbureau übertragen wurden .

Darauf hin wurden vom Anfang 1889 ab fortlaufende Breitenbestimmungen in
Berlin , Potsdam und Prag unter Anwendung der Methode von Horrebow -Talcott

ausgeführt .
Der Grundgedanke dieser Methode ist in Pig . 1 . S . 159 angedeutet , er beruht

auf der Meridian -Zenit -Distanzmessung zweier Sterne in nahezu gleichen Zenitabständen .

(\ gl . Älbrecht , Formeln und Hilfstafeln für geographische Ortsbestimmungen , Leipzig
1894 , 3 . Aufl., S . 75 u . ff.)
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Fig . l .

also <f> =

Sind Sj und S2 zwei Sterne , welche auf ver¬
schiedenen Seiten von dem Zenit Z eines Punktes
J kulminieren und die Deklinationen öj und ö2 haben ,
so sind die beiden Zenitdistanzen z l und z 2 , aus¬
gedrückt in der Breite <p des Beobachtungsortes
und den Deklinationen d\ und ö2 der beiden Sterne :

* i = <P — <5x z 2 = — cp + ö 2 |
+ dg ~~ H ! (1 )
2

■*" 2 I
Wenn man nun solche Sterne hat , deren Zenit¬

distanzen g t und z2 sehr nahe gleich sind , nämlich
nur um wenige Minuten verschieden , während und
z2 selbst bis zu 25 °—30 ° betragen dürfen , so braucht man zur Messung der Differenz
z1 - z2, auf welche es ankommt , die Kreisteilung nicht , sondern nur Mikrometer -
Ablesungen , deren Fehler hinreichend klein gemacht werden können .

Die Vorteile des Verfahrens sind : Minimum an Rechnungsarbeit , höchster
Genauigkeitsgrad der Resultate , nahezu völlige Unabhängigkeit von systematischen
Fehlern .

üi;

Um aber von den Fehlern in den angenommenen Deklinationen der Sterne un¬
abhängig zu werden , wurde ein Kettenverfahren angewendet , dergestalt , dass auf
jeder der Stationen 9 Sterngruppen von je 8 bis 9 Sternpaaren ausgewählt wurden,
so dass an jedem klaren Abende je zwei dieser Sterngruppen nach einem festen Be¬
obachtungsprogramm beobachtet werden konnten .

Die Veränderung der Polhöhe kann dadurch unabhängig von den Deklinations
Unsicherheiten der Sterne erhalten werden , dass zunächst innerhalb jeder Sterngruppedie Reduktionen jedes einzelnen Sternpaares auf das mittlere Deklinations -System der
betreffenden Gruppe abgeleitet , und die übergreifenden Gebiete je zweier Gruppen
dazu benützt werden , die Deklinations -Systeme der Gruppen unter einander (unab¬
hängig von der Veränderlichkeit der Polhöhe ) festzustellen .

Die Ergebnisse der Beobachtungen , auf eine und dieselbe Sterngruppe reduziert ,
und daher von der Unsicherheit der angenommenen Deklinationen der Sterne befreit ,sind enthalten in den Verhandlungen der vom 15 .—21 . Sept . 1890 zu Freiburg i . B.
abgehaltenen Konferenz der permanenten Kommission der internationalen Erdmessung .
Berlin 1891 , S . 14 — 18 .

Diese Ergebnisse wurden graphisch dargestellt , wie aus den hier folgenden
Kurven für Berlin , Potsdam , Prag zu ersehen ist .

Fig . 2. Berlin .

1890 .

52 ° 30 ' 17,6'

52 ° 30 ' 17,0"
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!!ü

Ii

Fig . 3. Potsdam .

52 ° 22' 56,5"

52 ° 22 ' 55,9”

Fig . 4. Prag .

50 ° 5' 16,r

50 ° 5' 15,5 '

/ . i F . M . | A . I M . j J . | J . I A . ! S . I 0 . S IV. I D . I / . I F . \ M . \ A.
1889 .

In diesen Darstellungen sind die Zeiten als Abscissen und die Breiten als
Ordinaten behandelt .

In den Abscissen ist 1 Teil = 20 Tage oder = 2/s Monat , in den Ordinaten ist
1 Teil = 0,1 ” . Die beigeschriebenen Zahlen bedeuten die Sternpaare der Beobacht -

33
ungen und die Zahl der Beobachtungstage z. B . bei Potsdam bedeutet 2 Beobacht -

LI

ungstage zwischen dem 1 . und 20. Januar 1889 , und Anwendung von 33 Sternpaaren .

Die Kurven zeigen einen so nahe parallelen Verlauf auf allen drei Stationen ,
dass an der Bealität der Polhöhenänderung nicht zu zweifeln ist .

Dank der regen Beteiligung einer grösseren Anzahl von Sternwarten und sonstigen
Beobachtungsstationen sind die Beobachtungen fortgesetzt worden und haben es ausser
Zweifel gestellt , dass die Polhöhenschwankungen durch wirkliche Lagenänderungen
der Umdrehungsaxe veranlasst sind.

Die eingehendste Behandlung der vom Beginn des Jahres 1889 ab erhaltenen
Besultate ist in einem Berichte enthalten , den Professor Albrecht der XI . allgemeinen
Konferenz der Internationalen Erdmessung im Herbst 1895 in Berlin vorgelegt hat
und der auch auszugsweise in den Astronomischen Nachrichten 139. Band , anfangs 1896
erschienen ist .

Die azimutale Polveränderung kann an einem und demselben Orte durch Azi¬
mutbeobachtungen gefunden werden , indessen genügen auch Polhöhenmessungen allein
dazu , welche an Orten verschiedener Länge angestellt sind und durch Bechnung zu¬
sammengefasst werden.
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Wenn für einen Beobachter in Greenwich , oder im Meridian von Greenwich ,
der Momentan -Pol am Himmel um den Betrag x höher steht als der mittere Pol , so
wird auch die beobachtete Polhöhe qd um ebensoviel grösser sein als die mittlere
Polhöhe <p0 oder es wird sein qo — <p0 = x . Wenn zugleich der Pol in Greenwich um
den Betrag y rechts vom Meridian des mittleren Pols steht , so hat das auf die Pol¬
höhenmessung in Greenwich , oder im Meridian von Greenwich keinen Einfluss , da¬
gegen auf einem Punkte in der Länge 90° östlich von Greenwich wird dieses y sich
als Polhöhenvergrösserung zeigen , während umgekehrt hier x unbemerkt bleibt .

Fig . 5. Bewegung des Nordpols der Erde von 1890—1895.
Punkte in Abständen von */10 Jahr .

- 0 . 10 - 0 .20

'ttlere

+ 0.20 + OfO o. oo
Jordan , Handb . d. Vermessungskunde . 4. Aufl . III . Bd.
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Allgemein in der Länge X östlich von Greenwich werden die erwähnten Kom¬

ponenten * und y der Polahweichung eine Polhöhenänderung erzeugen :

(p — <jp0 = x cos X + y sin X (2)

Hat man eine Gruppe gleichzeitiger Bestimmungen von <jp — <p0 auf möglichst
verschiedenen Längen X, so kann man daraus die Konstanten x und y durch Ausgleich¬

ung bestimmen , und zwar nach denselben Formeln , welche z . B . in diesem Bande

§ 6 . für periodische Schraubenfehler S . 45—48 angewendet wurden .
Das Ergebnis der hiernach geführten Ausgleichung ist in Fig . 5 . S . 161 gezeichnet .

Diese Figur ist nicht dem Anblick am Himmel entsprechend , sondern sie ist so ge¬
dacht , als ob der Beobachter ausserhalb der Erde steht und auf die Erdoberfläche

sieht . Der Coordinaten -Nullpunkt stellt den mittleren Pol mit der Polhöhe <p0 vor

und die verschiedenen Kurvenpunkte sind die Momentan -Pole zu verschiedenen Zeiten

mit den Polhöhen cp. Die -+- x Axe von Fig . 5 . ist von dem mittleren Pol gegen
Greenwich hin gerichtet und die -\ - y Axe entspricht der Länge X = 90 ° westlich von

Greenwich.
Liegt der Momentanpol P im ersten Quadranten des Coordinatensystems (zwi¬

schen —{—as und so befindet sich P für alle Orte , deren Länge X zwischen 0 °

und 90 ° beträgt , näher an diesem Orte als P 0, d . h . es ist der Polabstand 90 ° — cp
kleiner als 90 ° — oder es ist cp grösser als qp0 , oder es gilt auch in diesem Sinne

die Gleichung (2) .

§ 26 . Bedeutung der geographischen Coordinaten in der Geodäsie .

Unter geographischen ' Coordinaten eines Punktes auf der krummen Erdober¬

fläche versteht man die geographische Breite und die geographische Länge des Punktes
in der bekannten , schon in der elementaren Geographie geläufigen Bedeutung , welche

auf dem Umdrehungs -Ellipsoid Gegenstand weiterer Betrachtung im Nachfolgenden
sein werden .

Nach der Mitteilung von § 25 . über die Veränderlichkeit desjenigen astro¬
nomisch -geodätischen Elementes , welches man seit Jahrtausenden als das festeste von
allen gehalten hatte , haben wir noch einige Worte zu sagen über die Bedeutung , welche
die geographischen Breiten und die dazu gehörigen Längen und Azimute in der Geo¬
däsie spielen :

Auch wenn von der jetzt konstatierten Veränderlichkeit dieser Elemente ab¬

gesehen wird , ist deren Messungsgenauigkeit , im günstigsten Fall , 0,1" bei weitem
noch nicht entsprechend der geodätischen Punktbestimmung auf der Erde , welche
linear auf weite Entfernungen etwa + 0,1 Meter und auf kurze Entfernungen + 0,01 Meter

beträgt . Da nun eine Breitensekunde rund = 10 000 000
324 000

= 31 Meter giebt , also 0,1 "

immer noch 3 Metern entspricht , kann die astronomische Genauigkeit der geodätischen
Punktfestlegung noch bei weitem nicht folgen.

Dazu kommen aber noch die Lotabweichungen (vgl . Einleitung S . 11 — 12 ),
welche auf den Verlauf einer Dreieckskette leicht mehrere Sekunden bringen kann , so
dass also von der Übereinstimmung der astronomischen Breiten - und Längenbestimm¬
ung mit der geodätischen Punktbestimmung in Hinsicht auf Messungsschärfe keine
Bede sein kann .
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Allerdings astronomische Längen und Azimute zusammen spielen hier noch eine
andere Bolle , wovon aber hier auch noch nicht gehandelt werden kann .

Vielmehr ist es hier , vor Beginn der mathematisch -geodätischen Rechnungen
auf dem Ellipsoid , nur nötig zu erklären , dass die Breiten und Längen , welche bis
auf Tausendel und Zehntausendel -Sekunden (0,001" bis 0,0001" und teilweise noch
weiter) angegeben werden , in der G-eodäsie zunächst gar keinen anderen Zweck haben
als die geometrische Punkthestimmung auf einer krummen Fläche , welche, als TJm-
drehungs -Ellipsoid angenommen , seihst nur hypothetischer Natur ist .

Dieser Entwicklungsgang ist unerlässlich , und nach Erledigung der geodäti¬
schen Theorieen für Ellipsoid und Kugel wird auch das Verständnis für die von
jenen Voraussetzungen freie Geodäsie sich eröffnen.

Kapitel II .

Mathematische Hilfsmittel der geodätischen Entwicklungen .

Wir schalten dieses kleine Kapitel hier ein, um die gebräuchlichsten Formeln
und Zahlenwerte für geodätische Entwicklungen zur Hand zu haben und nach Bedarf
citieren zu können .

§ 27. Sphärische Trigonometrie.

I . Rechtwinkliges sphärisches Dreieck .
Wir nehmen nach Andeutung von Fig . 1 . die Bezeich¬

nungen an :
Fig . l .

Rechtwinkliges spkäri -
sches Dreieck .

Hypotenuse = c Gegenwinkel = 90 °
Kathete = a Gegenwinkel = a
Kathete = 6 Gegenwinkel = ß

Hiemit hat man folgende Gleichungen :

cos a = cos a cos b
cos c = cotg a cotg ß

sina . . sin b
sma = .— und sm ß = —.sm c sm c

tanq b . tang a
cos a = — — und cos ß = -——

tang c tang c

, tang a , , ,, tanq b
tanq a = —-- --- und tanq p = ——

sm b sm a
cos a = sin ß cos a und cos ß = sin a cos b

In dieser Gestalt prägen sich diese Gleichungen leicht dem Gedächtnis ein,
wenn man die Analogieen mit den Formeln der ebenen Trigonometrie im Auge behält .
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