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188 Erklärungen und Grund -Masse. 31 .

halten daraus durch Zusammensetzung mit Hilfe von Steinhausers 20stelligen Loga¬
rithmen :

log a = 7 .462 2032 705 16635
also log {a + b) - loga = d = — 0,000 0085 355 16098

Das Mittel aus dem obigen llstelligen fi e% und aus der Näherung a ist a0
= 0,00289 86715 151 , womit y = a 0 — = — 569,697 7144 , also das gesuchte

ß «2 = a + b = 0,00289 86430 30229

Es kommt bei solchen Rechnungen vor allem auf gute , möglichst grosse Näherungs¬
werte an , die man mit Überlegung und manchem Kunstgriff durch Produktenzerlegung
gewinnen kann , wobei eine Faktoren - und Primzahlen -Tafel , z . B . in Vega -Hülsse,
Leipzig 1840, S . 360—454 , von Nutzen ist .

Wir sind mit dieser Sache fast zu weit von der Geodäsie abgeschweift , doch
war es nötig , für die in der höheren Geodäsie ausnahmsweise vorkommenden viel¬
stelligen Fundamentalzahlen die Hilfsmittel hier zu behandeln .

Kapitel III .

Das Erd -Ellipsoid ( Sphäroid ) .

§ 31 . Erklärungen und Grund -Masse.
Die ideale Erdoberfläche , welche unseren Berechnungen zu Grunde gelegt wird,

ist ein Umdrehungs -Ellipsoid , d . h . diejenige Fläche , welche durch Umdrehung einer
Ellipse um ihre kleine Axe erzeugt wird .

Fig . 1. Fig . 2.
Umdrehungs -Ellipsoid .

jr ä n

Zuerst kommen folgende Grössen und Gleichungen in Betracht , welche zu den
vorstehenden Fig . 1 . und Fig . 2 . in Beziehung stehen .

Die grosse Halbaxe a , die kleine Halbaxe b (1 )
die Abplattung a = a- - (2)
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die Excentricität e = ~
j/

a
(3)

/ a% _T&2
die zweite Excentricität e* — J/ —

p
— W

Die Excentricität e in diesem Sinne ist eine absolute Zahl und erscheint als

Verhältnis der halben linearen Excentricität j/a 2 — b2 zur grossen Halbaxe a .
Indem man die halbe lineare Excentricität f/a 2 — b2 auch zur kleinen Halb¬

axe b in Beziehung setzt , kommt man auf den Wert e' nach (4), welcher für unsere
Berechnungen meist vorteilhafter ist , als e nach (3) .

Zwischen e und e' bestehen die leicht nachweisbaren Beziehungen :

>' Z _ — —
1 — e2 e2 :

1 + e'2

und (1 — e2) ( 1 - i- e'2) = 1

(5)

(6)

Zwischen der Abplattung a und dem verwandten e hat man :

« = 1 — y 1 — e2 oder e8 = 2 « — <x2 (7)

In a und e ist die grosse Halbaxe a und in e' ist die kleine Halbaxe b bevor¬

zugt ; beide a und b treten gleichartig auf in den Werten

a — b
n = - v-

0 + 5
m2 a2 — b2

a2 -h b2 (8)

Ausser den beiden Halbaxen a und b führen wir auch noch eine dritte Grösse
c ein , entsprechend der Gleichung :

c = oder e = — -—- (9)
b y

Diese Grösse c hat die Bedeutung des Krümmungs -Halbmessers im Nordpol
oder Südpol der Meridian -Ellipse , und schmiegt sich daher dem Umdrehungs -Ellipsoid
in der Nähe der Pole sehr an ; diese Grösse c wird sich später bei manchen Ent¬

wicklungen nützlich erweisen , was auch von vorn herein wahrscheinlich ist , insofern
bei einem Umdrehungs -Ellipsoid die Umdrehungsaxe b die wichtigste ist .

Unsere geodätischen Entwicklungen werden wir meist mit c und e 2 als Kon¬

stanten führen .
In Eig . 1 . haben wir noch zu betrachten die Normale P V, welche die Richtung

der Schwerkraft auf dem Ellipsoid anzeigt , und dazu den Winkel cp, welchen die

Normale mit der grossen Axe macht , d . h . :
die geographische Breite (jp

Verschieden hievon ist der in Eig . 1 . eingeschriebene Winkel y, welcher geo¬
zentrische Breite heisst , und in der Erdmessung fast nie gebraucht wird (dagegen
kommt y bei astronomischen Parallaxen -Rechnungen vor ) .

Ferner sind nach Eig . 2 . noch folgende Begriffe festzustellen :
Parallelkreis P ' P " ,
Meridiane N AS und NPS
Geographischer Längen -Unterricht A,
Normalschnitte , z . B . BPS ' ,
Azimut a eines Normalschnittes .
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Die Bessel sehen Erd -Dimensionen .

Wie wir schon in der Einleitung S . 9—10 angegeben haben , werden die von
Bessel im Jahre 1841 durch Ausgleichung aus 10 Breitengradmessungen berechneten
Erd -Dimensionen sehr allgemein angewendet , und wir werden in der Folge dieselben
stets benützen .

Bessel hat im 19 . Bande , 1842 , der astronomischen Nachrichten , Nr . 438 ,
Altona 1841 , 2 . Dezember , S . 116 folgende Schlusswerte seiner Ausgleichungen gegeben :

n = “
, - = 0,00167 41848

a + o
a __ 299,1528

T “
2984528

a = 327 2077,14 Toisen log a — 6.514 8235 337 in Toisen
b = 3261139,33 „ log b = 6.513 3693’539 „ *

log e = 8.912 2052 log V1 — ei = 9.998 5458-202
Länge des Erdquadranten

= 5131179,81 Toisen = 10 000 855,76 Meter

(ii )

Dieses sind genau die Angaben von Bessel , und man könnte nun meinen , die
seit 54 Jahren allgemein gebrauchten „ Besselsehen Erddimensionen “ seien dadurch
unabänderlich festgestellt , das ist aber in den letzten Stellen nicht der Fall . Diese
Bessel sehen Zahlen stimmen begreiflicherweise unter sich selbst nicht völlig scharf
in den letzten Stellen , und je nachdem man nun von der einen oder anderen ausgeht
und schärfer weiter rechnet , erhält man Abweichungen .

Gauss citiert die Bessel sehen Erddimensionen im I . Teil der „ Untersuchungen
über Gegenstände der höheren Geodäsie, erste Abhandlung “ 1834 S . 9—10 :

log a = 6.514 8235 -337 in Toisen , log cos qp = log Y 1 — e2 = 9 .998 5458 -202
dann heisst es : „ Es folgt hieraus , mit Hilfe der 10 ziffrigen Logarithmen “ :

(jD= 4 ° 41 ' 9,98262" und log sin qp = log e = 8 .912 2052 -079
und zur Reduktion von Toisen auf Metermass hat hier Gauss den Logarithmus 0 .2898199 -300

Diese Zahlen liegen der Gauss sehen Tafel für konforme Abbildung des Ellip-
soids auf die Kugel zu Grunde .

Encke ging bei Berechnung seiner „Tafeln für die Gestalt der Erde “ im
Berliner Astronomischen Jahrbuch für 1852 , 8 . 318 — 381 von den Besselschen loga
und logt aus , er sagt daselbst S . 322— 323 : Bei den folgenden Tafeln ist zu Grunde
gelegt nach Bessel :

log a = 6.6148235 -337 6.513 3693-639
woraus abgeleitet ward :

« = 3272077,1399 Toisen
6 = 3 261139,3284

- b _ 1
>

—
299,152818

log t = 8.9122052 -076

log yF — ei = 9.9985458 -202
log n = 7.223 8033-861

log (1 *3) = 0.0000012 -173
» = 0.0016741 -84767

Vergleicht man die Zahlen von Bessel und Encke , so sieht man , dass durch
den Umweg über die lOstelligen Logarithmen a und b sich bzw. um 0,0001 und
0,0016 Toisen geändert haben . —

Alle die Zahlen , welche in namhaften geodätischen Schriftwerken für die
Besselschen Erddimensionen aufgestellt worden sind , differieren von einander mehr
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oder weniger in den letzten Stellen , wie wir in der „ Zeitsehr . f. Verm. “ 1885 ,
S . 22 —26 durch Zusammenstellung jener Zahlen näher gezeigt haben .

Auch die Umwandlung der Bessel sehen a und b von Toisen in Meter hat zu
Schwankungen der letzten Stelle Veranlassung gegeben . Das gesetzliche Verhältnis
der Toise zum Meter , welches wir schon in der Einleitung S . 7 erwähnt haben , ist
864 : 443,296 , und wenn man mit den gewöhnlichen 10 stelligen Logarithmen rechnet ,
so bekommt man :

1 Meter = 443,296"
864 Toisen

und die Zahlen zu diesen Logarithmen

log 443,296 = 2 .646 6938-125
log 864 = 2 .936 5137 '425

log (M, T) = 9 .710 1800-700 — 10

log ( T , M) = 0 .289 8199-300

1 Meter = 0,513 074074 Toisen , 1 Toise = 1 .949036310 Meter.

Wenn man aber schärfer rechnet , so wird durch gewöhnliches Dividieren :

(T , M) = 44!?(jr
6 = 1,94903 63098 24587

und der 11 stellige Logarithmus hiezu ist :

log (T , M ) = log = 0 .289 8199 2994

also 10 stellig abgerundet um 0 '001 kleiner als das obige gewöhnlich gebrauchte 0 -300.

Die Zahlenschärfe aller dieser Angaben geht weit über die sachliche Genauig¬
keit hinaus , denn nach dem was wir über die Bessel sehe Ausgleichung selbst in der

Einleitung S . 9 —10 gesehen haben , hat der Meridianquadrant 10000856 m einen

mittleren Fehler von rund 500 m und die Abplattungszahl 299 einen mittleren Fehler

von 5 , während man mit log a und log b 10 stellig rechnet . — Aber es bestehen doch

gute Gründe für das Festhalten gewisser auf 10 Stellen unabänderlich angenommenen
Zahlen für die Dimensionen des Erd -Ellipsoids , das als ideale Vergleichs - und Pro¬

jektionsfläche allen Rechnungen zu Grunde gelegt wird .

Namentlich bei Berechnung von geodätischen Zahlentafeln , wo man wegen der

Abrundungshäufung oft 3—4 Stellen mehr in Anrechnung stellt , als man schliesslich
haben will , ist es störend , wenn die letzten Stellen bei dem einen und anderen

Rechner nicht übereinstimmen . —
Wir halten uns ein für allemal an diejenigen Festsetzungen für die letzten

Stellen der Besselschen Erddimensionen , welche seit 1878 von der trigonometrischen

Abteilung der preussischen Landesaufnahme und im Anschluss hieran seit 1886 vom

geodätischen Institut getroffen worden sind , nämlich :

loga = 6.8046484-687 in Metern
log e2 = 7 .824 4104 -237 — 10

log _ L _ = log (l -- e2 j = 9.997 0916 -404 — 10
1 - t- e 2

Dieses sind in Preussen die einzig richtigen Besselschen Erddimensionen ; die

Quellenangaben dafür sind :
1) Landesaufnahme : Rechnungsvorschriften für die trigonometrische Abteilung der

Landesaufnahme . Formeln und Tafeln zur Berechnung der geographischen Ooordinaten
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aus den Richtungen und Längen der Dreiecksseiten . Erste Ordnung . Berlin 1878, im Selbst¬

verläge , zu beziehen durch die königliche Hofbuchhandlung von E. S. Mittler und Sohn
Kochstrasse 69, 70. (S. 4 log n und log e3 wie oben ).

2) Geodätisches Institut : Veröffentlichung des königlich preussischen geodätischen Insti¬
tuts . Lotabweichungen . Heft 1 : Formeln und Tafeln sowie einige Ergebnisse für Nord¬
deutschland . Der allgemeinen Konferenz der internationalen Erdmessung im Oktober 1886
zu Berlin gewidmet . Mit drei Karten . Druck und Verlag von V. Stankiewicz Buchdruckerei 1886.
(S. 4 log a und log e3 wie oben ).

Bei den Grundzahlen für log a und löge 2 ist auch noch log {1 — e2) ange¬
geben , wie in jenen Rechnungsvorschriften S . 4 ; und da die dritte Zahl log (1 — e2)
von der zweiten löge 2 abhängt , ist zu bemerken , dass löge 2, welches 10 Wertstellen

hat , allein massgebend ist und dazu gebraucht werden kann , um log j/l — e2, welches
im 10 stelligen Logarithmus nur 8 eigentliche Wertstellen hat , noch auf weitere
Stellen auszurechnen , welche zu manchen Zwecken erwünscht sein werden .

Aus der logarithmischen Reihe § 28 . S . 169 hat man sofort :

* (l - e2) = - (e2 + 4
ee
3

«8
T

e 10

log 1 — e2 = jr e2 ■ gei lie ®
i jre8

i g. e la
T

“ + ~
T + 5

Die Ausrechnung mit löge 2 = 7 .824 4104 -237 giebt :

log — ^ = + 28986 -430302 + 96 -733112 + 0 -430422 + 0 -002155 + 0 -000012

= 0 .002 9083 -596003 , log (1 — e2) = 9 .997 0916 -403997

Zur Probe kann man auch rechnen :

log e2 — log (1 — e2) = log e'2 = 7 .827 3187 -833

j n iue' 6 ue '3 ue ' io
log (1 + e 2) = n e’2 — ^ - . . .

= + 29 181 -196470 — 98-037422 + 0 -439157 — 0 -002213 + 0 -000012

log (1 + e' 2) = 0 .002 9083-596004 , log ^ = 9 .997 0916 -403996

So sind diese Werte auf der Hauptzusammenstellung S . 193 eingesetzt .
Die seltener gebrauchten , und deswegen auf S . 193 weggelassenen Werte für

(« — V) : a und (a — b) : (a i- b ) fügen wir hier auch noch bei :

_ a — 6 1“ ~ ~
aT ~

399,1528128
a = 0,00334 27731 81579

“ ’ ’
= n = 0,00167 41848 00816a + o .

log — = 2 .475 8930 -907y a

log a = 7.524 1069 -093 — 10

log n = 7 .223 8033 -949 — 10

Bemerkt sei auch noch zu der Zusammenstellung auf S . 193 , dass die ver¬
schiedenen — 10 u . s . w . an den Logarithmen , weil bei praktischen Rechnungen stets
selbstverständlich , nicht geschrieben sind .
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Besselsche Erddimensionen und Mathematische Konstante.
o = 6 377 397,15500 “ log a = 6 .804 6434-637

log z- = 8 .508 3274-897
6 = 6356 078,96325 , log 6 = 6 .8031892 -839 e

«2 log 4 - = 1 -491 6725-103— = e = 6 398 786,84939 , log e = 6 .806 0976-435 J
g"

c = a Yl + e 'a = 6 (1 + e' 2) log & = 13 .612 1952-870
«2 - 62-

«
-
2
- = 62

« 2 ~ 62
= e'2 :

62

1 — e2 =

1

1
1 + e'2 '

T — e2
= 1 + *'2 :

yi — e2 =

yi — e2

yi

log g«

0,00667 43722 31315 log e2 = 7.824 4104-237

0,00671 92187 98677 löge '2 = 7 .827 3187-833

0,99332 56277 68685 log (1 — e2) = 9.997 0916-403996

1,00671 92187 98677 log ( 1 -+- e' 2) = 0 .002 9083-596004

0,99665 72269 log yiZ . = 9 .998 5458-201998

1,00335 39848 log Y 1 + e' 2 = 0 .001 4541 -798002

log fx e* log e' « log fx e » n

7.824 4104-237
5.648 8208*474
3.473 2312*711
1.297 6416*948
9.122 0521*185
6.946 4625*422

9.637 7843*113
7.827 3187*833 7.465 1030 946
5.654 6375-666 5.292 4218*779
3.481 9563-499 3.119 7406-612
1.309 2751-332 0.947 0594‘445

10 I 9.122 0521*185 8.759 8364*298 I 9.136 5939*165 8.874 3782*278
12 I 6.946 4625*422 6.584 2468 535 6.963 9126-998 6.601 6970.111

für 7. Log .-Stelle : p & = 28986,43030229 J« e'3 = 29181,19646966
1 Meter = 0,513 074 074 Toisen log (M, T) = 9 .710 1800-700
1 Toise = 1,949 036 310 Meter log ( T , M ) = 0 .289 8199 -300

Die Zahlen n , g und /x (vgl . auch S . 170 und S . 171 ) .

9.637 7843*113
7.4621947 *350
5.286 6051*587
3.111 0155*824
0.935 4260*061
8.759 8364*298
6.584 2468 535

(vgl . hiezu
S . 191 )

n = 3,14159 26536 log n = 0 .497 1498-727

p ° = 57,29577 95131 log Q
° = 1-758 1226-324

g ' = 3 437,74677 07849 log g
' = 3 .536 2738-828

logg " = 5 .314 4251 -332

log g, = 1.803 8801-230

H = 0,43429 44819 log fx = 9 .637 7843-113

Für Einheiten der 7 ten Stelle log fx = 6 .637 7843 '113

log 2 = 0 .301 0299 -957 log 5 = 0 .698 9700 -043
log 8 = 0 .477 1212 -547 log 6 = 0 .778 1512-504
log 4 = 0 .602 0599 -913 log 7 = 0.845 0980 -400

Jordan , Haiidb . d . Vermessungskunde . 4. Aufl . III . Bd .

1

e" = 206 264,80624 71
Für neue Teilung :

Ü9= 63,66197 72368

log — = 9.502 8501 -273
71

log ~ = 8 .241 8773-676

logy
= 6 .463 7261 -172

log — = 4 .685 5748-668
g

log ~ = 8.196 1198-770

log — = 0 .362 2156-887
(K

log
1

= 3 .362 2156-887

% 8 = 0 .903 0899-870
hg 9 = 0 .954 2425-094

log 12 = 1 .079 1812-460
13
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Für die Festhaltung der oben S . 191 fett gedruckten Konstanten besteht der
Grund , dass die von der trigonometrischen Abteilung der Landes -Aufnahme veröffent¬
lichten geographischen Coordinaten , auf welchen die ganze preussische praktische
Geodäsie beruht , mit diesen Konstanten und den darauf gegründeten Hilfstafeln be¬
rechnet sind , dass also z . B . eine Dreiecksseite rückwärts aus jenen Coordinaten be¬
rechnet unmöglich wieder ebenso herauskommen kann , wie sie als Dreiecksseite ein-

gefiihrt worden ist , wenn nicht wieder dieselben Konstanten a und e2 angewendet werden .

In diesem Buche haben wir die auf S . 191 fett gedruckten Zahlen und die
darauf gegründeten auf S . 193 zusammengestellten weiteren geodätischen Konstanten
allen geodätischen Rechnungen zu Grunde gelegt .

§ 32 . Die Haupt-Krümmungs-Halbmesser.
Eine Ellipse mit den beiden Halb -Axen a und 6 in rechtwinkligen Coordinaten

x und y ist in Fig . 1 gezeichnet .
Fig . 1.

Umdrehungs -Erd -Ellipsoid .

y

X
Q F <?Y

Die Gleichung dieser Ellipse ist bekanntlich :

—
2 + ~ = 1 oder 62 x2 a2 y2 = a2 b2 (1)

Die Differentiierung dieser Gleichung giebt :

2xdx 2ydy dy b2 x
ä2 ^ p = 0 °derdy

Andererseits hat der Differential -Quotient eine Beziehung zum Normalen-

Winkel cp, nämlich (nach Fig . 1 .) :

cotg cp oder (3)

Die Gleichungen (2) und (3) zusammen geben :

a2 cos2 cp
b2 sin2 ip

oder (4 )



§ 32 . Die Haupt -Krümmungs -Halbmesser . 195

Nun hat man in (1 ) und (4 ) zwei Gleichungen , welche nach und y2 auf¬

gelöst werden können , was wir in aller Ausführlichkeit so schreiben :

(1 ) giebt : b2 x2 + a2 y2 = o2 b2

(4) „ x2 sin2 p — ai y2 cos2 cp = 0

Wenn man die erste dieser beiden Gleichungen mit a2 cos2 cp multipliziert und
dann beide Gleichungen addiert , so bekommt man :

*2 =
aicos2 V_ (5)

a2 cos2 <p + b2 stw2 qp
v '

Wenn man andererseits die erste der beiden vorstehenden Gleichungen mit
b2 sin2 cp multipliziert und dann beide Gleichungen subtrahiert , so bekommt man

. .e _ W sin2 cp_
a2 cos2 qc + ft2 sin2 cp

Meridian -Krümmungs -Halbmesser M .

Nach diesem gehen wir über zur Bestimmung des Krümmungs -Halbmessers der
Meridian-Ellipse , den wir mit M bezeichnen wollen. Die analytische Geometrie bietet
hiezu bekanntlich die Eormel :

d* y
d sti2

Den hiezu nötigen ersten Differential -Quotienten haben wir bereits in (3) ge¬
braucht , nämlich :

Die zweite Ableitung hievon giebt zunächst :
d2 y _ 1 dcp

sm2 cp

d x2 sin2 cp d x
(9)

und um zu erlangen , müssen Reciproke

]/a 2 cos2 cp + &2 sin2 cp

Ableitung eines Bruches :

'^ =
(K 7^ r

s'n <ip >/ - ” _ e'wq5dx a2 j — o2 eos cp sin <p -+- 62 sin cp cos cp
'

yrr . ,

i>2) sin cp cos cpb 2 sin 2 cp) -f- cos cp (— a2sin cp (a 2 cos2 cp

b2 sin cp (sin 2 <p 4- cos2 <p)

dx — o2 b2 sin cp
d cp (a2 cos2 cp + b 2 sin2 cp)l

(10 )
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Nun kann man aus (8) , (9) , (10 ) die Formel (7) zusammensetzen , und man

bekommt dadurch mit Weglassung des für uns bedeutungslosen Vorzeichens :

«2 1)2
(U )M =

(a2 cos 2 cp + b2 sin 2 qp)l

Einführung der Excentricität .

Die Formeln , welche wir hier entwickelt haben , sind die sich zuerst dar¬

bietenden , allein für die späteren Anwendungen sind diese Formeln nicht geeignet ,
weil man darin nicht gut den wichtigen Umstand zum Ausdruck bringen kann , dass

beim Erdellipsoid die beiden Halbaxen a und 6 nahezu gleich sind , oder mit anderen

Worten : die später unerlässlichen rasch konvergierenden Reihen -Entwicklungen lassen

sich an die vorstehenden Formeln mit a und b nicht gut ansetzen . Man führt deswegen
eine Excentricität und eine lineare Axengrösse ein . Wir haben hiezu zwei Formen ,
welche zunächst beide behandelt werden sollen :

a2 — 62
I . Altere Form mit - =— = e2 und Axe a

afi
(12)

«2 — 62
e'2 und AxengrösseNeuere Form mit (13 )

Bleiben wir zuerst bei der älteren Form I , so haben wir , um alles in a und e2

auszudrücken , zunächst

(14)62 = a 2 (1 — C2)

a2 cos 2 qp—j—6®sin * cp = a2 cos2 qp-+• a2 (1 — e2) sin 2 = a2 ( 1 — e2 sin 2 cp)

Wir setzen ein für allemal :

(15)1 — e2 sin 2 <p = TF2 W = j/l — e2 sin 2 cp

damit werden x und y , sowie M aus ihren ersten Formen in (5 ) , (6) und (11 ) über¬

geführt in :
a (1 — e2) sin cp

W
a cos (jp (16)

(17 )

Diese Formeln (16 ) und (17 ) findet man sehr allgemein in geodätischen Werken ,
sie sind aber nicht die besten . Wenn man nach der neueren Form II bei (13 ) rechnet ,
so bekommt man :

a2 — 62
62 1 = e' 2 - ®- = yT+ 7 2 , ~ = e

0 0

y1 + e'2 l + e'2 (18)

cß cos2 qp
c2 (1 - j- e'2 cos2 cp)

(1 + e' 2) 2

Wir setzen ein für allemal :

1 -f - e'2 cos 2 qp = F 2 V = Y 1 -t- e'2 cos 2 qp (19)
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damit werden x , y und M aus (5 ) , (6)
ccos <p

(11 ) übergeführt in :
c sin cp

V :
F (l + «' 2)

M ~
73

(20)

(21 )

Der Querlcrümmungshalbmesser N .

Durch das Vorstehende haben wir den ersten Haupt -Krümmungs -Halbmesser
des Umdrehungs -Ellipsoids , für den Meridian , bestimmt ; der zweite Haupt -Krümmungs -

Halbmesser, welcher sich auf die Krümmung quer zum Meridian , also von West nach

Ost bezieht , kann ohne weitere Rechnung durch eine sehr einfache geometrische

Betrachtung gefunden werden .
Wir betrachten in Pig . 1 . (S . 194) zuerst den Parallelkreis P P ' für die Breite

<p, und sehen , dass alle in diesem Parallelkreis gezogenen Flächen -Normalen sich in

einem Punkte S der Axe schneiden .
Der Querkrümmungs -Bogen , welcher in P rechtwinklig zum Meridian ist , muss

offenbar jenen Parallelkreis P P ' in P berühren , und deswegen sind zwei einander

unendlich nahe liegende Gerade P S auch Normalen des Querkrümmungs -Bogens
in P . Da aber der Schnittpunkt zweier einander unendlich naher Normalen einer

Kurve als Krümmungs -Mittelpunkt der Kurve gilt , so ist P S der Krümmungs -Halb¬

messer des Querkrümmungs -Bogens , oder kurz , es ist P S = N der Querkrümmungs -

Halbmesser des Umdrehungs -Ellipsoids in dem Punkte P .
Indem wir die Länge dieses Querkrümmungs -Halbmessers ein für allemal mit

V bezeichnen , haben wir

und je nach der alten oder neuen Form (16 ) oder (20 ) giebt dieses :

IV = oder N = 4 (22)
w y

Mittlerer Krümmungshalbmesser r .

Unter dem mittleren Krümmungshalbmesser versteht man in der Geodäsie
das geometrische Mittel aus den beiden Haupt -Krümmungs -Halbmessern M und N , d . h . :

r = VWN (23)
oder mit Einsetzung der Bedeutungen von M und N

a V 1 — e2
T72 oder

c
Fä

(24)

Krümmungs - Verhältnis N : M.

Nachdem die beiden Haupt -Krümmungs -Halbmesser M und N bestimmt sind,
wollen wir auch ihren Quotienten betrachten , d . h . in zwei Formen , aus (17 ) und (21)
mit (22) :

IV
M 1 — e2 oder = r2 (25 )
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Dieser Quotient ist in der Geodäsie sehr wichtig , denn je näher dieser Quotient
gleich 1 ist , desto mehr ist es gestattet , die Erde unter der betreffenden Breite als
eine Kugel zu betrachten . Zur Gewinnung einer Übersicht wollen wir einige Werte
hiefür ausrechnen :

y = 0 ° ~ = 1,0067 = 72

30 ° . . . . 1,0050
45 ° . . . . 1,0034
60 ° . . . . 1,0017
90 ° . . . . 1,0000

Die Werte 7 2 sind von 1 ziemlich verschieden , unter 45 ° um etwa V3 % ;
und nur in den Erdpolen (qp = 90°) wird 72 = 1 .

Trotzdem giebt es viele Fälle , wo es sich nur um kleine Korrektionen zweiter
Ordnung handelt , in welchen der Quotient N : M doch hinreichend = 1 gesetzt,
d . h . die Erde als Kugel behandelt werden darf . In solchen Fällen nimmt man dann
den mittleren Krümmungs -Halbmesser r nach (23) oder (24 ) als Halbmesser einer
solchen Kugel .

Da das Verhältnis N : M stets grösser als 1 ist , ist auch immer N grösser
als M , d . h . der Querkrümmungs -Halbmesser ist immer grösser als der Meridian-

krümmungs -Halbmesser , oder umgekehrt , die Krümmung 1 : M ist im Meridian stets
grösser als die Krümmung 1 : 17 im Querbogen . Nur im Pol werden beide gleich ,

o2
nämlich N = M = -

j
— = c2 (wie schon in ( 9) § 31 . S . 189 bemerkt wurde ) und im

Pol der Erde wäre daher das beste Arbeitsfeld für einen Geodäten , weil dort alle
sphäroidischen Korrektionen verschwinden .

Geocentrischer Halbmesser und geocentrische Breite .

Selten in der Geodäsie, aber in der Astronomie zu Parallelaxenrechnungen
gebraucht , sind noch zwei Werte , welche wir im Anschluss an das Vorhergehende
bestimmen wollen , nämlich der Abstand eines Erdpunktes von dem Erdmittelpunkt ,
geocentrischer Halbmesser = C genannt und der Winkel dieses Halbmessers mit dem
Äquator , geocentrische Breite = y.

Nach Fig . 1 . § 31 . S . 188 haben wir für diese beiden Grössen sofort die Formeln :

C = ]/ *2 y% un d fan g y _ y_ (a)

Wir wollen weiter mit o und e2 rechnen , d . h . nach (16) S . 196

a (1 — e2) sin cpa cos cp 0>)

C2 — (cos2 T + (1 — «2)a sin2’ cp) , tang y = (1 — e2) tang (f

tang 2 y o2 cos2 qp(cos2 cp h-
tang 2 qp W 2 cos2 y

also
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Aus (c) hat man weiter :

1 _ ea = tang 2 r
tangZ qp

_ sin (cp— y)
sin cp cos y

TF2 = 1 -

also nach (d) :

C2 = a2 cos qo
cos 7 cos (cp — y)

(e)

Mit diesen Formeln (c)— (e) hat man genügende Mittel zur scharfen Ausrech¬

nung von C und y , indessen häufiger braucht man Näherungsformeln , welche mit

Beschränkung auf e2, d. b . Vernachlässigung von ei u . s . w . sich rasch geben . Aus

(c) hat man :
tang qp— tang y = e2 tang cp

= e2 tano qp , qo— \p = e2 sin w cos qp
cos2 qp

oder mit Zusetzung von g :

qp — = i e2 p sin 2 qp= [2 .8378056 ] stft 2 qp (f )
u

Mit gleicher Näherung hat man aus (c) :

02 = ^ (cos 2 qp+ (1 — 2 e2) sw *2 qo) = ^ (1 - 2 e2 sin 2 qp)

Da 1F 2 = i — e2 gitj2 qj oder 1 : TV 2 = 1 4- e2 sin 2 qp, hat man :

O2 = a2 (1 — e2 sin 2 qp) = a2 TV2

G = a (1 — sin2 qp) (?)

Die Formeln (f ) und (g ) braucht man z . B . zur Reduktion von Monddistanzen .

Genaue Tafeln für log und für qp — ip sind von Encke in dem „Berliner

astronomischen Jahrbuche für 1882 “
, S . 344 —373 gegeben worden . In der Geodäsie

werden diese Werte fast nie gebraucht .

Reduzierte Breite . In der Geodäsie spielt noch ein anderer Winkel eine

wichtige Rolle , der „reduzierte Breite “ genannt wird und bestimmt wird durch die

Gleichung :

tang tp = ]/l — e2 tang qp
Damit werden wir uns aber erst später zu beschäftigen haben .

§ 33. Krümmungs-Halbmesser für beliebiges Azimut.

Nachdem der Meridian -Krümmungs -Halbmesser M und der Querkrümmungs -

Halbmesser N bestimmt sind , kann man auch den Krümmungs -Halbmesser R für

irgend welches Azimut a leicht angeben , wenn man den Euler sehen Satz als bekannt

voraussetzt , nämlich :
1_
R

cos2 a , sm2 a
1w N

(1)
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Dieser Satz wird in der analytischen Geometrie bewiesen , und wir wollen hier eine geo¬
metrisch anschauliche Begründung des Satzes geben , welche durch einige Nebenbetrachtungen auch
zum strengen Beweise entwickelt werden kann .

In Fig . 1. sei P ein Punkt des Ellipsoids mit einer Be¬
rührungs -Ebene A A' und einer Schnitt -Ebene B B ' parallel A A'.Fig . 1.

P Die Ebene B B ’ giebt eine Schnitt -Ellipse , welche im
unteren Teile von Fig . 1. dargestellt ist mit ihren Hauptaxen
P M, P N und einer dritten Bichtung s im Azimute ct. "Wenn
nun der Abstand der beiden Ebenen A A' und B B ' sehr klein
ist , = s , so lässt sich die Ordinate z durch die Krümmungs -
Halbmesser M, R , N, welche für die drei betrachteten Rich¬
tungen gelten , dreifach ausdrücken , in bekannter Näherung
(welche z. B. auch für die Erdkrümmung bei trigonometrischer
Höhenmessung angewendet wird ), nämlich :

AA

N
_ m3 $s _ w2

“ ~ 2
~
M ~

2iS ~ TÄr
Dabei besteht für die Schnitt -Ellipse mit den Halbaxeu

m und n die Gleichung :
(s cos tt )3 (s sin tt)2

Durch Verbindung von (2) und (3) erhält man den bereits oben (1) geschriebenen Euler *
sehen Satz .

Um diesen für jede beliebige Fläche gütigen Euler sehen Satz der Gleichung
(1) auf unser Ellipsoid anzuwenden , müssen wir die Ausdrücke für M und N nach
(21 ) und (22 ) § 32 . S . 197 einsetzen , nämlich :

M = ~ und JV = -^ r, wobei F 2 = 1 e’2 cos2 cp
Damit giebt (1) :

cos2 a sin2 ttVS + (cos2 a (1 - f- cos2cp) -t- sin2 a )
A7

V 1 + e' 2 cos2 <p cos 2 a 1 -+- e' 2 cos2 qp cos2 a
1Wir wollen den besonderen Pall mit cc = 45 ° betrachten , also sin2 cc = cos2 cc = -
g

-

setzen , wodurch die Gleichung (1) giebt :
M -vN

2 l M 2 MN
Hier hat MN die Bedeutung = r 2 nach (24) § 32 . S . 197 mit r als geo¬

metrischem Mittel aus M und N , und — — = d ist das arithmetische Mittel aus
u

M und N also

woraus zu ersehen ist , dass in erster Näherung der Krümmungs -Halbmesser für 45 °
Azimut , dem mittleren Krümmungs -Halbmesser r , oder dem Durchschnittswert ä
gleich ist .

Die zweite bei (4) angewendete Form für R führt zu einer bequemen loga-
rithmischen Näherungs -Formel ; in erster Näherung hat man :

log (1 + e’2 cos2 cp cos2 a ) = g. e '2 cos2 cp cos2 cc -+- . . .
log R — log N = — fie ' 2 cos2 cp cos2 cx — . . .

also :

(7)
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Setzt man hier « = 0 , so geht B in den Meridian -Krümmungs -Halbmesser M
über, also :

log M — log N = — ß e'3 cos3 cp + . . . (8)
oder genau log M — log N = — log F 2 (nach (25 ) § 32 S . 197)

Damit geben (7) und (8) :

log B — log N = — (log F 2) cos2 a (9)
und in gleicher Weise findet man auch :

log R — logM = + (log F 2) sin2 « (10)
Die Näherungsformel (9) oder (10) giebt den Wert log R nahezu auf 7 Stellen

richtig . Um dieses besser beurteilen zu können , entwickeln wir die Formel (4) bis
e' 4 und finden :

ßf4
log R = log N — ß e' 2 cos 2 <jp cos2 a -h ß -

g
~ cos4 cp cos4 a

= log N — [4-465 1031 ] cos2 <p cos2 « -f- [ 1-99139] cos4 qp cos4 a
wo die Zahlen in eckigen Klammern Coefficienten-Logarithmen bedeuten .

Man kann dieses auch auf folgende Form bringen ;

log B = log N — cos2 cc (log F 2) — cosi 9 a c0s2 a

oder log B = log M + sin2 a (log F 2) — cos4 q) sin2 a cos2 a

Nach diesen Formeln (11 )—(13 ) ist die folgende Tafel berechnet worden, welche

log R für verschiedene Breiten cp und verschiedene Azimute a giebt .

( 12)

( 13)

Breite Azimut a

9 0 ° 15 ° 30 ° o 60 ° 75 ° 90 °

log R log R log R log R log R log R log R
0Q 6.80 1735 6 801929 6.80 2460 6.80 3187 6.80 3915 6 80 4448 6.80 4643

10ö 1866 2055 2570 3274 3980 4498 4687

20° 2244 2416 2885 3527 4169 4641 4813

30° 2823 2969 3368 3913 4459 4860 5006

35° 6.80 3167 6.80 3298 6.80 3655 6.80 4143 6.80 4632 6.80 4990 6.80 5121

40° 3534 3648 3961 4338 4815 5128 5243

45° 3913 4010 4276 4641 5005 5272 5369

50° 4292 4372 4592 4893 5194 5415 5496

65° 4659 4723 4899 5138 5378 5554 5618

60° 5004 5053 5186 5369 5551 5684 5733

65° 5316 5353 5446 5577 5707 5803 5837

70° 6.80 5586 6.80 5609 6.80 5671 6.80 5766 6.80 5842 6.80 5904 6.80 5927

80° 5966 5972 5988 6010 6032 6048 6054

90° 6098 6098 6098 6098 6098 6098 6098

Eine ausführlichere Tafel dieser Art ist nicht nötig , denn die azimutalen Krüm¬

mungs-Halbmesser B spielen in der Geodäsie der Triangulierungen u . dergl . in dieser

Form keine Bolle .
Für scharfe Rechnung trigonometrischer Höhen braucht man diese Krümmungs -
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Halbmesser . Wir wollen annehmen , zu einer trigonometrischen Höhenmessung zwischen
dem Polytechnikum in Karlsruhe und dem trigonometrischen Punkte Hornisgrinde
im Schwarzwald solle der Erdkrümmungs -Halbmesser in der fraglichen Sicht berechnet
werden . Die Mittelbreite beider Punkte ist cp = 48 ° 48 ' 26,6 " und das mittlere Azi¬
mut a — 18 ° 55 ' 8,0" . Mit diesen Werten findet man nach der strengen Formel (4) :

log B = 6 -804 3345
und nach der Näherungsformel (9 ) oder ( 10 ) :

log B = 6 -804 3347
Dieser Wert wäre einer weiteren Berechnung nach § 149 . unseres II . Bandes,

4 . Aufl . 1893 , zu Grunde zu legen , entsprechend log B in (6 ) S . 510 jenes Bandes.

Änderung der Erdkrümmung nach Breite und Azimut .
Wenn man das vorstehende Übersichtstäfelchen in Bezug auf die Änderungen

betrachtet , welche der Krümmungs -Halbmesser B in der Breite und im Azimut erfährt ,
so bemerkt man , dass für gleiche Änderungen A cp oder A a die Änderungen A log B
von nahe gleicher Grössenordnung sind , und das zeigt auch die Differentiierung von
log B oder von B nach cp und nach a , die beiden Differentiierungen von B nach <p
und nach a geben Grössen von der Ordnung e’2.

Allein wenn man überlegt , welche Änderungen von B überhaupt Vorkommen
auf einem räumlich begrenzten Vermessungsgebiete der Erde , so wird die Vergleichung
der Einflüsse von cp und a ganz anders , denn auf beschränktem Gebiete der Erde
ist die Breite cp nahezu konstant , dagegen trotzdem das Azimut « innerhalb seiner
äussersten Grenzen 0 ° und 90 ° veränderlich .

Auf beschränktem Vermessungsgebiete sind daher die Änderungen im Azimut
viel einflussreicher als die Änderungen der Breite , und man kann in solchem Falle
sagen , dass die Erdkrümmungsänderungen , welche von Breitenänderung A cp herrühren ,
nur Grössen zweiter Ordnung sind im Vergleich mit den vom Azimut u abhängigen
Krümmungs -Änderungen .

Zwischen-Bemerkuug.
Mit den Entwicklungen von § 31.—33. sind wir so weit gekommen , dass alsbald zu § 40. u . fl.

sphärische Triangulierung übergegangen werden kann , und von allem bisherigen wird dort zunächst
nur der mittlere Krümmungs -Halbmesser gebraucht werden . Es ist für erstes Studium zu raten ,
von § 33. auf § 40. überzugehen ."Wenn hier anders verfahren und noch § 34.- 39. eingeschaltet werden , so hat das den Sinn ,dass vieles für weitergehende Zwecke Nötige hier ein für allemal erledigt werden soll ; auf Ein¬
zelnes , z . B. Meridianbögen § 35., welche später zu Coordinaten gebraucht werden , kann nach Be¬
darf zurückgegriffen werden , ähnlich ist es mit den Parallelbögen und Oberflächen .Bei den geodätischen Messungen und Berechnungen im engeren Sinne hat man kein Be¬
dürfnis , die Oberflächen einzelner Zonen oder Gradabteilungen des Ellipsoids zu kennen ; jedochbesteht für Kartographie und Geographie im allgemeinen ein solches Bedürfnis , weshalb auch
die Flächenberechnung der Gradabteilungs -Trapeze in g 37. angeschlossen wurde . Auch auf die
sehr wichtigen Hilfstafeln des Anhangs , deren Berechnung in den nachfolgenden Paragraphen ge¬lehrt wird , wird später nach Bedarf zurückverwiesen .

§ 34. Die Funktionen W und F.
Bei der Entwicklung der Krümmungs -Halbmesser in

tionen aufgetreten :
W = ]/l — e2 siu2 cp

32 . sind die zwei Funk -

(1)V = ]/l -+- e'2 cos2 cp
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welche unter sich in der Beziehung stehen :

1 — e2 1 + e'2

wobei — log (1 — e2) = i0g ( i + e'2) = 0 .002 9083-596004

— log Y 1 — «2 = log y 1 - )- e' 2 = 0 .001 4541 -798002

Diese Punktionen werden so oft in der Geodäsie gebraucht , dass wir sie näher

betrachten und namentlich in Reihen entwickeln müssen .
Zur Reihenentwicklung haben wir von ( 1) :

W 2 = 1 -

also nach der logarithmischen Reihe (S . 169 ) :

log ~
jy 2 = M e2 sirfi cp -+- sm4 qp + sin6 q) + sm6 qp + —

* ~ stra46qp + . . . (3)

Die Ausrechnung der Co@fficienten mit dem Besselschen log e2 = 7.824 4104-237

giebt für Einheiten der 7 '"* Logarithmenstelle :

28986 -430302 sin* cp + 96 -733122 sin4 cp + 0 -430422 sinß cp
+ 0 -002155 sins cp + 0 -000012 än ™ cp

oder mit halben Cogfflcienten :

log — - = 14493 -215151 sin 2 cp + 48-366556 sin* q>+ 0 -215211 sm6 cp I
W + 0 -001077 sin» cp + 0 -000006 sin 46 cp |

1 '

Dieselben Reihen mit den Logarithmen der Coefflcienten sind :

loq - L 1 t4-462 1947-350] sitficp + [1 .9855751 -590] si«4 q>+ [9 .6338943 -3] sin« <p I
W 2 + [7 .3333660 ] sin6 cp + [5 .06087] sin 46 qp J

1 '

Durch Halbierung der Coefflcienten hat man auch :

log — - = t4 -1611647 -393] siw2 qp -f- [1 .6845451 -633] si«4 cp + [9 .3328643 -3] sin®cp I

W + [7 .0323360 ] sin8 qp + [4 .75984] sin40 qp T

In gleicher Weise hat man auch die andere Punktion :

F 2 = 1 + e ' 2 cos2 qp

log F2 = e' 2 c0lS2 cos6 qp+cos 6 qp +cos4 qp

Wenn man hier löge ' 2 = 7.827 3187 -833 einsetzt , so erhält man :

log F2 = 2918M96469 cos2 cp — 98 -0374220 cos4 qp + 0 -4391567 cos6 <jP » ,g)
— 0-0022131 cos» qp + 0 -0000119 cos 40 qp )

log V = 14590 -098235 cos2 q> — 49 -0187110 cos4 qp + 0 -2195783 cos6 qp 1 , 1Q,
— 0 -0011065 cos« q) + 0 -0000059 cos®qp / 1

Ferner wieder mit den Logarithmen der Coefflcienten :

log P2 = [4 .4651030 -946] cos2 (p - [1 .9913918 -822] cos4 qp + [9 .6426194 -1] cos6 qp1 ,n <
— [7.3449995 ] cos6 qp — [5 .07541] cos46 qpj

log F = [4.164 0730 -989] cos2 <p — [1 .690 3618 -865] cos 4 qp -f [9 .3415894 -2] cos6 qp | (12 )
— [7 .043 9695] cos« qp + [4 .77438] cos40 q? I
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Wenn man bei log W 2 den Grenzwert qp = 90° und bei log F 2 den Grenzwert
qp — 0 setzt , so bekommt man log (1 — e2) und log (1 -+- e '2) welche , schon bei anderer
Gelegenheit in § 31 . S . 192 angegeben sind.

Für qp = 45 ° geben die Reihen (5) und (10 ) :
— log W = 7246-607576 -+- 12 -091639 + 0 -026901 -i- 0 .000067 = 7258 -726183 \

log V = 7295-299117 — 12 -254678 + 0 -027447 — 0 .000069 = 7283 -071817 (
logV : W = 14541 -798000 |Nach | 31 . S . 193 soll dieses sein = 14541 -798002 *

Die Probe stimmt auf 0 -000002 , d , h . auf 2 Einheiten der 13 ,e" Logarithmen¬
stelle , was hier befriedigend ist .

Da die Fund W unter sich in der einfachen Beziehung stehen F 2 = TF2 (1 + e'2),hat man die Wahl V oder W zu rechnen und das andere daraus abzuleiten . Diese
Wahl stellt sich bei den vorstehenden Eeihen so , dass für kleine Werte qp man be¬
quemer log W rechnet , zu welchem man am Anfang des Quadranten nur sehr wenige
Glieder braucht , während in der Gegend von qp = 90 ° die Rechnung mit log V die
bequemere ist ; bei qp = 45 ° sind beide Rechnungen gleich gut .

Man kann die Eeihen für log W und log V auch noch auf eine andere Form
bringen , indem man die sin2 cp, cos2 cp u . s . w . in cos 2 cp, cos 4 cp u . s. w. ausdrückt ,wozu die Formeln von § 29 . S . 176— 177 dienen , nämlich :

log W2 = — fi e2 sirfi qp — ^ - sin 4 cp — sin6 cp — —— sin 8 cp — ^ sin 10 cpu D 4: 5
sin2 cp = -

y cos 2 cp

3 1 „ 1si»4 cp = -
g
-

g
- cos 2 cp + — cos 4 cp **

5 15 3 1SW6 cp = — —
gg

- cos 2 cp 4- -
Jg cos 4 cp —

p
- cos 6 cp

85 7 7 1 1ginS ^ =
i28

^
j6 COs2lf + ~

g2 COs4 <fl —
Jg

- cos6 (f' + j ^g cos8 ,f>

sinio cp =
2| g

- « w 2 cp + -g - cos 4 qp - ^ cos 6 cp + A cos 8 qp - — ■cos 10 cp
Diese si»2 qp, sin±cp u . s . w . in die Eeihe log W* eingesetzt geben :

log W * = -
(

± - ge * + ~ fie * + 4 - P «6 + 5̂ ^ iSlö ^ ßl° )

+ ( 4 _ ^ -+- ^ - p e6 + w ftel0 ) cos2q )

“
( liT + I6

" ^ e6 + l
'
28 ^ e8 + -| f A, el0

) cos4qp

+ ( 9fT ^ eS + J4 ßeS + 5l2 P el°
) cos 6 *)“

“
( 5l2 ^ 68 + 2T6 ß el° + ) cos 8 V

^ (2M0 ^ el° ) C0S 10

(14)
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Wenn man dieses mit dem Besselschen loge %= 7.8244104 -237 ausrechnet (Be¬
nützung der log ff en auf S. 193), so bekommt man in Einheiten der l tm Logarithmenstelle :

logWt = — 14529 -6251671 + 14541-784 4150 cos 2 cp — 12 -1728172 cos 4 cp 1
+ 0 -013 5864 cos 6 qp— 0 -000 0170 cos 8 cp + . . . |

Dieselbe Entwicklung für log 7 2 gemacht giebt aus (8) und § 29 . S. 177 das

folgende :

COS2 Cf, = - I- - C/lff9 Cf:

cos 2 qp +

cos 2 qp -+- cos 4 cp +

cos 2 qp -+- cos 4 qp+ cos 6 cp +

cos 8 cpcos 2 <jp + eos 4 <p -+- cos 6 qp+ cos 10 qp

,ue '8 -+-jue'4 -f-

fi e' 10 cos 2 qpfi e’i +

e' 10 cos 4 qpfte
' 6 +

^ e’i° cos 6 qppie 's +

g e' 10 cos 8 cp

cos 10 qp

(16 )

Wenn man dieses mit dem Besselschen log e'2 = 7 .8273187 -833 ausrechnet

(Benützung der logpie ' * auf S . 193), so bekommt man :

log 72 = 14553-9708333 + 14541 -7844155 cos 2 qp — 12 -1728170 cos 4 qp 1 . .

+ 0-0135863 cos 6 qp — 0 -0000171 cos 8 qp - t- . . .

Die Reihen (17 ) und (15 ) stimmen in den Coefficienten hinreichend überein

md die Absolutglieder geben log 7 2 — log W2 = 29083-5960004 was mit log (1 + c' 2)
nach S . 193 stimmt wie es sein muss .

Durch Halbierung der Cogfficienten hat man auch log W und log 7 , nämlich

zugleich ein wenig vermittelnd zwischen den Endziffern in (15 ) und (17 ) :

log V = 7276 -9854166 + 7270 -8922076 cos 2 qp — 6 -0864086 cos 4 cp ) „ g.

+ 0 -0067932 cos 6 qp — 0 -0000085 cos 8 qp I

und da man gewöhnlich logarithmisch rechnet , wollen wir auch noch die Coefficienten-

Logarithmeu angehen :
log F 2 = 14553 -9708333 + [4-1626177 -018] cos 2 qp — [1-085391D0] cos 4 cp )

^
+ [8 -1331028] cos 6 qp — [5 .23172] cos 8 qp )
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log F = 7276 -9854166 + [3 -8615877 -062 ] cos 2 qp— [0 .7843611 -0] cos 4 qp
+ [7 .8320728 ] cos 6 cp — [4 .93069 ] cos 8 qp

Um von der Mitte zu zählen, wollen wir noch setzen cp — 45 ° -{- (qp— 45 °) also :
log V = 7276-9854166 — [3 .8615877 -062] sin 2 (cp — 45 °) •+- [0 .7843611 -0] 1
cos 4 (qp—45 °) + [7 .8320728 ] sin Q (cp — 45 °) — [4 .93069 ] cos 8 (qp — 45 °) (

1 '

Diese Form bietet den Vorteil , dass man damit in einer Rechnung stets die
Bestandteile für zwei Werte qp erhält , welche gegen 45 ° symmetrisch liegen ; z. B .
cp — 45 ° = 4- 15 ° und — 15 ° geben log F für qp = 30 ° und für qp = 60 ° das folgende:

(20 )

log V = 7276-9854166 ■

log V = 7276 -9854166 ■

■3635 -4461038 -+- 3 -0432043
- 0 -0067932 + 0 -0000042
• 3635 -4461038 + 3 -0432043
■0 -0067932 + 0 -0000042

log F = 0 .0010915 -4679357 '

log V = 0 .0003644 -5893145

für qp = 30 °

für cp = 60 °

zusammengefasst :
für qp = 30 °
für qp = 60 °

Diese Werte stimmen innerhalb 0 -000001 mit den aus (7 ) oder (12 ) berechneten.

Interpolation für log F.
Wenn man eine Tafel der log F aufstellen will , so wird man gewisse Haupt¬

werte, etwa für qp von 1 ° zu 1 ° unmittelbar nach den vorstehenden Formeln (7) , (12)
oder (20) berechnen, und im Übrigen weitere Werte einschalten . Wenn man nun
bereits Näherungswerte der einzuschaltenden log V kennt , was oft der Fall ist , so
kann man zur schärferen Einschaltung eine gute Formel nach dem Prinzip des Mittel¬
argumentes aufstellen in folgender Weise :

Ein Wert F gehöre zur Breite cp, ferner V" zur Breite qp -j - und V zur
Ci

Breite qp— A cp
2

" , dann werden nach der Maclaurinsehen Reihe folgende zwei Gleich¬
ungen bestehen :

AcpdlogV 1 ( A <p\ 2 d2 logV 1 ( A tp\ s ds log V
2 d qp

+ 2 2 j dq ‘i
log F " — log V -

6 , 2 1 dtp2
' A qp\ 3 ds log V

2 ) ,h ; 2
log V ' = log v - ^ fi + 1 (IW dHog V £

2 dtp ^ 2 \ 2 j dtp2 + 6
Die Differenz giebt : log V" — log V ' = Alog V:

A log V = A cp
d- 1̂

+* *
dep

^ 24 dtp2
Zur Anwendung haben wir log F dreimal abzuleiten , wobei nun künftig immerzur Abkürzung geschrieben werden soll tang <p = t und

dif

(22 )

F 2 = 1 + e'2 cos2 qp = 1 + tfl
_ /? t r iF = ]/l - ’ d tp

, also 7j2 :

- 2 Tj2t) = -

; e'2 cos2 cp d qp

d log V
d tp

1 d V
V dq >

= — 2 if- t (23 )

(24 )
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In dieser Behandlung werden die beiden nächsten Ableitungen .-

dfl log V _ if=
> 4 ( - l + tf - lf - ljBt *)

(2 -+- t;2 + 3 ^2 J2 _ ^4 _ rji f-)
2i )U , (25)

d qfl
log V

1 t? <p3 F 6

Die Ableitungen (24) und (25 ) hat man in (22) einzusetzen und zugleich wollen

wir zi qp = 10 ' nehmen , wofür mit q = 3437,7 . . . zu dividieren ist , und da auch noch

mit ft = '0 .43429 . . . zu multiplizieren ist , haben wir :

Alog F = — F -, n rP t , F 1000 rfl t

e F + 12p3 76
also ipt = e' 2 sin qp cos qpDa rp = e ' 2 cos2 qp

stante zusammenzufassen , zugleich tj* vernachlässigend :

(2 + ?/2 4 - % ipt — — fl )

so hat man , um alles Kon¬

zile ^ V = fi sin 2 qp 1000 ft e'2 sm 2 qp
5 -= •e ' 2

Q V2 24 F6

Die Ausrechnung giebt für Einheiten der 7 *«» Logarithmenstelle :

(2 + + 3 rf~ fl) (26)

A log F = — [1 .6277992 -161 ] K ^ [5 .4760703 ] (2 + rfi ■ ■3 j/2 fl) (27)

Das zweite Glied macht sehr wenig aus , nämlich :

qp = 10 ° 2 . Glied = 0 -0000 2015 qp = 50° 2 . Glied = 0 -0000 5888

20° 3795 60° 5201

30° 5133 70° 3874

40 ° 5862 80 ° 2063

Dieses Glied geht also erst in die 12*e Logarithmenstelle ein und ergiebt sich

von selbst als eine kleine innerhalb weiter Grenzen nahezu konstante Differenz zwischen

den Summen von je 6 Zwischenwerten A log V und dem Intervall zwischen zwei

festen log V, das sie ausfüllen sollen . Die F 2, welche man im ersten Gliede von

(27) braucht , müssen dem Mittelargument qp entsprechen ; in unserem Falle verfuhren

wir dabei so , dass diejenigen log F 2 , welche schon in der vorhergehenden Auflage

des Bandes 8stellig für alle Werte qp von 10' zu 10 ' ausgerechnet Vorlagen, von 5 '

zu 5 ' eingeschaltet , die nötigen Näherungswerte zur Gleichung (27) lieferten , um

Interpolation auf 12—13 Stellen genau zu geben ; folgendes ist ein Beispiel hiefür :

q; = 48 c

qp = 49 c

42 -07059 —

42 -04425 —
6 = 42 -07053
6 = 42 -04419

log V
6522-92572
6480 -85519
6438 -81100

q>
48 ° 0’

48 ° 10 '

48 ° 20 '

42 -01646 — 6 = 42 -01640 6396 -79460 48 ° 30'

41 -98728 —

41 -95667 —
6 = 41 -98722

6 = 41 -95661
6354 -80738
6312 -85077

48 ° 40 '

48 ° 50’

41 -92464 — 6 = 41 -92458 6270 -92619
i !'

S
1

251 -99989 — 36 = 251 -99953 251 -99953

Die Differenzen 42 -07059 - 6 u . s . w . sind nach der Formel (27)'

6 ist das zweite Glied , im vorstehenden Beispiel abgerundet , (m ir J

mit einer Stelle mehr gerechnet ) .
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In dieser Weise wurde unsere Tafel der Werte log V , welche im Anhang auf
Seite [2] — [7] gegeben ist , berechnet mit 12 — 13 Stellen und nachher auf 10 Stellen
abgerundet .

Die Ableitungen von V nach qp.
Auch die Ableitungen der Punktion F werden später noch oft gebraucht

werden , weshalb wir sie zum Vorrat hier hersetzen , auch mit Einführung fester
Zeichen :

d t
lang cp = t

d qp
= 1 + 42

F 2 = 1 + e ' 2 cos2 cp = 1 + if - also rp = e' 2 cos 2 qp

= — 2 e' 2 cos (p sin cp = — 2 rpt

und allgemeiner

d V _
dcp

dP V _
d qp2

~

d2 r
d cp2 '

drp _
dcp

~

1 drP
2 F dcp

fd rp t~
[TcpV

+
2 ?/2

- n rp t

rp t
~

rp dt
VTy

'

- u

(a)

(3 )

(c)

(d)

(e)

<2)

rptdV
2 V dcp

rp t2~
W

F 2 :
Wenn man hier alles auf den Nenner F3 bringt , und berücksichtigt , dass
1 + rp ist , so bekommt man :

<J2 V
= - 4 -s (1 - *2 + ’/2)d cp2 ys

Wenn man in diesen Formen weiter differentiiert , so bekommt man :
d* r rp t
d qß

= Fä (4 5 ^ + 3 ^ ß +

(f )

(g)

di V 7]* ■4 42 + 9 rp + 10 rp t2 — 3 rp 44 + 6 rp + 14 rp f2 + 12 ^ D + rp ) (h>= ~ (4 -d <jps F7 1

Mit Hilfe dieser Ableitungen kann man auch V von einer Breite <p auf eine
benachbarte Breite reduzieren , denn man hat nach dem Taylor sehen Satze für eine
Breite cp

' einen Werth V ' entsprechend folgender Beihe :

F - = y _ ? 1 _ W
(1 _ * + , 2) .

oder Fl ■(qp
' — qp)2 . . .

(i)

(k>
(qp

' — cp) ipt
F 2

Damit hat man auch die Reduktion der Krümmungs -Halbmesser von einer auf
die andere Breite , z. B . :

N -- c
F

N '
V'
V 1 W - <p)

F 2

N ' - —^ y

(qp
' — <jp)2 . . . (i)

Später wird davon mehrfach Gebrauch gemacht werden .
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§ 35 . Meridianbogenlängen .

Der Meridian -Krümmungs -Halbmesser in der Breite cp ist nach (17 ) und (21 ) § 32 . :

Bin unendlich kleiner Meridianbogen für die Breitendifferenz d q> ist daher
= Md pp und der ganze Meridianbogen vom Äquator mit qp = 0 bis zur Breite cp ist

j/ ( l —■e2 sin 2 (js)3 ]/ (l 4 - e'2 cos2 qp)3

Dieses ist ein elliptisches Integral zweiter Gattung ; davon ist jedoch bei der
Rektifikation für geodätische Zwecke nicht die Bede , indem hier Beihenentwicklungen
angewendet werden , die nach Umständen bei weniger oder mehr Gliedern abgebrochen
werden.

1. Integration nur bis e2 einschliesslich, mit a und e2.

Wenn man nur bis e2 einschliesslich entwickeln will , so schreibt man die zu
integrierende Punktion (2) kurz so :

1 + — e2 sin 2 cp + e4(1 — e2 sin 2 cp)- — = (1 — e2 sin 2 cp) ~ I = 1 4-
(1 — e2 sin 2 <jp)i

Hier ist nach bekannter goniometrischer Formel :

sin2 <jp = 4 - i cos 2 <pLi Ci
(4)

und das Integral :

J

'
cosi cp d cp (5)

Damit wird das allgemeine Integral in (2) :

e2 sin 2 cp 4-1 + 'U e2 f
V ( 1 — c2 sin 2 cp)s

(6)

Das bestimmte Integral zwischen den Grenzen qq und <jp2 ist daher :

v,

/ • • ^ = ( l + 7 e2J e2 {sin 2cp2 — sin 2 qq)(9>2 — ffi )

oder im zweiten Gliede goniometrisch umgewandelt :
<Pt

e2 sin (<p2 — qp'i) cos (<jp2 + qq )i + qj- e2 (% — li ) (7)
9>i

folglich der Meridianbogen m selbst zwischen den Grenzen qq und qq nach (2) und (7) :

Joiuau , nauuo . U. VerUit5£SaUligBA.UiJlit:. -X.

e2 sin (qp2 — qq ) cos (12 + *Pi ) (8)a ( l — e2) l4 - x e2 (q>2 — qq)
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Wenn man Mer die Sinus -Reihe anwendet , nämlich nur deren zwei erste Glieder :

(<P2 — <Pl )3sin (<p2 — <jPi) = (q>2 ~ <Pi ) ■ -h

so erhält man durch Einsetzen dieser Glieder in die vorhergehende (8 ) :
13 3

m = a (cp2 — 9>i) ( l — ®2) ( 1 + ^ e2 — -
^

- e2 cos ((jD2 + (Pi ) •
8

2 (<J>2 — «Pi )2 cos (<p2 + (jPi) (9)

Obgleich in diesem Ausdrucke alle Glieder von der Ordnung e* und darüber
vernachlässigt sind , kann man doch zu vielen Zwecken davon Gebrauch machen ; ja
man kann noch mit einem kleinen weiteren Opfer an Genauigkeit einen sehr prak¬
tischen Satz ableiten , der sich auf den Meridian -Krümmungs -Halbmesser der Mittel -

, + *>2 bezieht . Dieser Meridian -Krümmungs -Halbmesser ist nach (1 ) :

« (1 — e2)

breite

M ' =
1 — e2 sin2 <Pj + <f>2

dieses ebenfalls bis auf e2 einschliesslich entwickelt , giebt :

M ’ = o ( l - - e2) ( 1 H— e2 sin2 — -~ <f>2

und mit Anwendung der goniometrischen Formel (4 ) für sin2 qp :

M ' = a (1 — e2) ^1 -l- ~ e2 — e2 cos (qpj + <p2)j

Nimmt man nun diesen Krümmungs -Halbmesser M ’ als Afras &open-Halbmesser
zu einem Centriwinkel qp2 — <jPj, so erhält man einen entsprechenden Meridianbogen :

m' = M ’
(qp2 — qpj) = a (<p2 — <jPi) (1 — e2) ^

1 -+- | e2
j — e2 cos («M + <p2)j (10 )

Vergleicht man diesen Ausdruck mit dem früheren (9), so findet man in den
ersten Gliedern völlige Übereinstimmung , man hat also auch sofort im zweiten Teil
die Differenz :

e2
m' — m = — a (<jp2 — Ti ) (1 — e2) (9>2 — <Pi )2 cos (Ti + %)

oder genähert , zugleich mit Zufügung des nötigen q :

m' — m = - oü
j

3
cos (q^ + ^ (11 )

Dieses ist der Fehler , der begangen wird , wenn man , nach (10 ) , einen Ellipsen -
Meridian -Bogen als Kreisbogen behandelt , dessen Halbmesser der Meridian -Krümmungs -

Halbmesser für die Mittelbreite (Pj-ilh ?!2 jst _

Zunächst sieht man aus ( 11 ), dass der Fehler m’ — m verschwindet , wenn
<jPt + <f>2 = 90 °

! d - h . wenn die Mittelbreite = 45 ° ist (vorbehaltlich der vernach¬
lässigten Glieder von der Ordnung e*) u , s , W-

Im übrigen berechnet man nach (11 ) zur Übersicht , dass für <p2 — <f>i = 1 °

und für ^ i- Ü ? 2 = 30 ° oder 60 ° der Fehler = — 0,014 »' oder = -+- 0,014" wird und
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äussersten Falls mit qp = 0 ° oder qp = 90 ° bringt der Fehler für qp2 — <)0i = 1 ° nur
— 0,028 “ oder + 0,028 “ . Man kann daher kurz sagen , dass in den Breiten von

Mitteleuropa ein Meridianbogen von 1 ° Ausdehnung nach dem Näherungsverfahren von
M für die Mittelbreite , innerhalb 1'“ genügend ist . Wir werden am Schlüsse dieses
Paragraphen nochmals darauf zurückkommen .

Integration bis e10.

Man kann das im vorstehenden angewendete Verfahren beliebig weit fortsetzen ;
es besteht im allgemeinen darin , dass man die zu integrierende Funktion (1 — e2 sin 2 cp)~ I

nach Potenzen von e2 sin 2 cp entwickelt und dann die Potenzen sin 2 qp , sin * qp , sin ®qp
u. s . w . in cos 2 qp , cos 4 qp , cos 6 qp u . s . w . ausdrückt und dadurch integrierbar macht .

Hiernach haben wir ;
1 8 8 5 3 5 7

~ = (1 — e* st« 2qp )
- | = l + ye

2 sMi2 qp + -
2 ^

e4si »4qp - )_ _ - ~ _

5 7 9 „ . „ 3 5 7 9 11

e6 sin e qp

+ 2 4 6
- e®sin s cp ■

2 T 6 8 po
^ 10 ^ - - -

15 35 315 693
Wi = 1 + T e2 sin2 ^ + y «4 sini V + ig eB sinS + 128 eS sinS ^ + 256 sl0si” 10 'P (* 2)

Nach § 29 . S . 176 — 177 ist hier zu setzen ;

sin 2 (fi = ~ -
g

- cos 2 cp

3 1 1sin* cp = —- - cos 2 qp cos 4 qp0 4 O

si» 6 qp = A _ il cos 2 qp + ^ cos 4 qp — ^ - cfs 6 qp

St« 8 (jp — 35
128 16

cos 2 qp 32
cos 4 qp-

63 105 „ 15
= 9hR -

Ô C0s2 (P + h7 <:0s4 (P -

- cos 6 qp ■

r cos 6 qp-

cos 8 qp

cos 8 qp-
512

cos 10 qp

J _
16
45

256 256 64 ^ ~
512 '

Setzt man diese Ausdrücke in (12) ein und ordnet nach cos 2 qp , cos 4 qp u . s . w .,
so bekommt man :

1

1
128

5
256

• C cos 4 qp— JD cos 6 qp+ E cos 8 qp— F cos 10 qp (13 )

wobei die Coäfßcienten A , B u . s . w . folgende Bedeutungen haben :
11̂ 3 — M B cos 2 qp•

i + | g2 + S e4 +
175

B =

C =

D =

F —

F =

- e2 -
15
16
15
64

e4 +

c4 +

256
525
512
105
256
35

512

^ 16384
2205

'
2048
2205

'
4096
315

'
2048
315

16384

43659
65536
72765

e + 65536

es +
l 08? 5 -^ 16384

« io + . . .

ei « + . . .

«io + . . .

a 31185
e8 4 - e10 •

e® +

131072
3465

65536
693

131072

« io -\- . .

«10 + . .
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Wenn man mit der Besselschen Excentricität nach § 31 . S . 193 (log e2 =
7 .824 4104-237) diese Werte ausrechnet , so findet man :

A = 1,00503 73060,48555
B = 0,00504 78492,40300
G = 0,00001 05637,86831
D = 206,33322
E = 0,38853
F = 0,00070

log A = 0 .002 1S21‘827 <
log B = 4 .504 8414 -798 /
log C = 5.023 8196 -289 f
logB = 2 .314 5691 -6 /
logE = 9 .589 4246 l
log F = 6 .845 10 I

(14)

Der letzte Coefficient F , welcher nur von «1° abhängt , wird verschwindend
klein , aber in den übrigen Coefficienten bringen die Glieder mit e10 doch noch kleine
Beträge , welche die schliessliche Abrundung noch teilweise beeinflussen .

Indem man nun die Punktion (13) integriert , hat man :

jcos 2 <jd = ~ sin 2 qp j

"
cos 4 qp = -i - cos 4= — cos 4 qp u . s . w.4

also mit Zusetzung des Paktors a (1 — e2) von (1 ) und (2) wird der Meridianbogen B
vom Äquator bis zur Breite qp ausgedrückt durch die Reihe :

(15)
' sin 2 <p -h sin 4 (p — ~ gin 6 qp -f_ sin 8 cp — = r s n̂ <pa 4 b o 1U

Man hat mit den Coefficienten ( 14 ) auszurechnen :

A a ( 1

B

- = 111120,61962

o (1 — e2) = 15988,63853

G
4
D

■a (1 — e2) =

a (1 — e2) =

r a (1 — e2) =

F
10 a (1 — e2) ■■

16,72995 380

0,02178 4772

0,00003 07659

0,00000 00443,44

log = 5 .045 7946 -544

log = 4 .203 8114 -841

log = 1 .223 4947 -417

log = 8.338 1530 -1

log = 5 .488 0696

log = 2 .646 84

(16 )

Anmerkung . Dieselbe Reihenentwicklung , in etwas anderer Form und ausgedehnt bis
**- findet eich in „Theorie der Projektionsmethode der Hannover sehen Landesvermessung von
Oscar Schreiber , Hannover 1866“, S. 18. Es ist dort zur Vermeidung von Brüchen e — &£, oder
r3— 16e 3 gesetzt und der Faktor {1 — c2) in den einzelnen Coefficienten ausmultipliziert , wodurch
die folgende unserer (15) entsprechende Formel entsteht :

Meridianbogen B = a (A <p — .4, sin 2 q>+ A, sin 4 <P _ ) (15a)

A = 1 — 4f 2— 12 «-*— 80 t » — 700 s8— 7056 t *» — 77616 t *2
At = 6 t 2+ 24 f ■*+ 180 *S 4- 1680 t »+ 17640 S' »+ 199584 e*2
+ = 15 . . + 180 . . + 2100 t + 25200 . . + 311850 . .

3 -4s = + 160 . . + 2800 . . + 44100 . . + 646800 . .2 + = + 3I5 . . + 8820 . . + 174636 . .0J t = + 5540 . . + 199584 . .
= + 2002 . .
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Integration bis e' 10.

Wir wollen die CoSfflcienten (16 ) zunächst stehen lassen und die Integration noch¬
mals von neuem beginnen in der zweiten Form mit c und e'2 ; es wird dabei noch¬
mals dasselbe herauskommen , wie auf dem ersten Wege , was als Probe erwünscht ist .

Nach der zweiten Form von (1) oder (2) haben wir zu behandeln :

B B 5 3 5 7
(1 -h e ' 2 cos2 cp)

~ f = 1 -
g

- e ' 2 cos 2 q>■+ e' i cos4 cp -
2

€ '6 C0S6 ^

3 5 7 9 ;o „ 3 5 7 9 11 „ „

Nach § 29 . S . 177 hat man :

cos2 cp = + - i - cos 2 cp

. 3 1 „ 1 ,cos4 tp = w - + - jj- cos 2 cp -t- -3 - cos 4 ip
o Z o

«OS6 Cp= -^ r -+- cos2 cp + ~ eoslcp + — cos6 cp

35 7 7 1 1
«osS cp =

128 + lfT 008 2 (P + 39
C0S4 <Sd + T 6

_ C0S6 ^ + 128
C°S 8 9

cosiO (p = cos 2 (jp+ cos 4 <jD+ ^ cos 6 qp+ Jg cos 8 <p + ^ cos 10 qc

Wenn man diese Ausdrücke in (17) einsetzt , und nach cos 2 qs , cos 4 cp u . s . w.

ordnet , so bekommt man :

vpjr = Al — B ' cos 2 q> 4 - C ' cos 4 <p — D ’ cos 6 g>— E ' cos 8 <p — F ' cos 10 <p (18)

wobei die Coefficienten A! , B ' u . s . w . folgende Bedeutungen haben :

T
-

Ae ' 2 -

45 , , 175 11025
+ 64

6 256
6 6 + 16384

15 , , 525 2205
16

e4 + 5T2
e6 -

15
e' 4

43659 , in- e 10 + .
65536
72765

- e 10 +
65536

"
64

^ uo ys _l_
512 2048 ^ - - - -
105 , R 2205 10395
256 + 4096 16384

35 315
^ 512

315 , a 31185 ,
2048 131072
315 3465 ,

In allen diesen Entwicklungen von ( 17 ) bis F ' treten dieselben ZahlencoSffi -

«ienten auf wie früher in (12 ) bis F , nur mit anderen Vorzeichen . Man bemerkt

auch , dass in der Gruppe der Coefficienten A ' B ' C ' . . . jede Vertikalreihe die

Summe = Null giebt , so dass im Ganzen entsteht :

A ' -h B ' -4- C ' -4- D * -+- E ’ -4- F ’ = 1
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Dieses hat auch einen inneren Sinn , nämlich mit g> = 90 ° wird
cos 2 <p — — 1 , cos 4 <p = + 1 , cos 6 g>= — 1 u. s . w .

und damit wird nach (18) :

4t = X + S ' + V + D ' + JS ' + F ' = 1

nnd allerdings muss mit <p = 0 der Ausdruck F2 = 1 + e'2 cos2 <p = 1 werden. Etwas
ähnliches findet bei der früheren Entwicklung mit W bei (13) statt , indem mit <p = 0°
ebenfalls W = 1 werden muss. Jedenfalls ist die Beziehung A ' - j- B ' + C ' . . . = 1
eine angenehme Probe für die Cogfficienten A '

, B ' . . . , womit zugleich auch die
früheren Cogfficienten A , B . . . kontrolliert sind.

Die Ausrechnung der Zahlenwerte von A! B ’ u . s . w. mit dem Bessel sehen
löge '2 = 7 .827 3187 '833 hat gegeben :

A ' = 0,99499 21245,07507
B ' = 0,00499 73968,22747
C = 0,00001 04582,03528
I) ' = 204,27152
E ' = 0,38465
F ' = 0,00072

log A' = 9 .997 8196 -433
log B ' = 7 .698 7438 -364
log C = 5 .019 4570 -894
log D ' = 2 .310 2078 -2
log E ' = 9 .585 0657
log F ' = 6.857 33

(19 )

Die Weiterrechnung nach der Integration giebt dann , ganz wie früher bei der
Eechnung mit W :

4 - c = 111120,61962 loq ^ c = 5 .045 7946 -544
Q 9

Q°

^ c = 15988,63853 log
*

c = 4 .203 8114 -842

C C '
-
j

- c = 16,72995 380 log F - c = 1.223 4947 -417

D ' B '
c = 0,02178 4832

0 log c = 8.338 1542 -1

E ' E '
~ö- c = 0 .00003 07662
o log ~ - c = 5 .488 0733

F '
c = 0,00000 00460,71 log ~ c = 2 .663 43

(20)

(21 )

Die beiden Ausrechnungen (16 ) und (20) stimmen so nahe überein, als es bei
den unvermeidlichen Abrundungen erwartet werden kann. Die ganze Rechnung ist
damit genügend kontrolliert, und wir bilden daraus im Mittel : die Formel für den
Meridianbogen B vom Äquator bis zur Breite q>:

B = « cp + ß sin 2 qp + y sin 4 qp + ö sin 6 qp + e sin 8 (jo -+- £ sin 10 <jp
B = 11 1120,61962 (jp — 15988,63853 sin 2 <p + 16,72995 38 sin 4 cp

— 0,02178 480 sin 6 <p + 0,00003 0766 sin 8 qp
— 0,00000 00452 sin 10 qp

Das letzte Glied mit sin 10 qpist für alle im folgenden beabsichtigten Berech¬
nungen nicht mehr von Bedeutung, wir wollen es deshalb ganz weglassen in der nach¬
stehenden Formel, welche statt der Cogfficienten selbst deren Logarithmen giebt :

B = [5 .045 7946-544 ] qp — [4 .203 8114-842] sin 2 qp + [1 .223 4947 '4] sin 4 cp
— [8 .338 1536] sin 6 <p + [5 .48807 ] sin 8 cp

(22)
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Im ersten Glied von (21) oder (22) ist qo in Graden zu nehmen ; wenn man in

Minuten oder in Sekunden rechnen will , so wird das erste Glied :

für V 1852,01032 72”* log = 3.267 6434-040 |
„ 1" 30,86683 879 log = 1.489 4921 -536 i ^

Die Formel (21 ) giebt sofort eine wichtige Anwendung ; mit qo = 90 ° werden

sin 2 qp, sin 4 qp u . s . w. alle = Null , und man bekommt den Meridianqnadranten :

Q = 10 000 855,7658 Meter (24)

Man drückt das häufig auch so aus , dass man sagt , es sei ^ = 11 1120,61962 Meter

der mittlere Meridiangrad .
Wenn man die Bedeutung des ersten Coefficienten a in (21 ) nochmals aus (16)

und (13 ) einsetzt , so erhält man :

g =
A « (l - ^ ) 90O = a (1 _ e2) ^9 *

Q = a {l - e*) f ( l + | es + ge4 + . . .)

64
ei ■ (24 a)

Wir wollen bei dieser Näherung stehen bleiben und nach (7) § 81 . S . 189 die

Abplattung a einführen , nämlich mit :
e8 = 2 « — cfi

Setzt man dieses in (24a ) und ordnet nach Potenzen von er, so erhält man :

+ <•* »»

Von dem Klammerfaktor kann man auch den Logarithmus entwickeln , wodurch

man findet :

Die Formel (24b) haben wir schon in unserer Einleitung S . 8 bei Gelegenheit
der älteren Gradmessungen erwähnt , und um für solche Fälle leicht den Quadranten
aus der grossen Axe und der Abplattung « oder umgekehrt berechnen zu können,
haben wir dazu folgendes Hilfstäfelchen gebildet :

a — b
— - — aa

7t f a a 2\
% T (

1 -
2 +

a — b
— = a

a
7 11 ( t a _j_

U2)lo° 2 \ 2 16 /

1 : 280 0 .195 3440 t ,
0 .195 3577
0 .195 3708

*

0 .195 3835 :
0 .195 3957

1 : 300 0 .195 3957 +

0 .195 4076 ^
0 .195 4191 yb

0 .195 4303 *

0 .195 4410

1 : 285 1 : 305
1 : 290 1 : 310
1 : 295
1 : 300

1 : 315
1 : 320

Eine zweite naheliegende Anwendung von (21 ) oder (22) bekommt man mit

? = 45°
, damit wird 2 qo = 90 ° , 4 <p = 180 ° , 6 cp = 270 °

, also :

Bf = 5 000 427,882900 — 15988,638530 + 0,021785 = 4 984 439,266155”* (25)
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Dieses ist der Meridianbogen vom Äquator bis zur Mittelbreite = 45 °
, der

andere Teil von 45° bis zum Pol ist erheblich grösser , nämlich :
= 50 15416,4996 ”

(26)
Nach der Formel (21) oder (22) haben wir die 30 Werte von qp — 30 ° bis

<p = 60 ° berechnet :

Meridianbogen B vom Äquator bis zur Breite tp . (27)

B <P B T B

o
.

oOC 3 319 786,510 ” Oo 4 429 084,790 ” 50 ° 5 540 279,543 ”
31 3 430 636,950 41 4 540 116,998 51 5 651 505,565
32 3 541 502,523 i 42 4 651 168,472 52 5 762 750,675
33 3 652 386,539 43 4 762 239,302 53 5 874 014,723
34 3 763 288,290 j 44 4 873 329,553 ! 54 5 985 297,540
35° 3 874 208,046 45 4 984 439,266 1 55 6 096 598,93136 3 985 146,054 46 5 095 568,459 56 6 207 918,67937 4 096 102,540 47 5 206 717,124 57 6 319 256,54438 4 207 077,708 1 48 5 317 885,233 58 6 430 612,26639 4 318 071,739 ; 49 5 429 073,732 ! 59 6 541 985,560
4̂o O 4 429 084,790 i 50 5 540 279,543 i 60 6 654 376,122

Zur Vergleichung wollen wir auch einige Zahlen aus fremden Tabellen zuziehen,nämlich : 1) Encke , Berliner astronomisches Jahrbuch 1852 , Tafeln für die Gestalt der
Erde S . 374—381 , giebt diese Meridianbögen B in Toisen , welche in der nachfolgenden
Vergleichung in Meter verwandelt sind . 2) F . G . Gauss , Die trigonometrischen Rech¬
nungen in der Feldmesskunst , zweite Auflage 1893 , II . Teil , S. 4—27 . 3) Hartl ,Tafeln , enthaltend die Ausmasse der Meridian - und Parallelbögen 1895 („ Zeitschr . f.Verm . “ 1896 , S . 28 — 30) .

Vergleichung verschiedener Berechnungen von B . (28)

T Jordan Encke F . G. Gauss Hartl

30 ° 3 319 786,510”
,511”

,510”
35 3 874 208,046 ,047 ,04640 4 429 084,790 ,791 ,79045 4 984 439,266 ,270 ,265” ,26650 5 540 279,543 ,544 ,542 ,54355 6 096 598,931 ,932 ,929 ,93160 6 654 376,122 , 121 ,121

Die kleinen Differenzen von Millimetern , welche sich hier zeigen , scheinen ihrenGrund in den verschiedenen Annahmen der letzten Stellen der Besselschen Erddimen¬sionen zu haben , von welchen wir in § 31 . S. 190—192 gehandelt haben .
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Die Hilfstafel auf S . [38 ] unseres Anhangs , welche die in den vorstehenden
Formeln mit B bezeichneten Meridianbögen vom Äquator bis zur Breite cp giebt , ist
nur in ihrem ersten Teil , von 40 ° bis 44 ° von uns berechnet und zwar mit etwas
anderen Konstanten als in vorstehender Formel (21 ) oder (22 ) . Der übrige Teil von
44 ° bis 56 ° ist ein Auszug aus F . G . Gauss , Die trigonometrischen und polygono -
metrischen Rechnungen der Feldmesskunst , 2 . Aufl . 1898 , II . Teil , S . 4 —27 .

Meridianbogen zwischen den Breiten cpi und q 2.

Wenn man die Länge eines begrenzten Bogens m , zwischen qq und q 2, haben
will , so kann man diesen sofort aus (21 ) haben , nämlich :

m — a (q>2 — qq ) + ß sin 2 (q 2 — qq ) + y sin 4 (q 2 — qq ) + 8 sin 6 (q 2 — qq ) + . . . (29)
Dieses wollen wir goniometrisch umformen , und dabei setzen :

q>2 — q)i = zJ q> q>2 + Ti _ „— o — - To

Damit wird (28 ) :

m = a/l q + 2ß sind cpcoscp 0 + 2y sin2 A q cos2cp0 -h28sinBA q>cos 3 qj0 -i- . . . (30 )
Da die ausgerechneten CoSfficienten a , ß , y u . s . w . in (21 ) und (22 ) gegeben

sind , kann man hiernach sofort für jede Mittelbreite q 0 den Bogen m ausrechnen .
Wir wollen A cp = 10 setzen , und bekommen damit den Meridianbogen «q von 1 °

Weite mit der Mittelbreite q) mit ausgerechneten Coöfficienten :

% = 111120,61962 — 558,080436 cos2q + 1,167734 cos4q 1 ,gl >
— 0,002280 cos 6 q; + 0,0000043 cos 8 cp |

“ '

oder mit Logarithmen :

(32 )ml = 111 120,61962 — [2 .746 6967 -983] cos 2 q) + [0 .0673439 -0] cos 4 cp
— [7 .357 984 ] cos 6 qi — [4 .63268 ] cos 8 q)

Nach diesen Formeln (30 )— (32 ) kann man jedes Meridianbogenstück ausrechnen ,
wenn es sich aber um Bögen von nur 1 ° oder von wenigen Grad handelt , und wenn

man eine Tafel der Meridian -Krümmungs -Halbmesser bereits hat , so kann man eine

viel bessere Reihe auf folgende Weise finden :

Wir betrachten einen Meridianbogen m , welcher zwischen den Breiten cp und

A cp liegt , dann wird man nach dem Maclaurin sehen Satze entwickeln können :

A q 2 d2 m A q 3 d3 m
2

~
dq 2 + ~

6
~

dV 3

Nun wissen wir von (1) und (2 ) S . 209 :

d m

V
dm .m = - A cp
dep

(33)

d cp

r = yr
d 2 m
d q 2 —

= M =
c

T 3
"

- e' 2 q 2 cos2 q

3 c d_V
d cp

= +

Vi + 1
3 C Tĵ t

d
_

V
cl q

3 M

7/2 t
' V

F2 7/2 t
Vi d cp

' F5

Wenn man in diesen Formen weiter differentiiert , so erhält man :

d 3 77! 3 c „
dq 3 “

TT '? + 7? ^ F4

(34)

(35)

^ M
4 '/2 ?2) = ^ T j?2 (1 - ?2 -
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Nach diesen (34)— (36) kann man die Formel (33) zusammensetzen :
Q TIl

m = M A cp + -
yz t]2 t 4 qfi - M

' ¥vi rf , (1 _ j2 + rp + 4 7p <2) A qps (37)

Zur Sicherung der Vorzeichen wollen wir dieses auch noch schreiben mit
A qp = cp

' — cp und m = S ’ — B , wo B und B ' die Meridianbögen vom Äquator bis
cp und cp

' sind , also (37) in zweiter Form :
3 W

m = B ' — jB = M (qp
' — cp) + y ~ if t {cp

' — cp)3 -+- (qp
' — cpf -+- . . . (38)

dabei gehört M , if , t zu cp.
Im Anschluss hieran kann man nun noch eine viel bessere Formel nach dem

Prinzip der Mittelbreite (vgl . § 29. S . 178 —179 ) herstellen :

. A pWir betrachten einen Meridianbogen m , welcher zwischen den Breiten cp -
g
-

und cp + ^ y liegt , wo also cp die Mittelbreite und A cp die Weite ist . Der BogenO
m wird dadurch ebenfalls in zwei Teile « i und zerlegt , für deren nördlichen %
nach dem Maclaurinsehen Satze eine Reihe gelten wird :

! dm \ Ap 1 fd3 m\ fA <jp\ 2 1 idßm \ (Acp \ 3
~
d7p ) + T \ dqp) \ 2 /

+ "
6 [dqp)

« X :

eine entsprechende Reihe gilt für den südlichen Teil m2, nämlich :

— m 2 = —
I d m \ A cp 1 / (Pro
, dcp ) 2

~l_ 2 \ d cp2

durch Subtraktion findet man hieraus :
1dm

’ <P d 3 m \ / A <pY
dp 3) \ 2

”

(» X• A cpi
ds m\ A cp3

dep /
“ T '

\ dqß ) 24
Die hiezu nötigen Ableitungen sind im Vorstehenden (34) und (36 ) entwickelt ,

man kann daher alsbald die Formel (39 ) zusammensetzen , zugleich mit Zufügung
der nötigen g :

m = M d
. 9. + rf (1 - t3 + rjt + 4 V3 t3) ^

und mit Einführung einer Abkürzung g und y haben wir :

g A cp3

M ip

(39)

(40)

A cpm = M ——

wobei g

9
M Q = ;

A m* v =
M

- Q - r

! V 3 p3
1p

rwpa
m \ 3

w e )

(1 — t2 4- rp ■

7p ■(1 - i2 -

' 4 7p t3)

• 4 Tp t3)

(41 )

(42)

(43 )

Die hiernach berechneten Werte g und y sind in nachfolgender Tabelle mit-
geteilt . Dieselbe enthält für A <p = 1 0 die Korrektions -Glieder g und y für Meridian-
Bogen -Rektifizierung mit dem Krümmungs -Halbmesser der Mittelbreite cp.
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<p 9
1’ <f, 9 1 <P 9 7

_ — +
0 ° 0,0281» 0,00091 " 45° + 0,00024» — 0,000008" 55 ° 0,0095» 0,00031"

5 ° 0,0277 0,00090 46 ° — 0,00075 + 0,000024 60 ° 0,0140 0,00045
10 ° 0,0264 0,00086 47 ° — 0,00174 + 0,000056 65 ° 0,0182 0,00059

48° - 0,00273 + 0,000088
15 ° 0,0244 0,00079 49 ° — 0,00372 + 0,000120

70 ° 0,0217 0,00070
20 ° 0,0217 0,00070 75 ° 0,0247 0,00080
25 ° 0,0183 0,00059 50 ° — 0,00470 + 0,000152 80 ° 0,0268 0,00086

51 ° — 0,00567 + 0,000184
30 ° 0,0143 0,00046 52 ° — 0,00664 + 0,000215 85 ° 0,0281 0,00091
35 ° 0,0099 0,00032 53 ° — 0,00761 + 0,000246

90 ° 0,0286 0,00092
40° 0,0051 0,00017 54° — 0,00856 + 0,000277
45 ° 0,0002 0,00001 55 ° — 0,00951 + 0,000308

Diese Werte g sind im wesentlichen dasselbe , was die früher bei (11 ) S . 210

bis 211 angegebenen Beträge m — ?»'
, d . h . die negativen Dehler .

Zu einem Zahlenbeispiel wollen wir den Meridianbogen zwischen den Breiten
47 ° und 53 °

, also 6 ° Weite mit der Mittelbreite q> = 50 ° berechnen , man hat zuerst
nach der Tafel des Anhangs , S . [20 ] und [21 ] log M = 6 .804 2916 -0 oder sofort

log = log [1] = 8 .510 1335 -3 . Oder wenn wir noch schärfer rechnen wollen , so

nehmen wir von S . [ 5] des Anhangs für qp = 50 ° , log V = 0.000 6020T31 also

log Vs = 0 .001 8060 -393 , dazu von § 31 . S. 193 log Q — log c = 8 .508 3274-897 , so

dass man zusammen hat log [1] = 8 .510 1335-290 , was mit 6 ° = 21 600" das Haupt¬
glied der Formel (41 ) giebt :

m' = = 667 298,613»

und dazu kommt noch nach dem vorstehenden Korrektionstäfelchen für <p = 50 ° und

d qi = 6 ° der Betrag :
— 0,00470 x 63 = — 1,015».

Dieses zum vorigen hinzugefügt giebt :

m = 667 298,613» — 1,015» = 667 297,598».

Zur Vergleichung hat man von der Tabelle (27 ) S . 216 :

für <f> = 47 ° B = 5 206717,124»

, (p = 53 ° B = 5 874014,723

Differenz m = 667297,599 »

Dieses stimmt mit dem vorhergehenden auf 1»» , was genügend ist .
Die Genauigkeit der Berechnung nach der Formel (41) ist sehr gross , denn

M
das nächste vernachlässigte Glied ist nur von der Ordnung ^

d qo5 e' 2 cos 2 qo, was

für einen Breitenunterschied von 10° zwischen 45 ° und 55 ° nur 7»» ausmacht , jedoch

wegen des Faktors cos 2 <p erheblicher wird , wenn die Mittelbreite <p weit von 45

ahliegt .
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Wenn man etwa die von 1 ° zu 1 ° berechneten Meridianbogen B der Tabelle (27)
S . 216 weiter interpolieren will , so rechnet man am besten die Differenzen nach der
Formel (41 ), wobei das Glied mit g fast gar nichts ausmacht , z . B. für qi = 50 ° und

0 00470™
A q = 10 ' wird y A <p3 nur = = 0,00002 ™.

Um daher den Meridianbogen von 50 ° 0 ' bis 50 ° 10' zu berechnen , nimmt man
einfach von Seite [32] des Anhangs für q = 50 ° 5 ' den Wert log [1] = 8 .5101272 -8
und rechnet damit

zf B = 600 -. [1] = 18536,330 “
Bin zweites Beispiel soll die Benützung der Tafel Seite [38] und der Coef-

ficienten [1] zeigen :
Es sei gegeben die Breite des Punktes Celle (welcher einer der 40 Preussischen

Kataster -Coordinaten -Nullpunkte ist ) nämlich :

q Q = 52 ° 37 ' 32,6709 "
und es soll dazu der Meridianbogen B vom Äquator bis zu dem Punkte Celle aus
der Tafel Seite [38] des Anhangs gefunden werden . Man hat zunächst

für q = 52 ° 30 ' : B x = 5818 380,341“ und Aq = 7 32,6709 ' ' = 452,6709 "
Die Mittelbreite für den Überschuss ist 52 ° 33' 46,3" und damit entnimmt man

von Seite [33] den Wert log [ 1] = 8 .509 9429 -9 , womit man logarithmisch weiterrechnet
A B = A q : [1] = 13990,705 , was zu dem obigen Bi zugefügt giebt B 0 = 5 83271,046”,
und dieses ist der gesuchte zu <p0 gehörige Meridianbogen wert , den man durch Be¬
nützung der zweiten Differenzen auf Seite [38] ebenso finden muss (in der 3 . Aull,
dieses Bandes , 1890, S . 208, mit zweiten Differenzen berechnet = 583271,045 “ ).

§ 36 . Parallelkreisbögen .
Nachdem wir die Meridianbögen gründlich behandelt ' haben , sind auch noch

die damit verwandten Parallelkreisbögen zu erledigen , wozu keine weiteren Entwick¬
lungen nötig sind , denn nach Fig . 1 . S . 188 und Fig . 1 S . 194 ist der Parallelkreis¬
halbmesser für die Breite q :

x = N cos q (1)cwobei wir IN = — als bereits berechnet voraussetzen . Damit hat man auch den Parallel¬

bogen für die Länge A :

L = x — = JN cos cp — = cos q (2)
Q Q [1] ^

Die zweite oder die dritte dieser Formen wird man nehmen , wenn man N oder
[2] = ^ aus unseren Anhangstafeln Seite [8] — [35 ] benützen will . Um noch genauer ,
etwa lOstellig zu rechnen , hat man log V aus der besonderen Tafel dafür S. [2]— [7]des Anhangs zu entnehmen , und dann ist :

T _ c cos qX~ '
Q

~
Vr~

wobei für X m Graden , Minuten oder Sekunden gilt :
für Grade für Minuten

l°g ^ = 5 .047 9750 -111 3 .269 8237 -607

(3 )

für Sekunden
1 .491 6725 -103
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Hiernach sind folgende Werte berechnet , zu etwaigen Weiterbenützungen mit
mehr Stellen als für gewöhnlich nötig .

Parodlelhr eisbögen.

f A = 1 ° A = 1' A = 1"

45 ° 78837,29341 ™ 1313,954890™ 21,88924817™

46 77453,91115 1290,898519 21,51497532
47 76046,76765 1267,446128 21,12410212
48 74616,28344 1243,604724 20,72674540
49 73162,88715 1219,381452 20,32302421

50 ° 71687,01462 1194,783577 19,91305962
51 70189,10917 1169,818486 19,49697477
52 68669,62128 1144,493688 19,07489480
53 67129,00870 1118,816812 18,64694685
54 | 65567,73593 j 1092,795599 18,21325998
55 I 63986,27472 ! 1066,437912 17,77396520

Verschiedene Tafelwerte von berechneten Parallelkreisbögen giebt unser Anhang
auf Seite [36 ]— [37 ] , [40] und [41 ] .

Die Parallelbögen werden ausser auf Grade , Minuten und Sekunden , auch auf
Zeitmass , Stunden , Minuten und Sekunden reduziert , was astronomischen Zwecken ent¬

spricht . Es ist deswegen auf Seite [43] auch eine Tafel für Verwandlung von Bogen
in Zeit und umgekehrt gegeben , und auf Seite [40 ] sind die Parallelbögen für 1 ' und
1" in Bogen , dazu aber auch für 1 Minute und 1 Sekunde in Zeit gegeben , als Näherungs¬
werte, die z . B . zu astronomischen Ortsbestimmungen auf Beisen nützlich sind.

§ 37 . Oberfläche des Erd-Ellipsoids .

Zur Oberflächenbestimmung denkt man sich das Ellipsoid durch Meridiane und

Parallelkreise in Trapeze zerlegt , deren Dilferentialformel sich leicht angeben lässt .

AC = N , AE — M
D A = N cos cp AB = Md cp
AA ' = D Adl
A A ' = JV cos (je dl

Als Differential betrachtet hat das Tra¬
pez AB B ' A ' die Fläche dT — ABXAA ' ,

also : d T = M Neos tp dXdcfi (1)

und die ganze Zone A AB B mit 4 = 27?
zwischen den Breiten cp und ä cp wird :

dZ = 2 MNn cos cp d cp

Fig . l .

(2)
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Es mag auch daran erinnert werden , dass man ein solches Zonenelement d Z zwischen zwei
unendlich nahen Parallelkreisen auch als Kegelfläche auffassen kann , welche nach einem elementar¬

stereometrischen Satze erhalten wird als krumme
2. Oberfläche eines Cylinders , dessen Höhe gleich

der Hohe der genannten Zone ist , und dessen Halb¬
messer gleich der Länge derFlächennormalen N ist .

Mit Bezug auf Fig . 2. hat man daher :

Zonen -Flächen -Element d Z — 2 .ZVttX ^ ^

Es ist aber :

dh = dscos <P und ds = Md <p
also d Z = 2 MN jf cos d <p , ebenso wie oben (2).

Da M N = r2 ist , kann man die
Formel (1) auch so schreiben :

d Z = 2 r2 n cos cp d cp (3)
Setzt man für r2 nach (24 ) § 32 . S . 197 seinen Wert und zugleich a 2 (1 — e2) = b2,

so wird :

d Z — 2b 2 n - cos cp - dcp (4)
(1 — e2 sin 2 cp)2

Dieses ist das Flächen -Differential einer Zone des Ellipsoids zwischen den
Breiten cp und cp + d cp, also die Zonenfläche selbst , allgemein :

cos cpZ = 262

Hier kann man entwickeln :
1

(1 — e2 sin 2 cp)2
d cp (5)

d - (1 — e2 sin 2 cp) ~ 2 = 1 + — e2 sin 2 cp
— 2 — 3

- e2 sin2 cp)2
'r ' ~ ^ '

l j
" T T '

\ 1 2
= 1 + 2 e2 sin 2 cp -+- 3 e* sin * cp + 4 e®s in e _u 5 e8 sin $ qp . . .

Die zu integrierende Funktion ist also nach (5 ) :

e* sin* cp ■

cos qr
( 1 — e2 sin 2 cp)2

Diese Glieder lassen sich einzeln unmittelbar integrieren , denn es ist allgemein :

1

= cos qp + 2 e2 cos qpsin 2 qp 4 - 3 e* cos qp sin * qp -1- 4 e6 cos qp sinß cp -+- . . •

. s

J cos sm" cp d qp = — sinn + 1 cp

also , mit mehrfacher Anwendung dieses Integrals :

J
cos cp , 2 3 4

(1 _ ez Sin2 cp)2 dq > = Sm V + Y
e2 SmS V + ~

5
ei sini f +

1
e6 $m ‘ 9 +

Wenn man also auf (4) zurückgreift , und die Grenzen 0 und qp einführt , so
erhält man die Zonenfläche vom Äquator bis zur Breite cp :

Z
-1 / 2 3 4 5'J = 2 b2 n

^
si» qp + — e2 sin3 qp + — e* sin 5 qp+ -

y e8 gini cp + -
g

- e8 sin 9 cp + . . ■

Wenn man diesen Wert selbst haben will für verschiedene cp, so kann man
geradezu hiernach rechnen , indessen für Zonenflächen zwischen je zwei Breiten qppnid
qp2 ist es besser , die sin 8 cp in sin 3 qp u . s . w . umzuformen , nämlich nach § 29 . S . HG •
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3 . 1 . Q
qp = —j- sm qp - j - sm 6 qp

sitfi qp = -dL - sin qp - ^ sindcp -
o io

. 7 35 . 21 . „sm7 cp = —- sm cp — -Tr-.- sm 6 cp-
64 r 64
63 . 21 . .sm9 cp = ^ 3 sin cp - ^r - sind cp -
12o 64

. TI 231 . 165 . 0siw 11 cp = £3-3 siwqo — 7̂3-3 smocp -
512 512

Damit wird (5 ) werden :

16
7

s " sin 5 qp

si« 5qp - sinlcp64 64

_ 9~
64
165
64 « n5qp-

w sm7qn + w sIn9qP

55 . _ 11 . n■
ro

-
24 smöqp -

^ sm7qp Sln9qo - si« 11 qp
1024

*zjj = 2 68 7T
^ .4. sin qp— B sin 3 qp+ 0 sin 5 cp — 1) sin 7 q -t- JE sind q>— F sin 11 cpj (7)

wobei die Cogfficienten A , B u . s . w . diese sind :

1
1 +

B =

G =

D =

E =

F =

«2 -f.

Ae4 + A
8 ^ 16
3 ■ A

16
1

16
1

A . es + -A eio = 1,00335 39847,9231
12o 25o

16
A 64 .
80

35
192

5

45
256
45

e8 j — tr _ e ic —
64 612
c -je

_aß _J_ g8 - J- glO —
112 + 256 ^ 512

«10 = 0,00112 08040,9276

16892,6070
(8)

2304 ' 512
3

5632

eio =

eio =

26,9384

, 0438

,0001

Die Ausrechnung geschah mit dem Besselsehen Werte löge 2 — 7 .824 4104 237.

Wenn man nun die Zone zwischen zwei Breiten qp, und qp2 haben will , so
hat man in ( 7) die Differenzen :

• <Pe — Vi „„ c <Pi
A (sin qp2 — sin qp,) = 2 A sin 'rz

%
cos

Dabei soll zur Abkürzung geschrieben werden :

<P2 — <Pi = J V

u . s . w .

<Pl _±f2 =
2

Damit wird nach (7 ) die Zonenfläche von der Weite d qp und mit der Mittel -

breite qp :

Z = 4&2 n | A cos qp sin — B cos 3 qp sin 3
2 - - 2

■CcosSq sin 5 — D cos 7 q>sin 7

• rv ^ (jP- |- E cos 9 cp sm 9 - ■ . . . I

(9)
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Fläche einer Grad -Äbteilung .

Die Formel (8) mit dem Cogfficienten (7 ) giebt mit J cp = 1 ° die Fläche eines
Ringes von 1 ° Breite , der um die ganze Erde herumgeht , d . b . 360 ° Länge hat .
Häufiger als die Fläche dieses ganzen Ringes braucht man den 360sten Teil der¬
selben , d . h . eine „ Grad -Abteilung “

, oder ein Trapez , welches durch zwei Meridiane
und durch zwei Parallelkreise , beide im Abstande von je 1 °

, begrenzt ist .
Die krumme Oberfläche einer solchen Grad -Abteilung mit der Mittelbreite q>

ist also :
7)2 fr (

G = | A sin 30 ' cos cp — B sin 1 ° 30 ' cos 3 cp + 0 sin 2 ° 30’ cos 5 cp

D sin 3 ° 30' cos 7 cp + Esin 4 ° 30 ’ cos 9 cp

Wenn man hier alles Konstante ausrechnet , so findet man für Quadratkilometer

G = 12347,58347 cos cp (log Coeff. = 4 .091 5819 -705)
— 41,37468 cos 3 cp ( „ „ = 1 .616 7346 -5 )
-+- 0,103911 cos 5 cp ( „ „ = 9 .016 662 - 10) (11 )

0,000232 cos 7 cp ( „ „ = 6 .365 28 — 10)
0, . . . cos % cp ( „ „ = 3 .678 — 10 )

Die Messtischblätter der Preussischen Topographie im Massstab 1 : 25 000 haben
in der Breite A cp — 6 ’ und in der Länge 10 '

, und hiefür wird :
Jß 71 i )G ’ = | -4 sin 3 ' cos cp — B sind ' eos3 cp + Gsin 15 ' cos 5 cp — Dsin 21 ' cos 7 cp > (12)

oder mit ausgerechneten Coefficienten , für Quadratkilometer :
G ' = 205,79564 cos cp — 0,689656 cos 3 <p + 0,001732 cos 5 cp — 0,0000039 cos 7 cp (13)

Die Logarithmen dieser Coefficienten sind :
2 .313 4361 -8 9 .838 6325 7 .238 647 4 .5874

Die hiernach berechneten Werte giebt unsere Tafel des Anhangs Seite [41 ] .
Eine andere Reihenentwicklung , bei welcher die Coefficienten . A , B u . s. w . in endlicher

geschlossener Form aufteeten , wurde gegeben von E . Boedel , Oberpostassistent , in „Schlömilcbs
Zeitschr . f. Math . u . Physik “, 38. Jahrgang 1893, S. 56—60.

Integration in geschlossener Form .
Wir haben in der vorstehenden Entwicklung die Integration (4 ) sofort in einer

Reihe behandelt , weil wir dadurch am kürzesten zu den Formeln (6) und (8) geführt
worden sind , welche zum praktischen Rechnen die bequemsten sind .

Indessen kann man die Integration von (4) auch in geschlossener Form , streng
ausführen , wodurch man zwar eine mathematisch elegantere Formel erhält , welche
aber für die numerische Anwendung unbequemer ist als die entwickelten Reihen.
Die Integration (deren Einzelheiten in der früheren 3 . Auflage 1890 , S . 227—228
ausgeführt waren ) giebt :

1 + e sin cp (14)
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Setzt man hier cp = 90 °
, so wird W 2 = 1 — e2 also :

1 + e
2 62 n

YT — e2 y1 — e2

E = 4a 2 n { 1 -t- 2 e ß

Dieses muss übereinstimmen mit der Formel (6), wenn man daselbst <p = 90 °
setzt , wodurch man erhält :

E = 4 62 n 1 + e2 -\- -— ei + (15 )

Die Ausrechnung giebt nach beiden Formeln übereinstimmend :
E = 509 950 714,2 Quadrat -Kilometer (16)

Denkt man sich nun eine Kugel vom Halbmesser f, welche gleiche Oberfläche E
haben soll , so bestimmt sich f dadurch :

6 870 289,511’ (17)

§ . 38 . Mittlerer Halbmesser der Erde als Hügel.
Die letzte Betrachtung leitet uns noch über zu der Frage , welchen Halbmesser

man einer Kugel zuteilen soll, -welche zu manchen Näherungsberechnungen u . s . w.
dem Erd -Ellipsoid substituiert werden kann ?

Der nächste Gedanke ist , das arithmetische Mittel der drei Halbaxen des
Ellipsoids zu diesem Zwecke zu benützen , d . h . zu setzen :

o —|—o -f- 6
(1)3

a = 6 877 397,155 '“
ft = 6 377 397,155 l a +

^ = 6 370 291,091“
6 = 6 356 078,963 ) 3

Man kann diesen Wert r nach (1) auch in eine Reihe entwickeln , nämlich :

2a + a yi — e2
3r =

( 3)

Nach diesem kann man die am Schlüsse des vorigen § 37 . (s . oben ) eingeführte
Kugel betrachten , welche mit dem Erd -Ellipsoid . gleiche Oberfläche E hat . Aus der
Reihe für E in (15 ) § 37 . (s . oben) folgt , dass der Halbmesser f der fraglichen
Kugel sein muss :

l + TT ^ + T 64 -*-

f = a 1

f = » 1

Jordan , Handb . d. Vermessungskunde . 4. Aufl . III . Bd. 15
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Die Vergleichung mit (3) giebt :

!

Die Ausrechnung hiernach giebt :

f - 6 370 291,091 -” — 1,577™— 0,004«* = 6 370 289,510” (6)

Dieses stimmt genügend mit dem früher auf zwei anderen Wegen berechneten
Werte (16) § 37 . S . 225 .

Als dritter Mittelwert bietet sich der Halbmesser h derjenigen Kugel , welche
mit dem Erd -Ellipsoid gleichen körperlichen Inhalt hat .

Der Inhalt des Umdrehungs -Ellipsoids wird bekanntlich dadurch gefunden , dass
4

man eine Kugel mit dem Äquator -Halbmesser a , also mit dem Inhalt — n aß , in der

Richtung der Umdrehungsaxe im Verhältnis 6 : a zusammengedrückt denkt , d . h . es ist :

6 / 4
Körperinhalt des Erd -Ellipsoids 7i aß b

o

Wenn eine Kugel vom Halbmesser h denselben Inhalt haben soll , so muss sein :

Je = ]/a 2 b — a "J/I — e‘ m
Dieses kann man entwickeln :

Nimmt man wieder das arithmetische Mittel r der 3 Halbaxen nach (3) zur

Vergleichung , und entwickelt , so erhält man :

Die Ausrechnung giebt :
Je - 6 370 291,091” — 7,8828” — 0,0497” = 6 370 283,158 ” (10 )

Dieses ist auch in Übereinstimmung mit einer unmittelbaren Ausrechnung nach (7) .
Zur Übersicht stellen wir nochmals die drei gefundenen Werte zusammen :

1) Arithmetisches Mittel —+
^ = r = 6 370 291,091 ”
ö

2) Halbmesser für gleiche Oberfläche f — 6 370 289,510 ”

3) Halbmesser für gleichen Inhalt paß b = k = 6 370 283,158 ”

Wie man sieht , sind diese Werte nahezu gleich , und für viele Zwecke auch
gleich geeignet .

Für alle Krümmungs -Halbmesser der ganzen Erde hat Dienger in der Schrift „Abbildung
krummer Oberflächen , Braunschweig 1858“, S. 41 den Satz gefunden , dass das arithmetische Mittel
aller Krümmungs -Halbmesser gleich der grossen Halbaxe a ist .

Hiebei ist die ganze Erde in Betracht genommen ; wenn man dagegen nur
einem begrenzten Teile eine Kugel substituieren will , etwa nur der Nachbarschaft
eines Punktes in der Breite cp , so handelt es sich um einen Mittelwert der Krüm¬
mungs -Halbmesser in allen Azimuten von einem Punkte aus , und dafür haben wir

schon in (23 ) § 32 . S . 197 den „mittleren “ Krümmungs -Halbmesser r = YMN ein¬
geführt ohne besondere Theorie .
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Obgleich ohne Theorie der geodätischen Linie es nicht möglich ist , diese Wahl
von r besser zu begründen , soll doch hier auch ein Satz von Grunert angeführt werden
(vgl. die Litteraturangaben am Schlüsse ) , dass der mittlere Krümmungs -Halbmesser
r = }/MN zugleich das arithmetische Mittel aller Normalschnitts -Krümmungs -Halb -
messer B in einem Punkte ist . Dieses wird so bewiesen :

Man hat die Summe aller Werte R nach (1) § 33 . S . 199 :

M sirfi a + N cos2 a
o

und die Anzahl derselben ist entsprechend n = 2ir , also der Mittelwert :
2 ff

[22] _ 1 ( ‘ MN[22] _ 1 f MNhn 2 rrj M sin 2 a -+- Ar cos2 a
^ a

0
Zur Integration führt man eine neue Veränderliche ein :

y -̂ tans M da
N cos2 a

also

wodurch die Integration sich reduziert auf :

arctangv1 + T2
Und setzt man noch die Grenzen ein , so findet man :

(11 )

Ein zweiter Satz von Grunert heisst :
Das arithmetische Mittel der reciproken Krümmungs -Halbmesser aller Normal¬

schnitte in einem beliebigen Punkte eines jeden Ellipsoids ist das arithmetische Mittel
zwischen dem reciproken kleinsten und grössten Krümmungs -Halbmesser in diesem
Punkte .

Wenn man den Krümmungs -Halbmesser für das Mittelazimut a = 45° von
§ 33 . S . 200 zuzieht , so hat man hiernach , mit n = 2 n für Integralsummierung :

l
2245

1
n

■Diese Grunert sehen Sätze sind entwickelt in „Grunerts Archiv der Mathematik u . Physik - ,
• Teil 1863, S. 259 —354 , insbesondere S. 312 und 41. Teil 1864, S. 241—296, insbesondere S. 292.

Hiezu gehört ferner : Helmert , „Die mathem . u . physikal . Theorieen der höheren Geodäsie 1.11

ipzig 1880, S. 63—68. Gzuber , „Mittelwerte , die Krümmung ebener Kurven und KrümmungsMchen “

etreflend . Grunert -Hoppes , „Archiv der Math . u . Ph .“ Zweite Beihe . 6. Teil 1888, S. 294—304.

§ 89. Hilfstafeln zu geodätischen Berechnungen mit den
Bessel sehen Erddimensionen.

Auf die Bessel sehen Angaben für die Erddimensionen sind schon zahlreiche
Tabellen-Berechnungen gegründet worden , wie die folgende Zusammenstellung zeigt :

Eneke . Über die Dimensionen des Erdkörpers nebst Tafeln nach Bessel s Bestim¬

mung . Berl . astr . Jahrb . für 1852 S . 318 —381 und Separatabdruck : Enckes
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astr . Abhandlungen 2 . Band , Berlin 1866 . Diese Enche sehen Tafeln gehen
zuerst die geocentrische Breite und den geocentrischen Halbmesser , dann log
(N -. a), Meridiangrade und Parallelgrade und Grade senkrecht auf dem Meridian,
in Toisen . Ausserdem Tafel II , Meridianbogen vom Äquator bis zur Breite q>
in Toisen auf 0,001 Toise.

Steinhäuser . Neue Berechnung der Dimensionen des Erdsphäroids . Petermanns geogr.
Mitteilungen 1858 S . 465 —468 .

Bremiker . Logarithmisch -trigonometrische Tafeln mit 6 Dezimalstellen 1881 , S . 529
bis 524. Gradabteilungen .

Bremiker . Studien über höhere Geodäsie . Berlin 1869 . S . 70— 81 . Krümmungs -
Halbmesser für verschiedene Breiten und Azimute .

Projektion tables for the use of the United States navy , Bureau of navigation . Wash¬
ington , Government printing offiee , 1869 . Polyeonische Projection .

Wagner . Die Dimensionen des Erdsphäroids nach Bessel s Elementen . Geographisches
Jahrbuch , herausgegeben von Behm . III . Band . Gotha 1870 . S . I—LXI.
Gradabteilungen u . s . w .

F . G . Gauss . Die trigonometrischen und polygonometrischen Bechnungen in der
Peldmesskunst . Berlin 1876 und 2 . Aufl. 1893 , II . Teil S . 4— 25 , von q> = 44°
bis <jp = 54° Meridianbogen , log M , log N etc.

Schreiber . Kechnungsvorschriften für die trigonometrische Abteilung der Landesauf¬
aufnahme . Formeln und Tafeln zur Berechnung der geographischen Coordinaten
aus den Bichtungen und Längen der Dreiecksseiten . Erste Ordnung . BerliD
1878 . Im Selbstverläge ; zu beziehen durch die Königliche Hofbuchhandlung
von E . S . Mittler & Sohn , Kochstrasse 69 . 70 .
Von (jp = 47 ° bis (jp = 57 ° mit Intervall von 1' geben diese Tafeln 8 stellig
log ( 1) . . . log (8) , wobei die (1) , (2) . . . mit Umsetzung in unsere Bezeich¬
nungen

e2
rp = e'2 cos2 cp =

^
- C06'2 T u - s - w-

folgende Bedeutungen haben ;

<« = ■» ' ® = W M = £ W = . <5> = s
«ä

l6) = f | (‘’ - 1) . (7 ) . fJ (3 + 2S ) , (S) _ iV (18 + 3,S )

Dieselben Werte log (1) bis log (4) 7 stellig sind herausgegeben als Bech -
nungsvorschriften für die trigonometrische Aufnahme der Reichs -Schutzgebiete ,
Berlin 1891 , für die Breiten <p = 0 ° bis <jp = 13 ° .

Entsprechende Tafeln für cp = 47 ° bis 57 ° für zweite Ordnung 7 stellig
und für dritte Ordnung 6 stellig .

Albrecht . Formeln und Hilfstafeln für geographische Ortsbestimmungen , nebst kurzer
Anleitung zur Ausführung derselben , von Prof . Dr . Th . Albrecht , Sektionschef
im Königl . Preuss . Geodätischen Institut . 3 . Auflage . Berlin 1894 . Tafeln
über die Gestalt der Erde S . 261— 289 . (Vgl . „ Zeitschr . f. Verm . 1895 “,
S . 544— 547 .)

Helmert . Die mathematischen und physikalischen Theorieen der höheren Geodäsie.
I . Teil . Leipzig 1880. Anhang S . 621— 631 giebt log W von cp = 47 ° 0 '
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bis 57° 0 ' mit Intervall 5 ' auf 0 *0001 , ferner log W1 8 stellig auf 01 genau ,
durch den ganzen Quadranten mit cp = 10 ' .

Biek -Tillo . Russische Übersetzung von Jordan , Handbuch der Vermessungskunde ,
2. Auflage , übersetzt von A. Biek, Oberlehrer der Geodäsie am Messinstitut

des Grossfürsten Constantin . Moskau 1881. Buchhändler N . J . Mamontowa .
Diese Übersetzung giebt , an Stelle der Tafel S . 424 —427 des Originals , ihrer¬

seits auf S . 652 —665 eine von dem Obersten des Russischen Generalstabs

A . A . Tillo berechnete Tafel der Coefficienten für die Gauss sehen Mittelbreiten -

Formeln ; insbesondere log [1] und log [2] für cp = 34 ° 0 ' bis cp = 70 ° 0 ' mit

Intervall 10' auf 0 *1 genau . Es ist jedoch hiebei eine andere Längeneinheit
als die Bessel sehe zu Grunde gelegt , denn die russischen log [1] und log [2]

haben gegen unsere mit Bessel sehen Erddimensionen berechneten log [1] und

log [2] eine konstante Differenz von 3716 .
Rehrn . Mitteilungen des K . K . militär -geographischen Instituts , herausgegeben auf

Befehl des K . K . Reichs -Kriegs -Ministeriums . III . Band , 1883 . Wien 1883.

Im Selbstverläge des K . K . milit .-geogr . Instituts . S . 137— 177 . Tafeln der

Krümmungs - Halbmesser des Bessel sehen Erdsphäroids für die Breiten von

tp = 40 ' 0 ' bis 51 ° 30 ' mit Intervall 1' auf O'OOOl (vgl . nachfolgend Hartl ) .

Schols. Geodetische Formules en Tafels , ten gebruike bij de Triangulatie van het

eiland Sumatra . Utrecht , J . van Boekhoven , 1884. Diese Tafeln geben von

cp = 0 ° 0' bis 6 ° 0 ' die Krümmungs -Halbmesser auf 0*1, nebst weiteren Zahlen¬

werten .
Hermann Wagner s Tafeln der Dimensionen des Erdsphäroids , auf Minuten -Dekaden

erweitert von A . Steinhäuser , K, K. Regierungsrat . Wien 1885. Eduard Hölzel.

Helmert . Veröffentlichung des Kgl . Preuss . Geodätischen Instituts . Lotabweichungen .

Heft 1 . Formeln und Tafeln u . s . w . Berlin , Druck und Verlag von P . Stan -

kiewicz’ Buchdruckerei . 1886 . Tafeln im Anhang S . 6— 26 ; hievon giebt

S . 18 —24 für cp = 30 ° bis 71 ° 8stellige Werte log [1] und log [2] , welche

bzw. die dekadischen Ergänzungen unserer log [2] und log [ 1] sind .

Hartl . Tafeln enthaltend die Ausmasse der Meridian - und Parallelkreis -Bögen , dann

die Logarithmen der Krümmungs -Radien des Bessel sehen Erdellipsoids , be¬

rechnet unter der Leitung von Oberstlieutenant H. Hartl in der geodätischen

Abteilung des K . und K . militär .-geographischen Instituts . Separatabdruck

aus den Mitteilungen des K . K. militär -geographischen Instituts . XIV . Band.

Wien 1895 (vgl . „ Zeitschr . f . Verm . 1896 “
, S . 28 — 30) .

Im Anhänge unseres Buches , Seite [2] und folgende , sind zahlreiche Hilfstafeln

mitgeteilt , welche für diesen Zweck von uns neu und unabhängig berechnet , oder

wenigstens vor der teilweisen Entlehnung gründlich revidiert worden sind.

Die geodätische Grundfunktion V bzw. log V auf Seite [2]— [7] ist mit den

Konstanten der Landesaufnahme (§ 31 . S . 191 ) neu und unabhängig berechnet worden

nach den am Schlüsse Seite [7] angegebenen Formeln , wie in § 34 . ausführlich

gezeigt ist ; die Rechnung ist 12 —13stellig geführt und dann auf 10 Stellen abgerundet .

Die Tafel Seite [8 ]—[29] ist von 1 ° zu 1 ° ebenfalls neu und unabhängig

berechnet , bei der Interpolation sind aber an den Stellen 0 °—6 ° und 47 ° 57 ° die

Tafeln von Schols und Helmert mitbenützt .
Die besondere Tafel für log [1] und log [2] auf Seite [30] — [35 ] ist nur von
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45 °—46 ° neu berechnet, und von 47 °—56 ° ein revidierter Abdruck aus Schreibers
„Rechnungsvorschriften der Landesaufnahme“.

Die Tafel Seite [36] — [37] für die Längen - und Breitengrade und für die Grad-
Abteilungsflächen ist zunächst nach Bremiker und Wagner angesetzt , dann aber ein¬
gehend nachgerechnet; die hiebei von uns gefundenen -wenigen Fehler sind in dem
geographischen Jahrbuch von Behm, VI . Band, 1876 , S . 703 mitgeteilt .

Die Meridianbogen-Tafel Seite [38] ist von 44 °— 56° ein Auszug aus der
grösseren Tafel von P. G. Gauss. Der Teil 40 °— 44 ° ist dazu berechnet.

Die Trapez -Tafel Seite [42] ist nach den betreffenden Formeln von § 35 .—37.
berechnet und soweit möglich mit vorhandenen verglichen .

Über die nach diesem folgenden Tafeln Seite [43] und folgende wird an den
zugehörigen Stellen des Textes Auskunft gegeben .

Übersicht der Haupt -Bezeichnungen in den Hilfstafeln des Anhangs .
<p = Geographische Breite
W = yi — e2 sw 2 qi

e2V = j/l -+- e'2 cos2 <p = ]/l -+- rf , t]2 = e’3 cos2 <p =
^
— ,, cos 2 q>

ci (1 ——e‘̂ ) cM = — —- oder = Meridian -Krümmungs-Halbmesser

(i c _2VN = rr7 oder — Querkrümmungs-Halbmesser , = VzW V
r = mittlerer Krümmungs-HalbmesserV *

M

[1] = Meridian -Krümmungs-CoöfflcientM
Q

,r
[2] = Querkrümmungs-Coefflcient

Kapitel IV .

Sphärische Dreiecksberechnung .

§ 40. Der sphärische Excess .
Bei der sphärischen Dreiecksberechnung nimmt man den Kugelhalbmesser nach

der schon in (23) § 32. S . 197 und nochmals am Schlüsse des § 38 . S . 226 ange¬
gebenen Erklärung an , nämlich :

r = VMN = VV (1)V L
Damit werden zuerst die sphärischen Excesse der Dreiecke berechnet.Die Summe der drei Winkel eines sphärischen Dreiecks ist stets grösser als
180 ° ; der Überschuss der Winkelsumme über 180° heisst der sphärische Excess.
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